复合函数概念精析

复合函数概念精析
复合函数概念精析

复合函数概念精析

蓝田县洩湖中学

王锦锋

复合函数概念精析

复合函数是中学数学深化函数概念,提高运用函数思想解决数学问题能力的重要工具,是进一步学习高等数学的重要基础,也是历届高考常考不衰的热点。但高中数学教材未作介绍,而其他教辅材料上也仅给出描述性的非严格定义,因此,高一数学教学与高考数学复习中介绍有关内容很有必要。

一、复合函数的概念

我们见到的复合函数的描述性定义是:如果y是u的函数,而u 又是x的函数,即y=f(u),u=g(x),那么y关于x的函数y=f[g(x)]叫做函数f和g的复合函数,u叫做中间变量。例如y=sin 2x它与y=sin x不同,不是基本初等函数,而是由三角函数y=sin u和一次函数u=2x经过“复合”而成的一个函数。由于上述定义中对“复合”的定义没有明确界定,因而很多同学对复合函数的概念似是而非,含混不清,为此,我们精读这个定义,字斟句酌,纠错补缺,以使我们正确理解复合函数的概念。

1、由字面理解

“复合”本来是指“合在一起,结合起来”的意思,但在复合函数的定义中,对复合步骤的方式有特殊的约定。它不是泛指把几个简单函数随意地结合在一起,例如用四则运算把它们结合起来得到的形如a·f(x)±b·g(x)或a·f(x)·b·g(x)的函数,而是专指把几个映射,像工厂中的生产流水线,依先后顺序合在一起,对同一自变量

逐次映射构作的一个复合映射确定的函数。这里的几个映射可以相同,也可以不同,但只能是常数与基本初等函数间进行的幂的运算,指数运算,对数运算,三角运算,反三角运算。自变量像被加工的零件依次通过第一个映射后到第二个映射,一直到通过全部映射。例如,复合函数y=sin 2x是自变量x先“乘2”(第一次映射),再“取正弦”(第二次映射),最后得到y关于x的一个函数sin 2x。因此有人说复合函数是函数的函数。

为了叙述和应用的方便,我们通常用“层”来描述上述不同的映射所对应的函数。从外向内看,函数y=f[g(x)]中称f定义的函数y=f(u)为外层函数(外函数),称g定义的函数u=g(x)为内层函数(内函数),且称函数y=f[g(x)]为函数f和g复合一次得到。这里外层函数的映射法则f和内层函数的映射法则g构作的复合函数的映射法则称为复合映射f g(注意:不能把f g读作“f乘g”,因为复合映射不具有交换律,即f g≠g f,这是复合映射很重要的一个基本特征)。有人形容复合映射f g是具有传递性的两个映射f和g的链条,可以帮助我们理解复合函数的内涵。

2、从函数定义理解

既然函数y=f[g(x)]可视为函数y=f(u)和函数u=g(x)复合得到,因而它们都必须符合函数的定义,这才是复合函数定义的关键所在。除前面对复合映射结构特征的分析外,我们还须从定义域和值域都是非空的数集出发,考察复合函数定义的相应要求。

设函数u=g(x)的定义域是D,值域是M。再设y=f(u)的定义域是

N,值域是R,则D、M、N、R都是非空的数集。从“复合”中我们发现内层函数u=g(x)具有二重性:一方面它是自变量x的函数,当x ∈D时,则有g(x)∈M;另一方面它又是函数y=f(u)的自变量,当g(x)=u∈N时,则有y=f(u)∈R。要使y=f(u)仍然是函数,就要求u=g(x)的值域M和y=f(u)的定义域N必须有交集(非空数集)。M N ф是复合函数的一个必要但不充分的条件,也就是说,函数y=f(u)的定义域N,既受到外层函数的映射法则f的制约,又受到内层函数u=g(x)的值域M的限定。只看一面,不看另一面就会犯概念的错误。有的同学不加分析地认为任何两个函数都可以复合成一个复合函数,事实却不然,例如y= ln ( sin x –2),y=arc cos(x2+2)等都不是复合函数,因为y=ln u是自然对数,定义域N必须符合u >0 (u∈N),但u= sin x–2,而|sin x|≤1故sin x–2 ≤–1,于是有M N={u︱u>0} {x|sin x–2≤–1}=ф,故y= ln (sin x–2)不能构成复合函数。同理,y=arccos(x2+2)也不能构成复合函数(它们都不是函数)。

据此,反思前面给出的定义,我们发现这个定义是不严谨的。它忽视了构造复合函数y=f[g(x)]过程中各层子函数及它们复合后的整体都必须适合函数的定义。为此,我们把定义补充为:如果y是u 的函数y=f(u),而u又是x的函数u=g(x),且对于x值所对应的u 值,函数y=f(u)是有定义的, 即y=f(u),u∈N,u=g(x),x∈M,M N=ф,则y关于x的函数y= f[g(x)]叫做f和g的复合函数。

3、从结构特征理解

除最内层函数允许对自变量施行加、乘运算外,每一次复合都是把内层函数的整体作为自变量施行新的映射,这样,像穿衣服一样,

从内到外逐次添加映射,直至构造出所需函数。这一独特的发生过程,不仅给出了复合函数的结构特征,使我们能迅速判断已知函数式是不是一个复合函数,也使我们明白复合函数不是一类新的独立的基本初等函数,而是几个简单函数的特殊构造,因而使我们能从参与复合的简单函数的性态研究复合函数的相应属性。

4、从穿脱原理理解

穿脱原理是复合函数与简单函数相互转化的工具,由它可将简单函数构造成复合函数,也可将复合函数分拆为简单函数。

先看复合。例如由y=3u ,u=sin v , v=x ,欲得到复合函数,可从外层函数开始,逐次代换添加映射,每代换一次增加一个映射,即y=3u =3v sin =3x sin ,最后得到y 关于x 的复合函数y=3x sin 。

一般地,由y=f(u) , u=g(v) , v=? (x)的复合过程可记为y=f(u)=f [g(v) ]=f{ g [? (x) ]}。

再看分拆。例如函数y= ln sin 211

x +可以从外层函数开始逐层

拆为简单函数,每拆一层,设一个中间变量,即最外层函数记为y=ln u ,第二层记为u=sin v ,第三层记为v=t -21

,第四层记为t=x 2+1。

上述多次令中间变量进行的代换,叫做连续代换或锁链代换,实质上是换元法。

穿脱原理从发生过程深化了复合函数的概念,在复合函数的性态研究中具有重要作用。例如复合函数的定义域、值域、奇偶性、单调性、极值,求反函数时都需要它,一些重要运算,如求导、微分更必须依靠它由。

