Spiral vortices traveling between two rotating defects in the Taylor-Couette system

Spiral vortices traveling between two rotating defects in the Taylor-Couette system
Spiral vortices traveling between two rotating defects in the Taylor-Couette system

a r X i v :p h y s i c s /0505141v 3 [p h y s i c s .f l u -d y n ] 21 N o v 2005Spiral vortices traveling between two rotating defects in the

Taylor-Couette system

Ch.Ho?mann,M.L¨u cke,and A.Pinter Institut f¨u r Theoretische Physik,Universit¨a t des Saarlandes,D-66041Saarbr¨u cken,Germany (Dated:February 2,2008)Abstract Numerical calculations of vortex ?ows in Taylor-Couette systems with counter rotating cylinders are presented.The full,time dependent Navier-Stokes equations are solved with a combination of a ?nite di?erence and a Galerkin method.Annular gaps of radius ratio η=0.5and of several heights are simulated.They are closed by nonrotating lids that produce localized Ekman vortices in their vicinity and that prevent axial phase propagation of spiral vortices.Existence and spatio temporal properties of rotating defects,of modulated Ekman vortices,and of the spiral vortex structures in the bulk are elucidated in quantitative detail.PACS numbers:PACS number(s):47.20.-k,47.32.-y,47.54.+r,47.10.+g

1

I.INTRODUCTION

The spontaneous appearance of spiral vortices in the annular gap between the concentric rotating cylinders of the Taylor-Couette system[1]has been stimulating research activities [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24]ever since their prediction [25]and?rst observation[26].Spiral vortex structures bifurcate like the competing toroidally closed Taylor vortices out of the rotationally symmetric and axially homogeneous basic state of circular Couette?ow(CCF),albeit at di?erent bifurcation thresholds[12,24].The Taylor vortex?ow(TVF)is rotationally symmetric and stationary while the spiral vortex?ow(SPI) breaks the rotational symmetry of the annular gap.It oscillates globally in time by rotating azimuthally as a whole thereby propagating axially.

The spiral pattern is e?ectively one dimensional like TVF.It is also stationary when seen from a co-moving frame[6]:the spiral?elds do not depend on time t,axial coordinate z, and azimuthal angle?separately but only via the combined phase variableφ=kz+M??ω(k,M)t.Here k and M are the axial and azimuthal wave numbers,respectively,andωis the frequency.In the??z plane of an’unrolled’cylindrical surface the lines of constant phaseφare straight.An azimuthal wave number M>0implies a left handed spiral(L-SPI) while M<0refer to right handed spirals(R-SPI)with our convention of taking k to be positive.L-SPI and R-SPI being mirror images of each other under the operation z→?z are symmetry degenerate?ow states.Which of them is realized in a particular experimental or numerical setup depends on initial conditions and parameter history.

With the lines of constant phase in the??z plane being oriented for both spiral types obliquely to the azimuthal’wind’of the basic CCF both spirals are advectively rotated by the latter like rigid objects.The direction of the common angular velocity˙?SP I=ω(k,M)/M is the one of the inner cylinder’s rotation rate[24]which we take to be positive.Due to the advection enforced rigid-body rotation of the spiral vortices the phase of an L-SPI(M>0)is propagated axially upwards and that of an R-SPI(M<0)downwards.Thus,the oscillatory ?ow structure of so called ribbons consisting of an equal amplitude nonlinear combination of L-SPI and R-SPI rotates azimuthally but does not propagate axially[6].On the other hand,the rotationally symmetric(M=0)structure of toroidally closed Taylor vortices is stationary:being parallel to the azimuthal CCF the latter cannot advect these vortices.

Strictly speaking the axially homogeneous CCF and the TVF and SPI structures exist

with axially homogeneous amplitudes only in the theoretical idealizations of axially un-bounded or axially periodic systems.Translational symmetry breaking conditions at the top and bottom end of the annulus generate(mostly local)deviations in the basic state ?ow as well in the above mentioned vortex structures.For example,the experimentally often used rigid non rotating lids that close the annular gap enforce for any driving the well known stationary,rotationally symmetric Ekman vortices close to the lids[23,27,28,29,30]. Their spatially varying wave number and amplitude pro?le distinguishes them from the TVF structure with axially homogeneous pro?les.

In a su?ciently long system the Ekman vortex structures close to the lids smoothly connect and transform to a bulk TVF structure both patterns being stationary with common azimuthal wave number M=0.So,then the question is:How do rotating and axially propagating SPI vortices with M=0arise in the bulk when the non propagating Ekman vortex structures being?xed at the lids prevent phase propagation there?This is basically the problem that we elucidate here using numerical simulations of the full3D Navier-Stokes equations(NSE).Surprisingly,it does not seem to have been addressed in such a detail in the literature.

However,the in?uence of a?nite system size on a traveling pattern like SPI vortex?ow has been explored,albeit from a more general point of view[9,15,16,31].Also the dramatic e?ects of nonrotating rigid lids on the?ow in rather short Taylor Couette systems has been investigated in detail for setups where the vortex structures show strong axial variations [21,32].

Our paper is organized as follows:In Sec.II we introduce the notation,the control parameters,the basic equations,and the method used to simulate the Taylor Couette system. Section III contains our results concerning the transient dynamics of spiral generation,the steady state structure and dynamics in particular of the rotating defects,and the stability of SPI?ow.The last section contains a conclusion.

II.SYSTEM AND THEORETICAL DESCRIPTION

We present numerical results for the vortex?ow in Taylor-Couette systems with counter-rotating cylinders.The radius ratio r1/r2of inner to outer cylinder isη=0.5.Various aspect ratiosΓ=L/d of cylinder length L to gapwidth d=r2?r1are considered in the

range5≤Γ≤16.The?uid in the annulus is taken to be isothermal and incompressible with kinematic viscosityν.To characterize the driving of the system,we use the Reynolds numbers

R1=r1?1d/ν;R2=r2?2d/ν.(2.1)

They are just the reduced azimuthal velocities of the?uid at the inner and outer cylinder, respectively,where?1and?2are the respective angular velocities of the cylinders.The inner one is always rotating counterclockwise so that?1and R1are positive.

Throughout this paper we measure lengths in units of the gapwidth d.The momentum di?usion time d2/νradially across the gap is taken as the time unit.Thus,velocities are reduced byν/d.With this scaling,the NSE take the form

?t u=?2u?(u·?)u??p.(2.2)

Here p denotes the pressure reduced byρν2/d2andρis the mass density of the?https://www.360docs.net/doc/7f16957595.html,ing cylindrical coordinates,the velocity?eld

u=u e r+v e?+w e z(2.3)

is decomposed into a radial component u,an azimuthal one v,and an axial one w.

The NSE were solved numerically with a?nite di?erences method in the r?z plane combined with a spectral decomposition in?

f(r,?,z,t)=

m max

m=?m max

f m(r,z,t)e im?.(2.4)

Here f denotes one of{u,v,w,p}and m max=8was chosen for an adequate accuracy.To simulate annuli that are bounded by stationary lids at z=0and z=Γwe imposed there no-slip boundary conditions.

The calculations were done on homogeneous staggered grids with common discretization lengths?r=?z=0.05which have shown to be more accurate than non-homogeneous grids.Time steps were always well below the von Neumann stability criterion and by more than a factor of three below the Courant-Friederichs-Lewy criterion(cf.[24]for details of the numerical calculations).From various control calculations done with di?erent m max and/or the grid spacing we conservatively conclude that typical SPI frequencies have an error of

less than about0.2%and that typical velocity?eld amplitudes can be o?by about3-4%. Furthermore,good agreement with experimental spirals was found—cf.Figures8and9of [24].

For diagnostic purposes we also evaluated the complex mode amplitudes f m,n(r,t)ob-tained from a Fourier decomposition in axial direction

f m(r,z,t)= n f m,n(r,t)e in(2π/Γ)z.(2.5) Note that m is the index of a particular azimuthal mode occurrin

g in the representations (2.4)and(2.5)while we use M to identify the azimuthal wave number of a particular solution.So,for example,a M=?1?ow state is a R-SPI wit

h azimuthal wave number M=?1that will contain in general several m modes.

III.RESULTS

For our?nite-length annuli with stationary lids at their ends we kept the outer cylinder rotation Reynolds number?xed at R2=?100.Results were obtained for R1in the range 110≤R1≤120that is marked by a vertical bar in Fig.1.

This?gure shows for reference purposes the phase and stability diagram of TVF(M=0) and SPI(M=±1)solutions subject to axially periodic boundary conditions.The range 110≤R1≤120to be explored here lies in a control parameter region where both,SPI and TVF solutions exist with the former(latter)being stable(unstable)under periodic boundary conditions.The bifurcation thresholds out of the CCF lie at R1=106.5for SPI and at R1=108.9for TVF.

Strictly speaking these axially periodic solutions do not exist in systems of?nite axial length that are bounded by rigid lids:Ekman vortices[23,27,28,29,30]always appear already subcritically near the lids with a spatially varying wave number and amplitude pro?le that distinguishes them from the homogeneous TVF structure.Also SPI?ow can be realized with constant amplitude and wave number only in the bulk at su?ciently large distance from the lids.

A.Transient dynamics of spiral generation in the bulk

Here we want to show how spirals occur in the bulk of aΓ=12system as a representative example of commonly used set-ups in experiments.We start from rest—to be precise from the quiescent?uid plus in?nitesimal white noise in all velocity?elds.Then the rotation rates of the cylinders are stepped up instantaneously to supercritical?nal values of R1and R2for which SPI?ow is stable and TVF is unstable under axially periodic boundary conditions, cf.Fig.1.Step up from a subcritical driving entails a similar transient.

