Dynamics of Premixed H2-CH4 Flames Under Near Blowoff Conditions

Dynamics of Premixed H2-CH4 Flames Under Near Blowoff Conditions
Dynamics of Premixed H2-CH4 Flames Under Near Blowoff Conditions

Proceedings of GT2009

ASME Turbo Expo 2009: Power for Land, Sea and Air

Orlando, Florida, USA

GT2009-59981

DYNAMICS OF PREMIXED H2/CH4 FLAMES UNDER NEAR BLOWOFF CONDITIONS

Qingguo Zhang, Santosh J. Shanbhogue, Tim Lieuwen

School of Aerospace Engineering

Georgia Institute of Technology

Atlanta, GA 30332-0150

ABSTRACT

Swirling flows are widely used in industrial burners and gas turbine combustors for flame stabilization. Several prior studies have shown that these flames exhibit complex dynamics under near-blowoff conditions, associated with local flamelet extinction and alteration in the vortex breakdown flow structure. These extinction events are apparently due to the local strain rate irregularly oscillating above and below the extinction strain rate values near the attachment point. In this work, global, temporally resolved and detailed spatial measurements were obtained of hydrogen/methane flames. Supporting calculations of extinction strain rates were also performed using detailed kinetics. It is shown that flames become unsteady (or local extinctions happen) at a nearly constant extinction strain rate for different hydrogen/methane mixtures. Based upon analysis of these results, it is suggested that classic Damkohler number correlations of blowoff are, in fact, correlations for the onset of local-extinction events, not blowoff itself. Corresponding Mie scattering imaging of near-blowoff flames also was used to characterize the spatio-temporal dynamics of holes along the flame that are associated with local extinction.

Keywords: Swirling, Hydrogen, Lean Blowout INTRODUCTION

Swirling flows are widely used in industrial burners and gas turbine combustors for flame stabilization. A number of operational and performance issues are of concern in modern, highly tuned dry low NO x (DLN) combustion systems utilizing swirl stabilized flames, including blowout, flashback, combustion instabilities, and emissions [1, 2]. The issue of lean blowoff is the focus of this study, a concern due to the requirement to operate DLN systems under very fuel lean conditions and, therefore, close to their blowoff limits. Flames can only be stabilized in high velocity reactant streams over a certain range of conditions. Determining these conditions, and those where the flame cannot be stabilized – referred to here as blowoff –is an important issue in any practical combustion device.

A large literature on predicting, measuring, and correlating blowoff limits already exists [3-6]. Several different theories or physical considerations have been used in past blowout correlation studies, such as those of Zukoski and Marble [7], Spalding [8], Longwell [9, 10] and others. As noted by Glassman [4], however, they lead to essentially the same form of correlation that relates the blowoff limits to a Damk?hler number, i.e., ratio of a fluid mechanic and chemical kinetic time, τres/τchem. The work of Hoffman et al.[3] is of particular interest here, as it demonstrated that related scaling could be used to correlate blowoff limits in swirling, premixed flames.

We next briefly review several prior phenomenological characterizations of blowoff. Longwell et al. [9] suggested that blowoff occurs when it is not possible to balance the rate of entrainment of reactants into the recirculation zone, viewed as a well stirred reactor, and the rate of burning of these gases. Since entrainment rates scale as D/U [11], this criterion reduces to a Damk?hler number blowoff criterion, using a chemical time that is derived from the well stirred reactor, τPSR. A similar idea relates to an energy balance between heat supplied by the hot recirculating flow to the fresh gases and that released by reaction [12-15]. In this view, blowoff occurs when the heat required by the combustible stream exceeds that received from

the recirculation zone. This leads to the same entrainment based, fluid mechanical time scaling as above, and the resultant similar Damk?hler number blowoff criterion.

A different view is that the contact time between the combustible mixture and hot gases in the shear layer must exceed a chemical ignition time [8, 15-17]. For example, Zukoski [16, 18] suggested that ignition of the incoming fresh unburnt mixture occurs in the shear layer as it mixes with combustion products from the re-circulation zone behind the bluff body. The relevant chemical time in this description is an ignition time. The fluid mechanic time scaling associates the characteristic dimension by the recirculation zone length, which also being proportional to the bluff body size, leads to a similar Damk?hler number correlation.

Finally, several studies have proposed a flamelet based description based upon local extinction by excessive flame stretch [19, 20].

It is difficult to determine which of the above descriptions most accurately describes the controlling processes based upon analyses of Da correlations alone, because the different velocity, length, and chemical time scales generally lead to comparable groupings of the data. However, improvements in fundamentals of turbulent combustion provide further insight for evaluation of these different blowoff descriptions. As emphasized by Driscoll in a recent review [21], there is little evidence of the existence of distributed combustion or well stirred reactors. Rather, modern diagnostics and computations have demonstrated that flamelets exist under a very broad range of conditions; reaction regions deemed to be spatially distributed from line of sight images have often been shown to consist of highly contorted, three dimensionally oriented reaction sheets when visualized with planar laser imaging techniques. This point is illustrated in Figure 1, which illustrates two OH PLIF images and a single, short time exposure, line of sight image of the same swirling flame. There is some possibility of the existence of a “thickened flamelet” regime, where turbulent diffusivity plays a role due to “stirring” by Kolmogorov scale eddies in the preheat zone, but evidence is lacking at this point [21]. As such, blowoff theories postulating the existence of well-stirred reactor regimes, such as in the recirculation zone, probably do not correctly capture the controlling processes. Furthermore, a critical component to several of the above described blowoff theories is heat exchange from the hot wake to the reactants. However, given the fact that a premixed flame acts as an interfa ce between reactants and products, there is no “contact” between the wake zone and fresh reactants, except for the thermo-diffusive processes (and possibly mixing by Kolmogorov scale eddies) confined to the preheat zone of the flamelet. In other words, no such exchange occurs outside of points very near the attachment region, except for flames near blowoff where extensive holes in the flame sheet exist.

Figure 1 Two instantaneous OH PLIF images of acoustically forced, swirling flame (left and middle) and associated line

of sight image (right). Flow bottom to top. Reproduced from Bellows et al. [22].

Given these points, the subsequent discussion will focus on flamelet based descriptions of the controlling blowoff processes, which are also captured by Damk?hler number scalings. Extinction of flamelets occurs through two mechanisms: heat transfer and flame straining [23, 24]. Flame strain is apparently the dominant effect, with heat/radical losses only dominant very near the bluff body. Flame strain occurs due to gradients in flow velocity, such as if the flame resides in a shear layer, or flame curvature, such as when it is rolled up in a vortex. Flames are only capable of withstanding certain levels of strain before extinction, denoted as the extinction strain rate, κext. As detailed in Law [23], the extinction strain rate is a function of fuel composition (particularly its molecular weight relative to air), stoichiometry, and chemical time scale. The inverse of the extinction strain rate forms a chemical time, κext=1/τESR, whose relationship to other kinetic time scales is discussed in a number of references [25-27].

The local Damk?hler number definition used in this paper can be written as a ratio of the extinction flame strain rate and the flow strain rate:

/

flow

ext

ESR

Da

τ

κκ

τ

== (1)

where κdenotes the reference strain rate, inversely proportional to the reference fluid mechanical time, τflow.

As suggested in several prior studies, it is clear that flamelet extinction occurs near blowoff, but does not immediately lead to blowoff [28, 29]. In other words, blowoff does not occur the instant when κext=κ at some point along the flame. As such, the presence of strain induced extinction of the flame sheet near blowoff conditions, and the fact that the Da describes such extinction, is useful, but not a complete description of the blowoff phenomenon.

Local extinction is known to lead to substantial unsteadiness in flames near blowoff [20, 30-33]. Holes on the flame sheet are initiated at points of high flame strain. This topic has received extensive discussion in the more general turbulent combustion literature [34-36]. The formation of “edges” that are associated with holes on the flame sheet is a more general combustion problem that has received recent

attention for both premixed and non-premixed flames [37-41], including a recent review by Buckmaster [42]. Once a flame hole is initiated by excessive local strain/scalar dissipation rates, it can stay the same size, grow, or shrink, associated with whether the edge flame stays stationary, retreats, or advances into the hole, respectively. In addition, the hole is convected with the mean flow at the local tangential mean flow velocity, as will be discussed further in this paper. For premixed flames, it is important to note that the advance/retreat velocity of the flame edge is not related to the laminar burning velocity. Furthermore, while flame holes appear at points where the local strain rate, κ, exceeds κext (in the quasi-steady case), the flame edge does not correspond to the point in the flow where κ=κext. Rather, Liu and Ronney’s results [41] show that the flow strain rate at the flame edge value, κedge, is lower than κext by a factor of up to two (i.e., 0.5<κedge/κext<1). In other words, once a hole

is initiated in a region of high strain, it can lead to flamelet extinction at adjoining points that would otherwise not have extinguished at the local conditions.

It has been suggested that flames approach blowoff in two phases, the first characterized by local extinction on the flame sheet, and the second by large-scale alteration of the fluid mechanics. The objective of this study is to characterize these dynamical blowoff processes in this first phase. This study closely follows several related studies of our group which have characterized the dynamic blowoff process of pilot, bluff body, and swirl stabilized flames [29, 43]. In the swirling flame, Muruganadam et al. [29] and Zhang et al. [44] showed that the swirling flame tends to oscillate between extinction and re-ignition phases. The number of extinction/re-ignition events per unit time monotonically grows as blowoff is approached. Very near blowoff, the entire structure of the vortex breakdown appears to change in a complex manner, with various helical flow features appearing and reappearing in a sporadic fashion.