二、 复合函数初等性质举要

在中学,我们可以探讨复合函数的哪些性质呢?和常见的基本

初等函数一样,我们可以探讨复合函数的定义域、值域、奇偶性、单调性、周期性,极值与最值。探讨中,最关键的是注意复合映射的多层制约,是否使符合函数仍有定义,研究它的每一层映射对复合函数性质的影响。

1、求定义域 因为多层复合映射结构复杂,使求复合函数定义域的题型形式多样,现列举主要题型如下。

(1)已知复合函数的表达式,求复合函数的定义域。

将已知复合函数正确地拆成几个常见的简单函数,根据使函数解析式有定义的要求,由外到内列全限制条件对应的不等式,所得不等式组的解集就是复合函数的定义域。

例1、 函数y=)1(log log 222

1+x 的定义域。

解:要使函数y=)1(log log 222

1+x 有意义,须满足 log )1(log 222

1+x ≥0 (使根式有意义),

log )1(22+x >0 (使对数有意义),

x 2+1>0 (使对数有意义),

解得 –1 ≤ x < –22

或 22 < x ≤ 1,

故所求函数的定义域为[–1, –22)∪(22,1)。

(2)已知函数y = f (x) 的定义域,求复合函数y=f [g(x)]的定义域。

因为f 代表同一映射,只需用代换法则,先将原函数的定义域写成x 的不等式,再将x 换成中间变量 g ( x ),解所得不等式即可。 例2、 已知函数y = f (x) 的定义域是[0,1],求函数 y = f (sin

x –cos x )的定义域。

解:由题设知,0≤sin x –cos x ≤1,即 0≤2sin (x –4π )≤1 ∴2k π+

4π≤ x ≤2k π+2π, 或 (2k+1)π≤ x ≤(2k+1)π+4

π,k ∈Z. 故函数y = f (sin x –cos x )的定义域是

[2k π+4π,2k π+2π] [(2k+1)π,(2k+1)π+4π]k ∈Z.

(3)已知复合函数的定义域,求外层函数的定义域。

实质是从已知复合函数中x 的取值范围,求出这个复合函数的中间变量的范围。(或内层函数的值域)。

例3、已知函数y = f (

1lg 1-x )的定义域是[100,1000],求函数y = f (x ) 的定义域。

解:由100≤x ≤1000 得,2≤ lg x ≤3.

∴1≤lg x –1≤2 ∴ 21≤

1

lg 1-x ≤1. 故函数y = f (x) 的定义域是[2

1,1].

2、求函数表达式

中学阶段求复合函数表达式大致可归纳为两种题型,一是已知各层子函数的映射法则,求复合函数的表达式;二是已知复合函数适合的函数方程,求复合函数的表达式。

(1)已知中间变量,求复合函数。

用代换法则像求函数值一样,从内向外逐次将内层函数的表达式代换外层函数的自变量解出。每次代换只看一层,只代换一个中间

变量。函数的映射法则是对自变量单x 定义的,故复合函数的表达式最终也须将表达式用单x 的运算表示。

例4、 已知函数f ( x ) =

x -21,求函数f [f(x)]的表达式。 解:∵f ( x ) =

x -21 ∴f [f(x)]= f(x -21) = x --21

21 = x

x 232-- (2)已知复合函数,求原函数。

关键是沟通中间变量与复合函数表达式间的映射关系,找到原函数用中间变量的整体作自变量的映射法则,常用配凑法,换元法,待定系数法等。

例5、 已知f ( cos x –1) = cos 2x ,求f ( x ) 。

解:设cos x –1 = t,则cos x = t+1 , f ( t ) = ( t+1 )2 ∵–1≤ cos x ≤1 , ∴ –2≤ cos x –1 ≤0, 即 –2≤ t ≤0,

故 f(x) = (x+1)2 , (–2≤ x ≤0) 。

(3)已知复合函数适合的函数方程,求复合函数的表达式。 中学只涉及简单的函数方程,因此,关键是将所求复合函数看作未知变量,根据函数方程的结构特征采用代换方法建立方程组,消元解之。

例6、 已知a f(x n )+ f(–x n ) = bx , 其中a ≠1,n 为奇数,求函数

f ( x )。

解:由已知用–x 代换x ,由于n 为奇数,有

a f(–x n )+ f(x n ) = –bx 。

结合已知条件,可解得f(x n ) =

1-a bx , 而a ≠1,n 为奇数,故f(x n ) = 1

-a x b n 。 (4)已知复合函数,求与外层函数映射法则相同的另一复合函数。

先由已知复合函数求原函数,再由原函数求另一复合函数。

例7、 知f (x+3) = x 2+ 2x + 1 , 求函数f (x-3) 。

解:设 t=x+3,则x=t –3,有

f ( t ) = (t-3)2+ 2 (t-3)+1 = (t-2)2,

∴f(x) = (x-2)2,

故f (x-3) = [(x-3)-2]2=(x-5)2。

3、求值域

在复合函数定义域上,先求出最内层函数的值域,再用它作中间函数的“自变量”求出中间函数值域,依次外推直至求出最外层函数的值域。

例8.求函数y= arc cos (sin x) (-3π

2π)的值域。 解:∵-3π

<sin x ≤1.

又∵ y=arc cos u 是减函数。

∴0≤ arc cos(sin x) <65π. 故新求函数的值域是[0,6

5π)。

4、判断函数奇偶性

通法是根据奇偶性的定义进行判断。容易产生的一类负迁移是:认为构成复合函数的每层简单函数都要有奇偶性时,复合函数才有奇偶性,这是错误的。例如函数y=lg cosx,可拆成y=lgu,u=cosx,易知外层函数y=lgx不具有奇偶性,但内层函数u=cosx是偶函数,由定义可知y=lg cosx是偶函数。

当复合函数各层子函数都有奇偶性时,可用下列法则判断它的奇偶性。

定理1 当内层函数u=?(x)为偶函数时,复合函数y=f[?(x)]为偶函数(此时f可为任意函数),简记为“内偶则偶”。

定理2 当内层函数u=? (x)为奇函数时,若外层函数y=f(u)为奇函数,则复合函数y=f[?(x)]为奇函数;若外层函数y=f(u)为偶函数,则复合函数y=f[?(x)]为偶函数。记为“内奇外奇则奇”,“内奇外偶则偶”。

5、判断函数单调性

通法仍然是由函数单调性的定义判断。但若其中某层中间变量没有单调性时,则复合函数无单调性。只有复合函数的各层子函数在定义域上均为严格单调函数时,复合函数才具有单调性,并可用下列法则判断复合函数的单调性。