1.Front propagation of unstable TVF into unstable CCF

Figs.2and3show the longterm evolution of the?ow for the case of R1=110which lies about1%(2%)above the TVF(SPI)threshold.However,?rst,the unstable CCF ?ow is growing radially in the bulk and simultaneously the Ekman vortices are growing near the lids[33].Both occurs on a fast time scale of about1-2radial di?usion times which are not resolved in Figs.2and3.Then TVF fronts are propagating axially into the bulk from the Ekman vortex structures near the lids[33]—note that M=0TVF can grow at supercritical driving independent of its stability behavior.So here we have a front of an unstable structured state that propagates into an unstable unstructured one.The velocity of the TVF fronts is rather large progressing at least5gapwidths per unit di?usion time.So after about5di?usion times the fully developed unstable TVF is established with homogeneous amplitude and wave number pro?le in the bulk in equilibrium with the axially varying Ekman vortex structures near the lids,cf.row A of Fig.2.This TVF growth scenario is dominated by the large deterministic forces that drive Ekman vortex?ow near the lids and thus is largely insensitive to the small initial noise.

2.Transformation of unstable TVF into stable SPI?ow

Starting with this TVF con?guration,we illustrate in Fig.2the further time evolution of the vortex?ow.To that end we show in the top row snapshots of the radial velocity ?eld u in an unrolled cylindrical?-z-surface(that is azimuthally extended to4πfor better visualization)by gray scale plots.The bottom row contains snapshots of the node positions of u at mid gap.These snapshots cover a time interval of about100radial di?usion times.

The snapshot times are marked in Fig.3which exhibits the dynamics of the dominant characteristic mode amplitudes for TVF(M=0)and SPI(M=±1),respectively.

Snapshot(A)in Fig.2shows that by this time the rotational symmetric TVF state has been established in the bulk.The Ekman vortices of higher?ow intensity are marked by the brightest out?ow line near each lid.By the time B the m=±1modes that break the rotational symmetry have grown su?ciently to see the wavy deformation of the still dominant M=0TVF in snapshot(B).Here the amplitudes of m=1and m=?1modes are still of equal size giving rise to an azimuthally rotating modulation of the TVF almost harmonic behavior.Then the amplitudes of the m=1and m=?1modes start to oscillate in counterphase with growing oscillation amplitude while the m=0mode does not change much,cf.Fig.3.But shortly before time C the m=1L-SPI mode takes o?:it continues to increase while the m=?1R-SPI mode and also the m=0mode decrease.

This mode behavior re?ects the fact that starting in the bulk the TVF vortices become more and more deformed.The nodes of u in the bottom row of Fig.2show how the vortices approach each other(cf.arrows in C)and get pinched together at a defect that”cuts”them into two.They move apart(cf.arrows in D),get tilted in the?-z plane of Fig.2, and reconnect di?erently to form locally a spiral vortex pair.This defect formation and reconnection is repeated at two new locations further upwards and downwards towards the lids.The defect propagation is stopped by the strong Ekman vortex structures.They are only slightly indented by the rotating defect in the?nal state.

So,in the?nal state at time H the bulk is?lled with an axially upwards propagating L-SPI structure.Its phase is generated by a defect that is rotating in the lower part of the system.The spiral phase is annihilated at another rotating defect in the upper part of the system.

That here the m=1mode wins the mode competition leading?nally to a L-SPI structure in the bulk while the m=?1mode gets suppressed is not due to an intrinsic selection mechanism.It merely re?ects the fact that in this particular transient the initial white noise condition of the velocity?eld had a slightly higher content of L-SPI modes.In other runs with another noise realization the R-SPI could equally well win the competition given that our random number generator for producing the white noise is unbiased.

B.Steady state structure and dynamics

By the time H in Fig.2transients have died out and the?ow has reached its?nal state. It consists of an L-SPI structure in the bulk with azimuthal wave number M=1(i.e.,one pair of spiral vortices),slightly modulated Ekman vortex structures that are localized next to the two lids,and two rotating but axially not propagating defects.This?ow structure is rotating as a whole like a rigid body with a global rotation rateωinto the same positive ?-direction as the inner cylinder.However,the spiral rotation rateωis somewhat smaller than the one of the inner cylinder[24].Driven by this rotation the L-SPI phase in the bulk is propagating axially upwards.

We should like to stress that the?ow in Fig.2H contains in the decomposition(2.5) besides the dominant m=1SPI modes not only m=0modes that are related primarily to the Ekman vortex structures but also a signi?cant m=?1contribution,cf.Fig.3. The rotating defects and the rotating modulations of the Ekman vortices are the reason for the presence of m=?1modes in addition to m=1modes.In fact,locally,in the axially non propagating?ow regions of the rotating defects and of the rotating Ekman vortex modulations they combine to axially standing oscillations.

1.Structure of the rotating defects

The Ekman vortices near the lids do not propagate but remain spatially localized while the SPI vortices propagate.The connection between these topologically di?erent vortex structures is provided by a pair of rotating defects:The one close to the lower Ekman vortex structure generates the L-SPI phase where two lines of nodes of the SPI u?eld appear in Fig.2H in the form of a U tilted to the left.The defect close to the upper Ekman vortex structure annihilates the phase when the lines of the SPI nodes join again.With the two defects locating the beginning and end,respectively,of the spiral vortex pair the former may be seen as pinning the latter.

The?ow structure in the vicinity of the two rotating defects is shown in Fig.4for R1=

115.The gray scale plots show from top to bottom u,w,and the intensity I=

red lines.Their U-turn marks the location of the defects.The phase generating defect in the three?elds of the left column that disrupts the bottom Ekman vortex structure has a slightly more complex structure than the phase annihilating defect in the right column.One sees that the Ekman vortices closest to the lids are modulated by the rotating defect but otherwise remain intact.Figs.2H and4show also that the upwards propagating spiral vortices compress the Ekman vortex structure near the upper lid and dilate the one near the lower lid.Thus,the upwards traveling SPI phase”pushes”the Ekman vortices towards the top lid and”pulls”them away from the bottom lid.

Fig.5shows in more detail the spatiotemporal dynamics of generation,propagation,and annihilation of SPI vortices over one period.To that end snapshots of the azimuthal vortex ?ow?eld v?v CCF are taken in the z?r?plane at?xed?at times t nω=2πn/16or, equivalently,at?xed t at azimuthal angles?n=2πn/16.In snapshots1-8the fourth vortex from the left,z=0,expands.Then,at n=8-9a new one starts to grow close to the inner cylinder thereby marking the defect.In snapshots10-14this new vortex continues to grow and to expand towards the outer cylinder.Simultaneously,at n=9-11the old fourth vortex splits into two single vortices with the same direction of rotation—one to the left and one to the right of the new one.The right neighbor is displaced upwards and propagates away. Vortex annihilation proceeds by squeezing the fourth vortex from the top,say,at n=9-10 and by merging its two neighbors in snapshots10-12.

For R1=110(Fig.2H),i.e.,close to the SPI bifurcation threshold the axial extension of the spiral region is not as large as,say,for R1=115(Fig4).In fact,in the range 110≤R1≤117the bulk SPI region increases with increasing R1by displacing the Ekman

vortex structures as the SPI amplitudes grow.Even stronger rotation speeds R1>117, however,seem to prefer TVF:spirals are more and more displaced out of the boundary region.

2.SPI versus TVF modes

In Fig.6we show axial pro?les of the dominant contributions in the decomposition(2.4) of the velocity?elds from TVF and SPI modes.Full blue(dotted red)line show snapshots of the real parts of m=0TVF(m=1SPI)Fourier modes of u and w at mid gap in systems of di?erent lengthΓ.

One sees that for the?xed R1=115shown in Fig.6the extension of the m=0Ekman vortex systems into the bulk and their structure remain unchanged whenΓis changed. However,atΓ?10the tails of the exponentially decreasing Ekman vortex?ow created by the two lid start to visibly overlap in the bulk.

On the other hand,the axial extension of the SPI vortex structure(dotted red lines)in the bulk adjusts itself to the cylinder length.The amplitude of the m=1SPI mode is constant in the bulk and it decays exponentially towards the lids.But it reaches well into the Ekman vortex dominated region.This behavior re?ects the rotating modulation of the Ekman vortices that is caused by the rotating defect between SPI and Ekman vortices.To sum all this up:decreasing the cylinder length shrinks the bulk range where spirals exist.

3.SPI wave number and frequency selection

Fig.6indicates that the SPI structure at mid height(that is de?ned in Fig.6to lie at z=0for presentation reasons)is the same,irrespective of the length of the system, over a wide range ofΓ.The observation of such a unique selection of the SPI structure is corroborated by the fact that the SPI wave number k measured in the vicinity of the mid height position is practically independent ofΓ,cf.top plot of Fig.7.The selected SPI wave number varies between k=3.47,λ=2π/k=1.81(Γ=16)and k=3.57,λ=1.76 (Γ=10).

Here it is worth mentioning that the corresponding SPI wavelength ofλ?1.76has been observed in experiments[18]done in a system of lengthΓ=12.Furthermore,also the numerically determined SPI?ow structure agrees almost perfectly with the one obtained by the afore mentioned laser-Doppler velocimetry measurements,cf.Fig.8of Ref.[24].The selected frequency isω?30.3so that the SPI phase propagates axially with phase velocity ω/k?8.6.

Fig.7shows results of a numerical simulation in which the lengthΓwas ramped down fromΓ=16toΓ=5in steps of?Γ=0.05by moving the top lid downwards.The time intervals between successive steps were about2radial di?usion times so that the SPI phase had always enough time to propagate from one end to the other.

In the bottom plot of Fig.7we show for eachΓthe axial distribution of the nodes of u by dots.The nodes were monitored at discrete times during this time interval at a?xed?.

So,for example,the broadened lines near the top and bottom lids denote the narrow axial excursions of the locations of the Ekman vortices being modulated by the rotating defects. On the other hand,the homogeneously distributed dots in the center re?ect the propagating SPI phase.The errorbars in the top plot come from(i)the?nite sampling rate which in general is not commensurate with the time period of the propagating structure and(ii)from the fact that the nodes of u which are used to measure the wavelength lie(depending on that incommensurability)somewhere in a region around mid-height.