INSTRUMENTATION,EXPERIMENTAL FACILITY, EXPERIMENTAL PROCEDURES,AND DATA REDUCTION

Measurements were obtained in a lean, premixed swirl combustor which was duplicated from an experimental rig at Sandia National Laboratories [45]. This was done in order to have the same test facility to facilitate comparisons of data and simulations with the Sandia group. The combustor is schematically shown in Figure 2. The facility consists of a swirler/nozzle, combustor, and exhaust sections. Premixed gas, consisting of H2/CH4mixtures and air flows through a swirler/nozzle section. The nozzle is an annular tube with inner diameter of 28mm. The center body has an outer diameter of 20 mm. The overall flow area remains constant at 3.0 cm2 inside the nozzle. Tests were performed with a six-vane, 45o swirler, which is located in the annulus between the centerbody and nozzle wall. The theoretical swirl number, which is 0.85, is calculated from the relation [46],

θ

tan

)

(

1

)

(

1

3

2

2

3

?

?

?

?

?

?

-

-

=

d

d

d

d

S

h

h (2)

where d h and d are the diameters of centerbody and swirler, respectively, and θ is the swirler vane angle. The fuel is injected 150 cm upstream of the combustor to achieve a premixed condition. The combustor consists of a 305 mm (12 inches) long quartz tube, with a 115 and 120 mm inner and outer diameter, respectively. It rests in a circular groove in a base plate. An exhaust nozzle has a 152mm contraction section with the area ratio 0.44, and a 102mm long, 51mm inner diameter chimney section.

Combustor

(Quartz tube)

Mie Scattering

Figure 2: Schematic of the combustor facility with Mie measurement window and optical probe.

The air and fuel flow rates are measured with a flowmeter and mass flow controllers (MFC’s), respectively. Both the flowmeter and MFC’s were calibrated using the specific gas with which they were to meter. The maximum resultant uncertainty in ratios is 0.01-0.02 for most of the cases. The largest uncertainty in φ of 0.03 occurs with pure CH4. The air is choked before the mixing section, and the premixed air/fuel is choked again inside the inlet tube of the combustor (not shown) upstream of the swirler to minimize the impact of perturbations in the combustor impacting the fuel/air mixing process.

All experimental measurements were obtained at a constant nozzle exit velocity of 33 m/s. Tests were performed at a combustor pressure of 1.0 atm and 300 K reactants.

The Mie scattering test in the combustor was performed using Particle Image Velocimetry (PIV) facility. The system consists of a dual head Nd:YAG laser, a high resolution CCD camera, a mechanical shutter and a centralized timing generator. In addition a cyclone seeder was used to supply anhydrous aluminum oxide (Al2O3) with an average particle size of 3μm.

Each laser head delivered a 5 mm, 120 mJ/pulse beam at a wavelength of 532 nm. The beams pass though an optical

arrangement for generation of a light sheet with desired height

and thickness. This arrangement consisted of a convex spherical (f= 1 m) and a convex cylindrical lens (f= 25.4 mm) that resulted in a light sheet 1mm thin at the centre of the combustor. The CCD camera captured the images of the illuminated particles at a resolution of 1600 x 1200 pixels (corresponding to 52 mm x 39 mm) in frame straddling mode. The duration between laser shots was set at 5 s. In addition the camera was also fitted with a 532 nm laser line filter with a FWHM of 3 nm to restrict any background noise. For each image group ( 2 images), the first image was used.

In addition, UV radiation from flames was monitored with an optical fiber bundle (NA=0.44), with the head located 46 mm above the dump plate of the combustor and 171 mm radially from the combustor centerline, see Figure 2.This volume was placed such that light is collected from the lower one third of the combustor, in order to image the IRZ (inner recirculation zone). The light passes through an interference filter centered at 308 nm and with a full-width-half-maximum (FWHM) of 10 nm, which corresponds to the primary spectral region of OH* emission. This radiation was detected by a miniature, metal package PMT (Hamamatsu H5784-04). This PMT has a built-in amplifier (bandwidth of 20 kHz) to convert the current to voltage and operates from a 12 VDC source.

The signal output from the sensors was low pass filtered by a Krohn-Hite Model 3362 digital Butterworth filters and then fed into a National Instruments A/D board. The sampling frequency was 2 kHz. The low pass filter frequency (for anti-aliasing) was set at half the sampling frequency, 1 kHz. RESULTS AND DISCUSSION

Global Dynamics - Observation

The blowoff limits for this combustor are indicated by the dashed red line in Figure 6. However, the flame becomes unsteady and exhibits transient behaviors before blowoff. This section presents typical results of these flames under near blowoff conditions.

We first present “global”, but time resolved characterization of near blowoff dynamics. Figure 3 plots the OH chemiluminescence signal from the optical probe (see Figure 2) at three equivalence ratios approaching the blowoff value. There is clearly a significant change in characteristics of these time series as blowoff is approached.

Time(s)

O

H

*

(

t

)

/

O

H

*o

Time(s)

O

H

*

(

t

)

/

O

H

*o

Time(s)

O

H

*

(

t

)

/

O

H

*o

Figure 3: Time series data of OH* signal of CH4 flame at equivalence ratios of 0.8 (top), 0.62 (middle) and 0.51 (bottom), where OH*o denotes time average of OH*(t).

A detail of the time series for a near-blowoff case is shown in Figure 4. The regions associated with a drop and rise in chemiluminescence signal are referred to here as “events”, which are interpreted as local extinction and/or convection of the flame downstream, followed by re-ignition and/or propagation of the flame into the mass of unburned reactants which accumulate due to the flame moving downstream. Following Muruganandam’s method [29], “events” are defined here as initiating at the point in time where the intensity of the signal drops lower than some threshold, and ending when the signal goes above a second, higher valued threshold. This second threshold value is needed to eliminate multiple counts of the same event that oscillates above and below the same threshold. For these data, 0.3 and 0.5 (of the mean) were used as the first and second thresholds for local extinction. These distinctive extinction and re-ignition events span a period from O(1s) to O(0.001s), without any obvious periodicity or frequency prior to blowoff. As the LBO limit is approached, more of these events occur in a given time period and thus the time between successive events decreases.

Figure 4: Time series data of OH signal for methane flame at equivalence ratio of0.54

The average number and duration of events per unit time can be quantified for a given set of prescribed threshold values. Typical results are shown in Figure 5as a function of equivalence ratio for three CH4/H2mixtures. The test was initiated under stable conditions with the equivalence ratio decremented over steps of 0.01, with 30 seconds of data taken at each point all the way to blowoff. These sweeps were repeated three times and the results averaged. The near zero value of the event count far from blowoff, the “knee in the curve” associated with the initiation of “events”, and the monotonic rise in event count with further reduction in fuel/air ratio, is evident in the figure. Similar results are exhibited for three fuel blends, with the higher hydrogen ones shifted towards lower equivalence ratios, as expected [6], but the curves have similar characteristics. The absolute value of equivalence ratio at which events begin is a function of the specific threshold values used to flag events, but does not change the trends shown in this

Figure 5: Dependence of local extinction event frequency upon equivalence ratio of CH4/H2 flames.

An alternative way of plotting these data is indicated by the dashed lines in Figure 6. This figure plots lines of constant event count as a function of equivalence ratio and percentage of H2 in the fuel. These data illustrate that these lines are roughly parallel to each other.

Global Dynamics- Discussion

This section describes an analysis of the above data using computed chemical times. Three chemical times were calculated: (1) th e “blowoff residence time” of a perfectly stirred reactor, τPSR, (i.e., the minimum residence time for which non-negligible reaction progress occurs) (2) inverse of the extinction strain rate of an opposed flow, laminar premixed flame, τESR=1/κext, and (3) unstretched, laminar premixed flame time scale, given by the ratio of the premixed flame thickness and flame speed, τpf=δf/S L, where δf is defined as (?T flame)/(dT/dx)max. The first two times were determined using CHEMKIN software tools PSR and PREMIX, respectively. Extinction strain rates were calculated using an arc-length continuation method, implemented in COSILAB 2.0 using the GRI 3.0 mechanism.

Referring back to Figure 6,computations of extinction strain rate were also performed for similar ranges of φand CH4/H2 ratios. These calculations were interpolated and used to plot iso-lines of extinction strain rates, indicated by the solid black lines. Since all geometric and dimensions and flow velocities were fixed, these lines also correspond to lines of constant global Damk?hler number, as will be discussed in the context of Figure 7.

Significantly, these data show that these iso-event count lines are parallel to constant Damk?hler number lines, showing that each Damk?hler number can be associated with a particular event rate. Define the flow time in the Damk?hler number definition, see Eq. (1), as D/U o, where D indicates the diameter of the centerbody and U0 is the flow speed at nozzle exit. With this definition, event counts of 1, 2, and 3 events/sec correspond to Da=0.5, 0.35, and 0.2, respectively.

Using these ideas, the data shown in Figure 5can be re-plotted by replacing the x-axis with the calculated Damk?hler number, see Figure 7. This figure shows a very similar relationship between Damk?hler number and event rate across the three different fuel blends. Note that the lowest equivalence ratio data shown in Figure 5 is not presented in Figure 7, due to difficulties in obtaining converged chemical time solutions at these points.

% H 2

φ

Figure 6: Dependence of ext κ, blowoff limits and event rate upon percentage of hydrogen and equivalence ratio. Contour lines of extinction strain rate are indicated at 1400, 1200, 800 and 400 1/s. These contours were estimated by calculating ext κat 0/100, 20/80, 40/60, 50/50, and 75/25% H 2/CH 4 mixtures with equivalence ratio steps of 0.02. Blowoff limits and event information (dash lines) were collected for 0/100, 20/80, 50/50 and 75/25 H 2/CH 4 mixtures.

Figure 7: Dependence of extinction event rate upon Damk?hler number of CH 4/H 2 flames .

