气缸体设计说明书

气缸体设计说明书
气缸体设计说明书

479Q汽油机气缸体总成设计

摘要

主要阐述了汽油机缸体各部分设计的要求、方法及其在479气缸体设计中的应用。对缸体重要表面的尺寸、几何形状、相互位置提出了严格的公差要求。在结构设计中通过采用龙门式缸体结构、合金铸铁材料以及结构细节的设计来保证其有足够的强度和刚度,尤其是有足够的刚度。还特别注减轻其质量,改善铸造和加工工艺性,以求尽量降低成本。

关键词:汽油机,缸体,设计

The Design of 479Q Gasoline Engine Block Assembly

Abstract

This thesis is concerned with the request and approach of each part of the engine cylinder block in design as well as the use of the 479QA cylinder bloc k‘s design. It presents strict tolerance in the principal surface size, geometry and mutual position. When designing, it has sufficient intensity and rigidity, especially the latter. It satisfies the need by adopting these means -the material of the cast -iron of alloy, detailed design of structure etc. The thesis focuses on reducing the cost by means of reducing the quantity, improving foundry and processing.

Key words: gasoline engine, cylinder block;,design

目录

摘要 (1)

Abstract (2)

第一章概述 (5)

1.1气缸分类 (5)

1.2气缸体冷却方式 (6)

1.3气缸数量 (6)

第二章缸体的工作情况和设计要求 (8)

2.1 缸体的工作情况 (8)

2.2 缸体的设计要求 (8)

第三章气缸体方案确定 (10)

3.1 缸体的结构型式的选择 (10)

3.2 缸体结构细节的设计 (10)

3.3机体的支承形式 (11)

3.4 气缸的排列方式 (12)

3.5 曲轴箱的设计 (13)

3.6 机体冷却水套 (13)

3.7 机体润滑油道 (14)

3.8 机体材料 (18)

3.9降噪处理方面 (19)

第四章缸体基本尺寸的确定 (20)

第五章气缸结构设计 (21)

第六章缸体的结构工艺性 (23)

6.1 铸造工艺性 (23)

6.2 机械加工方便性 (23)

第七章提高缸体可靠性的措施 (26)

7.1为了提高气缸套的耐磨性,可以从以下几方面选择改进措施: (26)

7.2 提高缸体铸件精度 (26)

7.21 基准选择 (26)

7.22 水套芯做工艺基准 (27)

7.23 正确选择收缩率 (27)

7.3 气缸体铸件气孔缺陷的防止措施 (27)

7.31 气孔的产生分析 (27)

7.32 气孔缺陷的防止措施 (27)

7.33 浇注系统的设计 (28)

7.34 降低造型材料的发气量,提高发气速度 (28)

参考文献 (31)

总结与展望 (33)

致谢 (34)

附录:翻译 (35)

第一章概述

气缸体是发动机的主体,它将各个气缸和曲轴箱连成一体,是安装活塞、曲轴以及其他零件和附件的支承骨架。汽缸体一般用灰铸铁铸成,汽缸体上部的圆柱形空腔称为气缸,下半部为支撑曲轴的曲轴箱,气内腔为衢州运动的空间,在汽缸体内部铸有许多加强肋,冷却水套和润滑油道等。气缸体应具有足够的强度和刚度,根据气缸体与油底壳安装平面的位置不同,通常把气缸体分为以下三种形式:一般是气缸体,龙门式气缸体,隧道式气缸体。

气缸体的工作条件十分恶劣。它要承受燃烧过程中压力和温度的急剧变化以及活塞运动的强烈摩擦。因此,它应具有以下性能:

①有足够的强度和刚度,变形小,保证各运动零件位置正确,运转正常,振动噪声小。

②有良好的冷却性能,在缸筒的四周有冷却水套,以便让冷却水带走热量。

③耐磨,以保证气缸体有足够的使用寿命。

气缸体上部是并列的气缸筒,目前多镶有气缸套。气缸体的下部是曲轴箱,用来安装曲轴,其外部还可安装发电机、发动机支架等各种附件。气缸体大多用铸铁或铝合金铸造而成,铝合金缸体成本较高,但重量轻、冷却性能好,得到越来越广泛的应用。机体是构成发动机的骨架,是发动机各机构和各系统的安装基础,其内、外安装着发动机的所有主要零件和附件,承受各种载荷。因此,机体必须要有足够的强度和刚度。机体组主要由气缸体、曲轴箱、气缸盖和气缸垫等零件组成。

1.1气缸分类

水冷发动机的气缸体和上曲轴箱常铸成一体,称为气缸体——曲轴箱,也可称为气缸体。气缸体一般用灰铸铁铸成,气缸体上部的圆柱形空腔称为气缸,下半部为支承曲轴的曲轴箱,其内腔为曲轴运动的空间。在气缸体内部铸有许多加强筋,冷却水套和润滑油道等。

气缸体应具有足够的强度和刚度,根据气缸体与油底壳安装平面的位置不同,通常把气缸体分为以下三种形式。

(1)一般式气缸体其特点是油底壳安装平面和曲轴旋转中心在同一高度。这种气缸体的优点是机体高度小,重量轻,结构紧凑,便于加工,曲轴拆装方便;但其缺点是刚度和强度较差

(2)龙门式气缸体其特点是油底壳安装平面低于曲轴的旋转中心。它的优点是强度和刚度都好,能承受较大的机械负荷;但其缺点是工艺性较差,结构笨重,加工较困难。

(3)隧道式气缸体这种形式的气缸体曲轴的主轴承孔为整体式,采用滚动轴承,主轴承孔较大,曲轴从气缸体后部装入。其优点是结构紧凑、刚度和强度好,但其缺点是加工精度要求高,工艺性较差,曲轴拆装不方便。

为了能够使气缸内表面在高温下正常工作,必须对气缸和气缸盖进行适当地冷却。冷却方法有两种,一种是水冷,另一种是风冷。水冷发动机的气缸周围和气缸盖中都加工有冷却水套,并且气缸体和气缸盖冷却水套相通,冷却水在水套内不断循环,带走部分热量,对气缸和气缸盖起冷却作用。

现代汽车上基本都采用水冷多缸发动机,对于多缸发动机,气缸的排列形式决定了发动机外型尺寸和结构特点,对发动机机体的刚度和强度也有影响,并关系到汽车的总体布置。按照气缸的排列方式不同,气缸体还可以分成单列式,V型和对置式三种。

(1)直列式

发动机的各个气缸排成一列,一般是垂直布置的。单列式气缸体结构简单,加工容易,但发动机长度和高度较大。一般六缸以下发动机多采用单列式。例如捷达轿车、富康轿车、红旗轿车所使用的发动机均采用这种直列式气缸体。有的汽车为了降低发动机的高度,把发动机倾斜一个角度。

(2)V型

气缸排成两列,左右两列气缸中心线的夹角γ<180°,称为V型发动机,V型发动机与直列发动机相比,缩短了机体长度和高度,增加了气缸体的刚度,减轻了发动机的重量,但加大了发动机的宽度,且形状较复杂,加工困难,一般用于8缸以上的发动机,6缸发动机也有采用这种形式的气缸体。

(3)对置式

气缸排成两列,左右两列气缸在同一水平面上,即左右两列气缸中心线的夹角γ=180°,称为对置式。它的特点是高度小,总体布置方便,有利于风冷。这种气缸应用较少。

气缸直接镗在气缸体上叫做整体式气缸,整体式气缸强度和刚度都好,能承受较大的载荷,这种气缸对材料要求高,成本高。如果将气缸制造成单独的圆筒形零件(即气缸套),然后再装到气缸体内。这样,气缸套采用耐磨的优质材料制成,气缸体可用价格较低的一般材料制造,从而降低了制造成本。同时,气缸套可以从气缸体中取出,因而便于修理和更换,并可大大延长气缸体的使用寿命。气缸套有干式气缸套和湿式气缸套两种。

干式气缸套的特点是气缸套装入气缸体后,其外壁不直接与冷却水接触,而和气缸体的壁面直接接触,壁厚较薄,一般为1~3mm。它具有整体式气缸体的优点,强度和刚度都较好,但加工比较复杂,内、外表面都需要进行精加工,拆装不方便,散热不良。

1.2气缸体冷却方式

湿式气缸套的特点是气缸套装入气缸体后,其外壁直接与冷却水接触,气缸套仅在上、下各有一圆环地带和气缸体接触,壁厚一般为5~9mm。它散热良好,冷却均匀,加工容易,通常只需要精加工内表面,而与水接触的外表面不需要加工,拆装方便,但缺点是强度、刚度都不如干式气缸套好,而且容易产生漏水现象。应该采取一些防漏措施。为了能够使气缸内表面在高温下正常工作,必须对气缸和气缸盖进行适当地冷却。冷却方法有两种,一种是水冷,另一种是风冷。水冷发动机的气缸周围和气缸盖中都加工有冷却水套,并且气缸体和气缸盖冷却水套相通,冷却水在水套内不断循环,带走部分热量,对气缸和气缸盖起冷却作用。

1.3气缸数量

气缸数:汽车发动机常用缸数有3、4、5、6、8、10、12缸。排量1升以下的发动机常用三缸,1~2.5升一般为四缸发动机,3升左右的发动机一般为6缸,4升左右为8缸,5.5升以上用12缸发动机。一般来说,在同等缸径下,缸数越多,排量越大,功率越高;在同等排量下,缸数越多,缸径越小,转速可以提高,从而获得较大的提升功

率。

1.4课题研究意义

从经济学角度出发,汽车工业作为支柱产业,自从1885年德国工程师卡尔.奔驰设计制造了第一辆单缸四冲程内燃机汽车以来,世界汽车工业从当初年产量不足千台到如今汽车工业已经年产量超过5000万辆的现代大工业。在各个汽车大国中,汽车产业在其国民经济中有着很快的生产发展;它带有很强的连锁效应,诱导了许多新产业的崛起;同时它对其所处地区的经济结构和发展变化有着深刻而广泛的影响。