We observed the same SPI frequency and wave number selection also in the upwards ramp described in Sec.III C2.Starting with TVF at smallΓthe SPI appeared there only atΓ?10.So,whenever SPI?ow was realized in a substantial part of the system with homogeneous amplitude then its frequency and wave number was uniquely selected within our numerical accuracy.

C.Stability of SPI?ow

1.DecreasingΓ

When in the above described ramping’experiment’the length has fallen belowΓ?8.3 the system has become too small to allow for a propagating SPI phase in the center.Instead stationary M=0Ekman and TVF is realized throughout the system with10nodes in the bulk,cf.,right part of Fig.7.ReducingΓfurther the Taylor vortices become compressed, cf.,the wave number plot.Then the number of nodes of u reduces to8and?nally to6as a vortex pair is annihilated in the center and then yet another one.The compression prior to the vortex pair annihilation and the relaxation to the old k-value after the annihilation can be seen in the top plot of Fig.7.

2.IncreasingΓ

We also did a reverse ramp simulation in which the length was increased by moving the top lid upwards fromΓ=5toΓ=16starting from TVF with very small admixtures of m=0modes as they are still present shortly after a start from rest.The time intervals between upwards steps of?Γ=0.05was2radial di?usion times.This time interval, however,is not long enough to allow for the full development of the spiral generating defects

that are described in detail in Sec.III B1.Here the SPI?ow permanently re-appeared in the center only atΓ?10whereas it had disappeared in the downwards ramp atΓ?8.3.In addition we found in the ramp simulations that theΓvalues at which the transitions from SPI to TVF and vice versa occurred are a?ected also by the relative directions of the lid motion and the SPI propagation.The reasons for this hysteresis are on the one hand the upwards ramp being too fast but also an inherent bistability between TVF and SPI?ow in this small system that is suggested by the following simulation:

3.Di?erent initial conditions

Here we started with a perfect,axially periodic L-SPI structure of wavelengthλ=1.6at R1=115,R2=?100.Then we imposed instantaneously the rigid-lid boundary conditions at z=0and z=Γ=5.85.Soon a defected vortex structure appeared(cf.,Fig.8)that rotates as a whole like a rigid body.But the phase propagates axially upwards only in a very small central region where the white stripes in Fig.8are tilted to the left.The time evolution of the six largest mode amplitudes|u m,n|(2.5)of the radial velocity?eld at mid

gap towards this?nal state are shown in Fig.9.So,this vortex solution is dominated by the m=0modes from the Ekman vortices.Then it contains m=1modes with L-SPI character but there is also a signi?cant admixture of m=?1modes with R-SPI character.

4.Remarks

Obviously the control parameter range in the R2?R1-plane of Fig.1in which SPI are stable in?nite length systems depends onΓ.ReducingΓwill shrink the range of SPI?ow eventually to zero because of the ever present Ekman vortices in?nite length systems.In addition,the Ekman vortices prevent also to reach the full stability domain of SPI under axially periodic conditions whenΓis increased.For example,at R2=?100we could not obtain stable SPI?ow for R1>~123,i.e.,in a domain where SPI solutions coexist bistably with TVF solutions when axially periodic boundary conditions prevent Ekman vortices.

We checked that our numerically obtained stability boundaries largely agree with experi-mental ones[18].But in the above described downwards-ramp-simulation we do not see SPI anymore forΓ<8.3and in particular not atΓ=5.85(where they are reported,e.g.,for our

R1=115,R2=?100in Fig.3of Ref.[23])but rather TVF,i.e,a pure M=0stationary state.However,when starting from di?erent initial conditions with di?erent histories we do see there SPI-like phase propagation with several modes being present.Thus,there seems to be multi-or at least bistability of pure M=0vortex?ow states coexisting with mixed-mode ones.

We?nally mention that the way how SPI?ow in the center is destroyed or generated depends on the way the relevant parameters,say,R1andΓare varied.In Fig.7Γwas decreased quasi-statically causing a reduction of the SPI extension that was almost quasi-static except for the last instance.What happened there can be better observed in a di?erent simulation:starting at R1=115with stable L-SPI in a long system the inner Reynolds number is stepped up instantaneously into the instability range of SPI?ow,R1>~120.

Then a fast TVF front propagates upwards.It originates from the Ekman vortex structure and it pushes the SPI phase generating defect upwards.The Ekman vortex structure at the upper lid,however,is unable to trigger a downwards propagating TVF front against the upwards traveling L-SPI phase.In fact the phase annihilating defect below the upper Ekman vortex structure seems to be more robust.Finally there could arise local wavy vortex?ow at large enough R1or TVF.But we have also observed for smaller R1counter propagating spirals which originate from a defect in the center.

IV.CONCLUSION

We have numerically investigated how SPI?ow is realized in?nite length Taylor Couette systems in which stationary top and bottom lids close the annulus,i.e.,in the presence of spatially localized Ekman vortices.Results are presented for several system lengths 5≤Γ≤16.In the parameter range investigated here SPI solutions are stable under axially periodic boundary conditions.But TVF solutions would be unstable there under these idealized conditions without Ekman vortices.The presence of the latter in real systems tends to stabilize TVF and to destabilize SPI?ow.

For example,in a start-from-rest simulation with small initial noise one can observe the following scenario:First,on a short time scale of1-2radial di?usion times,the unstable CCF is growing radially in the bulk and simultaneously Ekman vortices are growing near the lids.Then fast TVF fronts propagate axially into the bulk from the Ekman vortex

structures.Thereby unstable CCF is replaced by TVF within a few di?usion times.For those parameters for which this TVF is unstable in?nite systems on can then observe a slow transformation of TVF to SPI?ow.Therein a pair of bulk TVF vortices becomes more and more deformed and gets pinched together at a defect that’cuts’them into two.They move apart,get reoriented,and reconnect di?erently to form locally a spiral vortex pair.This defect formation and reconnection is repeated at two new locations further upwards and downwards towards the lids.Finally the axial defect propagation is stopped by the strong Ekman vortex structures.

So,in the?nal state the bulk is?lled with,say,an axially upwards propagating L-SPI structure.Its phase is generated by a defect that is rotating in the lower part of the system. The spiral phase is annihilated at another rotating defect in the upper part of the system. The Ekman vortex structures are only slightly indented and modulated by the respective rotating defect.The whole?ow structure is rotating as a whole like a rigid body with a global rotation rate into the same positive?-direction as the inner cylinder.

The SPI structure in the bulk is uniquely selected.Its wave number is for large system lengths practically independent ofΓshowing a slight variation only near the transition to TVF at smallΓ.When changing quasi-statically the system length at?xed R1,R2the axial extension over which SPI?ow is realized in the bulk changes accordingly.The Ekman vortex structures,on the other hand,remain basically una?ected.Below a criticalΓthe two Ekman vortex structures have come too close to allow for SPI?ow any more.

It would be interesting to quantitatively test the frequency and wave number selection in the SPI bulk,the structural dynamics of the rotating defects,and the interpenetrating SPI and Ekman vortex modes by spatiotemporal Fourier analyses of experimental data.

Acknowledgment

This work was supported by the Deutsche Forschungsgemeinschaft.

[1]For an account of the early history see,e.g.,ref.[2].Later reviews are contained in refs.[3,4,

5,6].

[2]R.J.Donnelly,Physics Today44,32(1991).

[3]R.C.DiPrima and H.L.Swinney(1985),in Hydrodynamic Instabilities and the Transition

to Turbulence,edited by H.L.Swinney and J.P.Gollub,Topics in Applied Physics,vol.45 (Springer-Verlag,Berlin),p.139.

[4]M.C.Cross and P.C.Hohenberg,Rev.Mod.Phys.65,851(1993).

[5]R.Tagg,Nonlinear Science Today4,1(1994).

[6]P.Chossat and G.Iooss,The Couette-Taylor Problem,(Springer,Berlin,1994).

[7]Y.Demay and G.Iooss,J.Mec.Theor.Appl.,spec.suppl.,193(1984).

[8]H.R.Brand,Phys.Rev.A31,3454(1985).

[9]S.Zaleski,P.Tabeling,and https://www.360docs.net/doc/7f16957595.html,llemand,Phys.Rev.A32,655(1985).

[10] C.D.Andereck,S.S.Liu,and H.L.Swinney,J.Fluid Mech.164,155(1986).

[11]M.Golubitsky and I.Stewart,SIAM J.Math.Anal.17,249(1986);M.Golubitsky and W.

https://www.360docs.net/doc/7f16957595.html,ngford,Physica D32,362(1988).

[12]https://www.360docs.net/doc/7f16957595.html,ngford,R.Tagg,E.Kostelich,H.L.Swinney,and M.Golubitsky,Phys.Fluids31,

776(1988).

[13]R.Tagg,W.S.Edwards,H.L.Swinney,and P.S.Marcus,Phys.Rev.A39,R3734(1989).

[14]W.S.Edwards,in Instability and Transition,Vol.II,edited by M.Y.Hussaini,(Springer,

Berlin,1990),p408.

[15]W.S.Edwards,R.P.Tagg,B.C.Dornblaser,and H.L.Swinney,Eur.J.Mech.B/Fluids10,

205(1991).

[16] E.Knobloch and R.Pierce,in Ordered and turbulent patterns in Taylor-Couette Flow,ed.

C.D.Andereck and F.Hayot,(Plenum Press,NY,1992),p.83.

[17]J.Antonijoan,F.Marqu`e s,and J.S′a nchez,Phys.Fluids10,829(1998).

[18] A.Schulz and G.P?ster,in Physics of Rotating Fluids,edited by C.Egbers and G.P?ster,

Lecture Notes in Physics549,(Springer,Berlin,2000),p.37;and unpublished.

[19]Ch.Ho?mann and M.L¨u cke,in Physics of Rotating Fluids edited by C.Egbers and G.P?ster,

Lecture Notes in Physics549,(Springer,Berlin,2000),p.55.