定理1当y=f(u),u=g(u)均为增函数时,则复合函数 y=f[g(x)]为增函数;当y=f(u) ,u=g(u)均为减函数时,则复合函数y=f[g(x)]为增函数,简记为“同向为增”。

定理2当y=f(u)为增函数,u=g(u)为减函数,或y=f(u)为减函

数,u=g(u)为增函数,则复合函数y=f[g(x)]为减函数,简记为“异向为减”。

以上定理可推广至n层复合函数,即:

定理3 若有限次复合函数的每层子函数均有意义且严格单调,则减函数的层数为偶数时,复合函数为增函数;减函数的层数为奇数时,复合函数为减函数。

6、求函数周期

(1)由周期函数的定义易知关键是最内层函数是否有周期性。当最内层函数为周期函数时,复合函数必为周期函数,但最小正周期可能改变。

例如y=cos2x,由y=u2,u=cosx复合得到,内层函数u=cosx为周期函数,T=2л,则y=cos2仍为周期函数,但Tˊ=л.

若外层函数y= f( u )为严格单调函数,内层函数u=g(x)是以T

,则复合函数y=f[g(x)]是周为周期的函数,并且有最小正周期T

期函数,并且有最小正周期T

(2)当内层函数无周期性,外层函数有周期性时,应由周期函数的定义判断。特殊情形可由下列定理判断:

定理1 若外层函数y= f( u )是以T为周期的函数,且u=ax+b

T

则复合函数y=f(ax+b) 是周期函数,周期为

a

定理2 若外层函数y= f ( u )为周期函数,且函数y= f( u )为偶函数,u=|x|,则复合函数y= f(|x| )是周期函数。

7、求函数的最值

(1)已知复合函数的表达式,求复合函数的最值。

若外层函数是严格单调函数,内层函数有最值时,内层函数的最值点就是复合函数的最值点;若外层函数有最值时,外层函数的最值点就是复合函数的最值点。

若外层函数y= f ( u )与内层函数u= g( x )都是严格单调函数时,复合函数y=f[g(x)]的值域为开区间,则复合函数无最值;值域在闭区间,则复合函数既有最大值,也有最小值;值域为半开半闭区间,则复合函数只有最大值而无最小值,或只有最小值而无最大值。 例9、已知0 <a ≤2,求函数y=(sinx+a)(cosx+a)的最值。 解:y=(sinx+a)(cosx+a)=sinx cosx + a(sinx+cosx)+a 2 =22)cos (sin 2

1)cos (sin a x x a x x +++-+, 令 t = sinx + cosx , 由sinx + cosx =

2sin(x+4π) 知 |t|≤2, ∴y = 212-t + at + a 2=2

1

(t + a)2+ 21(a 2-1), 当t=-a 时,y 最小=21(a 2-1),

当t=2时,y 最大=a 2+2a + 21

(2)已知复合函数,求原函数的最值。

先由复合函数求得原函数,再求原函数的最值。

例10、 已知f (2x+1) = 2

447

82+++x x x ,求函数f (x) 的最值。 解:令t = 2x+1,则x = 21-t ,于是得 f ( t ) =134

2++t t ,

∴ f ( x ) =1

342++x x = y (x ∈R), 即 yx 2-4x+(y-3)= 0,

当y=0时,x= -4

3;当y ≠0时,因x ∈R,故?= 16 –4y(y –3)≥0,

∴-1≤ y ≤4, 且当x = 2

1时,f(x)最大=4;当x= -2时,f(x)最小= -1。 8、求反函数

当复合函数y=f [g(x)]的各层子函数均为严格单调函数时,有反函数。一般先逐层求出各层子函数的反函数,后复合为原函数的反函数,或用穿脱原则从外到内依次取原映射的逆映射。注意由原函数的值域写出它的反函数的定义域。

例11、 求函数y = 2 arctan ( 2x -2π)的反函数。

解:y=2arc tan ( 2x - 2π),x=21(tan 2y + 2π) 故 y = 21tan 2x +4

π

又- 2π<arc tan ( 2x - 2π)<2

π

,-π<2arc tan ( 2x - 2

π)<π, 故所求反函数为y = 21tan 2x +4π (-π<x <π)。 三、复合函数的图像

作复合函数的图像一般都比较繁杂,这里仅介绍用图像变换法作复合函数的图像。当复合函数y=f [g(x)]可视为由常见的简单函数经过平移,伸缩,对称等变换得到时,可由简单函数的图像施行图像变换作出复合函数的图像。

例12、作函数y= -2 lg(-3

1x+1)-2的图像。 解:原函数y= -2 lg(-3

1x+1)-2的图像可由函数y= lgx 的图像经过下列变换得到:

y= lgx 沿x 轴伸长3倍后,向右平移3个单位 y= lg(3

1x -1) 关于直线x=3对称

y=lg [- (31x -1)] 沿y 轴方向伸长2倍 y=2lg [- (3

1x -1)] 关于x 轴对称

y= -2lg [- (31x -1)]沿y 轴向下平移2个单位 y= -2lg [- (31x -1)]-2 = -2 lg(-3

1x+1)-2。 图像 略。

四、复合函数的符号语言

对复合函数的符号语言,应从函数定义与函数符号出发准确理解,不可误读误写误用。

(1)f(x)与f(-x)的区别。

f(x)是简单函数的记号,而f(-x)则为复合函数的记号,y= f(-x)由y=f(u),u= -x 复合而成。

(2)y=f [g(x)]与y=g [f(x)]的区别。

由于复合映射f g 不具有交换律,即f g ≠g f ,所以它们是两个不同的复合函数,不是同一个复合函数。因而y=f [f 1-(x)]与y=f 1-[f(x)]也不是同一个函数;y=f [f 1-(x)]=x,这里的x 表示函数y=f(x)的值域中的任一个值,而y=f 1-[f(x)]=x ,这里的x 却表示函数y=f(x)的定义域中的任一个值。例如y=sin (arc sin x)=x,x ∈[-1,1] ;y=arc sin(sin x)=x,x ∈R.