从环境的角度讲,作为节能减排的主要手段之一,汽车的轻量化已成为各大汽车厂商所追求的目标。从发动机角度来讲机体是发动机中单件质量最大的零件,一般都超过发动机质量的1/4,甚至接近1/3。如此一来,世界范围内,针对汽车发动机直至发动机机体等的很多轻量化研究和技术正在不断地被研究和改进。

2009年,我国的汽车销量以1350万的成绩,超过美国、日本和欧洲大陆,名列榜首。但是这些销量中的绝大多数品牌为与我国企业合作的跨国公司。造成这一局面的主要原因是我国缺少对汽车核心技术的掌握。所以目前汽车的核心技术和自主研发是我国汽车业所要努力的方向,对我国汽车业有着至关重要的意义。

我国轿车用汽油发动机是伴随着轿车的引进而引进。目前我国轿车汽油发动机主要有三种生产方式:一种是整车生产企业自己生产发动机:如上海大众、东风本田上海通用;第二种是由专业汽油发动机厂生产供应汽车整车企业。如沈阳航天三菱汽车发动机制造有限公司生产4G63、4G64发动机供给中华2.0L、2.4L、东方之子等车。第三种是采用进口发动机,如奥迪A6、帕萨特和高尔夫等。发动机,是一种能够把一种形式的能转化为另一种更有用的能的机器。作为车辆的心脏,发动机对一辆车有着至关重要的意义。机体是构成发动机的骨架,是发动机各机构和各系统的安装基础,其内、外安装着发动机的所有主要零件和附件,承受各种载荷。主要由气缸体、曲轴箱、气缸盖和气缸垫等零件组成。

机体必须要有足够的强度和刚度。同时由于机体中的有些部位工作环境较为恶劣,如气缸受到高温气体的影响,故还须兼具有防腐蚀散热快等特性。机体中还开有冷却液水道和油道故其结构复杂。本次发动机机体的设计,是站在已有发动机的基础上的一次自主研发的尝试,通过运用先进的材料和合理的结构设计出一台自主开发的发动机机体,并使发动机得到优化,减轻发动机的质量,从机体这一方面使整车具有更好的动力性和经济性。同时,对我国汽车发动机自主研发,改变大量引进国外发动机缺少自主创新的局面有着重要的意义。

第二章缸体的工作情况和设计要求

2.1 缸体的工作情况

机体在内燃机工作时承受很复杂的负荷,气压力使机体受到拉伸。二而此力在传递过程中会使机体不同部分承受附加的弯矩和扭矩。往复惯性力和离心力在高速内燃机中回达到很大的数值他们也是机体受到弯曲和扭转的作用。所以机体应当具有足够的刚度以及纵向和横向弯曲刚度。当去肘向外输出扭矩时,机体要受到由侧压力构成的反扭矩的扭转,因此,机体要有足够的扭转刚度。为了保证曲轴主轴承工作可靠,主轴承座应有足够的刚度。为了保证燃烧室密封可靠气缸体上平面也应有足够的刚度,否则,在燃气压力作用下预紧气缸盖上螺栓密封部位就会变形漏气,影响内燃机工作。机体还是一个结构复杂的零件,它的尺寸较大,是内燃机中最重要的零件,因此,它的重量大小在很大程度上影响内燃机的重量。在设计机体时要减轻铸铁机体的重量。当D>200mm 时,受到铸铁材料强度的限制;但当D<200mm时受到铸铁工艺最小壁厚的限制。因此,在工作过程不十分强化的中小型内燃机中,机体强度一般都能满足要求。但如果设计不合理,则不能满足刚度要求。

气缸体是发动机中最大的零件,且工作环境极为恶劣,为保证其能正常稳定地运行并达到整机的缸体在内燃机运行时承受很复杂的负荷,除了机械负荷外,还伴有强烈的热负荷。各缸内气体对气缸盖底面和曲柄连杆机构的均布气压力使气缸受到拉伸,在此力的传递过程中使气缸体不同部分承受附加的弯曲和扭曲。往复惯性力和离心力在汽油机高速运行中可能达到很大的数值,它们也使缸体受到弯曲和扭转作用。当曲轴向外输出扭矩时,气缸体要受到由侧压力构成的反扭矩的作用。对于多缸内燃机来说,则在同一时刻作用在各气缸上的作用力的反扭矩的大小和方向都是不同的,因此缸体曲轴箱还承受扭曲的作用。

2.2 缸体的设计要求

内燃机的机体构成机器的骨架,机体内外安装着所有主要零部件和附件。为了保证活塞,连杆,曲轴,气缸套等主要零件工作可靠耐久,它们必须保持精确的相对位置。因此,必须对机体重要表面的尺寸,几何形状,相互位置等提出严格的公差要求。

内燃机运转时机体承受很复杂的负荷,如各缸内气体对汽缸盖底面和气缸表面的均布气压力,活塞作用于各气缸壁的侧向力,曲轴加在各主轴承上的力,支架对内燃机的支撑反力等。这些离的大小,方向随工况和曲轴转角不断变化,有些力连作用点也在不断移动。此,即使在内燃机不运转时,各气缸盖螺栓,主轴承螺栓的预紧力也十分大,是相应部分产生很大应力和变形。以上各种力是机体受到交变的拉压弯扭,产生复杂的应力状态。

因此,机体的结构设计必须保证它有足够的强度和刚度,既不产生裂纹和其他形式的损坏,也不出现过大的变形。尤其是机体与气缸盖的结合处,气缸或气缸套滑动面,主轴承座等,若刚度不足就会影响气缸的密封,加剧摩擦副的磨损,引发其他机件的附加应力等。

由于机体的形状复杂,刚度强度要求高,大多用高强度灰铸铁铸造。机体的质量

要占内燃机总质量的1/4左右,制造成本约占总成本的1/10,机体的设计要求要特别注意减轻其质量和改善其铸造和加工工艺性。

轻型车用汽油机和某些轻柴油机,要求机体轻巧,同时它们又常在部分负荷下运转,负荷较轻,所以大多采用底面与曲轴轴线基本齐平的平分式机体。这种机体高度小,因而轻巧,但相对来说刚度较差。负荷较重的柴油机机体常采用底面大大低于曲轴轴线的机体,这种机体常称为龙门式机体。机体裙部下垂深度Ls=(0.6~1.0)D。龙门式机体虽然比较笨重,但在纵向平面中的抗弯刚度和绕曲轴轴线的扭转刚度显著提高。不过,龙门式机体向下是敞口的,两纵向侧壁会相对振动,而主轴承所在的各隔板会在纵向发生振动,增强噪声辐射,特别是激发油底壳的振动和噪声。为此,可用横向螺栓把龙门式机体悬空的裙部牢固联接到主轴承盖上,以提高机体下部的横向刚度。用铸造的下机座加强机体显然特别有效,但比较笨重,且使拆卸曲轴较麻烦。用梯子形的加强板也可达到加强龙门式机体下端刚度的目的。

l)要有足够的强度,以承受高温高压下的机械应力和热应力。应有足够的刚

度.以保证在任何情况下气缸体的变形较小。

2)要有良好的抗磨性能。其内表面有一定的珩磨沟纹和贮油孔隙,以保证可靠的润滑。3)气缸套的结构设计和材料选择,应避免拉缸或咬缸。

4)气缸体应制造简单,维修方便,价格低廉。

缸体的设计要求可概括为:合理选择缸体的结构型式和使用材料;合理设计受力部位的结构及形状;组织好缸体的冷却和润滑;缸体的外廓尺寸紧凑,质量轻;结构简单,便于制造,以有利于“三化”,便于拆装和维修。

第三章气缸体方案确定

3.1 缸体的结构型式的选择

缸体的结构形式主要取决于曲柄连杆机构的运动件、配气机构、驱动机构、辅助系统的型式及其零件尺寸。水冷汽油机大都采用把气缸体与上曲轴箱连成整体的缸体型式。这种形式刚度比较大,由于缸体与上曲轴箱之间没有分箱面,减少了机械加工量,也减少了缸体与上曲轴箱结合面处凸缘的支承壁厚,加上由于整个结构具有较大的刚度,外壁与内部隔板都允许薄一些,所有这一切都使整个结构的质量比较轻金属消耗量较少。缸体的结构型式主要有:平分式,即机体采用底面与曲轴轴线基本齐平的结构;龙门式,即底面比曲轴低(0.6~1.0)D 的结构;隧道式,即曲轴箱的主轴承设计在上曲轴箱横隔板上的结构。这几种缸体结构在不同程度和范围内得到了广泛的应用。平分式曲轴箱的缸体质量轻,但刚度较差,一般只用于小功率汽油机上。龙门式曲轴箱缸体刚度较大,常用于中小型汽油机和一般柴油机中。隧道式曲轴箱的缸体结构刚度最大,常用于一般柴油机、单缸柴油机和功率较大的汽油机。而本设计的479 发动机缸体工作负荷大,要求刚度高,所以采用“龙门式”缸体结构。因为这种缸体总体高度较大,在纵向平面的弯曲刚度和绕曲轴线的扭转刚度显著提高,同时缸体底面可以以一个完整的平面与油底壳相配,密封比较简单。它的壁厚较厚,能适应在大负荷下工作的要求。这个措施可能会增加一些缸体的质量,但曲轴箱有更多金属和更大的断面系数来承受力和力矩,因而增加了缸体的刚度。

气缸体采用单体式,曲轴箱设计成隧道式,使曲轴箱保持有一定的刚度。气缸体的结构为压入式气缸体,气缸套为合金铸铁制造,压入到铝合金气缸体中,铸铁气缸套具有较高的耐磨性,铝合金散热片有较好的散热效果。