[20] A.Meseguer and F.Marques,J.Fluid Mech.455,129(2002).

[21]O.Czarny,E.Serre,P.Bontoux,and R.Lueptow,https://www.360docs.net/doc/7f16957595.html,put.Fluid Dynamics16,5

(2002).

[22] A.Pinter,M.L¨u cke,and Ch.Ho?mann,Phys.Rev.E67,026318(2003).

[23]https://www.360docs.net/doc/7f16957595.html,ngenberg,G.P?ster,and J.Abshagen,Phys.Fluids16,2757(2004).

[24]Ch.Ho?mann,M.L¨u cke,and A.Pinter,Phys.Rev.E69,056309(2004).

[25] E.R.Krueger,A.Gross,and R.C.DiPrima,J.Fluid Mech.24,521(1966).

[26]H.A.Snyder,Phys.Fluids11,728(1968);ibid,1599(1968).

[27]G.P?ster and I.Rehberg,Phys.Lett.A83,19(1981).

[28]R.Graham and J.A.Domaradzki,Phys.Rev.A26,1572(1982).

[29]G.Ahlers,D.S.Cannell,M.A.Dominguez-Lerma,and R.Heinrichs,Physica D23,202

(1986).

[30]O.Czarny,E.Serre,P.Bontoux,and R.Lueptow,Phys.Fluids15,467(2003).

[31]P.J.Blennerhassett and P.Hall,Proc.R.Soc.London,Ser.A365,191(1979).

[32]https://www.360docs.net/doc/7f16957595.html,ngenberg,G.P?ster,and J.Abshagen,Phys.Rev.E68,056308(2003).

[33]M.L¨u cke,M.Mihelcic,and K.Wingerath,Phys.Rev.A31,396(1985).

FIG.1:Phase and stability diagram of TVF(M=0)and SPI(M=±1)solutions subject to axially periodic boundary conditions imposing the axial wavelengthλ=1.6.Thick full(dashed) line denotes the bifurcation threshold for the TVF(SPI)solution out of CCF.Vertical bar indicates the range of R1values for which simulations of?nite length systems with rigid stationary lids are presented here.

FIG.2:Snapshots of the time evolution towards L-SPI?ow in the bulk.The snapshot times A-H are indicated in Fig.3.Top row shows the radial velocity?eld u in an unrolled cylindrical ?-z-surface at mid gap by gray scale plots with white(black)denoting radial out(in)?ow.Bottom row shows the node positions of u.For better visibility the plots are periodically extended to an azimuthal interval of4π.The initial condition is the?uid at rest plus in?nitesimal white noise in all velocity?elds.Final Reynolds numbers are R1=110,R2=?100.Aspect ratioΓ=12.

FIG.3:Time evolution of the dominant mode amplitudes|u m,n|(2.5)of the radial velocity?eld at mid gap.Shown is the transient towards L-SPI?ow in the bulk that is documented in Fig.2 by snapshots.Full line:TVF mode m=0.Dashed dotted line:L-SPI mode m=1.Dashed line: R-SPI mode m=?1.For the aspect ratioΓ=12considered here the dominant axial mode index in the decomposition(2.5)is n=±8.

FIG.4:Flow structure in the vicinity of the rotating defects.The left(right)column documents the L-SPI generation(annihilation)near the lower(upper)Ekman vortex structure.Shown are the

?elds u,w,and I=√

民歌篇教案范文

民歌篇教案范文 1、喜欢聆听、演唱民歌及具有民族风格的通俗歌曲,愿意探索有关民歌的音乐文化知识。 2、掌握有关民歌的基本知识。 3、通过欣赏,初步感知南北民歌的风格特点,感受民族音乐与民俗风情的丰富多彩。 重点:着重欣赏广东民歌《对花》,同时听辨《槐花几时开》《拨根芦柴花》《上去高山望平川》《猜花》等民歌。 难点:本篇以“花”为立足点,使学生借此了解东南西北民歌的不同风格,感受民歌的绚丽风采。 一、导入: 1、欣赏流行音乐视频片段:《茉莉花》——梁静茹 师提问:大家熟悉这首流行歌吗?喜欢吗?

这首流行歌曲是中国江南民歌《茉莉花》改编而成,一曲茉莉花,芬芳香四方,这首脍炙人口的江苏民歌几乎是我们国家在重要事件和相关国际重要场合下的必奏之歌。在北京奥运会上,《茉莉花》作为主旋律背景音乐向世界展示了中国文化,让世界了解了中国。可见,民族音乐之于民族的重要性。 2、民歌是什么? 民歌是人民的歌、民族的歌,是真实反映劳动人民情感、生活的歌曲作品。民歌以口头传播,一传十十传百,一代传一代的传下去至今,每个民族都有自己的生活方式,并在代代积淀与传承中形成了自己独特的文化。不同的文化又赋予了音乐不同的形式和内涵,形成了风格迥异的民族音乐。它们是音乐文化的基础和源泉。 3、民歌的分类:山歌、号子、小调。 二、新授: 在中国的民歌中,“花”是一个最普遍的主题,其用法有三种:一是以花喻人,借花表法情爱;二是歌颂大自然,传授自然知识;三是借花起兴,以花为歌唱媒介,而花本身没有特定含义。

我们今天这堂课正是从“花”出发,了解东南西北民歌的不同风格,感受民歌的绚丽风采。(点出本课围绕的中心话题,引发学生的关注。) 1、以“花”为题材的各地民歌 ①、四川民歌《槐花几时开》 (介绍“晨歌”,聆听歌曲,体验歌曲中富有地方特色的“啥子”的唱段) ②、江苏民歌《拔根芦柴花》 (介绍“秧田歌”,聆听歌曲,了解歌词中出现的众多花名的意义) ③、青海民歌《上去高三望平川》 (介绍“河湟花儿”,聆听歌曲,谈谈自己所感受到的演唱风格) ④、辽宁民歌《猜花》

跟着语文课本去旅行

跟着语文课本去旅行 1.天安门-《我多想去看看》天坛、长城、颐和 园、故宫、天安门、毛主席纪念堂、圆明园、天坛、 鸟巢、动物园等 天安门广场——二年级上《》 长城——四年级上《长城》 颐和园——四年级上《颐和园》 2.天坛-《爷爷植树》 相关旅行地:长城、颐和园、故宫、毛主席纪念堂、圆 明园、天坛、鸟巢、动物园等 注:夜景——二年级下《亮起来了》 圆明园——五年级上《圆明园的毁灭》 3.-《奇石》“横看成岭侧成峰,远近高低各不同”。 相关旅行地:九华山,天柱山, 注:天都峰——三年级上《爬天都峰》 桃花潭——二年级下《赠汪伦》

4.-《日月潭》 避暑胜地,带孩子来一次“宝岛之旅” 相关旅行地:台北101大楼,台北故宫,总 统府,台北夜市 5.新疆-《葡萄沟》 吐鲁番葡萄沟,火洲“桃花源”。 相关旅行地:天山天池,楼兰古城,葡萄沟,吐 鲁番,帕米尔高原 注:天山——四年级下《七月的天山》 6.德宏版纳-《难忘的泼水节》 感受多样民族节日习俗,领略热带风景

相关旅行地:曼听公园,野象谷,中科院植物园,大佛寺,望天树 三年级(上)7.曲阜-《孔子拜师》 孔子故里,“耶路撒冷”。 相关旅行地:泰山,趵突泉,蓬莱阁,沂蒙山 8.县-《州桥》 中国第一石拱桥,中国工程界一绝。 相关旅行地:铁狮子、定州开元寺塔、正定隆兴 寺菩萨 9.南海-《富饶的西沙群岛》

海水五光十色,瑰丽无比 相关旅行地:天涯海角、湾、大小洞天 10.-《美丽的小兴安岭》 一年四季景色诱人,是一座美丽的大花园。 相关旅行地:太阳岛、、漠河、冰雪大世界 11.中国-《之珠》 繁荣大都市,有“美食天堂”“购物天堂”美誉 相关旅行地:维多利亚港、迪士尼、铜锣湾

民歌篇教案

民歌篇教案 《xx四方》——民歌篇教学设计 【教学年级】:高一年级 【教学课时】:一课时 【设计思路】:通过聆听,了解民歌的风格特征,感受民歌的艺术魅力,培养学生对中国民歌的喜爱和兴趣,体现以音乐审美为核心的理念。通过民歌的学习让学生认识到:民族音乐是中华民族数千年来劳动人民智慧的结晶,是劳动人民创造的宝贵文化遗产,是中华民族传统文化的组成部分;同时帮助学生树立“音乐作为文化”和“文化中的音乐”的观念,培养学生“弘扬民族音乐文化”、理解多元文化的理念,从而达到理解和尊重多元的世界文化的目的。 【教学目标】: 、喜欢聆听、演唱民歌及具有民族风格的通俗歌曲,愿意探索有关民歌的音乐文化知识。 2、掌握有关民歌的基本知识。 3、通过欣赏,初步感知南北民歌的风格特点,感受民族音乐与民俗风情的丰富多彩。 【教学重点,难点】: 重点:着重欣赏广东民歌《对花》,同时听辨《槐花几时开》《拨根芦柴花》《上去高山望平川》《猜花》等民歌。 难点:本篇以“花”为立足点,使学生借此了解东南西 xx民歌的不同风格,感受民歌的绚丽风采。 【教学准备】:多媒体、视频、音频等 【教学过程】:

一、导入: 、欣赏流行音乐视频片段:《茉莉花》——梁静茹师提问:大家熟悉这首流行歌吗?喜欢吗? 这首流行歌曲是中国江南民歌《茉莉花》改编而成,一曲茉莉花,芬芳香四方,这首脍炙人口的江苏民歌几乎是我们国家在重要事件和相关国际重要场合下的必奏之歌。在北京奥运会上,《茉莉花》作为主旋律背景音乐向世界展示了中国文化,让世界了解了中国。可见,民族音乐之于民族的重要性。 2、民歌是什么? 民歌是人民的歌、民族的歌,是真实反映劳动人民情感、生活的歌曲作品。民歌以口头传播,一传十十传百,一代传一代的传下去至今,每个民族都有自己的生活方式,并在代代积淀与传承中形成了自己独特的文化。不同的文化又赋予了音乐不同的形式和内涵,形成了风格迥异的民族音乐。它们是音乐文化的基础和源泉。 3、民歌的分类:山歌、号子、小调。 二、新授: 在中国的民歌中,“花”是一个最普遍的主题,其用法 有三种:一是以花喻人,借花表法情爱;二是歌颂大自然,传授自然知识;三是借花起兴,以花为歌唱媒介,而花本身没有特定含义。 我们今天这堂课正是从“花”出发,了解东南西北民歌的不同风格,感受民歌的绚丽风采。(点出本课围绕的中心话题,引发学生的关注。) 、以“花”为题材的各地民歌 ①、xx民歌《槐花几时开》 (介绍“晨歌”,聆听歌曲,体验歌曲中富有地方特色的“啥子”的唱段) ②、xx民歌《拔根芦柴花》

花飘四方

《花飘四方》——民歌篇教学设计 【教学年级】:高一年级 【教学课时】:一课时 【设计思路】:通过聆听,了解民歌的风格特征,感受民歌的艺术魅力,培养学生对中国民歌的喜爱和兴趣,体现以音乐审美为核心的理念。通过民歌的学习让学生认识到:民族音乐是中华民族数千年来劳动人民智慧的结晶,是劳动人民创造的宝贵文化遗产,是中华民族传统文化的组成部分;同时帮助学生树立“音乐作为文化”和“文化中的音乐”的观念,培养学生“弘扬民族音乐文化”、理解多元文化的理念,从而达到理解和尊重多元的世界文化的目的。 【教学目标】: 1、喜欢聆听、演唱民歌及具有民族风格的通俗歌曲,愿意探索有关民歌的音乐文化知识。 2、掌握有关民歌的基本知识。 3、通过欣赏,初步感知南北民歌的风格特点,感受民族音乐与民俗风情的丰富多彩。 【教学重点,难点】: 重点:着重欣赏广东民歌《对花》,同时听辨《槐花几时开》《拨根芦柴花》《上去高山望平川》《猜花》等民歌。 难点:本篇以“花”为立足点,使学生借此了解东南西北民歌的不同风格,感受民歌的绚丽风采。

【教学准备】:多媒体、视频、音频等 【教学过程】: 一、导入: 1、欣赏流行音乐视频片段:《茉莉花》——梁静茹 师提问:大家熟悉这首流行歌吗?喜欢吗? 这首流行歌曲是中国江南民歌《茉莉花》改编而成,一曲茉莉花,芬芳香四方,这首脍炙人口的江苏民歌几乎是我们国家在重要事件和相关国际重要场合下的必奏之歌。在北京奥运会上,《茉莉花》作为主旋律背景音乐向世界展示了中国文化,让世界了解了中国。可见,民族音乐之于民族的重要性。 2、民歌是什么? 民歌是人民的歌、民族的歌,是真实反映劳动人民情感、生活的歌曲作品。民歌以口头传播,一传十十传百,一代传一代的传下去至今,每个民族都有自己的生活方式,并在代代积淀与传承中形成了自己独特的文化。不同的文化又赋予了音乐不同的形式和内涵,形成了风格迥异的民族音乐。它们是音乐文化的基础和源泉。 3、民歌的分类:山歌、号子、小调。 二、新授: 在中国的民歌中,“花”是一个最普遍的主题,其用法有三种:一是以花喻人,借花表法情爱;二是歌颂大自然,传授自然知识;三是借花起兴,以花为歌唱媒介,而花本身没有特定含义。 我们今天这堂课正是从“花”出发,了解东南西北民歌的不同风格,感

跟着课本去旅行.

跟着课本去旅行 一、舞雩台 舞雩台,位于山东曲阜东南,是古代鲁国求雨的祀坛。求雨的时候,常由巫在坛上做舞以求神。“莫春者,春服既成,冠者五六人,童子六七人,浴乎沂,风乎舞雩,咏而归。”(《论语?先进》)在沂水里洗浴,在舞雩台上吹风,这是孔子的弟子曾皙描绘的师生暮春郊游的美好图景,集中而形象地体现了儒家的政治理想。 二、地坛 地坛,位于北京安定门外,是明清两代皇帝祭地的地方。“譬如祭坛石门中的落日,寂静的光辉平铺的一刻,在地上的每一个坎坷都被映照得灿烂;譬如园中最为落寞的时间,一群雨燕便出来高歌,把天地都叫喊得苍凉。”“譬如那苍黑的古柏,你忧郁的时候它就镇静地站在那儿,从你没有出生一直站到这个世界上又没有你的时候;譬如暴雨骤临园中,激起一阵阵灼热而清纯的草木和泥土的气味,让人想起无数个夏天的事件;譬如秋风忽至,再有一场早霜,落叶或飘摇歌舞或坦然安卧,满园播撒着熨帖而微苦的味道。”(史铁生《我与地坛》)史铁生双腿残废后,深感前途渺茫,几次徘徊在死亡边缘。他在偶然走进地坛这个“荒芜但并不衰败”的古园后,从中受到了生命的启示,由此积极进取的人生观战胜了消极颓废的思想,促使他走上了文学创作的道路。 三、阿房宫 阿房宫,位于陕西省西安市西郊。秦始皇营造朝宫,因前殿在阿房村,故取名阿房宫。宏伟瑰丽的阿房宫依山就 水而建,楼阁接连不断,占地广阔。“覆压三百余里,隔离天日。骊山北构而西折,直走咸阳。二川溶溶,流入宫墙。五步一楼,十步一阁。廊腰缦回,檐牙高啄。各抱地势,钩心斗角。盘盘焉,??焉,蜂房水涡,矗不知乎几千万落。长桥卧波,未云何龙?复道行空,不霁何虹?高低冥迷,不知西东。”(杜牧《阿房宫赋》)杜牧用铺陈夸张的手法,描写了秦始皇的荒淫奢侈,也暗示了秦王朝灭亡的后果。 四、华清宫 华清宫,位于陕西临潼的骊山上,取“温泉毖涌而自浪,华清荡邪而难老”之义。史载杨贵妃爱吃鲜荔枝,李隆基就命令每年从南方飞马运送到长安。“长安回望绣成堆,山顶千门次第开。一骑红尘妃子笑,无人知是荔枝来。”(杜牧《过华清宫》)杜牧通过对送荔枝事件的描述,鞭挞了封建统治者的骄奢淫逸的生活。

Hey Jude 歌词流程图及英文歌词与翻译

Hey Jude, don't make it bad. 嘿!Jude,不要这样沮丧 Take a sad song and make it better 唱首悲伤的歌曲让事情好转Remember to let her into your heart 将她牢记在心底 Then you can start to make it better. 然后开始让事情好转 Hey Jude, don't be afraid 嘿Jude,不要害怕 You were made to go out and get her. 你生来就是要得到她 The minute you let her under your skin, 在你将她放在心上的时候

Then you begin to make it better. 你就开始做的更好 And anytime you feel the pain, 无论何时,当你感到痛苦 hey Jude, refrain, 嘿Jude 停下来 Don't carry the world upon your shoulders. 不要把全世界都扛在你肩膀上 For well you know that it's a fool who plays it cool 你应该很清楚谁耍酷谁就是笨蛋 By making his world a little colder. 这会使他世界更加冰冷 Hey Jude don't let me down 嘿Jude 不要让我失望 You have found her, now go and get her. 你已遇见她现在去赢的她芳心 Remember to let her into your heart, 记住将她牢记在你心中 Then you can start to make it better. 然后你就可以开始做的更好 So let it out and let it in, hey Jude, begin, 所以遇事要拿得起放得下嘿!jude ,振作起来 You're waiting for someone to perform with. 你一直期待的那个和你一起表演的人 And don't you know that it's just you, hey Jude, you''ll do 你不知道那个人就是你自己吗?嘿jude 你办得到的The movement you need is on your shoulder 下一步该怎么做就全看你自己 Hey Jude, don't make it bad. 嘿Jude 不要这样消沉 Take a sad song and make it better 唱首伤感的歌曲会使你振作一些 Remember to let her under your skin 记得心中常怀有她 Then you'll begin to make it better 然后你就会使它变得更好 Better better better better better better, Oh. 更好、更好、更好、更好、更好 Na na na, na na na na, na na na

跟着语文课本去旅行

跟着语文课本去旅行 1.北京天安门-《我多想去看看》天坛、长城、 颐和园、故宫、天安门、毛主席纪念堂、圆明园、 天坛、鸟巢、北京动物园等 天安门广场——二年级上《北京》 长城——四年级上《长城》 颐和园——四年级上《颐和园》 2.北京天坛-《邓小平爷爷植树》 相关旅行地:长城、颐和园、故宫、毛主席纪念堂、圆明园、天坛、鸟巢、北京动物园等 注:北京夜景——二年级下《北京亮起来了》 圆明园——五年级上《圆明园的毁灭》 3.安徽-《黄山奇石》“横看成岭侧成峰,远近高低各不同”。 相关旅行地:九华山,天柱山,合肥 注:黄山天都峰——三年级上《爬天都峰》 桃花潭——二年级下《赠汪伦》 4.台湾-《日月潭》 避暑胜地,带孩子来一次“宝岛之旅” 相关旅行地:台北101大楼,台北故宫,总统府,台北夜市