(3) y= g 1-[f 1-(x)]与y= f 1-[g(x)]的区别。

函数y= g 1-[f 1-(x)]是复合函数y=f [g(x)]的反函数,它们的图像关于直线y=x 对称。而函数y= f 1-[g(x)]不是f [g(x)]的反函数,它们的图像关于直线y=x 不对称,严格地说它们是关于中间

变量u=g(x)成反函数关系,它们的图像应由外层函数的反函数关系结合内层函数施行相应的几何变换或代数变换而得到。

例13、已知函数y=f(x)的图像过点(0,1),则函数y= f1-(x+4)的图像过点( )。

错解:因函数y=f(x)的图像过点(0,1),而函数y=f(x+4)的图像可由函数y=f(x)的图像向左平移4个单位得到,故y=f(x+4)的图像必过点(-4,1),再由反函数定义知函数y= f1-(x+4)的图像必过点(1,-4) 。正解:因y=f(x)的图像过点(0,1),故y= f1-(x)的图像应过点(1,0),又y=f(x+4)的图像可由y=f(x)的图像向左平移4个单位得到,所以y= f1-(x+4)的图像应由y= f1-(x)的图像向左平移4个单位得到,故y= f1-(x+4)必过点(-3,0)。

综上所述,只有通过我们做大量的习题,才能掌握复合函数的概念及性质,为后续学习打下坚实的基础。

函数的概念和性质

专题讲座 高中数学“函数的概念与性质”教学研究 梁市西城区教育研修学院 函数是中学数学中的重点容,它是描述变量之间依赖关系的重要数学模型. 本专题容由四部分构成:关于函数容的深层理解;函数概念与性质的教学建议;学生学习中常见的错误分析与解决策略;学生学习目标检测分析. 研究函数问题通常有两条主线:一是对函数性质作一般性的研究,二是研究几种具体的基本初等函数——二次函数、指数函数、对数函数、幂函数.研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等. 一、关于函数容的深层理解 (一)函数概念的发展史简述 数学史角度:早期函数概念(Descartes,1596—1650引入坐标系创立解析几 何,已经关注到一个变量对于另一个变量的依赖关系)[几何角度];Newton,1642—1727,用数流来定义流量(fluxion)的变化率,用以表示变量间的关系;Leibniz,1646—1716引入常量、变量、参变量等概念;Euler引入函数符号,并称变量的函数是一个解析表达式[代数角度];Dirichlet,1805—1859提出是与之间的一种对应的观点[对应关系角度];Hausdorff在《集合论纲要》中用“序偶”来定义函数[集合论角度]. Dirichlet:认为怎样去建立与之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的值,都有一个确定的值,那么叫做的函数.”这种函数的定义,避免了以往函数定义中所有的关于依赖关系的描述,简明精确(经典函数定义). Veblen,1880-1960用“集合”和“对应”的概念给出了近代函数定义,通过集合概念,把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的限制,变量可以是数,也可以是其它对象. (二)初高中函数概念的区别与联系 1.初中函数概念:

复合函数含义

复合函数含义: 函数y=log 2x 是对数函数,那么函数y=log 2(2x-1)是什么函数呢?我们可以这样理解:设y=log 2u ,u=2x-1,因此函数y=log 2(2x-1)是由对数函数y=log 2u 和一次函数u=2x-1经过复合而成的。一般地: 若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简而言之,所谓复合函数就是由一些初等函数复合而成的函数。 简言之:复合函数就是: 把一个函数中的自变量替换成另一个函数所得的新函数. 例如: f(x) = 3x+5, g(x) = x 2+1; 复合函数f(g(x))即把f(x)里面的x 换成g(x), f(g(x)) = 3g(x)+5 = 3(x 2+1)+5 = 3x 2+8. 对于有关复合函数定义域问题我们可以分成以下几种常见题型: (一)求复合函数表达式; (二)求复合函数相关定义域; (三)复合函数的单调性; (四)函数性质等与复合函数结合。 新课程中复合函数相关题: 7,如果t t t g t t t f -= += 1)(,1)(,证明:)(2)()(2 t g t g t f -=-。 8、已知函数)(x f 与)(x g 分别由下表给出,那么 _____________________))1((=f f _____________________))2((=g f _____________________))3((=f g _____________________))4((=g g 9、设函数32)(+=x x f ,函数53)(-=x x g ,求))(()),((x f g x g f 。 7、已知)(x f 是一个定义在R 上的函数,求证:(1))()()(x f x f x g -+=是偶函数;(2) )()()(x f x f x h --=是奇函数。 20、求满足下列条件的函数)(x f 的解析式: (1)23)1(+=+x x f ;(2)13)2(2 +=x x f 。

一次函数的概念和性质

课题一次函数的概念及其性质 一、本次课授课目的及考点分析:授课目的: 1、掌握一次函数的定义、图象和主要性质; 2、了解一次函数与正比例函数的关系; 3、会根据已知条件求出一次函数的解析式.结合例题培养学生观察、归纳的思维和渗透数形结合思想. 教学重点: 会根据已知条件求出一次函数的解析式; 教学难点: 在y=kx+b中,k和b的数与形的联系; 二、本次课的内容:一次函数的概念、一次函数的图像、一次函数的性质 教学过程 一、错题回顾: 二、教授新课: (一)复习 1.写出正比例函数的解析式. 2.正比例函数的图象是什么形状?当k>0,k<0时,图形的位置怎样? (二)新课 这些函数的共同的特点都是含自变量的一次式. (1)一次函数的一般形式:一般地.如果y=kx+b①(k,b是常数,k≠0).那么y叫做x的一次函数. (2)一次函数与正比例函数的关系.当b=0时,①式为y=kx是正比例函数.所以,正比例函数是一次函数的特殊情况. (3)两个条件确定一次函数式.因为一次函数含有两个系数k,b.而要求两个系数k,b需要列出两

个独立且不矛盾的方程,也就是说要想求出一个一次函数式,需要两个条件. 例1已知x是自变量,a,b是常量,下面各式中,是x的一次函数的是[ ]. (A)(1) (B)(1),(5) (C)(1),(2),(4) (D)(1),(2),(4),(6) 这六个式子是 (1)y=3x+5;(2)3x+5;(3)y=3x2+5; 分析:(3)是二次函数,(5)是分式函数,这两个都不是一次函数.容易被认为不是一次函数的是(4)3a+5x,因为其中没有y,即不是y=3a+5x形式.其实3a+5x本身就是x的函数,y=3a+5x只是用字母y来表示3a+5x而已,所以本题应选(D). 例2已知y是x的一次函数,当x=3时,y=5;当x=2时,y=2;则x=-2时,y=______. 解:设此一次函数式为y=kx+b.由已知,可列出方程组 所求的一次函数为y=3x-4,所以x=-2时,y=3(-2)-4=-10. (4)一次函数图象与正比例函数的图象的关系. 我们从下面的列表,观察、归纳.