气缸体壁的结构设计成凹形,顶部和下部较厚、中间较薄。因为气缸盖上的一部分热量需要通过气缸上部传递出去,为了更好地传热,将气缸上部做得厚一些,同时,作支承也减少了此处的应力集中。气缸盖与气缸体的接触面积约为活塞顶面积的35%~40%。在下部与曲轴箱支承的地方,为了提高强度,避免应力集中,用大的圆弧逐渐加厚支承凸缘。

散热片沿气缸轴线方向的布置要从最佳散热状态出发,上端应尽可能接近气缸盖底平面开始布置,这样可使气缸盖的一部分热量通过气缸体上的散热片传向外界;而下端散热片布置到活塞在下止点时活塞环所在的位置,以保证活塞环有效的冷却。散热片沿气缸轴线布置的长度约占气缸长度的45%~55%。气缸体与气缸盖和曲轴箱之间采用长螺栓直接连接。螺栓要用柔性螺栓,螺栓的布置应尽可能均匀,每个螺栓所负担的压紧面积尽可能相等,并靠近气缸外壁。

3.2 缸体结构细节的设计

汽油机缸体的强度和刚度主要取决于金属的分布,因此必须仔细进行结构细节的设计,以求最大限度地利用金属。在缸体各壁面布置加强筋是进一步提高缸体刚度的主要措施,首先应该布置在有较大的集中力通过的地方。缸体壁面上的加强筋,设计成不

易歪曲的三角形。传递路线上也设计有加强筋。设计中每缸采用4 个气缸盖螺栓,因为从力直线传递的角度看,每气缸周围布置4 个气缸盖螺栓最好,螺栓再多,就不可能实现这一原则。还应使气缸盖螺栓与主轴承螺栓位于同一直线上,并且用加强筋连起来。气缸盖螺栓的布置除了保证气缸盖与气缸体之间的密封外,还应该使气缸体在受到气压力的拉伸力时变形最小,所以将冷却水套的外壁靠近缸盖螺栓布置。当气缸盖螺栓的布置由于燃烧室密封的需要而

不能与主轴承盖螺栓在同一平面时,螺栓搭子应当通过加强筋将力传递到主轴承座。当气缸盖螺栓的中心线距离主轴承盖螺栓中心线较远时,则将螺栓搭子通过加强筋将力传递至气缸套的下支承隔板。为加强缸体的局部刚度,防止局部地区产生过大变形,尽可能增加缸体受力和承受弯矩部位的抗拉、抗弯断面系数。在基本壁面采用较薄壁厚的同时,设计中加大了局部地区的壁厚。为使活塞环容易传出热量,设计的水套高度尺寸与活塞环在气缸上、下止点位置相对应。气缸套和缸体壁之间的最小距离不应低于5~6 mm,本设计为6 mm。水套外壁与气缸盖螺栓中心线设计在同一直线上,避免了错距,使气缸体不会受到附加的弯曲变形。为了提高抗振性,减小噪声,水套外壁设计成不断弯曲的波纹形截面,而不是简单的大平面,这样将加大结构刚度。同时相邻两缸间的气缸盖螺栓的轴间也靠近刚度较大的侧壁和下面主轴承螺栓的轴线。为减少露在缸体外的管道,在缸体中设置主油道和分油道。油道的孔径取决于供油量的大小。根据479 供油的需要,设计确定主油道孔径为12 ㎜,分油道孔径为6 ㎜。

本次设计采用气缸和缸体做成一体的结构,为了避免内孔的变形,水套的内壁基本上不承受缸盖螺栓的拉伸,所以缸盖螺栓的安装孔分布在水套外壁上。这样有利于气缸最上部分的充分冷却。3 缸体基本尺寸的确定缸体的基本尺寸主要表现为缸体的宽度、长度及总体高度。

3.3机体的支承形式

机体的支承形式采用全曲轴支承,即在相邻的两缸之间都设置有轴承。如此结构,可使沿曲轴传来的力和力矩分布较均匀,应力集中和轴承负荷也小,提高了机体的强度和刚度,对降低机体噪声也有很大的帮助。479Q机体加强筋的分布在设计中,汽油机的机体选用封闭水套的空间钢架结构双层结构,它的强度和刚度主要取决于金属的分布,因此在设计时,两者通过气缸壁下支承隔板相连,进行力的分配和传递。同时按其受力情况和刚度与强度的要求布置各种加强筋,并按需要在局部地方加强壁厚,以优化材料的利用,避免应力集中。即在发动机刚度和强度满足的条件下,设计时应尽可能地减轻机体质量,机体加强筋的分布见图!。

3.4 气缸的排列方式

按照气缸的排列方式不同,气缸体还可以分成单列式,V型和对置式三种。

V型:气缸排成两列,左右两列气缸中心线的夹角γ<180°,称为V型发动机,V型发动机与直列发动机相比,缩短了机体长度和高度,增加了气缸体的刚度,减轻了发动机的重量,但加大了发动机的宽度,且形状较复杂,加工困难,一般用于8缸以上的发动机,6缸发动机也有采用这种形式的气缸体。

3.5 曲轴箱的设计

气缸体下部用来安装曲轴的部位称为曲轴箱,曲轴箱分上曲轴箱和下曲轴箱。上曲轴箱与气缸体铸成一体,下曲轴箱用来贮存润滑油,并封闭上曲轴箱,故又称为油底壳。油底壳受力很小,一般采用薄钢板冲压而成,其形状取决于发动机的总体布置和机油的容量。油底壳内装有稳油挡板,以防止汽车颠动时油面波动过大。油底壳底部还装有放油螺塞,通常放油螺塞上装有永久磁铁,以吸附润滑油中的金属屑,减少发动机的磨损。在上下曲轴箱接合面之间装有衬垫,防止润滑油泄漏。

3.6 机体冷却水套

发动机是车辆的动力源,其工作可靠性在很大程度上决定着车辆工作的可靠性。而影响发动机工作可靠性和耐久性的重要因素之一就是热负荷。如果发动机受热零部件的温度过高,就可能发生烧蚀、变形、材料的硬度和强度急剧下降,以及润滑油膜被破坏甚至结焦,从而失去工作能力;或者由于活塞顶、气缸盖底部和阀座等处的温度梯度过大引起较大的热应力,使零部件产生破坏。因此,内燃机受热零部件的适度冷却是极其必要的。水套不仅可以对发动机零部件进行合理冷却,而且能够在冷起动和运行工况下减少CO和HC污染物排放,降低燃料消耗。研究发动机机体及缸盖内冷却水的流

动状况的方法主要有数值模拟计算和实验测试两种。在设计中,为了冷却气缸,在机体上部设置有冷却水套。冷却水套沿气缸轴向长度,保证活塞环(主要是气图$ 曲轴箱的结构形式环)在下止点位置时,仍在水套范围之内,保证活塞有效地冷却。水套的结构还使得整个发动机的冷却尽可能均匀。同时为了使多缸发动机各缸冷却均匀和水流速度一致,在机体内设计有布水道与分水孔,并且让水流沿气缸切线方向或半切线方向流过缸体外壁面.

水腔

3.7 机体润滑油道

内燃机技术的不断发展,其中一项是增大功率,而增大功率带来了内燃机各运动

部件摩擦、磨损的加剧和润滑油温度升高等问题,使润滑条件更加苛刻,所以整机性能的提高对内燃机的可靠性和耐久性提出了更高的要求。因此润滑已成为提高内燃机可靠性和耐久性的一个非常关键的问题。各摩擦零件的良好润滑,对减少摩擦损失,提高机械效率,保证发动机最经济、最可靠地工作以及对延长发动机的使用期限具有决定性的意义。设计时考虑到发动机使用和维修,在发动机机体中设置了主油道和分油道。其孔径取决于供油量的大小(设计时主油道孔径取),分油道孔径取进油量,由于液压挺杆要求机油的压力不低于5mpa),含气量少于0.1%,汽油机供油系统设计压力为4.5mpa。并采用止回阀来防止缸盖机油回流。在正常工作时油道中的止回阀打开,使机油顺利进入缸盖。在停车时,机油止回阀处于关闭状态,阻止了缸盖油道内机油的泄流,有效地防止了空气进入液压挺杆。机体的主油道位于机体的腰部,通往配气机构、正时齿轮室和润滑曲轴的分油道分别与主油道相连,通往主轴承的润滑油道有五条,一条通往缸盖进行润滑,另一条是通往正时(2334),整机的润滑示意图见图。

进油道

主油道

主油道

回油孔

3.8 机体材料

机体运行中受到复杂的机械应力和热应力,因此机体的材料应具有足够的强度和良好的铸造性能,且便于机械加工,同时成本低廉。随着铸造工艺的提高,铸铁机体诸如散热性差、摩擦系数高等问题都已不再制约铸铁机体的发展,故机体的材料仍选为铸铁。采用整体式结构后,气缸壁面工作时会受到强烈的磨损,又经常会遇到润滑不良,进气脏污,冷启动以及不正常燃烧的情况,这些都会造成气缸壁面的强烈磨损。所以在气缸工作面的热处理中添加56,27,,8,29 等合金元素,使金相组织均匀,珠光体细密,高硬度碳化物形成。这能改善气缸壁面的强度,增加气缸体的强度。

3.9降噪处理方面

设计479Q汽油机的过程中,在根据经验选取比较成熟设计方案的同时,也大胆地进行了创新,在降噪处理方面采用了一些新型的结构设计。在整机方面采用了柔性传动,清除间隙,减少传统运动件等措施(既简化了工艺,方便维修(又降低了噪声;连杆小头孔与活塞销过盈配合,往复运动质量小;凸轮轴同步齿轮采用斜齿、自动补偿消除啮合间隙的主辅齿轮重叠式结构,配气机构无挺杆、摇臂(同时采用齿形皮带传动等措施;原材料选用吸音降噪效果好的铸铁、铝合金、塑料、橡胶和粉未冶金件等。在机体部分则是采用双曲面拱形薄壁的结构设计,即机体曲轴箱裙部设计成圆弧状的结构,这样在机体中形成前后、左右互拱的曲面,类似曲轴箱表面噪声阻尼板。同时,曲轴的第二、四主轴承座上,在保证机体具有足够刚度和强度时,在其内部铸出了一个通孔,既能有效地降低机体的质量,又使机体第一、二缸和第三、四缸相通,这样能保证发动机一缸