These data can also be used to support the argument that the extinction strain rate, κext =1/τESR , as opposed to other kinetic time scales, is the most physically meaningful in describing these near blowoff dynamics. In many cases, different kinetic time scales, such as those based upon τpf , τPSR , or ignition times, are closely related, and thus give comparable Damk?hler scaling. However, there are substantial variations in chemical time relationships for CH 4/H 2 mixtures with H 2 levels greater than

about 20%, particularly between extinction strain rate based time scales and unstrained flame or PSR based time scales. Note that the latter is purely a kinetic time scale, while the former two time scales also depend upon diffusive processes. Given the substantial difference in diffusivity of the fuel relative to oxidizer with increasing H 2 levels, it then follows that appropriate choice of time scale becomes increasingly important with high H 2 fuels. To restate, systematic differences between different kinetic time scales can be anticipated when comparing over a range of fuels with different diffusivities. This point is born out in this data. Figure 8 compares three calculated chemical times for near blowout conditions at constant event rates for CH 4/H 2 flames. Again, nozzle velocity and geometry were fixed so it is reasonable to presume relatively constant fluid mechanic time scale. As such, the y-axis on this graph is inversely proportional to the global Damk?hler number. These data show that the extinction based kinetic scale is roughly constant across the whole range of H 2 levels, while the PSR and flame propagation based scales are not.

20

40

6080

10

10

10

10

10

% H 2

T i m e s c a l e (s )

Figure 8: Comparison of three chemical time scales at fuel/air ratios associated with event rate of 1 event/sec.

Further insight into these results can be obtained by distinguishing between a global, average Damkohler number, Da , such as used in plots in the “Results” section, and the actual instantaneous Damkohler number at the flame 1. The actual strain rate is a fluctuating quantity with a mean and variance given by κ and k σ. For a given Da and strain fluctuation amplitude and time scale, the flame sheet at a given point will be extinguished for some fraction of time, ?. This is

1

Much of the discussion in this section closely follows arguments from Shanbhogue et al . [28], made in the context of bluff body flames.

illustrated in Figure 9, which reproduces a plot from Shanbhogue et al. [28]. This figure plots a notional time series of the instantaneous Da value at some position, as well as the extinction value and time averaged value, Da . The vertical highlighted stripes correspond to regions where the instantaneous Da value falls below the extinction value. If Da is decreased (e.g., by decreasing fuel/air ratio), the flame sheet is extinguished at this point for a larger fraction of time, illustrated by comparing the top and bottom figures. The fraction of time which the flame is extinguished will be denoted as ?.

1234567

D a m k o h l e r #

value

12345

6

D a m k o h l e r #

value

Da

Figure 9: Notional description of time variation of local Damk?hler number at given point on flame sheet, illustrating local extinction events at two average Damk?hler number values, Da , one farther (top) and closer (bottom) to blowoff.

Flame Strain Rate, κ

P

D F o f S t r a i n R a t e , P (κ)

Figure 10: Notional PDF of flame strain rate and extinction strain rate at a particular point along the flame, s .

Consider this extinction fraction, ?, in further detail. Figure 10 overlays a hypothetical probability density function of the flame strain rate, with the extinction strain rate at a particular point along the flame, s . For illustrative purposes, it is assumed that κext is a single number, not a distribution itself and that extinction occurs at points where the local strain rate, κ, exceeds the extinction strain rate, κext . The latter assumption assumes a quasi-local 2 and quasi-steady 3 flamelet [47]. The fraction of time that the flame is extinguished is given by the hatched area under the curve. This is given by the integral:

()(,)(,)ext ext s P s d P s d κκ

κκκκ-

+

-∞

?=

+

?

?

(3)

where κ

ext- and κext+ denote the negative and positive extinction strain rates. In order to see the form of the results, consider a Gaussian PDF (in general, not a good representation of strain rate PDF’s, but one that allows for illustrative analytical treatment):

22

exp ()/2()k P κκσκ??--=

(4)

2

This quasi-local treatment of the flame holes neglects

the fact that once a flame hole is initiated, it can advance into a region with a strain rate that is lower than κext , as discussed earlier.

3

This reasoning can also be generalized to the non

quasi-steady flamelet case. A more general parameterization of flame extinction and strain rate is with functions of the form

(,,,...)ext f κκκ

κ= and (,,,...)P κκκ . We will not carry through the details of the calculation, but a similar integration

can be performed.

Assuming equality of κext- and κext+, setting κ=κ

the average Damk?hler number, /ext

Da κκ=, leads to:

[]1

()/11()ext Da s s κκ-==-?

terms of Da and /κ

σκas:

()1s erf

?=-

(6)

is locally quenched for a given average Damk?is associated with a given event count rate. Our bluff blowoff review suggested that, from a fundamental point in particular that each Da value is associated with a Local Dynamics- Observations

We next consider more “local” characterization of these extinction processes. Mie scattering diagnostics were used to visualize a density-based boundary between product and reactants. Such an approach is less direct and spatio/temporally precise than, say CH PLIF or other reaction rate measurements, but provides some indicator of where breaks in the flame exist. As long as the flame is sufficiently removed from blowoff, the raw image has two regions of high and low particle density regions, which indicate the cold reactants and hot products, see Figure 11. Holes in the flame are associated with regions of significantly lower gradient in seed density. The raw image is filtered and processed in order to determine an edge between regions of high and low particle density. A threshold level (40%) is selected by examining the probability density function (PDF) of the intensity gradients of a stable flame image. Flame holes are defined as the broken area along the flame, where the gradient of particle densities falls below the threshold, see Figure 11. An instantaneous iso-vorticity field is also plotted on the top of flame fronts. It shows that each flame hole is associating with a region of high vorticity. However, it should be pointed out that there is a time delay between flame extinction and when a hole is evident from the density. When local extinction occurs, the density will not change immediately, but over a molecular and turbulent diffusive time scale.

Figure 11: Flame front in raw Mie scattering images (top left); Instantaneous iso-vorticity field and flame front

(remaining images) of methane flame at equivalence ratio of 0.61

Figure 12 quantifies the spatial distribution of holes for a CH 4 flame. Out of thirty total images, the fraction of these that contained a hole (regardless of its size) in the inner flame branch was determined at each axial location from y to y+?y , where ?y=1 mm . Interestingly, no holes are evident near the centerbody (2-5 mm downstream), even though this is the region of highest shear. There are two possibilities for this. One is that holes are initiated, but not yet evident in the Mie scattering intensity gradient, due to the finite time required for the temperature to smooth out. The second is that this is a region of product recirculation, which causes ignition of this region in the nearfield and which renders the flame difficult to locally extinguish. Similar situations occur in bluff body flames, where flame extinction usually initiates downstream and moves progressively closer to the bluff body as blowoff is approached (and opposite to non-piloted jet flames which lift off the burner before blow off) [28].

Figure 12: Distribution of holes along the flame front for CH4 (■) and 50/50 H2/CH4 (O) flame at equivalence ratio of 0.62 and 0.43, respectively. Line denotes calculated result assuming holes are generated uniformly and randomly along the flame and propagate downstream with the speed of 30 m/s.

Moving downstream, the fraction of images with holes increases monotonically in a roughly linear manner. Note that the threshold used for flagging a hole does affect the location of the inferred hole. However, changing the threshold value shifts the linearly increasing region up or downstream downstream, but not the basic shape of this plot. Also shown is data for a 50/50 H2/CH4 flame, which shows similar behavior.

Local Dynamics- Discussion

These data show that flame holes locations are not uniformly distributed along the flame –rather they increase monotonically with downstream distance. This behavior can be understood by noting that once a hole is formed, it is convected downstream at the local tangential velocity. The size of these holes will change with downstream distance, initially growing and then shrinking. However, if the time required for these holes to close is slow relative to the time in the viewing window (~20 mm/30 m/s = 0.67 ms), then once formed, the hole will persist. Denote the probability of initiation of a hole per unit axial location and per unit time as p. If this probability is spatially uniform (i.e., equal likelihood of hole being initiated over entire viewing window), then the probability of a hole being present at a given axial location, x, per unit axial distance, P(x), is simply:

P(x)=px/U t (7) Where U t denotes the axial convection velocity of the hole. In other words, this equation shows that a spatially uniform probability of hole initiation implies a linearly increasing probability of a hole being present with axial location, x. Thus, the slope of the data shown in Figure 12 can be interpreted as the probability of hole initiation. The dashed line in the data is a fit to these data with a slope of p=0.7 hole initiation events/ms.

C ONCLUDING R EMARKS

We close this paper with some speculations regarding the processes controlling swirling flames near blowoff. Many of these comments are very similar to hypotheses raised in our bluff body work [28]. Lean blowoff occurs in at least two phases. The first is associated with spatio-temporally localized extinction events, leading to flame “holes”. Such a phenomenon is largely independent of the recirculation zone dynamics. This study has shown that H2/CH4 mixtures reach this limit at similar global Damk?hler numbers. The actual blowoff event is a more complex phenomenon that also involves interactions between the inner recirculation zone (vortex breakdown bubble), outer recirculation zone of the rapid expansion, and flame extinction/reignition phenomenon, which are not well understood. Some appreciation for the complexity of these “Stage 2” dynamics can be gained by studying the image sequences and discussion in the Ph.D. theses of Murugandam [48] and Zhang [49].