新教材:《函数的概念与性质》能力提高卷

新教材:《函数的概念与性质》能力提高卷 一.选择题(共8小题) 1.已知函数f(x)的定义域为(0,+∞),且,则f(x)=()A.B. C.D. 1.B【解析】由,①以替换x,得,②把②代入①,可得 ,即.∴f(x)(x>0).故选:B. 2.已知函数f(x)=4x2+kx﹣1在区间[1,2]上是单调函数,则实数k的取值范围是()A.(﹣∞,﹣16]∪[﹣8,+∞)B.[﹣16,﹣8] C.(﹣∞,﹣8)∪[﹣4,+∞)D.[﹣8,﹣4] 2.A【解析】函数f(x)=4x2+kx﹣1的对称轴为x, 若f(x)在区间[1,2]上是单调增函数,可得1,解得k≥﹣8; 若f(x)在区间[1,2]上是单调减函数,可得2,解得k≤﹣16. 综上可得k的范围是[﹣8,+∞)∪(﹣∞,﹣16].故选:A. 3.已知函数f(x)=log2x+1的定义域为[1,2],g(x)=f2(x)+f(x2)+m,若存在实数a,b,c∈{y|y =g(x)},使得a+b<c,则实数m的取值范围是() A.m B.m<2 C.m<3 D.m 3.【解析】f(x)的定义域为[1,2],由,解得1≤x;∴g(x)=f2(x)+f(x2)+m的定义域为[1,].g(x)=f2(x)+f(x2)+m1+log2x2+m4log2x+2+m.令log2x=t,∵x∈[1,],∴t∈[0,],则h(t)=t2+4t+2+m=(t+2)2+m﹣2,当t∈[0,]时为增函数,∴h(t)min=h(0)=2+m,h(t)max=h()m.∵存在实数a,b,c∈{y|y=g(x)},使得a+b<c,∴2h(t)min<h(t)max,即4+2m m.解得:m.故选:D. 4.设函数,则使得f(2x)+f(4x﹣3)>0成立的x的取值范围是()A.(﹣1,1)B.C.D.

高一必修一数学-复合函数定义域

复合函数的定义域 讲解内容: 复合函数的定义域求法 讲解步骤: 第一步:函数概念及其定义域 函数的概念:设是,A B 非空数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一确定的数()f x 和它对应,那么就称:f A B →为集合A 到集合B 的函数,记作:(),y f x x A =∈。其中x 叫自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值. 第二步:复合函数的定义 一般地:若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数. 例如: 2()35,()1f x x g x x =+=+; 复合函数(())f g x 即把()f x 里面的x 换成()g x ,22 (())3()53(1)538f g x g x x x =+=++=+ 问:函数()f x 和函数(5)f x +所表示的定义域是否相同?为什么?(不相同;原因:定义域是 求x 的取值范围,这里x 和5x +所属范围相同,导致它们定义域的范围就不同了。) 第三步:介绍复合函数的定义域求法 例1. 已知()f x 的定义域为](3,5-,求函数(32)f x -的定义域; 解:由题意得 35x -<≤ 3325x ∴-<-≤ 137x -<≤ 1 7 33x ∴-<≤ 所以函数(32)f x -的定义域为17,33? ?- ??? . 练1.已知)(x f 的定义域为]30(,,求)2(2x x f +定义域。 解 因为复合函数中内层函数值域必须包含于外层函数定义域中,即 ???≤≤->-+?≤+<13023202320222 x x x x x x x x x ,或

函数概念及其基本性质

第二章函数概念与基本初等函数I 一. 课标要求: 函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题. 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成 的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域, 2. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 3.通过具体实例,了解简单的分段函数,并能简单应用. 4. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 5. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法. 6.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 7.了解指数函数模型的实际背景.理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点). 8.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点). 9.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义. 10.通过实例,了解幂函数的概念,结合五种具体函数 1 312 ,,, y x y x y x y x - ====的 图象,了解它们的变化情况 11.通过应用实例的教学,体会指数函数是一种重要的函数模型. 12. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例. 二. 编写意图与教学建议 1.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学. 2..教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,要准确把握这方面的要求,防止拨高教学. 3. 函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.

《复合函数及其定义域》专题

《复合函数及其定义域》专题 2014年( )月( )日 班级 姓名 成大事不在于力量多少,而在能坚持多久。 【例】 已知y 与x -3成正比例,当x =4时,y =3. (1)写出y 与x 之间的函数关系式; (2)y 与x 之间是什么函数关系; 已知y 与x 2成正比例,并且当x =-1时,y =-3. 求: y 与x 的函数关系式; 【复合函数的定义】对于两个函数()y f u =和()u g x =,通过中间变量u ,y 可以表示成_____的函数,那么称它为函数()y f u =和()u g x =的_______,记作_______ 简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数. 例:f ( x + 1 ) = (x + 1)2 可以拆成y = f ( u ) = u 2 , u = g ( x ) , g ( x ) = x + 1 ,即可以看成f ( u ) = u 2 与g ( x ) = x + 1 两个函数复合而成。 【类型一】 1.已知函数f ( x) =)3)(1(x x -+,求f ( x + 1 )的值 2.求函数f ( x) =)3)(1(x x -+的定义域,求f ( x + 1 )的定义域 3.已知f ( x) 的定义域为[-1,3],求f ( x + 1 )的定义域

【练习一】 1.已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域. 2. 若函数)(x f y =的定义域[-1,2],求)1(2-=x f y 的定义域。 3. 设函数的定义域为,则 (1)函数的定义域为________。 (2)函数 的定义域为__________。 【归纳一】已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 【类型二】 1.已知f ( x + 1 )的定义域为[-2,2],求,f (x)的定义域 请仔细对比【类型一】第3题