第四章缸体基本尺寸的确定

缸体的基本尺寸主要表现为缸体的宽度、长度及总体高度。发动机缸体在曲轴箱部分的基本尺寸决定于连杆曲轴组件旋转运动的需要,使它们能在气缸内自由运动,另一方面使气缸体外形尽可能紧凑。为此,设计根据连杆运动轨迹的外包络线来确定曲轴箱内壁的最小尺寸。为了确保气缸体与运动件在任何情况下不相碰,设计考虑各个零件的制造公差、缸体的变形和磨损的影响等因素,留出足够的间隙。根据经验,曲轴箱的内壁与连杆运动轨迹间的最小距离应为5~10 mm。本次设计取5 ㎜。应该指出,在单列式内燃机中,借加大宽度来提高上曲轴箱的刚度是不合理的,因为这将使外形尺寸和质量加大。曲轴箱的宽度决定于连杆螺栓头部最外点轨迹,从而也决定了气缸体的宽度。多缸汽油机的缸体在纵向的主要尺寸是气缸轴线间的距离L(简称气缸轴距或缸距),为了表征不同缸径发动机的紧凑程度,常用气缸轴距与气缸直径之比L/D 作为发动机紧凑性的评价指标。比值L/D 主要决定于气缸或缸套的结构。

气缸单列布置的汽油机,L 主要决定于气缸的布置。汽车用水冷四冲程汽油机,为了结构简单,通常直接在气缸体中加工出气缸孔。根据一般铸造工艺条件的可能性,气缸壁最小厚度为4~6 mm。这样,本次设计取消了气缸之间的水套,把相邻两气缸联系在一起后,其最小气缸轴距Lmin=D+(10~12) mm,相对应的最小比值L/D 为1.10~1.13。本次设计取缸距L=79+9=88 mm,这一尺寸决定了气缸体的长度。发动机缸体的总体高度主要决定于曲轴中心、曲柄半径、连杆长度、活塞尺寸和曲轴箱外形尺寸等。本次设计的缸径为79 mm,活塞行程为90 mm,压缩比为11,从活塞顶面到活塞上裙部下端为53 mm,所以缸套总高H=90+13=103 mm。上曲轴箱的高度为(0.6~1.0)H,本次设计取136 mm,所以缸体的总体高度为239mm。

ZH1105柴油机气缸体三面粗镗组合机床设计(后主轴箱设计)-实习报告

毕业实习报告 专业 学生姓名 班级 学号 指导教师 日期

实习报告 一、概述 上了四年的大学,然而大多数人对本专业的认识还是不够,在大三期末学院曾为我们组织了两个星期的见习,但由于当时所学知识涉及本专业知识不多,所看到的东西与本专业很难联系起来,所以对本专业掌握并不是很理想. 今年寒假回来,学院为了使我们更多了解对于自己的毕业设计的组合机床有更深一步的了解,加深机电在工业各领域应用的感性认识,开阔视野,了解相关设备及技术资料,熟悉典型零件的加工工艺,特意安排了我们到几个拥有较多类型的组合机床厂去实习,生产技术较先进的工厂进行. 实习目的:毕业实习是我们专业知识结构中不可缺少的组成部分,并作为一个独立的项目列入专业教学计划中的。其目的在于通过实习使学生获得基本生产的感性知识,理论联系实际,扩大知识面;同时专业实习又是锻炼和培养学生业务能力及素质的重要渠道,培养当代大学生具有吃苦耐劳的精神,也是学生接触社会、了解产业状况、了解国情的一个重要途径,逐步实现由学生到社会的转变,培养我们初步担任技术工作的能力、初步了解企业管理的基本方法和技能;体验企业工作的内容和方法。 二、实习过程 ①江苏江淮动力厂-------------------3月19日下午 ②盐城精密机床厂-------------------3月20日上午 ③盐城精密机床厂-------------------3月21日上午 三、实习内容 江苏江淮动力厂 公司历史悠久,创建于1945年,1959年开始生产发动机。现有员工3000人,年销售收入21亿元。 公司长期注重技术创新,投资亿元建成省级企业技术中心和国家级博士后科研工作站,建有具有国际先进水平的CAD/CAM/CAT(计算机辅助设计、制造、测试)网络,拥有行业中以三维激光扫描仪、三维激光成型机等先进设备和计算机软件为代表的RP技术,并积极引进应用同步开发、虚拟设计、快速原型制造、反求工程等高新技术改造传统产业和传统产品,确立了企业在行业技术进步方面的领先地位,逐步形成了具有自主版权和江动特色的节能单缸机、轻型多缸机、通用汽油机、小马力单缸机和拖拉机、发电机组(柴、汽油)等六大系列,400多个品种的优化产品结构,柴、汽油发动机都有代表品种通过美国EPA、CARB认证。 “江动”产品以其严格的合乎国际规范的质量体系和成熟完善的服务保证体系,通过了2000版ISO9001国际质量标准认证,在国内外市场享有很高的声誉,产品覆

气缸设计手册

神威气动https://www.360docs.net/doc/7c15823734.html, 文档标题:气缸设计手册 气缸设计手册的介绍: 引导活塞在缸内进行直线往复运动的圆筒形金属机件。空气在发动机气缸中通过膨胀将热能转化为机械能;气体在压缩机气缸中接受活塞压缩而提高压力。涡轮机、旋转活塞式发动机等的壳体通常也称“气缸”。气缸的应用领域:印刷(张力控制)、半导体(点焊机、芯片研磨)、自动化控制、机器人等等。 二、气缸种类: ①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。 ②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。 ③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。它的密封性能好,但行程短。 ④冲击气缸:这是一种新型元件。它把压缩气体的压力能转换为活塞高速(10~20米/秒) 运动的动能,借以做功。 ⑤无杆气缸:没有活塞杆的气缸的总称。有磁性气缸,缆索气缸两大类。 做往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴做摆动运动,摆动角小于280°。此外,还有回转气缸、气液阻尼缸和步进气缸等。 三、气缸结构: 气缸是由缸筒、端盖、活塞、活塞杆和密封件等组成,其内部结构如图所示: 2:端盖 端盖上设有进排气通口,有的还在端盖内设有缓冲机构。杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。导向套通常使用烧结含油合金、前倾铜铸件。端盖过去常用可锻铸铁,为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。 3:活塞 活塞是气缸中的受压力零件。为防止活塞左右两腔相互窜气,设有活塞密封圈。活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。耐磨环长使用聚氨酯、聚四氟乙烯、夹布合成树脂等材料。活塞的宽度由密封圈尺寸和必要的滑动部分长度来决定。滑动部分太短,易引起早期磨损和卡死。活塞的材质常用铝合金和铸铁,小型缸的活塞有黄

(完整版)气缸的设计计算1

4.1纵向气缸的设计计算与校核: 由设计任务可以知道,要驱动的负载大小位140N,考虑到气缸未加载时实际所能输出的力,受气缸活塞和缸筒之间的摩擦、活塞杆与前气缸之间的摩擦力的影响,并考虑到机械爪的质量。在研究气缸性能和确定气缸缸径时,常用到负载率β: 由《液压与气压传动技术》表11-1: /β=200N 运动速度v=30mm/s,取β=0.7,所以实际液压缸的负载大小为:F=F D=1.27= =66.26mm F—气缸的输出拉力 N; P —气缸的工作压力P a 按照GB/T2348-1993标准进行圆整,取D=20 mm 气缸缸径尺寸系列

8 10 12 16 20 25 32 40 50 63 80 (90)100 (110)125 (140)160 (180)200 (220)250 320 400 500 630 由d=0.3D 估取活塞杆直径 d=8mm 缸筒长度S=L+B+30 L为活塞行程;B为活塞厚度 活塞厚度B=(0.6 1.0)D= 0.720=14mm 由于气缸的行程L=50mm ,所以S=L+B+30=886 mm 导向套滑动面长度A: 一般导向套滑动面长度A,在D<80mm时,可取A=(0.6 1.0)D;在D>80mm 时, 可取A=(0.6 1.0)d。 所以A=25mm 最小导向长度H: 根据经验,当气缸的最大行程为L,缸筒直径为D,最小导向长度为:H

代入数据即最小导向长度H + =80 mm 活塞杆的长度l=L+B+A+80=800+56+25+40=961 mm 由《液压气动技术手册》可查气缸筒的壁厚可根据薄避筒计算公式进行计算: 式中 —缸筒壁厚(m); D—缸筒内径(m); P—缸筒承受的最大工作压力(MPa); —缸筒材料的许用应力(MPa); 实际缸筒壁厚的取值:对于一般用途气缸约取计算值的7倍;重型气缸约取计算值的20倍,再圆整到标准管材尺码。 参考《液压与气压传动》缸筒壁厚强度计算及校核 ,我们的缸体的材料选择45钢,=600 MPa, ==120 MPa n为安全系数一般取 n=5;缸筒材料的抗拉强度(Pa) P—缸筒承受的最大工作压力(MPa)。当工作压力p≤16 MPa时,P=1.5p;当工作压力p>16 MPa时,P=1.25p 由此可知工作压力0.6 MPa小于16 MPa,P=1.5p=1.5×0.6=0.9 MPa ==0.3mm

活塞设计说明书

汽油机活塞设计说明书 : :