It appears that classical Damk?hler number scalings based upon average quantities are correlations for the first pre-blowoff stage where holes in the flame occur. That is, from a fundamental point of view, these global Damk?hler number correlations do not describe the ultimate blowoff condition itself, but rather the condition at which flame extinction begins to occur. Figure 6 shows that these two limits are correlated: the lines representing these two limits are almost parallel with each other. Global Damk?hler number scaling cannot describe, however, what is the critical ? value, ?crit, at which blowoff occurs; this critical value is likely influenced by the recirculating phenomenon that provides a “torch” for the near separation point region from which the flame then propagates out from. As such, the ability of Da correlations to describe/predict the actual blowoff condition is directly linked with the extent to which the ultimate blowoff event is correlated with these extinction events. Local extinction and global blowoff must be related ; e.g., flame holes appear under near blowoff conditions and increase in frequency and duration as one gets closer to blowoff. Moreover, given the fact that average Damk?hler number scalings can reasonably collapse blowoff data also indicates that they are related [44]. The problem, however, lies in the fact that the flame can withstand a certain amount of extinction, but not “too much”; i.e., 0

REFERENCES

[1] Lieuwen T, McDonell V, Santavicca D, Sattelmayer T. Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability. Journal of Engineering for Gas Turbines and Power 2008;130:954-961

[2] Richards GA, McMillian MM, Gemmen RS, Cully SR. Issues for Low Emission, Fuel Flexible Power Systems. Progress in Energy and Combustion Sciences 2001;27:141-169

[3] Hoffmann S, Habisreuther P, Lenze B. Development and Assessment of Correlations for Predicting Stability Limits of Swirling Flames. Chemical Engineering and Processing 1994;33:393-400

[4] Glassman I. Combustion. 3rd Edition Academic Press San Diego, California 1996

[5] Plee SL, Mellor AM. Characteristic Time Correlation for Lean Blow off of Bluff-Body Stabilized Flames. Combustion and Flame 1979;35:61-80

[6] Strakey P, Sidwell T, Ontko J. Investigation of the Effects of Hydrogen Addition on Lean Extinction in a Swirl Stabilized combustor. Proceedings of the Combustion Institute 2006;31:

[7] Zukoski EE, Marble FE. Experiments Concerning the Mechanism of Flame Blowoff from Bluff Bodies. Proceedings of the Gas Dynamics Symposium on Aerothermochemistry 1956;205 - 210

[8] Spalding DB. Theoretical Aspects of Flame Stabilization. Aircraft Engineering 1953;25:264-276

[9] Longwell JP. Flame Stabilization by Bluff Bodies and Turbulent Flames in Ducts. Proceedings of the Combustion Institute 1952;4:90-97

[10] Longwell JP, Chenevey JE, Clark WW, Frost EE. Flame Stabilization by Baffles in a High Velocity Gas Stream. Proceedings of the Combustion Institute 1948;3:40-44

[11] Bovina TA. Studies of Exchange Between Re-Circulation Zone Behind the Flame-Holder and Outer Flow. Proceedings of the Combustion Institute 1959;7:692-696

[12] Kundu KM, Banerjee D, Bhaduri D. On Flame Stabilization by Bluff-Bodies. Journal of Engineering for Power 1980;102:209-214 [13] Kundu KM, Banerjee D, Bhaduri D. Theoretical Analysis on Flame Stabilization by a Bluff-Body. Combustion Science and Technology 1977;17:153-162

[14] Williams GC, Hottel HC, Scurlock AC. Flame Stabilization and Propagation in High Velocity Gas Streams. Proceedings of the Combustion Institute 1951;3:21-40

[15] Williams FA. Flame Stabilization of Premixed Turbulent Gases. Applied Mechanics Surveys 1966;1157-1170

[16] Zukoski EE. Flame Stabilization on Bluff Bodies at Low and Intermediate Reynolds Numbers. PhD Thesis, California Institute of Technology, Pasadena 1954

[17] Zukoski EE in Afterburners:Oates G. (Eds.),Afterburners, 1997 [18] Zukoski EE, Marble FE. The Role of Wake Transition in the Process of Flame Stabilization on Bluff Bodies. AGARD Combustion Researches and Reviews 1955;167-180

[19] Pan JC, Ballal DR. Chemistry and Turbulence Effects in Bluff Body Stabilized Flames. 30th Aerospace Sciences Meeting and Exhibit 1992

[20] Yamaguchi S, Ohiwa N, Hasegawa T. Structure and Blow-Off Mechanism of Rod-Stabilized Premixed Flame. Combustion and Flame 1985;62:31-41

[21] Driscoll J. Turbulent Premixed Combustion: Flamelet Structure and its Effect on Turbulent Burning Velocities. Progress in Energy and Combustion Science 2008;34:91-134

[22] Bellows B, Lieuwen T. Nonlinear Flame Transfer Function Characteristics in a Swirl Stabilized Combustor. Journal of Engineering for Gas Turbines and Power 2007;129:954-961

[23] Law CK. Combustion Physics. Cambridge University Press Cambridge 2006

[24] Poinsot T, Veynante D. Theoretical and Numerical Combustion. RT Edwards Inc Flourtown PA 2001

[25] Kobayashi H, Kitano M. Extinction Characteristics of a Stretched Cylindrical Premixed Flame. Combustion And Flame 1989;76:285-296

[26] Wang P, Hu S, Wehrmeyer J, Pitz R. Stretch and Curvature Effects on Flames. 42nd AIAA Aerospace Sciences Meeting and Exhibit AIAA Paper No. 2004-148,2004

[27] Chung SH, Chung DH, Fu C, Cho P. Local Extinction Karlovitz Number for Premixed Flames. Combustion and Flame 1996;106:515-520

[28] Shanbogue S, Hussain S, Lieuwen T. Lean Blowoff of Bluff Body Stabilized Flames: Scaling and Dynamics. Progress in Energy and Combustion Sciences 2009;35:98-120

[29] Muruganandam T, Nair S, Scarborough D, Neumeier Y, Jagoda J, Lieuwen T, Seitzman J, Zinn BT. Active Control of Lean Blowout for Turbine Engine Combustors. Journal of Propulsion and Power 2005;21:807-814

[30] Hertzberg JR, Shepherd IG, Talbot L. Vortex Shedding Behind Rod Stabilized Flames. Combustion and Flame 1991;86:1-11

[31] Yang JT, Yen CW, Tsai GL. Flame Stabilization in the Wake Flow Behind a Slit V-Gutter. Combustion and Flame 1994;99:288-294 [32] Kim W, Lienau J, van Slooten P, Colket M, Malecki R, Syed S. Towards Modeling Lean Blowout in Gas Turbine Flameholder Applications. Journal of Engineering for Gas Turbines and Power 2006;128:40-48

[33] Karlovitz B, Denniston DW, Knapschaefer DH, Wells FE. Studies on Turbulent Flames. Proceedings of the Combustion Institute 1953;4:613-620

[34] Chen J, Im H. Stretch Effects on the Burning Velocity of Turbulent Premixed Hydrogen/Air Flames. Proceedings of the Combustion Institute 2000;28:211-218

[35] Kostiuk LW, Bray KNC, Cheng RK. Experimental Study of Premixed Turbulent Combustion in Opposed Streams. Part II - Reacting Flow Field and Extinction. Combustion and Flame 1993;92:396-409

[36] Bradley D, Lauu AKC, Lawes M. Flame Stretch Rate as a Determinant of Turbulent Burning Velocity. Philosophical Transactions: Physical Sciences and Engineering 1992;338:359-387

[37] Pantano C, Pullin DI. On the dynamics of the collapse of a diffusion-flame hole. Journal of Fluid Mechanics 2003;480:311-332

[38] Buckmaster J. Edge-Flames and Their Stability. Combustion Science and Technology 1996;115:41-68

[39] Nayagam V, Balasubramaniam R, Ronney PD. Diffusion flame-holes. Combustion Theory and Modelling 1999;3:727-742

[40] Brown CD, Watson KA, Lyons KM. Studies on Lifted Jet Flames in Coflow: The Stabilization Mechanism in the Near-and Far-Fields. Flow, Turbulence and Combustion 1999;62:249-273

[41] Liu J-B, Ronney PD. Premixed Edge Flames in Spatially Varying Straining Flows. Combustion Science and Technology 1999;144:21-45 [42] Buckmaster J. Edge-Flames. Progress in Energy and Combustion Sciences 2002;28:435-475

[43] Nair S, Lieuwen T. Acoustic Detection of Blowout in Premixed Flames. Journal of Propulsion and Power 2005;21:32-39

[44] Zhang Q, Noble D, Shanbogue S, Lieuwen T. Impacts of Hydrogen Addition on Near Lean Blowout Dynamics in a Swirling Combustor. ASME-IGTI Turbo Expo ASME paper #2007-27308,2007 [45] Williams TC, Schefer RW, Oefelein JC, Shaddix CR. Idealized gas turbine combustor for performance research and validation of large eddy simulations. Review of Scientific Instruments 2007;78:

[46] Beer J, Chigier N. Combustion Aerodynamics. John Wiley and Sons New York 1972

[47] Im. H, Bechtold J, Law CK. Response of Counterflow Premixed Flames to Oscillating Strain Rates. Combustion and Flame 1995;105:358-372

[48] Muruganandam T. Sensing and Dynamics of Lean Blowout in a Swirl Dump Combustor. Ph.D. Thesis, Georgia Institute of Technology, Atlanta 2006

[49] Zhang Q. Lean Blowoff Characteristics of Swirling H2/CO/CH4 Flames. Ph.D. Thesis, Georgia Institute of Technology, Atlanta 2008

项目管理方法和项目实施方法的关系

项目管理方法和项目实施方法的关系 在一个项目的执行过程中还同时需要两种方法:项目管理方法 和项目实施方法。 项目实施方法指的是在项目实施中为完成确定的目标如某个应 用软件的开发而采用的技术方法。项目实施方法所能适用的项目范围会更窄些,通常只能适用于某一类具有共同属性的项目。而在有的企业里,常常把项目管理方法和项目实施方法结合在一起,因为他们做的项目基本是属于同一种类型的。 实际上,只要愿意,做任何一件事情,我们都可以找到相应的 方法,项目实施也是一样。以IT行业的各种项目为例,常见的IT项目按照其属性可以分成系统集成、应用软件开发和应用软件客户化等,当然,也可以把系统集成和应用软件开发再分解成一些具备不同特性的项目。系统集成和应用软件开发的方法很显然是不一样的,比如说:系统集成的生命周期可能会分解为了解需求、确定系统组成、签订合同、购买设备、准备环境、安装设备、调试设备、验收等阶段;而应 用软件的开发可能会因为采用的方法不同而分解成不同的阶段,比如说采用传统开发方法、原型法和增量法就有所区别,传统的应用软件开发的生命周期可能分解成:了解需求、分析需求、设计、编码、测试、发布等阶段。 至于项目管理,可以分成三个阶段:起始阶段,执行阶段和结 束阶段。其中,起始阶段是为整个项目准备资源和制定各种计划,执