函数的概念及性质

函数的概念及性质 概览:概念,表示方法,图象和性质 1. 概念 函数的定义:传统定义(初中的),近代定义。自变量,对应法则,定义域,值域〖两域都是集合,回答时要正确表示。〗 对应法则f 是函数的核心,是对自变量的“操作”,如)(x f 是对x 进行“操作”,而)(2x f 是对2x 进行“操作”,)2(f 是对2进行“操作” 函数的三要素,或两要素:定义域、对应法则 判定两个函数是否相同。〖定义域和值域分别相同的两个函数不一定是同一函数,例x y x y 2,==;又如])1,0[(,2∈==x x y x y 定义域都取〗 区间 定义,名称,符号,几何(数轴)表示 映射 定义,符号,与函数的异同 2. 函数的表示方法 列表法,图象法,解析法 分段函数 定义域、值域、最值 求函数解析式的常用方法:配凑,换元,待定系数,函数方程(消去法) 3. 函数的图象 作图的步骤:定义域,列表,描点,连线〖注意抓住特征点,如边界点,与两轴的交点等;边界点注意空心/实心〗 带有绝对值符号的函数 定义域,分段脱去绝对值,作图 4. 函数的性质 求定义域 分式,偶次根式,对数的真数和底数,复合函数,实际问题中的实际意义。 求值域 由定义域和对应法则决定,故应先考虑定义域。方法:观察分析,例 函数211)(x x f +=;配方;换元;判别式;单调性;数形结合(图象);基本不等式;反求法(反函数法)等。 单调性 对于定义域内的某个区间而言。 单调区间若不含端点,则必须写成开区间,若含端点,则写成闭区间,通常写成开区间也可。 一个函数可能有多个独立的单调区间,应用逗号相隔回答,不用并集,而函数的两域都是整体性的集合,若有必要则要用并集回答。 图象特征:从左到右升/降。 证明步骤:设值,作差,定号,作答。 判断函数单调性的有关规律。 如增加增得增,减加减得减;注意:增乘增未必增,减乘减未必减(还要看各自的函数值是否同正或同负) 奇偶性

复合函数的概念和性质

复合函数的概念和性质 一、知识点内容和要求: 理解复合函数的概念,会求复合函数的单调区间 二、教学过程设计 (一)复习函数的单调性 引例:函数y=f(x)在上单调递减,则函数(a>0,且a≠1)增减性如何? (二)新课 1、复合函数的概念 如果y是a的函数,a又是x的函数,即y=f(a),a=g(x),那么y关于x的函数y=f[g(x)] 叫做函数y=f(x)和a=g(x)的复合函数,其中a是中间变量,自变量为x,函数值y。 例如:函数是由复合而成立。 函数是由复合而成立,a是中间变量。 2、复合函数单调性 由引例:对任意a,都有意义(a>0且a≠1)且。 对任意, 当a>1时,单调递增,当0<a<1时,单调递减。 ∵当a>1时, ∵y=f(u)是上的递减函数∴ ∴ ∴是单调递减函数 类似地, 当0<a<1时, 是单调递增函数 一般地, 定理:设函数u=g(x)在区间M上有意义,函数y=f(u)在区间N上有意义,且当X∈M时,u∈N。有以下四种情况: (1)若u=g(x)在M上是增函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是增函数;

(2)若u=g(x)在M上是增函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是减函数;(3)若u=g(x)在M上是减函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是减函数;(4)若u=g(x)在M上是减函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是增函数。即:同增异减。 注意:内层函数u=g(x)的值域是外层函数y=f(u)的定义域的子集。 例1、讨论函数的单调性 (1)(2) 解:① 又是减函数 ∴函数的增区间是(-∞,2],减区间是[2,+∞)。 ②x∈(-1,3) 令 ∴x∈(-1,1]上,u是递增的,x∈[1,3)上,u是递减的。 ∵是增函数 ∴函数在(-1,1]上单调递增,在(1,3)上单调递减。 注意:要求定义域 练习:求下列函数的单调区间。 1、(1)减区间,增区间; (2)增区间(-∞,-3),减区间(1,+∞); (3)减区间,增区间;

函数概念与性质练习题目大全

函数概念与性质练习题大全 函数定义域 1、函数x x x y +-=)1(的定义域为 A . {}0≥x x B .{}1≥x x C .{}{}01 ≥x x D .{}10≤≤x x 2、函数x x y +-=1的定义域为 A . {}1≤x x B .{}0≥x x C .{}01≤≥x x x 或 D .{}10≤≤x x 3、若函数)(x f y =的定义域是[]2,0,则函数1 ) 2()(-= x x f x g 的定义域是 A . []1,0 B .[)1,0 C .[)(]4,11,0 D .()1,0 4、函数的定义域为)4323ln(1 )(22+--++-= x x x x x x f A . (][)+∞-∞-,24, B .()()1,00,4 - C .[)(]1,00,4 - D .[)()1,00,4 - 5、函数)20(3)(≤<=x x f x 的反函数的定义域为 A . ()+∞,0 B .(]9,1 C .()1,0 D .[)+∞,9 6、函数4 1lg )(--=x x x f 的定义域为 A . ()4,1 B .[)4,1 C .()()+∞∞-,41, D .(]()+∞∞-,41, 7、函数2 1lg )(x x f -=的定义域为 A . []1,0 B .()1,1- C .[]1,1- B .()()+∞-∞-,11, 8、已知函数 x x f -= 11)(的定义域为M ,)1ln() (x x g +=的定义域为N ,则=N M A . {}1->x x B .{}1

函数概念及其基本性质

第二章函数概念与基本初等函数 I 一. 课标要求:函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重 要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题. 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的 三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域, 2.了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 3.通过具体实例,了解简单的分段函数,并能简单应用. 4.结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 5.学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法. 6.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 7.了解指数函数模型的实际背景. 理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点). 8.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用. 通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点). 9.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义. 1 10.通过实例,了解幂函数的概念,结合五种具体函数y = x,y= x3,y=x-1,y = x2的图象,了解它们的变化情况 11.通过应用实例的教学,体会指数函数是一种重要的函数模型. 12. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例. 二. 编写意图与教学建议1.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学. 2..教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,要准确把握这方面的要求,防止拨高教学. 3.函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法. 4.教材将映射作为函数的一种推广,进行了逻辑顺序上的调整,体现了特殊到一般的思维

高一函数的概念与性质

函数概念与性质 一、选择题(每小题5分,共50分) 1、下列哪组中的两个函数是同一函数 (A )2y =与y x = (B )3y =与y x = (C )y =2y = (D )y =2 x y x = 2、下列集合A 到集合B 的对应f 是映射的是 (A ){}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方; (B ){}{}f B A ,1,0,1,1,0-==:A 中的数开方; (C ),,A Z B Q f ==:A 中的数取倒数; (D ),,A R B R f +==:A 中的数取绝对值; 3、已知函数11)(22-+ -=x x x f 的定义域是( ) (A )[-1,1] (B ){-1,1} (C )(-1,1) (D )),1[]1,(+∞--∞ 4、若函数)(x f 在区间(a ,b )上为增函数,在区间(b ,c )上也是增函数,则函数)(x f 在区间(a ,c )上( ) (A )必是增函数 (B )必是减函数 (C )是增函数或是减函数 (D )无法确定增减性 5、)(x f 是定义在R 上的奇函数,下列结论中,不正确... 的是( ) (A )0)()(=+-x f x f (B ))(2)()(x f x f x f -=-- (C ))(x f ·)(x f -≤0 (D )1) ()(-=-x f x f 6、函数()f x 的定义域为),(b a ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则 ()f x 在),(b a 上是