5.新疆-《葡萄沟》 吐鲁番葡萄沟,火洲“桃花源”。 相关旅行地:天山天池,楼兰古城,葡萄沟,吐鲁番,帕米尔高原注:天山——四年级下《七月的天山》 6.德宏版纳-《难忘的泼水节》 感受多样民族节日习俗,领略热带风景 相关旅行地:曼听公园,野象谷,中科院植物园,大佛寺,望天树 三年级(上)7.山东曲阜-《孔子拜师》 孔子故里,“东方耶路撒冷”。 相关旅行地:泰山,趵突泉,蓬莱阁,沂蒙山 8.河北赵县-《赵州桥》 中国第一石拱桥,中国工程界一绝。 相关旅行地:沧州铁狮子、定州开元寺塔、正定隆兴寺菩萨 9.海南南海-《富饶的西沙群岛》 海水五光十色,瑰丽无比 相关旅行地:天涯海角、三亚湾、大小洞天 10.黑龙江-《美丽的小兴安岭》 一年四季景色诱人,是一座美丽的大花园。

相关旅行地:太阳岛、牡丹江、漠河、冰雪大世界 11.中国香港-《东方之珠》 繁荣大都市,有“美食天堂”“购物天堂”美誉 相关旅行地:维多利亚港、迪士尼、铜锣湾 四年级(上)12.西藏-《雅鲁藏布大峡谷》 世界最深最长的河流峡谷 相关旅行地:雅鲁藏布江、青藏高原、布达拉宫 注:拉萨——五年级下《拉萨古城》 13.四川九寨沟-《五彩池》 魔术般的仙境,孩子的户外乐园。 相关旅行地:峨眉山、乐山大佛、都江堰、稻 城亚丁、卧龙自然保护区、三星堆遗址 14.陕西西安-《秦兵马俑》 “二十世纪考古史上的伟大发现之一” 相关旅行地:华清池、大小雁塔、华山 注:碑林——六年级下《名碑荟萃》 15.湖南-《迷人的张家界》 峰林地貌和喀斯特景观,仿佛置身仙境

hey,jude含义解析

Hey Jude The Beatles

?这首歌就是英国的难忘今宵!!!伦敦奥运会的压轴歌曲,我觉得很适合大合唱由麦卡特尼创作的,鼓励列农的儿子朱利安勇敢面对现实,在约翰列侬离婚后希望朱利安不要消沉其实这首歌的原名是Hey Julian,后来改为Hey Jules, 最终变成Hey Jude

?《Hey Jude》是Paul McCartney(保罗·麦卡特尼,The Beatles(披头士乐队,又称甲壳虫乐队)成员之一)为一个五岁的孩子写下的一首歌。这个男孩叫Julian,是John Lennon(约翰·列侬)与前妻Cynthia 的儿子。1968年夏天,John Lennon开始和Yoko Ono(小野洋子)同居了,他与前妻Cynthia的婚姻也到了崩溃的边缘

?Paul一直非常喜爱John Lennon的儿子Julian,他担心大人之间的婚姻变故会对一个小孩子带来心理上的阴影。(不过,当时Paul也正和相恋5年的未婚妻Jane Asher分手,开始与Linda Eastman 的感情)他曾说:“我总是为父母离异的孩子感到难过。大人们也许没什么,但是孩子……”同时,他也想要安慰一下Cynthia。于是有一天,他去了Cynthia的家里,还给她带了一枝红玫瑰,开玩笑的对她说:“Cyn,你说咱俩结婚怎么样?”说完两人同时大笑起来,Cynthia从他的玩笑中感受到了温暖和关心。

?Paul在车里为Julian写下了这首Hey Jude (Hey,Julian),可当时的Julian并不知道。直到二十年后,Julian才明白这首歌是写给自己的。他一直很喜爱爸爸的这个朋友,像一个叔叔一样的Paul。John Lennon也非常喜爱这一首歌。自从第一次 听到,他就觉得,“噢,这首歌是写给我 的!”Paul 说“Hey,John!去吧,离开我们和Yoko在一起吧。”他似乎又在说:“Hey,John!不要离开!来 自:”https://www.360docs.net/doc/7f16957595.html,/view/965993.htm

跟着语文课本去旅行

跟着语文课本去旅行(上)没去过桂林,但我知道骆驼峰和象鼻山,知道那里的水清、静、绿,知道那里的山奇、秀、险,因为那篇著名的课文《桂林山水》。 没法带着孩子们外出旅行,那我们就在课本里“行万里路”吧!我们所用的苏教版语文教材篇篇课文都文质兼美。一年级上册的《东方明珠》是旅行的第一站。这座结构为十一个大小不一、高低错落的球体通过三根直径九米的擎天立柱串联起来,力图体现“大珠小珠落玉盘”的诗情画意。登上东方明珠,可尽情饱览上海这一国际大都市的壮观景色。是集观光、餐饮、购物、娱乐、住宿、广播电视发射为一体综合景观。它已成为上海城市标志性建筑。一年级下册《咏华山》用一首儿童容易理解的五言绝句把华山的险与美尽情体现,让不少孩子都兴发起登高远眺的冲动。“会当凌绝顶,一览众山小。”登高俯瞰总会让人开阔胸怀,这两篇课文是会给刚入小学的孩子们定一个很好的起点吧。 二上的名诗《登鹳雀楼》虽然楼已不复存在,可诗人大约不会想到,这首看似朴素简洁,却意象宏阔、内涵丰厚的

五绝,竟然赢得了历代诗人的推崇和民间百姓的喜爱,世代流传直至今天,也留给我们一个与黄河、眺望这一特定时空有关的行吟诗人的形象。更是把黄河这一母亲河的形象深深地植入孩子们的心里。二下的《台湾的蝴蝶谷》带我们来到祖国宝岛台湾。蝴蝶谷的蝴蝶有的是金灿灿的,有的五彩缤纷,置身其中,梦幻迷人。如果在学篇课文时补充一首晨诵诗《我是一只小蝴蝶》真是太合适了。《欢乐的泼水节》更是把孩子们带到那个快乐而又神秘的西又版纳。光是读着这个课题,就让人蠢蠢欲动了,多想赶快也去参加傣族人民这场欢乐的泼水节啊! 三上的《西湖》带我们来到这颗镶嵌在天堂里的明珠。远眺葱绿的孤山,在苏堤和白堤上漫步。看那明净的湖水晃动着绿岛和白云的倒影,怎能不心旷神怡呢!夜幕初垂,明月东升之时,泛舟湖上,与这人间天堂一同溶化在如银月光里。《拉萨的天空》文笔优美,但所描写内容远离学生的生活。西藏是一个与天最近的地方。不到西藏,不知道天空有多蓝;不到拉萨,不知道空气有多新鲜;不到大昭寺,不知道信仰有多虔诚;不到八廓街,不知道逛街多有趣。“在拉萨,人们说话的声

HI jude

《Hey Jude》歌词中英文... Hey jude, don't make it bad 嗨,jude,不要如此消沉 Take a sad song and make it better 唱一首感伤的歌,振作一些 Remember to let her into your heart 记得要真心爱她 Then you can start to make it better 生活会开始好起来 Hey jude, don't be afraid 嗨,jude,不要害怕 You were made to go out and get her 去追她,留住他 The minute you let her under your skin 当你深爱上她的那一刻 Then you begin to make it better 生活变得美好起来 And anytime you feel the pain, hey jude, refrain 嗨,jude,不管何时你感到痛苦,要忍耐 Don't carry the world upon your shoulders 别把整个世界压在心头 For well you know that it's a fool who plays it cool 你知道愚蠢的人总是装做什么都不在乎 By making his world a little colder 把他的世界伪装得有些冷酷 Hey jude, don't let me down 嗨,jude,不要让我失望 You have found her, now go and get her 既然找到所爱的人,就要勇敢追求 Remember to let her into your heart 记住要真心爱她 Then you can start to make it better

跟着语文课本去旅行

跟着语文课本去旅行 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

跟着语文课本去旅行 1.北京天安门-《我多想去看看》天坛、长城、 颐和园、故宫、天安门、毛主席纪念堂、圆明园、 天坛、鸟巢、北京动物园等 天安门广场——二年级上《北京》 长城——四年级上《长城》 颐和园——四年级上《颐和园》 2.北京天坛-《邓小平爷爷植树》 相关旅行地:长城、颐和园、故宫、毛主席纪念堂、圆 明园、天坛、鸟巢、北京动物园等 注:北京夜景——二年级下《北京亮起来了》 圆明园——五年级上《圆明园的毁灭》 3.安徽-《黄山奇石》“横看成岭侧成峰,远近高 低各不同”。 相关旅行地:九华山,天柱山,合肥 注:黄山天都峰——三年级上《爬天都峰》

桃花潭——二年级下《赠汪伦》 4.台湾-《日月潭》 避暑胜地,带孩子来一次“宝岛之旅” 相关旅行地:台北101大楼,台北故宫, 总统府,台北夜市 5.新疆-《葡萄沟》 吐鲁番葡萄沟,火洲“桃花源”。 相关旅行地:天山天池,楼兰古城,葡萄沟, 吐鲁番,帕米尔高原 注:天山——四年级下《七月的天山》 6.德宏版纳-《难忘的泼水节》 感受多样民族节日习俗,领略热带风景

相关旅行地:曼听公园,野象谷,中科院植物园,大佛寺,望天树 三年级(上)7.山东曲阜-《孔子拜师》 孔子故里,“东方耶路撒冷”。 相关旅行地:泰山,趵突泉,蓬莱阁,沂蒙山 8.河北赵县-《赵州桥》 中国第一石拱桥,中国工程界一绝。 相关旅行地:沧州铁狮子、定州开元寺塔、正 定隆兴寺菩萨 9.海南南海-《富饶的西沙群岛》

海水五光十色,瑰丽无比 相关旅行地:天涯海角、三亚湾、大小洞天 10.黑龙江-《美丽的小兴安岭》 一年四季景色诱人,是一座美丽的大花园。 相关旅行地:太阳岛、牡丹江、漠河、冰雪 大世界 11.中国香港-《东方之珠》 繁荣大都市,有“美食天堂”“购物天堂”美 誉 相关旅行地:维多利亚港、迪士尼、铜锣湾