一、活塞设计要求 活塞是曲柄连杆机构的重要零件,主要功用是承受燃烧气体压力和惯性力,并将燃烧气体压力通过活塞销传给连杆,推动曲轴旋转对外作功。此外,活塞又是燃烧室的组成部分。活塞是内燃机中工作条件最严酷的零件。作用于活塞上的气体压力和惯性力都是周期变化的,燃烧瞬时作用于活塞上的气体压力很高,如增压内燃机的最高燃烧压力可达14—16MPa。而且活塞还要承受在连杆倾斜位置时侧压力的周期性冲击作用,在气体压力、往复惯性力和侧压力的共同作用下,可能引起活塞变形,活塞销座开裂,活塞侧部磨损等。由此可见,活塞应有足够的强度和刚度,而且质量要轻。 本次课程设计的目的是设计四冲程汽油机的活塞,根据某些现有发动机的参数,确定活塞直径D=73mm。 二、活塞材料 活塞材料常用灰铸铁和铝合金,然而由于铸铁材料密度大,产生的往复惯性力也很大,所以目前只用于大中型、低速柴油机上,故采用铝合金活塞。 为了使活塞拥有较好的热导率、高温强度、可锻性以及较小的热膨胀系数,所以才用铝硅铜合金。 三、活塞的结构设计 活塞按部位不同可以分为顶部、头部和裙部。

1.活塞顶部设计 活塞顶部形状对于四冲程内燃机取决于燃烧室形状,一般有平顶、凸顶和凹顶,此处选用平顶活塞。 活塞顶的厚度δ是根据强度、刚度及散热条件来确定,在满足强度的条件下δ值尽量取小。对于铝合金材料的活塞δ值,汽油机为(0.06~0.10)D,柴油机为(0.1~0.2)D。 则:δ=(0.06~0.10)*73=(4.38~7.3)mm 取δ=5.00mm 2.活塞头部设计 2.1设计要求 活塞头主要功用是承受气压力,并通过销座把它传给连杆,同时

气缸体的加工流程和夹具设计论文

气缸体的加工流程和夹 具设计论文 The manuscript was revised on the evening of 2021

安徽机电职业技术学院 毕业论文气缸体的加工流程和夹具设计 系别汽车工程系 专业汽车制造与装配 班级汽车3112班 姓名刘亮 学号 53 2013 ~ 2014 学年第二学期

摘要 随着我国经济的发展,国内汽车工业的迅速发展,提高汽车产品零部件的生产效率和加工质量对整个汽车工业的发展至关重要。发动机汽缸体是汽车至关重要零部件之一,其生产效率和加工质量直接关系到汽车的生产效率和性能。因此,研究汽缸体的加工工艺过程具有重要的意义。 汽缸体是汽车发动机中基础气缸和骨架,同时又是发动机的装配基准,发动机各机构和系统的零部件都安装在其内部和外部,汽缸体的作用是支撑和保护活塞,连杆,曲轴等运动部件工作时的准确位置;保证发动机换气,冷却润滑,提供各种辅助系统,提供部件及发动机的安装基面。气缸体的工作条件十分恶劣。它要承受燃烧过程中压力和温度的急剧变化以及活塞运动的强烈摩擦。气缸的工艺特点是:结构,形状复杂;加工平面,孔多;内部空腔壁,厚不均匀,刚度低,加工精度要求高,属于典型的箱体类加工汽缸体。 本文在参考了国内外大量文献资料的基础上,对汽缸体的机械零件加工工艺过程进行深入的分析和研究,并提出了一种加工汽缸体零件加工方案。 本文对汽缸体机械加工工艺方案的研究兼顾了工序发散的原则,即具有较高的柔性,又提高了生产效率。实践证明,该工艺方案的设备利用率高,生产能力稳定,可靠性较好,对同类产品的加工工艺设计具有一定的参考价值。 关键词:汽缸体、加工精度、工序、机床

proe设计气缸

PROE设计综合训练<气缸设计说明书> 院系:材料科学与工程学院 专业班级:材型 1101 姓名:温雪 学号: 20111402129 指导老师:刘彬彬

一、设计思路 (1)金属垫片 (2)弹簧垫片 (3)螺母 (4)螺柱

(5)气缸盖 (6)气缸壳

二、设计步骤 零件一 金属垫片 步骤1建立新文件 (1)单击菜单[文件]→[新建]命令,选择“新建”类型,在名称栏中输入新建文件名称:“jinshudianpian ” 在菜单工具栏中单击“新建”按钮,在弹出的“新建”对话框中选择“零件”单选按钮。输入文件名“jinshudianpian ”,去掉“使用

缺省模板”的对勾,单击,在弹出的新建文件夹选项对话框中选择公制模板mmns_part_solid。 (2)单击确定按扭,进入零件设计工作环境。 步骤2 拉伸 (1)单击拉伸按钮,在“拉伸”界面上选择“实体”,以指定生成的拉伸实体,单击放置按钮,打开上滑板面板。单击上滑面板中的定义按钮,系统弹出草绘对话框并提示用户选择草绘平面,选择FRONT基准面作为草绘平面,接受系统默认的参照方向,单击“草绘”按钮,进入草绘。 (2)单击“圆形”按钮,绘制两个同心圆,并分别修改尺寸为420.00和240.00,如图1-1,。修改完成后单击草绘器工具栏中的按钮退出草绘模式。 (3)在拉伸界面的“深度”对话框设置拉伸深高度为2.00,单击界面按钮或鼠标中键完成拉伸特征的创建,如图1-2。 图1-1 图1-2 步骤3 阵列/拉伸

(1)单击拉伸按钮,在“拉伸”界面上选择“实体”,以指定生成的拉伸实体,单击放置按钮,打开上滑板面板。单击上滑面板中的定义按钮,系统弹出草绘对话框并提示用户选择草绘平面,选择FRONT基准面作为草绘平面,接受系统默认的参照方向,单击“草绘”按钮,进入草绘。 (2)单击“圆形”按钮,绘制一个圆,修改尺寸为30,如图1-3,。修改完成后单击草绘器工具栏中的按钮退出草绘模式。 (3)在拉伸界面的“深度”对话框设置拉伸深高度为148.49,单击界面按钮或鼠标中键完成拉伸特征的创建。 图1-3 图1-5 (4)单击阵列按钮,选取中心轴,修改相关数据如图1-4,单击单击界面按钮完成特征创建,如图1-5。 图1-4

医院气体设计说明(液氧)

一.概述 1、本方案具有下列特点: ◆充分结合了目前国内外医用气体系统先进设计理念及国内知名医院设计模 式; ◆设计的动力设备目前国内医院普遍使用率较高,运行性能良好,经济合理; ◆设计规范在按照GB50751-2012《医用气体工程技术规范》前提下,又参照 了GB50333-2013《医院洁净手术部建筑技术规范——医用气体篇》要求。 ◆大楼内供氧、吸引、压缩空气系统主管管道设计十路作为大楼内所有病区 的供气主管。第一路供往1#门诊综合楼小手术室、ICU区域,第二路供往1#门诊综合楼普通病房区域;第三路供往连廊楼手术部区域,第四路供往连廊楼普通病房区域;第五路供往2#外科楼手术部区域,第六路供往2#外科楼普通病房区域;第七路供往3#内科楼手术部、ICU区域,第八路供往3#内科楼普通病房区域;第九路、第十路备用。 ◆保证系统今后的扩展性,氧气、吸引、压缩空气机房总管出口处预留阀门, 可连接今后其它大楼的用气连接之用。 2、项目概况: 临沂市人民医院本次医用气体系统工程合计4328 套用气单元,其中包括:(1)、手术部区域:重大手术室48间,麻醉诱导15床,术后恢复苏醒33床; (2)、重症监护区域:ICU、CCU 142床,血透90床 (3)、病房区域:普通病房4000床 (4)、35人位高压氧舱。3、医用供气系统的设计要点: (1)、解决全系统的最佳气体流量及压力分配问题: ①根据整幢大楼的总用气点流量,从主管、横管、支管进行一系列的实际与理论相结合的计算,确定最佳管径保证了用气点的气体流量。 ②为保证压力符合使用要求,氧气、空气每层均有流量调压装置均采用双路设计,并能根据需要调节使用压力。 (2)、解决全系统的密封性问题: 为了提高系统密封性,从工程设计到施工、材料选购、检验均严格按照GB50751-2012《医用气体工程技术规范》、国家医药行业标准YY/T0186-0187-94《医用中心吸引、中心供氧系统通用技术条件》及国家相关标准执行。中心供氧、吸引、压缩空气系统均设计脱脂紫铜管,连接均采用标准的医用紫铜管件连接金属密封后银钎基焊接,保证了大楼医用气体工程整个系统的气密性。 (3)、解决全系统的寿命及安全性问题: ①为了保证系统整体寿命,除所选用的产品均是国内知名品牌浙江海亮产品外,另外从脱脂紫铜管的连接采用金属管件密封,系统中无非金属密封材料,避免了系统的老化,且铜元有杀菌抑菌功能。从而保证整套管路系统使用寿命超过30年。 ②供氧整个系统中氧气、压缩空气部分的所有减压装置均采用双路设计,一路使用一路备用。且每个减压装置中均设有一套安全阀,当减压装置故障出口压力高于最高使用压力时,安全阀自动开启并进行卸压,从而避免了氧气终端、压缩空气终端出现超出使用压力的危险情况。