(A )增函数 (B )减函数 (C )奇函数 (D )偶函数 7、若函数()(()0)f x f x ≠为奇函数,则必有 (A )()()0f x f x ?-> (B )()()0f x f x ?-< (C )()()f x f x <- (D )()()f x f x >- 8、设偶函数f(x)的定义域为R ,当x ],0[+∞∈时f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( ) (A )f(π)>f(-3)>f(-2) (B )f(π)>f(-2)>f(-3) (C )f(π)

复合函数定义域三种形式解法

先介绍几个名词:(能理解最好,如果感觉这些名词有点晕,你可以跳过) 【定义域】:就是初中我们所学的,函数y=f(x)的自变量x的取值范围;【值域】:函数y=f(x)的因变量y的取值范围; 【显函数】:俗称常见函数,函数解析式是明确的,例如:y=f(x)=2x2+3x-5; 【隐函数】:俗称抽象函数,函数解析式是不明确的,就用y=f(x)表示,具体f(x)是什么内容是隐藏的; 【复合函数】:如果说y=f(x)是一个简单的抽象函数,那么把自变量x 用一个函数g(x)来代替,就称y=f(g(x))为复合的抽象函数,习惯上称y=f(t)是外函数,t=g(x)为内函数。 讲解之前提醒很关键的一句:凡是函数的定义域,永远是指自变量x 的取值范围。 【题型一】已知抽象函数y=f(x)的定义域[m,n],如何求复合抽象函数y=f(g(x))的定义域? 思路分析:本题型是已知y=f(x)的自变量x的范围,求y=f(g(x))的自变量x的范围,其中的关键是,后者的g(x)相当于前者的x。 解决策略:求不等式m≤g(x)≤n的解集,即为y=f(g(x))的定义域【例题1】已知函数y=f(x)的定义域[0,3],求函数y=f(3+2x)的定义域. 解:令t=3+2x,∵y=f(x)的定义域[0,3],∴y=f(t)的定义域也为[0,3],

即t=3+2x∈[0,3], 关于抽象复合函数定义域的求法 说明:内函数g(x)=3+2x,通过令t=3+2x做了一个换元,此处换元不能写为令x=3+2x。原因是y=f(x)中的x与 y=f(3+2x)的x虽然长得一样,但是意义不同,如果令x=3+2x,则等号两边的x就是一模一样了,x只能为-3了。 【题型二】已知复合抽象函数y=f(g(x))定义域[m,n],如何求抽象函数y=f(x)的的定义域? 思路分析:本题型是已知y=f(g(x))的自变量x的范围,求y=f(x)的自变量x的范围,其中的关键是,前者的 g(x)相当于后者的x。 解决策略:求内函数t=g(x)在区间[m,n]的值域(t的取值范围),即为y=f(x)的定义域 【例题2】已知函数y=f(2x-1)的定义域[0,3],求函数y=f(x)的定义域. 解:∵y=f(2x-1)的定义域[0,3],∴0≤x≤3,令t=2x-1,∴t=2x-1∈[-1,5] 故,函数y=f(t)的定义域为t∈[-1,5], 故,函数y=f(x)的定义域为x∈[-1,5] 说明:函数y=f(x)与y=f(t)是同一个函数,与单个自变量是x还是t 无关。另外,题型二是题型一的逆向题目。

1.1 函数的概念及其基本性质

第一章 函数 1.1 函数的概念及其基本性质(4课时) 教学要求:理解集合、区间、邻域及映射的概念,理解函数的概念,掌握函数的表示方法,了解函数的基本性质,理解复合函数及分段函数的概念,了解反函数及隐函数的概念,掌握基本初等函数的性质及图形,会建立简单应用问题中的函数关系式。 教学重点难点:重点是理解集合、映射及函数的概念;难点是理解反函数及隐函数的概念。 教学过程: 一、集合及其运算 1、集合概念 (1) 什么是集合? 所谓集合是指具有某种特定性质的事物的总体,组成这个集合的事物称为该集合的元素. (2) 集合的表示法 a 列举法:就是把集合的元素一一列举出来表示.由元素n a a a ,,21组成的集合A,可表示成 A={n a a a ,,21} b 描述法:若集合M 是由具有某种性质P 的元素x 的全体所组成,就可表示成 }|{P x x M 具有性质= (3) 集合元素的三大特性:确定性、互异性、无序性. (4) 元素与集合,集合与集合之间的关系:属于、包含、子集、真子集、空集. 2、集合的运算 (1) 并集 {| }A B x x A x B ?=∈∈或;(2) 交集 {| } A B x x A x B ?=∈∈且 (3) 差集 \{| }A B x x A x B =∈?但 (4) 全集与补集(或余集) 全集用I 表示,称A I \为A 的补集记作C A . 即 \{| }C A I A x x I x A ==∈?但 集合的并、交、补满足下列法则: (1) 交换律:A B B A ?=?,A B B A ?=? (2) 结合律:)()(C B A C B A ??=??,)()(C B A C B A ??=?? (3) 分配律:)()()(C B C A C B A ???=??, )()()(C B C A C B A ???=?? (4) 对偶律:C C C B A B A ?=?)(,C C C B A B A ?=?)( (5)幂等律:A A A ?=A A A ?=;(6)吸收律:A A ?Φ=A A ?Φ= 两个集合的直积或笛卡儿乘积 {(,)| }A B x y x A y B ?=∈∈ 且 二、区间与邻域 1、映射与领域 区间:开区间 ),(b a 、闭区间 ],[b a 、半开半闭区间],(b a ,),[b a 、有限,无限区间. 邻域:)(a U 或}|{),(δδδ+<<-=a x a x a U a :邻域的中心,δ:邻域的半径 去心邻域: }||0|{),(δδ<-<=a x x a U 左δ邻域),(a a δ-、右δ邻域),(δ-a a . 2、映射概念 定义 设,A B 是两个非空集合,如果存在一个法则f ,使得对A 中的每一个元素x .按法则f ,在B 中有唯一确定的元素y 与之对应,则称f 为从A 到B 的映射,记作 f B →:A 或,f y x A →∈:x| 其中,并y 称为元素x 的像,记作)(x f ,即 )(x f y =,而x 称为元素y 的一个原像。 映射f 的定义域:f D A =,映射f 的值域:(){()|}f R f A f x x A ==∈

(人教版)北京市必修第一册第三单元《函数概念与性质》测试题(答案解析)