行阶段是监督和指导项目的实施、完善各种计划并最终完成项目的目标,而结束阶段是对项目进行总结及各种善后工作。 那么,项目管理方法和项目实施方法的关系是什么呢?简单的说,项目管理方法是为项目实施方法得到有效执行提供保障的。如果站在生命周期的角度看,项目实施的生命周期则是在项目管理的起始阶段和执行阶段,至于项目实施生命周期中的阶段分布是如何对应项目管理的这两个阶段,则视不同项目实施方法而不同。 一、实际意义 项目管理方法和项目实施方法对项目的成功都是有重要意义的,两者是相辅相成的,就如管理人员和业务技术人员对于企业经营的意义一样。从IT企业的角度看,任何一个IT企业如果要生产高质量的软件产品或者提供高质量的服务,都应该对自身的项目业务流程进行必要的分析和总结,并逐步归纳出自己的项目管理方法及项目实施方法,其中项目实施方法尤其重要,因为大部分企业都有自己的核心业务范围,其项目实施方法会比较单一,在这种情况下,项目管理方法可能会弱化,而项目实施方法会得到强化,两者会较紧密的结合在一起。只有总结出并贯彻实施符合企业自身业务的方法,项目的成功才不会严重依赖于某个人。在某种程度上,项目管理方法和项目实施方法也是企业文化的一部分。 从客户的角度看,如果希望得到有保障的产品或服务,那就既 需要关注提供产品或服务的企业是否有恰当的项目管理方法和项目 实施方法,也必须尊重该企业的项目管理措施与方法。

数字化校园建设与管理办法

数字化校园建设与管理办法 第一章总则 第一条为加强学校数字化校园的建设和管理,规范数字化校园建设各项工作,提高学校信息化应用水平,保证信息化建设的实效性与可持续发展,实现学校信息资源和软硬件资源的有机集成和共享,充分发挥信息化建设成果在人才培养、科学研究、社会服务和文化传承创新等方面的支撑作用,根据相关的法律法规、国家和教育部对教育信息化建设的指导意见,以及《教育信息化十年发展规划2011—2020》、《陕西省教育信息化十年(2011—2020年)发展规划》、《陕西省教育信息化建设三年行动计划》等有关精神,特制定本办法。 第二条学校数字化校园建设,在学校信息化建设领导小组的领导下,由教务处信息中心统一规划、统一审批、统一建设、统一管理,并按照整体规划、分步实施的原则,以应用为中心,以数字资源建设为重点,逐步达到为师生、领导和管理部门提供良好的服务和辅助决策的建设目标,提升学校的综合竞争力。 第三条本办法适用于全校范围内各部门所拥有或负责管理运行的与数字化校园相关的基础网络、信息化公共平台、数字教育资源、管理信息系统、网站、数字监控网络及其相关网络接入设备、服务器、大容量存储设备等的建设和管理。 第二章管理机构与工作职责 第四条信息化建设领导小组是全面推进学校数字化校园建设的

最高管理与决策机构,负责审议学校数字化校园建设发展的中长期规划与经费预算;负责审议学校数字化校园建设、运维管理及校园网安全规章制度;明确学校数字化校园建设中各部门的责任分工、资源分配以及考核机制;对学校数字化校园建设中的重大问题和政策性问题进行决策。 第五条学校信息化建设领导小组负责对学校教育信息化建设发展的中长期规划进行论证,对数字化校园提出意见和建议;对学校数字化校园建设发展战略、政策、规划和发展中的重大问题提出建议和咨询意见;对学校数字化校园建设进程中各子项目的建设与验收提供技术层面与应用层面的意见或建议;指导学校数字化校园建设和信息化教育新模式的探索和研究工作。 第六条信息中心是学校数字化校园建设与管理具体实施的主体部门,全面负责学校数字化校园建设和管理工作。负责制定学校数字化校园建设发展的中长期规划与经费预算,制定学校数字化校园建设、运行与管理及保障校园网安全的规章制度;负责组织、实施学校数字化校园各项建设工作;负责对学校数字化校园建设相关项目和各部门申报的信息化新建和改造项目进行审核和实施;负责学校信息编码规范和数据标准的制定;负责学校信息资源共享、信息资源整合和系统集成;为各部门信息化建设提供技术指导、支持、监督和评比;负责公共平台应用的推广与培训;负责健全和完善信息化工作管理体系。 第七条各部门信息管理员负责本部门信息化相关数据的收集、整理和上报,负责本部门网站信息的更新、备份和维护;网络协管员

【操作系统】Windows XP sp3 VOL 微软官方原版XP镜像

操作系统】Windows XP sp3 VOL 微软官方原版XP镜像◆ 相关介绍: 这是微软官方发布的,正版Windows XP sp3系统。 VOL是Volume Licensing for Organizations 的简称,中文即“团体批量许可证”。根据这个许可,当企业或者政府需要大量购买微软操作系统时可以获得优惠。这种产品的光盘卷标带有"VOL"字样,就取 "Volume"前3个字母,以表明是批量。这种版本根据购买数量等又细分为“开放式许可证”(Open License)、“选择式许可证(Select License)”、“企业协议(Enterprise Agreement)”、“学术教育许可证(Academic Volume Licensing)”等5种版本。根据VOL计划规定, VOL产品是不需要激活的。 ◆ 特点: 1. 无须任何破解即可自行激活,100% 通过微软正版验证。 2. 微软官方原版XP镜像,系统更稳定可靠。 ◆ 与Ghost XP的不同: 1. Ghost XP是利用Ghost程序,系统还原安装的XP操作系统。 2. 该正版系统,安装难度比较大。建议对系统安装比较了解的人使用。 3. 因为是官方原版,因此系统无优化、精简和任何第三方软件。 4. 因为是官方原版,因此系统不附带主板芯片主、显卡、声卡等任何硬件驱动程序,需要用户自行安装。 5. 因为是官方原版,因此系统不附带微软后续发布的任何XP系统补丁文件,需要用户自行安装。 6. 安装过程需要有人看守,进行实时操作,无法像Ghost XP一样实现一键安装。 7. 原版系统的“我的文档”是在C盘根目录下。安装前请注意数据备份。 8. 系统安装结束后,相比于Ghost XP系统,开机时间可能稍慢。 9. 安装大约需要20分钟左右的时间。 10. 如果你喜欢Ghost XP系统的安装方式,那么不建议您安装该系统。 11. 请刻盘安装,该镜像用虚拟光驱安装可能出现失败。 12. 安装前,请先记录下安装密钥,以便安装过程中要求输入时措手不及,造成安装中断。 ◆ 系统信息:

数字化校园建设方案.doc

天津市东丽区职业教育中心学校“数字校园实验校”建设实施方案 一、信息化发展战略定位和愿景 根据学校十三五战略发展规划,在国家级示范校的基础上,立足东丽,面向天津,辐射全国,走向世界,实现“工学结合高要求、专业建设高品位、教育教 学高质量、就业服务高水平、学校发展高效益”的五高目标,“十三五”末期实现学校向世界一流水平的跨越,充分发挥示范和辐射作用。通过本期数字化校园项目建设,将我校打造成全国一流的中职数字化校园,构建技术先进、扩展性强、安全可靠、高速畅通、覆盖全校的校园网络环境。 建立一整套校园信息管理系统,为实现“环境数字化、管理数字化、教学数 字化、产学研数字化、学习数字化、生活数字化”提供全面的系统支持,使之成 为一个全面、集成、开放、安全的信息系统,成为一个网络化、数字化、智能化、虚拟化的新型教育、学习、实训和管理平台。通过数字化校园项目建设,推动教学模式变革,提高人才培养质量,促进学校对外交流。通过项目建设,使全体师 生提高信息化思维能力,养成信息化行为方式,遵守信息化交往规则,发展信息化职业能力。 二、数字化校园建设目标 按照“顶层设计、统一标准、数据共享、应用集成、硬件集群(虚拟化)” 的规划建设理念,实现: 1.为教学、科研、管理、生活提供一个开放、协同、高效、便捷的数字化 环境,实现规范高效的管理 2.为领导的决策提供实时有效的信息依据 3.为提升学校的核心竞争力,实现学校的跨越式发展提供有力的支撑 具体目标就是实现“六个数字化”: 环境数字化:构建结构合理、使用方便、高速稳定、安全保密的基础网络。 在此基础上,建立高标准的共享数据中心和统一身份认证及授权中心,统一门户平台以及集成应用软件平台,为实现更科学合理的数字化环境打下坚实的基础。 管理数字化:构建覆盖全校工作流程的、协同的管理信息体系,通过管理信息的同步与共享,畅通学校的信息流,实现管理的科学化、自动化、精细化,突出以人为本的理念,提高管理效率,降低管理成本。 教学数字化:构建综合教学管理的数字化环境,科学统一的配置教学资源, 提高教师、教室、实训室等教学资源的利用率,改革教学模式、手段与方法,丰 富教学资源,提高教学效率与质量。 产学研数字化:构建数字化产学研信息平台,为产学研工作者提供快捷、全面、权威的信息资源,实现教学、科研和实训一体化,提供开放、协同、高效的