中英双语歌词

中英双语歌词 Hey Jude, don't make it bad. 嘿 Jude 不要这样消沉 Take a sad song and make it better. 唱首伤感的歌曲会使你振作一些Remember to let her into your heart, 记住要永远爱她 Then you can start to make it better. 开始新的生活 Hey Jude, don't be afraid. 嘿 Jude 不要担心 You were made to go out and get her. 去追她,留下她

The minute you let her under your skin, 拥抱她的时候 Then you begin to make it better. 将开始新的生活 And anytime you feel the pain, 无论何时,当你感到痛苦的时候 hey Jude, refrain, 嘿 Jude 放松一下自己 Don't carry the world upon your shoulders. 不要去担负太多自己能力以外的事 For well you know that it's a fool who plays it cool 要知道扮酷是很愚蠢的 Hey Jude, don't make it bad. 嘿 Jude 不要这样消沉

Take a sad song and make it better. 唱首伤感的歌曲会使你振作一些Remember to let her into your heart, 记住要永远爱她 Then you can start to make it better. 开始新的生活 Hey Jude, don't be afraid. 嘿 Jude 不要担心 You were made to go out and get her. 去追她,留下她 The minute you let her under your skin, 拥抱她的时候 Then you begin to make it better. 将开始新的生活 And anytime you feel the pain,

2020跟着书本去旅行运城系列节目观后感5篇

2020跟着书本去旅行运城系列节目观后感5篇 ——WORD文档,下载后可编辑修改—— 跟着书本去旅行运城系列节目观后感1 黄河,咆哮,奔涌,跳动着永恒不息的旋律,唱着不知疲倦的歌。黄河永不苍老。苍老的只有那西安的秦汉兵马俑。 黄河的旋律永远激荡,永远沉重。他藐视时空的约束藐视天地的昏暗,于是我们的世间有了那擎天巨臂劈开了那光明,不再是一片漆黑,有了黄皮肤黑眼睛的黄种人,龙的子孙。黄河浩荡,风回路转,滚滚滔滔,一泻千里。面对“蓝色文明”的威胁,我们有“黄河之水天上来”的风度。我们有安塞鼓震九州的激越。“两岸猿声啼不住,轻舟已过万重山。”“亚细亚文明”不会消失,黄河儿女不会被开除“球籍”。我们要创造一个“黄河文明”与“蓝色文明”媲美,让世界瞩目,震惊!黄河汹涌,九曲十八弯,曲曲折折,一往直前,任它“山重水复”,它会“柳暗花明”。当年轩辕统一各部落,历尽艰辛;精卫衔石填海,“人间正道是沧桑!”愚公挖土移山,“天堑变通途”。夸父逐日喝干了黄河之水,他抛下的手杖变成了桃花林。 啊,这广袤倔强的中国之龙啊!这我们黄种人中国人的精神灵魂啊!今天“夸父”追逐太阳,谁能认可望而不可及呢谁能说是“望日兴叹”呢谁能说留不下新的“桃林”呢黄河两岸,而今“旧貌换新颜”。在日新月异地翻天覆地的改变。奔涌吧,黄河!怒吼吧,中国龙!让我们的追求永远和精卫,夸父一样高远!中华大地上将重写一部

崭新的黄河史,黄河儿女将重唱一曲高亢的华夏歌。 黄河,我们的母亲河,我们将会永永远远爱你,你将永远奔向未来。 跟着书本去旅行运城系列节目观后感2 一把黄土塑成千万个你我,静脉是长城,动脉是黄河。”对于一个中国人来说,意味着民族,意味着腾飞,意味着母亲。 我很不幸,因为在这十几年中,我未曾拜访过我的母亲,民族的母亲——黄河,对于一个华夏子孙来说,这是一种不孝,一种莫大的不幸。 “白日依山尽,黄河入海流......”这让我对她产生了无限的好奇感。渐渐地,我知道了黄河是一条奔腾不息的河流,五千年来,孕育出灿烂的华夏文明。她积淀着文明印记和语言文化珍宝。随这年龄的增长,我开始学历史。从历史中我知道了从旧石器时代起,中华民族的先民就在黄河的怀抱里繁衍生息。此后,在漫长的历史演进过程中,他们在黄河形成冲击的平原上,不断提高适应自然的能力…… 从地理中,我知道了黄河是一条浩浩荡荡的大河,浊流宛转,结成九曲连环,从昆仑山下,奔向黄海之边。黄河以她英雄的体魄出现在亚洲的平原上。它是我国第二条长河,流经九个省市……,你也可以投稿 语文课本上,一次又一次的在我面前展现了一幅幅波澜壮阔的黄河画卷。那‘君不见,黄河之水天上来,奔流到海不复回。’的豪气。那‘黄河落天走东海,万里写入胸怀间’的豁达……无不使我心潮澎

人教版初中语文《屋内旅行记》课文原文阅读

《屋内旅行记》课文原文阅读 你们家里每天总有人生炉子、点煤油炉、煮马铃薯。 也许你自己就会生炉子或者煮马铃薯。可是,请你解释一下:为什么炉子里的劈柴会噼啪作响?为什么烟会从烟筒出去,而不向屋里冒?煤油燃烧的时候,哪里来的烟灰?为什么烘烤的马铃薯有一层硬皮,煮的却没有? 恐怕你不能解释明白吧。 或者问你:水为什么能灭火? 我的一位熟人回答说:“水能灭水,因为它又湿又冷。”可是煤油也又湿又冷,你倒试试用煤油来灭火吧! 不,你还是不试为好,一试就得用报火警了。 你看,问题挺简单,可是要回答它却不那么容易。 我再让你猜十二个关于最简单事物的谜,你愿意不愿意? 1.穿三件衬衣暖和,还是穿一件有三件衬衣那么厚的衣服暖和? 2.有没有用空气筑成的墙壁? 3.火有没有影子? 4.为什么水不会燃烧? 5.水会不会炸毁房屋? 6.炉子里火旺的时候,为什么呼呼直响? 7.为什么啤酒会咝咝作响,并且起泡沫? 8.有没有透明的铁?

9.为什么面包心里都是小孔? 10.炉子里的火能够使人暖和,皮袄为什么也能使人暖和呢? 11.为什么熨呢子衣服要垫一块湿布? 12.为什么在冰上能穿着冰刀滑溜,在地板上却不行? 这些问题,十位读者中未必有一位能完全回答得出。 关于我们周围的事物,我们知道得很少,而且有时也没有人可以问。 讲这些问题的书是有的,可是你要回答即使是我们这十二个谜,也得翻看许多书。而你知道这样的谜岂止十二个,而是十万个。 你屋内的事物每一件都是一个谜。 它们是用什么做的,怎样做的,为什么做的?它们发明了多久了? 我们饶有兴味地读着那些遥远的未经考察的异国探险记,却没有想到近在咫尺就有一个不熟悉的、奇异的、谜一般的国家,名叫“我们的屋子”。 我们要是想去考察它,随时都可以出发前往。 这本小书也正是这样一本导游书,献给愿意在自己家里作一次旅行的人。

花城版音乐八年级下册第6单元《hey jude》优秀教案(重点资料).docx

1教学目标 情感目标通过欣赏歌曲《HeyJude》,丰富学生的情感体验,培养对生活的积极乐观态度。 过程与方法欣赏歌曲,体验歌曲所表达的感情,模仿歌手演唱,感受摇滚音乐的风格。 知识目标学习摇滚音乐表现的风格特点,认识摇滚乐的伴奏乐器。 2重点难点 1、模仿表现歌唱的风格——摇滚乐 2.欣赏歌曲《HeyJude》 3、模仿歌曲的风格特点——摇滚乐 3教学过程 3.1 第一学时 3.1.1教学活动 活动1【导入】视频导入 1、问题导入提问学生音乐的类型有哪些,引出摇滚乐。 2、播放课件,观看2012年伦敦奥运会开幕式《HeyJude》的表演视频。 活动2【讲授】介绍歌曲创作背景 展示课件歌曲的创作背景《HeyJude》是披头士乐队成员之一保罗?麦卡特尼爵士为乐队灵魂人物约翰?列侬与前妻的儿子朱利安写的,内容是鼓励朱利安勇敢面对现实。麦卡特尼的演唱会也经常将这首作为保留曲目,在2012年伦敦奥运会开幕式老迈的麦卡特尼压轴演唱了这首经典歌曲,并同全场观众合唱,借此表达了奥运会对和平的期盼。 活动3【讲授】披头士乐队简介 展示课件 1、披头士乐队作为二十世纪最伟大的摇滚乐队为音乐爱好者所熟知,保罗作为乐

队的主要创作人和主唱,他不仅留下了无数脍炙人口的作品,而且在披头士解散后,更组建羽翼乐队等等,延续了披头士的辉煌历史,成为20世纪最具传奇色彩的音乐人。 他是一部活生生的摇滚乐史,披头士的创建、辉煌与解散过程中的种种传说和秘闻无不与之相关,单飞后的他更被吉尼斯世界纪录评为“流行音乐史上最伟大的音乐家与作曲家”,麦卡特尼是格莱美奖的常客,多年的音乐生涯使他到目前为止获得了16座格莱美奖杯,1次奥斯卡奖。除了音乐外,Paul McCartney还是个画家。他还极力推动动物权益与素食主义。新千年初期,就因为中国一部分人的虐待动物的行为而拒绝在中国演出。 活动4【活动】聆听歌曲 播放课件(披头士乐队《HeyJude》经典视频,再次感受摇滚音乐的风格特点 2、提问学生所认识的摇滚乐队有哪些,摇滚乐的风格特点和伴奏乐器有哪些? 活动5【活动】跟唱歌曲 跟唱歌曲 拓展欣赏不同版本《HeyJude》中国好声音第七期(钟伟强与毕夏版) 活动6【练习】表演活动 学生组建乐队模仿乐队表演 活动7【练习】课堂小结 通过学习歌曲《Hey Jue》,我们了解了摇滚音乐的风格,摇滚乐以其灵活大胆的表现形式和富有激情的音乐节奏表达情感。不同的音乐带给我们不一样的生活享受,鉴赏音乐、走进音乐,通过模仿乐队的表演,让我们感受到了摇滚音乐的美!