普通钢制蒸汽分汽缸的快速设计与实例

普通钢制蒸汽分汽缸的快速设计与实例 文章简述了蒸汽分汽缸的结构与用途,并进行了分汽缸的快速设计,通过实例设计计算,确定了分汽缸最基本的外形尺寸大小及用钢厚度,从而保证用缸的合理性与安全性。 标签:蒸汽分汽缸;快速设计;实例 1 概述 蒸汽,由于其具有热焓值大、效率高等诸多优点,在工业及民用换热系统中被广泛作为热媒使用[1]。分汽缸,作为蒸汽换热设备系统中的汽体缓冲及用汽的集中管理设备,被广泛使用[2]。分汽缸的主要作用主要有:(1)缓冲蒸汽。由于供汽设备压力不稳,故需分汽缸储汽,并调节气体压力。(2)分流汽体。通过分汽缸可使压力均衡地分出多路支管,供汽给不同用汽设备。(3)滤除杂质。由于蒸汽在管道输送过程中难免掺杂进一些固体颗粒。(4)汽水分离[3]。 分汽缸属于压力容器范畴。本体结构一般包括:筒体、封头、上排孔管接头(输汽管、压力表管)以及下孔管接头(疏水)。在用户选择成套锅炉后,对用汽点在两个以上的锅炉房都应设置蒸汽分配缸,便于用汽的管理和避免在蒸汽母管上开孔。由于不同用户需求不同,因此分汽缸很难做为通用设备类的定型产品。文章描述对分汽缸的简单设计计算及实际实例设计。 2 分汽缸各参数的确定 2.1 缸筒体直径的确定 除用户提出要求外,亦可通过热力计算根据介质流速来确定筒体直径,其方法如下: 式中:Q-介质的容积流量,m3/h;G-介质的重量流量,即产(用)汽量,t/h;ν-介质的比容,m3/kg(查饱和蒸汽表);ω-介质的流速,m/s(根据经验可取ω=2~8m/s较为合适);D-筒体的内径,mm。 在确定筒体直径时,必须考虑锅炉主蒸汽管管径(d)大小对分气缸筒体强度的影响。筒体上最大孔径d应≤D/2。 2.2 缸长度的确定 分汽缸筒体两孔之间的中心称为节距,用l表示,节距(见图1)应满足:(1)两孔间接管法兰、阀门仪表等操作的最小距离;(2)开孔不需另行补强以及端部孔对筒体边缘焊接及截面形状影响的最小距离。因此:

气动机械手设计说明书

气动机械手-设计说明书

————————————————————————————————作者:————————————————————————————————日期: ?

一、设计要求 为卸码垛机械手臂配制造附件,即夹持工件的手指机构。机构应根据工件的形状、尺寸、工件质量大小、表面性质等因素专门设计。本设计拟搬运宽度尺寸90~110mm、质量为5kg以内的六菱柱形钢质工件,手指机构带水平转盘。设计手指机构的机械结构,机构自身重量控制在10kg以内,手指的动力驱动方式自选。 二、具体设计方案 本次机械手的主要设计构思来源于实验室的机械手模型,通过对实验室机械手的一系列观察研究,开始了如下方案的设计。 首先,我们选择了气动的方式来驱动机械手的运动,而对于气缸的选择,因为在这方面的学习还不够,而且对于我们所设计的机械手结构在气缸方面的要求不高,故在此不作进一步研究。 根据实验室的机械手模型,我们仿照其结构把机械手设计为平行式夹持手爪,接下来是对一些重要尺寸的确定做一较为详细的介绍。 2.1机械手手爪伸缩运动的设计 通过查阅相关资料,对于夹持型手爪进行受力分析如图所示,两个手指总夹持力2μF必须大于夹持工件的重力mg 故应满足2μF>mg,即F>mg/2μ 式中μ为摩擦系数,本次设计的手指夹持处设有辅助件,材料取为硬质橡胶,一般令μ=0.65; 另外已知m为5kg; 由此可得 F>mg/2μ=5×9.8/(2×0.65)=38N

机械手的结构图如下: 此部分为机械手的夹持部分,由图中可知,此结构主要是以齿轮齿条的啮合运动来实现手指的夹紧与放松,而通过两个类似于单缸气缸的腔体充气和放气产生推动力。因此根据公式可得: D=(4F/(πPη))? 其中η为负载率,一般取0.4。代入相关数据可得:D=0.017m 又知腔体中受压缩气体作用的面积为一圆环,即 s=π*(R2-r2)=π*D2/4 (其中R为腔体外半径,r为轴半径) 只要圆环面积s大于π*D2/4即可,现取D=0.02m=20mm r=10mm R=20mm 则s的面积足够大,能提供足够的推力来满足运动。 之后根据所夹持件尺寸的要求是90至110mm,则按照90mm来计算(最小的工件尺寸),若能夹到的话,则110mm的也一定能夹到,然后通过一系列的尺寸推导运算(该部分是通过先初步设计尺寸,然后在建模过程中不断修改所得),即可设计出如上所示的机械手结构。其中最主要的就是齿轮齿条的行程大小确定,它是根据所要夹持工件的尺寸要求来设计的。

气缸的设计计算

纵向气缸的设计计算与校核: 由设计任务可以知道,要驱动的负载大小位140N,考虑到气缸未加载时实际所能输出的力,受气缸活塞和缸筒之间的摩擦、活塞杆与前气缸之间的摩擦力的影响,并考虑到机械爪的质量。在研究气缸性能和确定气缸缸径时,常用到负载率β: 由《液压与气压传动技术》表11-1: 运动速度v=30mm/s,取β=,所以实际液压缸的负载大小为:F=F /β=200N 4.1.1气缸内径的确定 D== =66.26mm F—气缸的输出拉力 N; P —气缸的工作压力P a 按照GB/T2348-1993标准进行圆整,取D=20 mm 气缸缸径尺寸系列 810121620253240506380(90)100(110)125(140)160(180)200(220)250320400500630 4.1.2活塞杆直径的确定 由d= 估取活塞杆直径 d=8mm 4.1.3缸筒长度的确定 缸筒长度S=L+B+30

L为活塞行程;B为活塞厚度 活塞厚度B==14mm 由于气缸的行程L=50mm ,所以S=L+B+30=886 mm 导向套滑动面长度A: 一般导向套滑动面长度A,在D<80mm时,可取A=;在D>80mm时, 可取A=。 所以A=25mm 最小导向长度H: 根据经验,当气缸的最大行程为L,缸筒直径为D,最小导向长度为:H 代入数据即最小导向长度H + =80 mm 活塞杆的长度l=L+B+A+80=800+56+25+40=961 mm 4.1.4气缸筒的壁厚的确定 由《液压气动技术手册》可查气缸筒的壁厚可根据薄避筒计算公式进行计算: 式中 —缸筒壁厚(m); D—缸筒内径(m); P—缸筒承受的最大工作压力(MPa); —缸筒材料的许用应力(MPa); 实际缸筒壁厚的取值:对于一般用途气缸约取计算值的7倍;重型气缸约取计算值的20倍,再圆整到标准管材尺码。 参考《液压与气压传动》缸筒壁厚强度计算及校核 ,我们的缸体的材料选择45钢,=600 MPa, ==120 MPa

凸轮轴的设计说明书

二缸油泵凸轮轴材料设计班级:材料10971 学号:10400971 姓名:

机械学院 课程设计任务书 机械系材料10971班学生学号10400971 课程设计课题:二缸油泵凸轮轴材料设计 一、课程设计工作日 自2011年9月5日至2011年9月9日星期五 二、同组学生:曹润、陈胜、封成尧、高兴、葛义尚、韩君、何东、侯存亿 三、课程设计任务要求 包括课题来源、类型、目的和意义、基本要求、完成时间主要参考资料等。 (1)目的和意义 1.熟悉课题、查阅资料:要求充分熟悉本课题,并查阅大量有关本课题内容的资料。 2.对所属零件进行受力和失效分析,提出性能要求。 3.确定合金钢材料:要求在满足零件使用性能的前提下,兼顾经济型和工艺性,合理选择材料。 4.确定热处理工艺方法和设备:要求选定热处理方法和热处理设备。 5.编写说明书:明确本课题设计方案的内容、确定原则和理由。 6.编制热处理工艺卡。 (二)基本要求 1设计说明书一套 2热处理工艺卡一套 3课程设计小结一份 (三)参考资料 教材、课程设计指导书、手册、图册等。 指导教师签字:

目录 一、二缸凸轮轴的工作环境、受力失效分析 1、凸轮轴的工作环境分析 2、凸轮轴的失效分析 二、二缸凸轮轴的性能要求 三、二缸凸轮轴材料选择及其性能分析 1、材料合金元素的作用分析 2、材料加工工艺分析 3、热处理工艺分析 4、材料的使用性能比较 5、确定材料材料的最终选择 四、二缸凸轮轴材料45Mn2B热处理工艺 1、二缸凸轮轴选用的热处理设备 2、制定工艺流程 3、预备热处理工艺 4、最终热处理工艺 五、热处理工艺卡 六、结论 参考文献 课程设计小结

GB3801-83汽车发动机气缸体与气缸盖修理技术条件

GB3801-83汽车发动机气缸体与气缸盖修理技术条件 中华人民共和国国家标准GB3801-83 UDC621.431.72.222.004.124 本标准适用于国产往复活塞式汽车发动机铸铁及铝合金气缸体与气缸盖的修理。其他汽车发动机气缸体与气缸盖可参照执行。通过修理的气缸体与气缸盖应符合本标准的要求。 1技术要求 1.1气缸体与气缸盖不应有油污、积炭、水垢及杂物。 1.2水冷式气缸体与气缸盖用3.5-4.5kgf/cm2的压力作连续5min水压试验,不得渗漏。 1.3汽油发动机气缸体上平面到曲轴轴承承孔轴线的距离,不小于原设计差不多尺寸0.40mm。 注:原设计是指制造厂和按规定程序批准的技术文件(下同〉。 1.4所有结合平面不应有明显的凸出、凹陷、划痕或缺损。气缸体上平面和气缸盖下平面的平面度公差应符合表1的规定。 1.5气缸体曲轴、凸轮轴轴承承孔的同轴度公差应符合原设计规定。凡能用减磨合金补偿同轴度误差的,以气缸体两端曲轴轴承承孔公共轴线为基准,所有曲轴轴承承孔的同轴度公差为0.15mm,以气缸体两端凸轮轴轴承承孔公共轴线为基准,所有凸轮轴轴承承孔的同轴度公差为ф0.15mm。