Windows7 SP1官方原版下载

Windows7 SP1官方原版 以下所有版本都为Windows7 SP1官方原版,请大家放心下载! 32位与64位操作系统的选择:https://www.360docs.net/doc/7015643902.html,/Win7News/6394.html 最简单的硬盘安装方法:https://www.360docs.net/doc/7015643902.html,/thread-25503-1-1.html 推荐大家下载旗舰版,下载后将sources/ei.cfg删除即可安装所有版本,比如旗舰,专业,家庭版。 ============================================ Windows 7 SP1旗舰版中文版32位: 文件cn_windows_7_ultimate_with_sp1_x86_dvd_u_677486.iso SHA1:B92119F5B732ECE1C0850EDA30134536E18CCCE7 ISO/CRC:76101970 cn_windows_7_ultimate_with_sp1_x86_dvd_u_677486.iso.torrent(99.63 KB, 下载次数: 326189) Windows 7 SP1旗舰版中文版64位: 文件cn_windows_7_ultimate_with_sp1_x64_dvd_u_677408.iso SHA1: 2CE0B2DB34D76ED3F697CE148CB7594432405E23 ISO/CRC: 69F54CA4 cn_windows_7_ultimate_with_sp1_x64_dvd_u_677408.iso.torrent(128.17 KB, 下载次数: 197053)

(完整版)项目管理思路(提纲)

项目管理思路(提纲) 原则:规范创新项目管理方法,提供标准化的项目管理体系。(这次的思路主要考虑整体、不突出重点。) 一、工程项目管理的基本内容: 1、项目部管理 2、前期管理 3、招标合同管理 4、设计管理 5、总承包管理 6、进度管理 7、质量管理 8、成本管理 9、竣工(收尾)管理 二、项目部管理 1、项目部组织结构:项目部的构成根据项目的发展进度再不断进行调整,先补充预算员、资料员及熟悉酒店项目的机电工程师; 2、项目部职责(分工):落实责任到岗位,落实责任到人,着重把后面的所有管理内容一项不漏的分配到具体的管理人员上,真正做到“权责明晰,有据可依”; 3、加强项目管理人员的培训及学习工作,紧跟社会行业的前进步伐,提高项目管理人员的业务能力,为新项目的顺利进行提供坚实的基

础; 4、项目部管理制度:以公司现有的规章制度及考核制度为基础,再根据新情况进行一些适当补充与调整。 三、前期管理 1、各种手续、审批报建工作的推进及跟踪,无法办理的事项及时将具体情况及原因反馈给公司领导; 2、联络街道办和公证处对本项目周边毗邻建筑物的现状(特别是裂缝、下沉)进行拍照确认并公证; 3、拆除施工场地内的原有基础或其他障碍物;通水(自来水公司)、通电、办理临时占道、开路口(城管局) 及其他相关手续; 4、根据公司领导的要求及项目实际情况编制项目总开发计划; 四、招标合同管理 1、除审查入围单位的资质等级、营业执照、财务状况外,还应着重对入围单位的办公地点、在建项目(生产厂房)针对人员、质量、安全、环境等进行实地考察,以确定是否满足我方质量、进度等综合要求; 2、根据总开发计划编制专业分包与主要材料、设备的进场计划,明确进场时间;根据专业分包与主要材料、设备的进场计划编制招标、采购计划,并严格执行; 3、对于专业分包,要细化、深化各类发包工程内容的自身招标条件,应事先研究各工程内容建设的时间、验收、保修、交接、资料、协作、费用、安全、场地等接口配合条件,就甲方发包(含总承包)的各内容

数字化校园建设项目计划

项目一:数字化校园特色项目建设计划 一、需求论证 信息技术的飞速发展,迅速地改变着人们的学习、工作和生活,也改变着人们的思想、观念和思维方式。这一切都对快速发展中的职业教育和职业学校提出了十分严峻的挑战。现代信息技术正在向职业学校教学、科研、管理的每一个环节渗透,将改变传统的教学模式并大幅度提高教育资源的利用效率。数字化校园、网上学校已被人们熟悉,职业教育正在走向全面的信息化。 数字化校园的建设应用是教育系统信息化的关键,在职业学校建设数字化校园,对于促进教师和学生尽快提高应用信息技术的水平,促进学校教学改革,推行素质教育,促进教学手段的现代化水平,为教师提供一种先进的辅助教学工具、提供丰富的资源库,全面提高学校现代化管理水平,加强学校与外界交流等方面都具有重要作用。 2005年学校完成校园网建设,同时接入因特网,校园网覆盖了所有使用计算机的实验室、各处办公室、各专业组。目前校园网已覆盖整个校园。但数字化教与学以及服务区域职业教育、实现教育资源共享的能力还远远不够。作为一所综合性国家级重点职业学校,以及建设国家中等职业教育改革发展示校的要求,要使其发挥辐射带动作用,达到资源利用最大化,迫切需要我校建设数字化校园,将更大的注意力放在信息化的深入应用上,及早做好规划,将信息化发展推向新水平。 二、建设目标

数字化校园建设的目标主要包括:一是完善校园网基础设施建设,构建技术先进、扩展性强、安全可靠、高速畅通、覆盖本部、一分部、实训基地的校园网络环境;二是建设全校防盗系统;三是完善校园广播系统;四是各种资源应用平台建设;五是建设校园一卡通。 学校通过构建技术先进、扩展性强、安全可靠、高速畅通、覆盖全校的校园网络环境,建立全校公共信息系统,为教与学提供先进数字化管理手段,提高管理效率;建立功能齐全的教学管理系统;配合“工学结合”教学模式,建设容丰富的网络教学资源平台,实现数据资源共享,提高全校师生的信息化水平素养。通过数字化校园的建设项目,为培养高技能应用型人才和服务社会搭建公共服务平台。 三、建设思路 以服务专业建设为出发点,建设数字化校园和教学资源中心。构筑信息交流与资源共享平台,创建开放的教学资源环境,实现优质教学资源网上共享,为实用型技能人才的培养和构建现代化学习环境搭建公共平台,提高管理效率与教学水平。提高全校师生信息化水平素养,以网络为基础,利用先进的信息手段和工具,将学校的各个方面,实现环境(包括网络、设备、教室等)、资源(如图书、讲义、课件等)、活动(包括教、学、管理、服务、办公等)的数字化,逐步形成一个数字校园空间,从而使现实校园在时间和空间上获得延伸,完成数字校园建设,对本地区职业教育信息化建设和发展起到示与带动作用。 四、建设容 (一)校园安全防盗系统

Microsoft 微软官方原版(正版)系统大全

Microsoft 微软官方原版(正版)系统大全 微软原版Windows 98 Second Edition 简体中文版 https://www.360docs.net/doc/7015643902.html,/viewthread.php?tid=16446&page=1&extra=#pid125031 微软原版Windows Me 简体中文版 https://www.360docs.net/doc/7015643902.html,/viewthread.php?tid=16448&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows 2000 Professional 简体中文版 https://www.360docs.net/doc/7015643902.html,/viewthread.php?tid=16447&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows XP Professional SP3 简体中文版 https://www.360docs.net/doc/7015643902.html,/viewthread.php?tid=16449&page=1&extra=#pid125073微软原版Windows XP Media Center Edition 2005 简体中文版 https://www.360docs.net/doc/7015643902.html,/viewthread.php?tid=16451&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows XP Tablet PC Edition 2005 简体中文版 https://www.360docs.net/doc/7015643902.html,/viewthread.php?tid=16450&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Server 2003 R2 Enterprise Edition SP2 简体中文版(32位) https://www.360docs.net/doc/7015643902.html,/viewthread.php?tid=16452&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Server 2003 R2 Enterprise Edition SP2 简体中文版(64位) https://www.360docs.net/doc/7015643902.html,/viewthread.php?tid=16453&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Vista 简体中文版(32位) https://www.360docs.net/doc/7015643902.html,/viewthread.php?tid=16454&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Vista 简体中文版(64位) https://www.360docs.net/doc/7015643902.html,/viewthread.php?tid=16455&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows7 SP1 各版本下载地址: https://www.360docs.net/doc/7015643902.html,/viewthread.php?tid=12387&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows Server 2008 Datacenter Enterprise and Standard 简体中文版(32位) https://www.360docs.net/doc/7015643902.html,/viewthread.php?tid=16457&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows Server 2008 Datacenter Enterprise and Standard 简体中文版(64位) https://www.360docs.net/doc/7015643902.html,/viewthread.php?tid=16458&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows Server 2008 R2 S E D and Web 简体中文版(64位) https://www.360docs.net/doc/7015643902.html,/viewthread.php?tid=16459&highlight=%CE%A2%C8%ED%D4%AD %B0%E6

建设银行规划项目管理章程与工作方法

中国建设银行科技应用规划项目项目管理章程和工作方法 中国建设银行 2020年4月2日

目录 1项目人员角色和职责3 2项目运行中的沟通机制 (5) 3项目文档资料管理机制8 4项目人员的考核机制 (12) 5项目培训机制 (14) 6项目验收机制15 项目人员角色和职责 项目领 导委员会 项目总监 /项目管理办公 项目小组 项目领 导委员会 项目总监 质量总监 项目经理 项目小组 1) 项目领导委员会:

由双方的高层领导参加,直接负责项目的成功实施,负责: a)确定项目目标和方向 b)保证资源合理调动,支持项目的推行 c)促使管理层对项目的全力参与和支持 d)验收和审批项目成果 e)授权项目经理开展工作 2)项目总监和质量总监: 项目总监由双方选出的高层领导担任,主要负责: a)对项目过程进行指导和监督 b)确认双方工作职责和安排 c)组织协调项目所需资源的合理调配 d)按项目进度向项目领导委员会汇报 e)定期对项目的工作进度进行监督 f)对项目成果进行确认和验收 毕博管理咨询将另派高层管理人员作为本项目的质量总监,主要负责: a)对本项目的整体质量进行检查和考核 3)项目经理: 项目经理成员由双方的项目经理组成,具体负责: a)策划项目推进和控制项目进程 b)确认项目小组及其成员的工作职责 c)指导及安排项目小组的日常工作 d)定期安排双方沟通、及时调整工作安排 e)现场处理双方可能产生的意见不一致 f)执行项目所需资源的有效调配 g)组织对项目成果的确认和验收 4)项目小组:

项目小组将由小组负责人、咨询顾问、行业专家以及中国建设银行的项目参与人员共同组成。项目小组的职责包括: a)确定项目的工作步骤和具体工作方法 b)具体开展项目工作,包括:收集数据和信息,分析并确定问题,设计解决方案, 讨论和修改工作成果,协助实施 c)根据项目要求,在规定的时间内提交符合质量要求的项目设计方案 项目运行中的沟通机制

数字化校园管理系统

中小学数字化校园管理系统软件 拟 定 方 案

目录 一、数字校园基础平台: (3) 二、协同办公系统: (5) 三、招生管理系统: (6) 四、学籍管理系统: (7) 五、学费管理系统: (7) 六、学生管理系统: (8) 七、学生请销假管理: (8) 八、量化考核管理系统: (8) 九、教务管理系统: (9) 十、成绩管理系统: (9) 十一、离校管理系统: (10) 十二、资产管理系统: (10) 十三、人事档案管理系统: (11) 十四、数字化图书馆教学资源库、精品课程及网上教学平台: (11)

“数字化校园管理系统” “数字校园管理系统”是针对职业院校信息化建设,研发的数字化校园管理系统。通过电脑或手机等终端,为校长、老师、学生、行政办公人员、学生父母、来访用户及相关应用人员提供高效、便捷的一站式信息服务。实现了校园内各类应用软件高效集成和数据资源高度共享,是最适合中学高中及大学校园信息化建设的管理软件。 下面是平台界面示意图: 一、数字校园基础平台:

数字校园管理系统特点: 产品开发以学校为原型, 技术选型性价比更高。 采用windows server +php + mysql + apache的技术架构。 优势:采用win server 作为操作系统,更容易维护,也符合学校服务器现有情况 采用mysql开源数据库,无需支付软件授权费用,因为mysql是一个开源免费的数据库。但是其性能及稳定性堪称一流,许多大型网站系统都在使用。 PHP是全世界使用量排名第四的编程语言,在B/S结构的系统中有其得天独厚的优势。 我方在提供以开发完毕的整套系统的基础上,后期可根据学校需求进行系统的第二次开发,以适应学校的需求。 数字校园管理系统:多终端访问: 数字校园管理系统基础平台包含内容:

windows正版系统+正版密钥

精心整理正版Windows系统下载+正版密钥 2010-05-3011:49 喜欢正版Windows系统 这是我收集N天后的成果,正版的Windows系统真的很好用,支持正版!大家可以用激活工 具激活!现将本收集的下载地址发布出来,希望大家多多支持! Windows98第二版(简体中文) 安装序列号:Q99JQ-HVJYX-PGYCY-68GM3-WXT68 安装序列号:Q4G74-6RX2W-MWJVB-HPXHX-HBBXJ 安装序列号:QY7TT-VJ7VG-7QPHY-QXHD3-B838Q WindowsMillenniumEdition(WindowME)(简体中文) 安装序列号:HJPFQ-KXW9C-D7BRJ-JCGB7-Q2DRJ 安装序列号:B6BYC-6T7C3-4PXRW-2XKWB-GYV33 安装序列号:K9KDJ-3XPXY-92WFW-9Q26K-MVRK8 Windows2000PROSP4(简体中文) SerialNumber:XPwithsp3VOL微软原版(简体中文) 文件名:zh-hans_windows_xp_professional_with_service_pack_3_x86_cd_vl_x14-74070.iso 大小:字节 MD5:D142469D0C3953D8E4A6A490A58052EF52837F0F CRC32:FFFFFFFF 邮寄日期(UTC):5/2/200812:05:18XPprowithsp3VOL微软原版(简体中文)正版密钥: MRX3F-47B9T-2487J-KWKMF-RPWBY(工行版)(强推此号!!!) QC986-27D34-6M3TY-JJXP9-TBGMD(台湾交大学生版) QHYXK-JCJRX-XXY8Y-2KX2X-CCXGD(广州政府版)

windows系统官网原版下载

微软MSDN官方(简体)中文操作系统全下载 这不知是哪位大侠收集的,太全了,从DOS到Windows,从小型系统到大型系统,从桌面系统到专用服务器系统,从最初的Windows3.1到目前的Windows8,以及Windows2008,从16位到32位,再到64位系统,应有尽有。全部提供微软官方的校验文件,这些文件都可以在微软官方MSDN订阅中得到验证,完全正确! 下载链接电驴下载,可以使用用迅雷下载,建议还是使用电驴下载。你可以根据需要在下载链接那里找到你需要的文件进行下载!太强大了!!! 产品名称: Windows 3.1 (16-bit) 名称: Windows 3.1 (Simplified Chinese) 文件名: SC_Windows31.exe 文件大小: 8,472,384 SHA1: 65BC761CEFFD6280DA3F7677D6F3DDA2BAEC1E19 邮寄日期(UTC): 2001-03-06 19:19:00 ed2k://|file|SC_Windows31.exe|8472384|84037137FFF3932707F286EC852F2ABC|/ 产品名称: Windows 3.2 (16-bit) 名称: Windows 3.2.12 (Simplified Chinese) 文件名: SC_Windows32_12.exe 文件大小: 12,832,984 SHA1: 1D91AC9EB3CBC1F9C409CF891415BB71E8F594F7 邮寄日期(UTC): 2001-03-06 19:21:00 ed2k://|file|SC_Windows32_12.exe|12832984|A76EB68E35CD62F8B40ECD3E6F5E213F|/ 产品名称: Windows 3.2 (16-bit) 名称: Windows 3.2.144 (Simplified Chinese) 文件名: SC_Windows32_144.exe 文件大小: 12,835,440 SHA1: 363C2A9B8CAA2CC6798DAA80CC9217EF237FDD10 邮寄日期(UTC): 2001-03-06 19:21:00 ed2k://|file|SC_Windows32_144.exe|12835440|782F5AF8A1405D518C181F057FCC4287|/ 产品名称: Windows 98 名称: Windows 98 Second Edition (Simplified Chinese) 文件名: SC_WIN98SE.exe 文件大小: 278,540,368 SHA1: 9014AC7B67FC7697DEA597846F980DB9B3C43CD4 邮寄日期(UTC): 1999-11-04 00:45:00 ed2k://|file|SC_WIN98SE.exe|278540368|939909E688963174901F822123E55F7E|/ 产品名称: Windows Me 名称: Windows? Millennium Edition (Simplified Chinese) 文件名: SC_WINME.exe

项目管理方法

项目管理方法 项目管理方法是关于如何进行项目管理的方法,是可在大部分项目中应用的方法。主要有:阶段化管理、量化管理和优化管理三个方面. 管理概述 项目管理是一个管理学分支的学科,指在项目活动中运用专门的知识、技能、工具和方法,使项目能够在有限资源限定条件下,实现或超过设定的需求和期望。项目管理是对一些与成功地达成一系列目标相关的活动(譬如任务)的整体。这包括策划、进度计划和维护组成项目的活动的进展。项目管理方法是关于如何进行项目管理的方法,是可在大部分项目中应用的方法。在项目管理方法论上主要有:阶段化管理、量化管理和优化管理三个方面。[1] 阶段管理 阶段化管理指的是从立项之初直到系统运行维护的全过程。根据工程项目的特点,我们可将项目管理分为若干个小的阶段。 市场信息 1)市场信息方面可分为:信息采集、信息分析、工程项目立项及项目申请书的编写。 ①信息采集:可分为工程项目信息与常规设备与器材的市场信息的采集。这些信息通过业务员或其它通道获得,一旦获得后,信息提供者应以书面形式向公司有关部门予以报告。 ②信息分析:公司在这方面应该设立专门的部门对各种信息进行分类、编辑、管理、核实、分析与论证,在考虑项目时不但要看社会是否需要,而且还要研究个人、组织或社会是否有能力投入足够的资源将其实现,实现之后能否为资源投入者和社会真正带来利益。通过对项目的可行性研究为信息的确定提供切实可行的依据。并监督业务工作人员的

工作效率以及其绩效评价。 ③工程项目立项:根据信息分析部门所提供的分析与认证报告,确定信息的处理方式,并上报公司决策层予以决策。公司决策层通过信息分析部门的信息分析报告结合公司的经营状况,对信息进行确定是否立项,一旦立项,就要分析会有哪些承约商参加投标,各自的优势以及他们同客户的关系。主要考虑的因素包括自身的技术能力、项目风险、资源配置能力及其它因素。同时也可对信息分析部门的工作效率以及其绩效评价。 申请书填写 项目申请书:当决定参加投标竞争的时候上,就需要完成一份项目的申请书或称为投标书,一份完整的申请书一般包括三个部分的内容,即技术、管理、成本三个方面。如果是一份较复杂的申请书,这三部分可能是三个独立的册子: 技术部分的目的是让客户认识到:承约商对其需求和问题的理解,并且能够提供风险最低且收益最大的解决方案。 管理部分的目的是使客户确信,承约商能够做好项目所提出的工作,并且收到预期的结果。 成本部分的目的是使客户确信,承约商申请项目所提出的价格是现实的、合理的。 这一部分任务将由公司的技术支持部门根据市场信息部门的有关报告完成,同样也可以通过其工作效率及质量对其进行绩效评价。 申请书完成后 在项目申请书完成的同时,市场信息部门的所有部门都应密切注视该项目的进展情况,及时更新项目的最新状况,并通报各有关部门特别是技术支持部门,使该部门能根据项目的最新情况调整项目申请书。以增大我们在项目中的竞争能力。 在合同的签订即项目确定之后,项目管理又可划分为项目准备阶段、项目实施阶段、竣工验收阶段及系统运行维护阶段等。各阶段的工作内容的不同,其实施与管理也应各异。 ①项目准备阶段:其项目实施管理方式的确定(即项目组织),各种资源的配备与落实,以及具体项目实施方案的进一步确定。即根据项目的特点,对项目作业进行分解,确定其阶段性成果验收,以及必要的监督反馈,这样就能够很好地解决项目组织与客户的分歧,增加项目风险的可控性。 ②项目实施阶段:根据项目实施的具体方案,并以各阶段性成果按其技术要求、质量保证进行验收。这样,在每个阶段完成后,客户和项目