城北小学跟着课本去研学旅行课程

附件1 研学旅行课程推荐汇总表推荐单位(盖章):联系人:联系电话: 1

填表说明:1.课程简介在200字以内;2.资源单位是课程开发所依托及应用的单位,请填写规范名称。3.用宋体四号字体填写,行间距为20磅,左对齐。 2

附件2 跟着课本去研学 资源单位:安丘市青云山齐鲁民俗村安丘市青云湖 青州博物馆潍坊科技馆 研发单位:安丘市兴安街道城北小学 研发主持人:刘文娟 研发成员:陈桂友曹敏唐新强徐正博 申报联系人及联系方式:刘文娟 4222400 2018年3月

资源单位简介 安丘青云山齐鲁民俗村:其民俗展示,如:书画、生产工具、生活用品、剪纸、缝缀、木版年画、烧黑陶、扎风筝、核雕等民间手工艺的现场制作和民间婚俗、地方戏剧等民间文艺表演,是学生展开合作探究开展研学活动,体验知行相生的实践智慧的最方便本土资源。 青州博物馆:收藏文物丰富品类珍贵,在中国同级博物馆中名列前茅。馆内现存文物已达两万件,是中国规模最大、收藏文物最多、门类最全的县级博物馆,有"小大博物馆"之称。便于学生开展人文类研学。 安丘青云湖:湖面600公顷是山东省最大的人工湖。依托汶河自然地形地貌,注重生态保护,以大水面、大森林、大草地、金色沙滩围合。有多种鸟类栖息。适合学生进行自然类研学实践。 潍坊科技馆:位于潍坊市人民广场南的文化艺术中心。全国科普教育基地和科技馆免费开放试点单位是学生进行科技类研学的最佳资源。

跟着课本去研学 课程对象 小学中年级 课程主题: 跟着课本去研学 课程目标: 落实立德树人根本任务,以统筹协调整合资源为突破口,因地制宜开展研学活动。帮助学生了解国情、热爱家乡、开阔眼界、增长知识,培养学生的综合实践能力,“把课堂搬到阳光下”“在实践探索与体验中学习”。弘扬、传播传统文化,促进学生健康成长。让学生在活动中感知,在活动中交流,在活动中学习,在活动中陶冶情操,在体验反思中提升,快乐中学习。 课程内容: 从中年级语文教材中挖掘研学资源,有目的筛选便于进行研学的课文。进行整合分类。 三年级 人文类《风筝》《卖木雕的少年》 自然类《花钟》《蜜蜂》《燕子》

heyjude中英文歌词

中英文歌词: Hey Jude, don't make it bad. 嘿!Jude,不要沮丧 Take a sad song and make it better 唱首悲伤的歌曲来舒缓自己的心情 Remember to let her into your heart 请将她存放于心 Then you can start to make it better. 生活才会更美好 Hey Jude, don't be afraid 嘿Jude 不要害怕 You were made to go out and get her. 你生来就是要得到她 The minute you let her under your skin, 在将她深藏于心的那一刻 Then you begin to make it better. 你已经开始过的更好 And anytime you feel the pain, 无论何时,当你感到痛苦 hey Jude, refrain, 嘿Jude 停下来 Don't carry the world upon your shoulders. 不要把全世界都扛在肩上 For well you know that it's a fool who plays it cool 你应该懂得傻瓜才会假装坚强 By making his world a little colder. 才会把自己的世界变得冷漠 Hey Jude don't let me down 嘿Jude 别让我失望 You have found her, now go and get her. 你已遇见她现在就去赢得她芳心 Remember to let her into your heart, 请将她深藏于心 Then you can start to make it better. 生活才会更美好 So let it out and let it in, hey Jude, begin, 遇事要拿得起放得下嘿!Jude ,振作起来 You're waiting for someone to perform with. 你一直期待有人同你一起成长 And don't you know that it's just you, hey Jude, you''ll do 你不明白只有你嘿Jude 你行的 The movement you need is on your shoulder 未来肩负在你身上 Hey Jude, don't make it bad. 嘿不要消沉Jude

跟着语文课本去旅行复习过程

跟着语文课本去旅行

跟着语文课本去旅行 1.北京天安门-《我多想去看看》 天坛、长城、颐和园、故宫、天 安门、毛主席纪念堂、圆明园、 天坛、鸟巢、北京动物园等 天安门广场——二年级上《北 京》 长城——四年级上《长城》 颐和园——四年级上《颐和园》 2.北京天坛-《邓小平爷爷植树》 相关旅行地:长城、颐和园、故宫、 毛主席纪念堂、圆明园、天坛、鸟 巢、北京动物园等 注:北京夜景——二年级下《北京亮 起来了》 圆明园——五年级上《圆明园的毁灭》

3.安徽-《黄山奇石》“横看成岭侧 成峰,远近高低各不同”。 相关旅行地:九华山,天柱山,合肥 注:黄山天都峰——三年级上《爬天 都峰》 桃花潭——二年级下《赠汪伦》 4.台湾-《日月潭》 避暑胜地,带孩子来一次“宝岛 之旅” 相关旅行地:台北101大楼,台 北故宫,总统府,台北夜市 5.新疆-《葡萄沟》

吐鲁番葡萄沟,火洲“桃花源”。 相关旅行地:天山天池,楼兰古城,葡萄沟,吐鲁番,帕米尔高原 注:天山——四年级下《七月的天山》 6.德宏版纳-《难忘的泼水节》 感受多样民族节日习俗,领略热带 风景 相关旅行地:曼听公园,野象谷, 中科院植物园,大佛寺,望天树 三年级(上)7.山东曲阜-《孔子拜 师》 孔子故里,“东方耶路撒冷”。 相关旅行地:泰山,趵突泉,蓬莱 阁,沂蒙山

8.河北赵县-《赵州桥》 中国第一石拱桥,中国工程界一绝。 相关旅行地:沧州铁狮子、定州开元寺塔、正定隆兴寺菩萨 9.海南南海-《富饶的西沙群岛》海水五光十色,瑰丽无比 相关旅行地:天涯海角、三亚湾、大小洞天

TheBeatles披头士经典名曲中英文歌词

The Beatles披头士经典名曲中英文歌词 Yesterday The Beatles: Yesterday, all my troubles seemed so far away Now it looks as though they're here to stay Oh, I believe in yesterday. Suddenly, I'm not half the man I used to be, There's a shadow hanging over me. Oh, yesterday came suddenly. Why she had to go I don't know she wouldn't say. I said something wrong, now I long for yesterday. Yesterday, love was such an easy game to play. Now I need a place to hide away. Oh, I believe in yesterday. Why she had to go I don't know she wouldn't say. I said something wrong, now I long for yesterday. Yesterday, love was such an easy game to play. Now I need a place to hide away. Oh, I believe in yesterday. 昨天,一切烦恼行将远去 可我如今却忧心忡忡 哦,我宁愿相信昨天

那些年语文课本带我们去过的地方!新

那些年语文课本带我们去过的地方! 在过去的那么一段时间里, 我们也并非能够来一场说走就走的旅行, 我们埋头于那些古诗背诵和方程公式, 透过书本里背诵过的段落,也去了解过一个美景, 只是我们也曾忽略了那些字里行间的美好吧。 虽然时光匆匆,但是语文课本里曾经提到的景点, 你又都还能记得吗? 今天小编也给你来一记回忆杀吧~

时维九月,序属三秋。潦水尽而寒潭清,烟光凝而暮山紫。俨骖騑于上路,访风景于崇阿;临帝子之长洲,得天人之旧馆。层峦耸翠,上出重霄;飞阁流丹,下临无地。鹤汀凫渚,穷岛屿之萦回;桂殿兰宫,即冈峦之体势。 ——《滕王阁序》王勃 滕王阁,江南三大名楼之首,位于江西省南昌市西北部沿江路赣江东岸,始建于唐朝永徽四年,因唐太宗李世民之弟——李元婴始建而得名,因初唐诗人王勃诗句“落霞与孤鹜齐飞,秋水共长天一色”而流芳后世。

自三峡七百里中,两岸连山,略无阙处。重岩叠嶂,隐天蔽日。自非亭午夜分,不见曦月。 至于夏水襄陵,沿溯阻绝。或王命急宣,有时朝发白帝,暮到江陵,其间千二百里,虽乘奔御风,不以疾也。 春冬之时,则素湍绿潭,回清倒影。绝巘多生怪柏,悬泉瀑布,飞漱其间,清荣峻茂,良多趣味。 每至晴初霜旦,林寒涧肃,常有高猿长啸,属引凄异,空谷传响,哀转久绝。故渔者歌曰:“巴东三峡巫峡长,猿鸣三声泪沾裳!” ——《三峡》郦道元

全篇只用一百五十五个字,既描写了三峡错落有致的自然风貌,又写三峡不同季节的壮丽景色,展示了祖国河山的雄伟奇丽、无限壮阔的景象。 六王毕,四海一;蜀山兀,阿房出。覆压三百余里,隔离天日。骊山北构而西折,直走咸阳。二川溶溶,流入宫墙。五步一楼,十步一阁;廊腰缦回,檐牙高啄;各抱地势,钩心斗角。盘盘焉,囷囷焉,蜂房水涡,矗不知乎几千万落!长桥卧波,未云何龙?複道行空,不霁何虹?高低冥迷,不知西东。歌台暖响,春光融融;舞殿冷袖,风雨凄凄。一日之内,一宫之间,而气候不齐。 ——《阿房宫赋》杜牧

相关文档
最新文档