1.6气缸体后端面对曲轴两端轴承承孔公共轴线的端面全跳动不大于0.20mm。 1.7燃烧室容积不小于原设计最小极限值的95%。同一台发动机的气缸盖燃烧室容积之差应符合原设计规定。 1.8气缸体、气缸盖各结合面经加工后的表面光洁度应不低于▽6。 1.9气缸盖上装火花塞或喷油嘴和预热塞的螺孔螺纹损害不多于一牙,气缸体与气缸盖上其他螺孔螺纹损害不多于两牙。修复后的螺孔螺纹应符合装配要求。各定位销、环孔及装配基准面的尺寸和形位公差应符合原设计规定。 1.10选用的气缸套、气门导管、气门座圈及密封件应符合相应的技术条件,并应满足本标准的有关装配要求。 1.11气门导管承孔内径应符合原设计尺寸或分级修理尺寸(见表2)。气门导管与承孔的配合过盈一样为0.02-0.06mm。 1.12进、排气门座圈承孔内径应符合原设计尺寸或修理尺寸(见表2)。气门座圈承孔的表面光洁度不低于▽5,圆度公差为0.0125mm,与座圆的配合过盈一样为0.07-0.17mm。 1.13镶装干式气缸套的承孔内径应为原设计尺寸或同一级修理尺寸(如表2)。承孔表面光洁度不低于▽6,圆柱度公差为0.0lmm。气缸套与承孔的配合过盈应符合原设计规定;无规定者,一样为0.05-0.10mm。有突缘的气缸套配合过盈可采纳0.05-0.07mm;无突缘的气缸套可采纳0.07-0.l0mm。气缸套上端面应不低于气缸体上平面,亦不得高出0.l0mm。 1.14湿式气缸套承孔的内径应为原设计尺寸或同一级修理尺寸(见表2)。湿式气缸套与承孔的配合间隙为0.05-0.15mm,安装后气缸套上端面应高出气缸体上平面,并应符合原设计规定。 1.15同一气缸体各气缸或气缸套的内径应为原设计尺寸或同一级修理尺寸(见表2),缸壁表面光洁度不低于气78。干式气缸套的气缸圆度公差为0.005mm,圆柱度公差为0.0075mm;湿式气缸套的气缸圆柱度公差为0.0125mm。

气缸体加工工艺及夹具设计

河北机电职业技术学院 毕业设计(论文)课题气缸体加工工艺及夹具设计 院系河北机电职业技术学院 专业机械制造及自动化 班级0805 姓名李建伟 完成日期 指导教师娄海汇

摘要 本说明书涵盖了气缸体零件从毛坯的选择到工艺过程拟定再到各加工步骤计算的全部过程,此外,对于用到的镗床及钻床夹具也做了简要说明。 首先对于零件上的一些主要加工表面,通过查阅大量专业资料确定了其加工工艺,确保达到零件的精度要求,对于所涉及的尺寸公差也是通过各种详细的计算而得来。为了给加工零件提供完整的书面说明,在本说明书中还对气缸体的作用及工作环境做了详细的介绍,对于所涉及到的参考文献也详尽列出。最后,对于在加工过程中所用到的夹具设计原则也有所阐述,并给出了一套镗夹具的设计方案。 总之,本着完整,详尽,正确的原则,对于需要分析计算的地方在本说明书中都有相应的体现,最终给零件的生产加工提供最原始的数据资料。 关键词:气缸体工艺过程镗床钻床 environ

目录 绪论 (4) (1)课题背景及发展趋势 (4) (2)夹具的基本结构及夹具设计的内容 (4) 第一章零件的分析 (6) 1.1零件的作用 (6) 1.2零件的工艺分析 (7) 第二章确定毛坯 (8) 第三章工艺规程设计 (9) 3.1 定位基准的选择 (9) 3.2 制定工艺路线 (10) 3.3选择加工设备及刀,夹,量具 (12) 3.4 加工工序设计 (13) 3.4.1 切削用量的确定 (13) 3.4.2 基本时间的确定 (17) 第五章夹具设计 (18) 5.1 夹具的基本要求与设计步骤 (18) 5.2 定位机构的确定 (19) 5.3 定位方案的论证 (19) 总结 (21) 参考文献 (23) 感谢 (24)

气动机械手-设计说明书

一、设计要求 为卸码垛机械手臂配制造附件,即夹持工件的手指机构。机构应根据工件的形状、尺寸、工件质量大小、表面性质等因素专门设计。本设计拟搬运宽度尺寸90~110mm、质量为5kg以内的六菱柱形钢质工件,手指机构带水平转盘。设计手指机构的机械结构,机构自身重量控制在10kg以内,手指的动力驱动方式自选。 二、具体设计方案 本次机械手的主要设计构思来源于实验室的机械手模型,通过对实验室机械手的一系列观察研究,开始了如下方案的设计。 首先,我们选择了气动的方式来驱动机械手的运动,而对于气缸的选择,因为在这方面的学习还不够,而且对于我们所设计的机械手结构在气缸方面的要求不高,故在此不作进一步研究。 根据实验室的机械手模型,我们仿照其结构把机械手设计为平行式夹持手爪,接下来是对一些重要尺寸的确定做一较为详细的介绍。 2.1机械手手爪伸缩运动的设计 通过查阅相关资料,对于夹持型手爪进行受力分析如图所示,两个手指总夹持力2μF必须大于夹持工件的重力mg 故应满足2μF>mg,即F>mg/2μ式中μ为摩擦系数,本次设计的手指夹持处设有辅助件,材料取为硬质橡胶,一般令μ=0.65; 另外已知m为5kg; 由此可得F>mg/2μ=5×9.8/(2×0.65)=38N

机械手的结构图如下: 此部分为机械手的夹持部分,由图中可知,此结构主要是以齿轮齿条的啮合运动来实现手指的夹紧与放松,而通过两个类似于单缸气缸的腔体充气和放气产生推动力。因此根据公式可得: D=(4F/(πPη))? 其中η为负载率,一般取0.4。代入相关数据可得:D=0.017m 又知腔体中受压缩气体作用的面积为一圆环,即 s=π*(R2-r2)=π*D2/4 (其中R为腔体外半径,r为轴半径) 只要圆环面积s大于π*D2/4即可,现取D=0.02m=20mm r=10mm R=20mm 则s的面积足够大,能提供足够的推力来满足运动。 之后根据所夹持件尺寸的要求是90至110mm,则按照90mm来计算(最小的工件尺寸),若能夹到的话,则110mm的也一定能夹到,然后通过一系列的尺寸推导运算(该部分是通过先初步设计尺寸,然后在建模过程中不断修改所得),即可设计出如上所示的机械手结构。其中最主要的就是齿轮齿条的行程大小确定,它是根据所要夹持工件的尺寸要求来设计的。

数控加工气缸体组件夹具设计

数控加工气缸体组件夹具设计 文章通过对摩托车气缸体组件零件的工艺设计方面的分析和设计,及加工中心工序的加工所需的夹具进行详细分析论述及设计。该液压夹具操作简便,可同时加工零件三个面,避免多次装夹,提高了加工精度,降低 前言 在机械制造业、金属切削批量生产中,数控加工中心夹具的主要作用是保证加工精度,提高劳动生产率,扩大机床加工范围,保证生产安全,降低对工人的技术要求和减轻工人劳动强度。因此,机械工装夹具的设计制造在机械制造业中起到举足轻重的地位。 文章介绍了气缸体组件加工中心第四轴夹具的设计过程。对零件的结构进行了分析,制定了零件的加工工艺内容。选择了四轴旋转工作台和设备,确定了定位基准与夹紧方案,对零件的加工工艺方案进行了具体的分析。使用了三维软件绘制零件图,夹具设计图,夹具零件图,制作第四轴夹具,并投入生产。 1 气缸体组件工艺分析 气缸体组件为整体式气缸体,其广泛应用于摩托车发动机。气缸体毛坯为铸件,中心为铸铁缸体,外面包裹铸铝结构,中间的气缸加工精度要求高,两端面上的孔数量较多,位置精度要求高,侧面的孔需要进行加工,精度要求较高。主要特点:(1)阀体外形轮廓结构复杂,散热片分布较多;(2)气缸体组件属空腔体薄壁零件,零件刚性较差,因此工装夹具设计必须避免零件夹压后变形,使装夹受力点尽量避免放在零件加工孔上方以及易产生变形的部位。夹紧过程中,不能破坏工件在定位时所处的正确位置,保证工件在整个加工过程中位置稳定不变,夹紧可靠牢固,振动小,不超出允许变形,合理布置夹压后,要防止装夹加工过程中发生震颤和干涉,并保证气缸体受力均匀分布。 2 夹具总体设计 2.1 气缸体主要加工方法 根据加工工艺要求,装配工艺设计与加工质量、效率要求,依据基准先行、先面后孔、先粗后精的原则,先加工主要表面,后加工次要表面,制定零件主要表面加工方法 2.2 定位、加紧方案的选择 通过分析CG125气缸体组件结构特征,在加工中心加工前一工序,为了加工气缸体底面,选择气缸体毛坯的中心大孔作为粗基准,把两端面面进行加工,这样加工过的平面可作为加工中心工序的精基准,遵循互为基准、基准统一的原

气缸的设计计算

4.1 纵向气缸的设计计算与校核 由设计任务可以知道,要驱动的负载大小位140N,考虑到气缸未加载时实际所能输出的力,受气缸活塞和缸筒之间的摩擦、活塞杆与前气缸之间的摩擦力的影响,并考虑到机械爪的质量。在研究气缸性能和确定气缸缸径时,常用到负载率β: 由《液压与气压传动技术》表11-1 : 运动速度v=30mm/s,取β=0.7 ,所以实际液压缸的负载大小为:F=F0/ β=200N 4.1.1 气缸内径的确定 D=1.27 =1.27 =66.26mm F—气缸的输出拉力N; P —气缸的工作压力P a 按照GB/T2348-1993 标准进行圆整,取D=20 mm