一、选择题 1.已知函数()f x 为定义在R 上的奇函数,当0x ≤时,()(1)ln f x x -=+,则()1f =( ) A .ln 2- B .ln 2 C .0 D .1 2.已知定义域为R 的函数()f x 在[)2,+∞单调递减,且(4)()0f x f x -+=,则使得不等式( ) 2 (1)0f x x f x +++<成立的实数x 的取值范围是( ) A .31x -<< B .1x <-或3x > C .3x <-或1x > D .1x ≠- 3.已知0.3 1()2 a =, 12 log 0.3b =, 0.30.3c =,则a b c ,,的大小关系是( ) A .a b c << B .c a b << C .a c b << D .b c a << 4.函数2()1sin 12x f x x ?? =- ?+?? 的图象大致形状为( ). A . B . C . D . 5.奇函数()f x 在(0)+∞, 内单调递减且(2)0f =,则不等式(1)()0x f x +<的解集为( ) A .() ()(),21,02,-∞--+∞ B .() ()2,12,--+∞ C .()(),22,-∞-+∞ D .()()(),21,00,2-∞-- 6.已知函数()() 22 6 5m m m f x x -=--是幂函数,对任意1x ,()20,x ∈+∞,且12x x ≠, 满足 ()()1212 0f x f x x x ->-,若a ,b R ∈,且0a b +>,则()()f a f b +的值( ) A .恒大于0 B .恒小于0 C .等于0 D .无法判断 7.已知函数(1)f x +为偶函数,()f x 在区间[1,)+∞上单调递增,则满足不等式 (21)(3)f x f x ->的x 的解集是( )

(完整版)几种复合函数定义域的求法

配凑法就是在)]([x g f 中把关于变量x 的表达式先凑成)(x g 整体的表达式,再直接把)(x g 换成x 而得)(x f 。 f(x -1x )=x 2+1x 2,函数f(x)的解析式 换元法就是先设t x g =)(,从中解出x (即用t 表示x ),再把x (关于t 的式子)直接代入)]([x g f 中消去x 得到)(t f ,最后把)(t f 中的t 直接换成x 即得)(x f ,这种代换遵循了同一函数的原则。 f(x +1)=x 2 +x,函数f(x)的解析式: 复合函数的定义域 复合函数的定义 一般地:若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数. 例如: 2()35,()1f x x g x x =+=+; 复合函数(())f g x 即把()f x 里面的x 换成()g x , 22(())3()53(1)538f g x g x x x =+=++=+ 问:函数()f x 和函数(5)f x +所表示的定义域是否相同?为什么?(不相同;原因:定义域是 求x 的取值范围,这里x 和5x +所属范围相同,导致它们定义域的范围就不同了。)说明: ⑴复合函数的定义域,就是复合函数(())y f g x =中x 的取值范围。 ⑵x 称为直接变量,u 称为中间变量,u 的取值范围即为()g x 的值域。 ⑶))((x g f 与))((x f g 表示不同的复合函数。 设函数53)(,32)(-=+=x x g x x f ,求))(()),((x f g x g f 复合函数的定义域求法 .已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。

最全函数概念及基本性质知识点总结及经典例题

函数及基本性质 一、函数的概念 (1)设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到 B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. (2)函数的三要素:定义域、值域和对应法则. 注意1:只有定义域相同,且对应法则也相同的两个函数才是同一函数 例1.判断下列各组中的两个函数是同一函数的为( ) ⑴3) 5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+= x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =; ⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。 A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2:求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数.如:943)(2-+=x x x f ,R x ∈ ②()f x 是分式函数时,定义域是使分母不为零的一切实数.如:()6 35 -= x x f ,2≠x ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.如()1432+-=x x x f , 13 1 >=x x x f a ,当对数或指数函数的底数中含变量时,底数须大 于零且不等于1。如:( ) 2 12 ()log 25f x x x =-+ ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零.如:2)32()(-+=x x f

高中数学 函数概念及复合函数教时教案 人教版

第二教时 教材:函数概念及复合函数 目的:要求学生从映射的观点去理解函数的概念,明确决定函数的三个要素。 过程: 一、复习:(提问) 1.什么叫从集合到集合上的映射? 2.传统(初中)的函数的定义是什么?初中学过哪些函数? 二、函数概念: 1.重复初中时讲的函数(传统)定义:“定义域”“函数值”“值域”的定义。 2.从映射的观点定义函数(近代定义): 1函数实际上就是集合A到集合B的一个映射f:A B这里A, B非空。 2A:定义域,原象的集合 B:值域,象的集合(C)其中C B f:对应法则x A y B 3函数符号:y=f(x) ——y是x的函数,简记f(x) 3.举例消化、巩固函数概念:见课本 P51—52 一次函数,反比例函数,二次函数 注意:1务必注意语言规范 2二次函数的值域应分a>0, a<0 讨论 4.关于函数值f(a) 例:f(x)=x2+3x+1 则f(2)=22+3×2+1=11 注意:1在y=f(x)中f表示对应法则,不同的函数其含义不一样。 2f(x)不一定是解析式,有时可能是“列表”“图象”。 3f(x)与f(a)是不同的,前者为函数,后者为函数值。 三、函数的三要素:对应法则、定义域、值域 只有当这三要素完全相同时,两个函数才能称为同一函数。 例一:判断下列各组中的两个函数是否是同一函数?为什么? 1. 3 )5 )( 3 ( 1+ - + = x x x y5 2 - =x y解:不是同一函数,定义域不同 2。1 1 1 - + =x x y)1 )( 1 ( 2 - + =x x y解:不是同一函数,定义域不同 3。x x f= ) (2 ) (x x g=解:不是同一函数,值域不同4.x x f= ) (33 ) (x x F=解:是同一函数 5.2 1 )5 2 ( ) (- =x x f5 2 ) ( 2 - =x x f解:不是同一函数,定义域、值域都不同例二: P55 例三(略) 四、关于复合函数 设f(x)=2x 3 g(x)=x2+2 则称f[g(x)](或g[f(x)])为复合函数。 f[g(x)]=2(x2+2)3=2x2+1 g[f(x)]=(2x3)2+2=4x212x+11 例三:已知:f(x)=x2x+3 求:f( x 1 ) f(x+1) 解:f( x 1 )=( x 1 )2 x 1 +3 f(x+1)=(x+1)2(x+1)+3=x2+x+3 例四:课本P54 例一 五、小结:从映射观点出发的函数定义,符号f(x) 函数的三要素,复合函数 六、作业:《三维设计》P48-50 课时2 函数(一)除.“定义域”等内容

相关文档
最新文档