数字化校园项目申请书

附件2 内蒙古建筑职业技术学院院长科研基金课题申请·评审书 课题名称:高职院校校园数字化建设系统研究 主持人: 所在部门:) 联系电话: 申请日期:

填报说明 一、课题(项目)主持人必须从事教学或管理工作五年以上并具有中级以上职称。课题主持人必须是该课题的实际主持者和指导者,并在课题研究中担负实质性的任务。 二、课题(项目)主持人原则上不超过55岁。鼓励35岁以下优秀青年教师和科技人员特别是博士、硕士学位的年轻教师申报。申报项目的课题组必须具有良好的政治思想素质、独立开展和组织教育教学研究工作的能力,有较充分的前期准备和相应合理的学术梯队。 三、课题论证应尽量充分。研究计划和阶段成果应尽量明确。 四、申请书各项内容,要实事求是,逐条认真填写。表达要明确、严谨,字迹要清晰易辩。外来语要同时用原文和中文表达。第一次出现的缩写词,须写出全称。 五、申请书复印时用A4复印纸,于左侧装订成册。各栏空格不够时,请自行加页。一式三份,由所在部门签署意见后,报高职教育研究所。 六、每一个课题的主要成员(含主持人)只允许申报一个项目。 七、本申请书与任务批准书同时作为立项依据。

课题主持人承诺 我确认本申请书及附件内容真实、准确。如果获得资助,我将认真履行课题负责人职责,积极组织开展研究工作,合理安排研究经费,按时报送有关材料并接受检查。若申请书及附件内容失实或在课题执行过程中违反科研项目管理的有关规定,本人将承担全部责任。 负责人签字: 20 年月日 课题依托部门承诺 本部门已按照课题申报要求对课题主持人的资格及课题申请书内容进行了审核,课题主持人及课题组主要成员具备课题研究的素质与水平,能够保证课题研究计划实施所需的人才、物力及工作时间,课题如获资助,本部门将根据学院要求和课题申请书内容,落实课题研究所需其他条件,并按照学院科研课题管理有关规定,认真履行课题依托部门的管理职责。 部门公章负责人签章 20 年月日

Windows7官方个版本正版镜像下载地址

Windows7官方个版本正版镜像下载地址 简体中文旗舰版: 32位:下载地址:ed2k://|file|cn_windows_7_ultimate_x86_dvd_x15-65907.iso|2604238848|D6F139D7A45E81B 76199DDCCDDC4B509|/ SHA1:B589336602E3B7E134E222ED47FC94938B04354F 64位:下载地址:ed2k://|file|cn_windows_7_ultimate_x64_dvd_x15-66043.iso|3341268992|7DD7FA757CE6D2D B78B6901F81A6907A|/ SHA1:4A98A2F1ED794425674D04A37B70B9763522B0D4 简体中文专业版: 32位:下载地址:ed2k://|file|cn_windows_7_professional_x86_dvd_x15-65790.iso|2604238848|e812fbe758f 05b485c5a858c22060785|h=S5RNBL5JL5NRC3YMLDWIO75YY3UP4ET5|/ SHA1:EBD595C3099CCF57C6FF53810F73339835CFBB9D 64位:下载地址:ed2k://|file|cn_windows_7_professional_x64_dvd_x15-65791.iso|3341268992|3474800521d 169fbf3f5e527cd835156|h=TIYH37L3PBVMNCLT2EX5CSSEGXY6M47W|/ SHA1:5669A51195CD79D73CD18161D51E7E8D43DF53D1 简体中文家庭高级版: 32位:下载地址:ed2k://|file|cn_windows_7_home_premium_x86_dvd_x15-65717.iso|2604238848|98e1eb474f9 2343b06737f227665df1c|h=GZ7FZE7XURI5HNO2L7H45AGWNOLRLRUR|/ SHA1:CBA410DB30FA1561F874E1CC155E575F4A836B37 64位:下载地址:ed2k://|file|cn_windows_7_home_premium_x64_dvd_x15-65718.iso|3341268992|9f976045631 a6a2162abe32fc77c8acc|h=QQZ3UEERJOWWUEXOFTTLWD4JNL4YDLC6|/ SHA1:5566AB6F40B0689702F02DE15804BEB32832D6A6 简体中文企业版: 32位:下载地址:ed2k://|file|cn_windows_7_enterprise_x86_dvd_x15-70737.iso|2465783808|41ABFA74E5735 3B2F35BC33E56BD5202|/ SHA1:50F2900D293C8DF63A9D23125AFEEA7662FF9E54 64位:下载地址:ed2k://|file|cn_windows_7_enterprise_x64_dvd_x15-70741.iso|3203516416|876DCF115C2EE 28D74B178BE1A84AB3B|/ SHA1:EE20DAF2CDEDD71C374E241340DEB651728A69C4

(工作心得体会)项目管理工作心得感想

项目管理工作心得感想 项目管理工作在企业是很重要的。项目管理作为企业及组织的一种管理方法,已经在实际的经济运作中扮演了越来越重要的角色并起到了越来越高效的成果。下面是为大家整理的项目管理工作心得感想,供你参考! 项目管理工作心得感想篇1 两天认真听了《全面项目化管理》这门课,***教授从五大类分别给我们详细讲述了全面项目化管理基础思想、成功项目的必备条件、全面项目化、项目化管理和全面、项目化管理的导入。通过学习将我们如何运用全面项目化管理又提升到一个新的高度,让我们又发现了诸多平时工作中存在的问题,也对我们今后的工作起到了指导与改正的作用,真正是受益匪浅。 通过赵教授对专业理论知识的阐述再到典型案例的剖析,做得好的方面也得到了课程中理论知识的支持,对一些常见的错误也以鲜活的案例加以呈现,让我们将日常工作中常犯的错误集中展现并一一剖析其错误所在以及对工作的影响,对我们今后的工作起到了一定的改善作用。 老师讲项目的标准化时,重点说明了要重视基本习惯的培养,可以大大提高工作质量,任何规范的基础都很重要。还有项目经理的选择,应具备的三大素养和应具备的工作能力等,这一点我在工作中深有体会。 无论是企业还是个人,一个好的完善的计划必定能够帮助我们更快更有效的确定行动方向,从而能达到事半功倍的效果。无论办什么事情都应明确其目的和意义,有个打算和安排。有了计划,就有了明确的奋斗目标,具体的工作程序,就可以更好地统一大家的思想,协调行动,增强工作的自觉性,减少盲目性,调动员工的积极性和创造精神,合理地安排和使用人力、物力,少走弯路,少受挫折,保障工作顺利进行,避免失误。计划一旦形成,就在客观上变成了对工作的要求,对计划实施者的约束和督促,对工作进度和质量的考核标准。这样,计划又反过来成了指导和推动工作前进的动力。总之,搞好工作计划,是建立部门正常工作秩序,提高工作效率必不可少的程序和手段。编制好工作计划,对于我们的工作,都有十分重要的意义。为提高工作效率,我们还编制了相关工作计划进度表,部门每一个人在工作例会上必须对自己一周的工作完成情况进行汇报,然后由经理再对部门的工作做出总结,通过表格计划管理有效的加快了工作进度。 作为一个优秀的项目经理必须具备一定的管理能力、工作能力及执行能力,还需具备良好的心理素质和抵御压力的能力和具备良好的素养。我们要为公司广结良缘,广交朋友,形成公司与政府部门之间沟通的桥梁,形成人和的氛围和环境。为此要把握交往的技巧、艺术、原则。能力+人脉=成功。维持良好的人脉关系有效的实现工作成功的目标。就在今年

基本功能演示

第二章 软硬件基本功能演示 在详细学习每个部分之前,我们先通过一个实例来全程演示Quartus Ⅱ以及便携式EDA-Ⅰ实验平台的基本功能及实验流程,帮助大家提升学习兴趣。 选择4位的3选1多路选择器为例,利用Quartus Ⅱ完成基于VHDL 语言输入的工程设计过程, 包括创建工程文件、VHDL 程序输入、编译综合、波形仿真验证、管脚分配以及下载等。 实例原理介绍:3选1多路选择器是通过控制电路实现三路四位数据的选择输出显示,sel 作为选择信号,d0,d1,d2 sel=“01”时选择选择d1,其他情况选择d2。 1、 创建工程文件 Quartus Ⅱ软件的工程文件是指所有的设计文件、软件源文件和完成其他操作所需的相关文件的总称。 双击Quartus Ⅱ软件图标,进入如下界面: 图2.1 Quartus Ⅱ软件界面 选择左上角的File —>New Project Wizard ,打开新建工程向导。

点击页面下方的next,进入新建工程向导。 图 2.2 新建工程向导第1页 在下图2.1.2的对话框,分别按照提示输入新建工程所在位置、工程名称(mux3_1)和顶层实体名称(mux3_1)。注意:默认工程名与顶层实体名一致。 图 2.3 新建工程向导第2页 完成后点击“Next”按钮,进入下一步,在图示2.4新建工程向导第3页中可以添加工程所需的源文件以及设置用户库。

图 2.4 新建工程向导第3页 这一步一般直接点击“Next”跳过,进入下一步,选择目标器件。在“Family”下拉列表中选择器件系列为Flex10K,在Target device选项中选中Specific device selected in ‘Available devices’list,依据实验平台的型号,确定器件型号Available device 为。 图 2.5 新建工程向导第4页

相关文档
最新文档