气缸缸径尺寸系列 4.1.2 活塞杆直径的确定 由d=0.3D 估取活塞杆直径d=8mm 4.1.3 缸筒长度的确定 缸筒长度S=L+B+30 L 为活塞行程;B 为活塞厚度 活塞厚度B=(0.6 1.0)D= 0.7 20=14mm 由于气缸的行程L=50mm ,所以S=L+B+30=886 mm 导向套滑动面长度A: 一般导向套滑动面长度A,在D<80mm时,可取A=(0.6 1.0)D ;在D>80mm 时, 可取A=(0.6 1.0)d 。 所以A=25mm 最小导向长度H: 根据经验,当气缸的最大行程为L,缸筒直径为D,最小导向长度为:代入数据即最小导向长度H + =80 mm 活塞杆的长度l=L+B+A+80=800+56+25+40=961 mm 4.1.4 气缸筒的壁厚的确定

由《液压气动技术手册》可查气缸筒的壁厚可根据薄避筒计算公式进行计算:式中 —缸筒壁厚(m); D—缸筒内径(m); P—缸筒承受的最大工作压力(MPa); —缸筒材料的许用应力(MPa); 实际缸筒壁厚的取值:对于一般用途气缸约取计算值的7 倍;重型气缸约取计算值的20 倍,再圆整到标准管材尺码。 参考《液压与气压传动》缸筒壁厚强度计算及校核 , 我们的缸体的材料选择45 钢,=600 MPa,= =120 MPa n 为安全系数一般取n=5 ;缸筒材料的抗拉强度(Pa) P—缸筒承受的最大工作压力(MPa)。当工作压力p≤16 MPa 时,P=1.5p;当工作压力p>16 MPa时,P=1.25p 由此可知工作压力0.6 MPa 小于16 MPa,P=1.5p=1.5×0.6=0.9 MPa = =0.3mm

发动机连杆设计说明书

广东技术师范学院天河学院 汽车制造工艺学 课程设计说明书 课题: — 姓名: 学号: 班级: 指导教师:

二〇年月 · 汽车制造工艺学课程设计任务书

目录 ( 序言 (1) 一、生产纲领及零件说明 (2) 二、材料与毛坯 (3) 三、连杆的技术要求 (4) 四、加工工艺路线 (5) 五、指定工序加工余量、计算工序尺寸及公差 (6) 六、指定工序切削用量和工时定额 (6) 七、指定工序专用夹具设计 (7) ( 参考文献 (9)

: 序言 《汽车制造工艺学课程设计》是我们学习完大学阶段的汽车类基础和技术基础课以及专业课程之后的一个综合的课程设计,它是将设计和制造知识有机的结合,并融合现阶段汽车制造业的实际生产情况和较先进成熟的制造技术的应用,而进行的一次理论联系实际的训练,通过本课程的训练,将有助于我们对所学知识的理解,并为后续的课程学习以及今后的工作打下一定的基础。 对于本人来说,希望能通过本次课程设计的学习,学会将所学理论知识和工艺课程实习所得的实践知识结合起来,并应用于解决实际问题之中,从而锻炼自己分析问题和解决问题的能力;同时,又希望能超越目前工厂的实际生产工艺,而将有利于加工质量和劳动生产率提高的新技术和新工艺应用到机器零件的制造中,为改善我国的汽车制造业相对落后的局面探索可能的途径。但由于所学知识和实践的时间以及深度有限,本设计中会有许多不足,希望各位老师能给予指正。

】 ' 一.生产纲领及零件说明 1. 生产纲领 发动机连杆零件,年产量为30000件,现已知该产品属于轻型机械,根据生产类型与生产纲领的关系查阅参考文献,确定其生产类型为大批量生产。 大批量生产的工艺特征: 】 (1)零件的互换性:具有广泛的互换性,少数装配精度较高处,采用分组装配法和调整法。毛坯的制造方法和加工余:广泛采用金属模机器造型,模锻或其他商效方法。毛坯精度高,加工余量小。 (2)机床设备及其布置形式:广泛采用商效专用机床及自动机床,按流水线和自动排列设备。 (3)工艺装备:广泛采用高效夹具,复合刀具,专用量具或自动检验装置,靠调整法达到精度要求。 (4)对工人的技术要求:对调整工的技术水平要求高,对操作工的技术水平要求较低。 (5)工艺文件:有工艺过程卡或工序卡,关键工序要调整卡和检验卡。 (6)成本:较低。 (7)生产率:高。

气缸体设计说明书

479Q汽油机气缸体总成设计 摘要 主要阐述了汽油机缸体各部分设计的要求、方法及其在479气缸体设计中的应用。对缸体重要表面的尺寸、几何形状、相互位置提出了严格的公差要求。在结构设计中通过采用龙门式缸体结构、合金铸铁材料以及结构细节的设计来保证其有足够的强度和刚度,尤其是有足够的刚度。还特别注减轻其质量,改善铸造和加工工艺性,以求尽量降低成本。 关键词:汽油机,缸体,设计

The Design of 479Q Gasoline Engine Block Assembly Abstract This thesis is concerned with the request and approach of each part of the engine cylinder block in design as well as the use of the 479QA cylinder bloc k‘s design. It presents strict tolerance in the principal surface size, geometry and mutual position. When designing, it has sufficient intensity and rigidity, especially the latter. It satisfies the need by adopting these means -the material of the cast -iron of alloy, detailed design of structure etc. The thesis focuses on reducing the cost by means of reducing the quantity, improving foundry and processing. Key words: gasoline engine, cylinder block;,design

气缸体的加工流程和夹具设计论文

安徽机电职业技术学院 毕业论文气缸体的加工流程和夹具设计 系别汽车工程系 专业汽车制造与装配 班级汽车3112班 姓名刘亮 学号 1601113053 2013 ~ 2014 学年第二学期

随着我国经济的发展,国内汽车工业的迅速发展,提高汽车产品零部件的生产效率和加工质量对整个汽车工业的发展至关重要。发动机汽缸体是汽车至关重要零部件之一,其生产效率和加工质量直接关系到汽车的生产效率和性能。因此,研究汽缸体的加工工艺过程具有重要的意义。 汽缸体是汽车发动机中基础气缸和骨架,同时又是发动机的装配基准,发动机各机构和系统的零部件都安装在其内部和外部,汽缸体的作用是支撑和保护活塞,连杆,曲轴等运动部件工作时的准确位置;保证发动机换气,冷却润滑,提供各种辅助系统,提供部件及发动机的安裝基面。气缸体的工作条件十分恶劣。它要承受燃烧过程中压力和温度的急剧变化以及活塞运动的强烈摩擦。气缸的工艺特点是:结构,形状复杂;加工平面,孔多;内部空腔壁,厚不均匀,刚度低,加工精度要求高,属于典型的箱体类加工汽缸体。 本文在参考了国内外大量文献资料的基础上,对汽缸体的机械零件加工工艺过程进行深入的分析和研究,并提出了一种加工汽缸体零件加工方案。 本文对汽缸体机械加工工艺方案的研究兼顾了工序发散的原则,即具有较高的柔性,又提高了生产效率。实践证明,该工艺方案的设备利用率高,生产能力稳定,可靠性较好,对同类产品的加工工艺设计具有一定的参考价值。 关键词:汽缸体、加工精度、工序、机床

第一章汽车汽缸体的发展现状 (5) 1.1汽缸体的发展历程 (5) 1.2汽车汽缸体生产的发展过程 (6) 1.3汽车气缸体的发展现状分析 (7) 第二章气缸的主要加工方法 (8) 2.1零件的作用 (8) 2.2零件的工艺分析 (8) 2.3确定毛坯 (9) 第三章气缸的加工工艺过程 (11) 3.1定位基准的选择 (11) 3.2制定工艺路线 (11) 3.3选择加工设备及刀,夹,量具 (13) 3.4加工工序设计 (14) 第四章夹具设计 (18) 4.1夹具的基本要求与设计步骤 (18) 4.2定位机构的确定 (18) 4.3定位方案的论证 (19) 总结 (21) 参考文献 (23) 致谢 (24)

发动机构造课程设计说明书DOC

燕山大学 课程设计说明书题目:汽车发动机曲轴飞轮组设计 学院:车辆与能源学院 年级专业:热能10级 学号: 100113020030 学生姓名:刘春辉 指导教师:于敏之张静 教师职称:副教授讲师

燕山大学课程设计(论文)任务书 院(系):车辆学院基层教学单位:热能与动力工程系 说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。

目录 摘要 (Ⅰ) 第一章绪论 (1) 1.1选题的目的及意义 (1) 1.2国内外的研究现状 (1) 1.3设计研究的主要内容 (1) 第二章机构方案分析 (2) 2.1 曲轴飞轮组机构的组成 (2) 第三章曲轴的设计 (3) 3.1 曲轴的设计要求 (3) 3.2 曲轴的设计步骤 (4) 3.3 曲轴的结构形式及其选择 (5) 3.4 曲轴的材料选择 (6) 3.5 曲轴主要尺寸的确定和结构设计 (6) 3.6 曲轴平衡块 (9) 3.7 曲轴的端部结构 (11) 第四章飞轮的设计与计算 (12) 4.1飞轮的作用 (12) 4.2飞轮的设计与计算 (13) 第五章心得体会 (17) 第六章参考文献 (18)

摘要 近些年来,我国的发动机曲轴飞轮生产行业得到较大的发展,总量以具有相当的规模,无论是设计水平,还是产品种类、质量、生产规模、生产方式都有很大的发展。曲轴飞轮组主要由曲轴、飞轮以及其他不同作用的零件和附件组成。其零件和附件的种类和数量取决于发动机的结构和性能要求。曲轴飞轮组的作用是把活塞的往复运动转变为曲轴的旋转运动,为汽车的行驶和其他需要动力的机构输出扭矩。同时还储存能量,用以克服非做功行程的阻力,使发动机运转平稳。 关键词:曲轴飞轮组,曲轴,飞轮,三维设计

相关文档
最新文档