双阈值能量检测的无线电网络协作频谱感知

双阈值能量检测的无线电网络协作频谱感知
双阈值能量检测的无线电网络协作频谱感知

认知无线电中频谱感知技术研究+Matlab仿真

毕业设计(论文)题目:认知无线电中频谱感知技术研究专业: 学生姓名: 班级学号: 指导教师: 指导单位: 日期:年月日至年月日

摘要 无线业务的持续增长带来频谱需求的不断增加,无线通信的发展面临着前所未有的挑战。无线电频谱资源一般是由政府统一授权分配使用,这种固定分配频谱的管理方式常常会出现频谱资源分配不均,甚至浪费的情形,这与日益严重的频谱短缺问题相互矛盾。认知无线电技术作为一种智能频谱共享技术有效的缓解了这一矛盾。它通过感知时域、频域和空域等频谱环境,自动搜寻已授权频段的空闲频谱并合理利用,达到提高现有频谱利用率的目的。频谱感知技术是决定认知无线电能否实现的关键技术之一。 本文首先介绍了认知无线电的基本概念,对认知无线电在 WRAN 系统、UWB 系统及 WLAN 系统等领域的应用分别进行了讨论。在此基础上,针对实现认知无线电的关键技术从理论上进行了探索,分析了影响认知网络正常工作的相关因素及认知网络对授权用户正常工作所形成的干扰。从理论上推导了在实现认知无线电系统所必须面对的弱信号低噪声比恶劣环境下,信号检测的相关方法和技术,并进行了数字滤波器的算法分析,指出了窗函数的选择原则。接着详细讨论了频谱检测技术中基于发射机检测的三种方法:匹配滤波器检测法、能量检测法和循环平稳特性检测法。为了检验其正确性,借助 Matlab 工具,在Matlab 平台下对能量检测和循环特性检测法进行了建模仿真,比较分析了这两种方法的检测性能。研究结果表明:在低信噪比的情况下,能量检测法检测正确率较低,检测性能远不如循环特征检测。 其次还详细的分析认知无线电的国内外研究现状及关键技术。详细阐述了频谱感知技术的研究现状和概念,并指出了目前频谱感知研究工作中受到关注的一些主要问题,围绕这些问题进行了深入研究。 关键词:感知无线电;频谱感知;匹配滤波器感知;能量感知;合作式感知;

认知无线电频谱感知之功率检测matlab代码

能量检测仿真实验代码: clear all;clc; n = 5; ps = 1; SNR1 = -5; SNR2 = -8; SNR3 = -10; % Sim_Times=10000; %Monter-Carlo times % m=5; T=0.001; % 信号带宽W W=5*10^4; % 采样频率 Fs = 2*W; m = T*W; n = 2*T*W; % F0=W; % Fs=2; % Sig=sqrt(2)*sin(2*pi*F0/Fs*t); %single tone samples, Fs=2F0 % 实际信噪比 snr1 = 10.^(SNR1/10); snr2 = 10.^(SNR2/10); snr3 = 10.^(SNR3/10); pn = (1/snr1)*ps; mu0 = n*pn; sigma0 = sqrt(2*n)*pn; mu = n*(pn+ps); sigma = sqrt(2*n*(pn^2+2*pn*ps)); % [noi,x0,mu0,sigma0,m0] = cnoi( n,pn ); % sig = randn(n,1); sig = 1; % 重复次数 count = 5000; % 能量检测判决门限 lambda = [200:20:600]; lambda1 = [500:20:900]; lambda2 = [700:30:1300]; % 置信度判决参数 % tt = [-5:0.4:3]; % cc = 10.^tt; % tt1 = [-1:0.1:1]; % cc1 = 10.^tt; % cc2 = [-0.01:0.001:0.01];

认知无线电学习笔记二-频谱感知方法总结

研究初期。大量文献。判断有无信号传输。识别信号类型。 1)匹配滤波器 主用户信号已知时最佳。感知速度快。但对信号已知信息的要求高,感知单元的实现复杂度极高(需要对大量类型信号的匹配滤波)。 2)基于波形的感知 已知主用户信号的patterns(用于同步等的前导序列等等),对观测数据做相关。在稳定性和收敛速度上比基于能量检测的感知要好。 判决门限的选取。信号功率因信道传输特性和收、发信机之间的距离的不确定性而难以估计。实际中,可由特定的虚警概率给出门限,此时只需知道噪声方差。 3)基于循环平稳性的感知 信号的平稳特征由信号或信号统计量(期望、自相关等)周期性引起。利用循环相关函数(而非功率谱密度)检测信号,可将噪声与信号分离。因为噪声广义平稳无相关量,而调制信号由于循环平稳而存在谱相关。循环谱密度(CSD)函数的计算是对循环自相关函数做傅里叶变换。循环频率与信号的基本频率一致时,CSD函数输出峰值。 4)基于能量检测的感知 低运算复杂度和低实现复杂度。缺点在于:判决门限的选择困难;无法区分能量来源是信号还是噪声; 低SNR条件下性能差。噪声水平的动态估计,降秩特征值分解法。GSM时隙能量检测,需与GSM系统同步,检测时间限制在时隙间隔内。FFT之后频域能量检测。检测概率在各种信道条件下的闭式解。 5)无线电识别 识别主用户采用的传输技术。获得更多的信息,更高的精度。比如蓝牙信号的主用户位置局限在10m 之内。特征提取和归类技术。各种盲无线电识别技术。 6)其它感知方法 多窗口谱估计。最大似然PSD估计的近似,对宽带信号接近最优。计算量大。 Hough变换。 基于小波变换的估计。检测宽带信道PSD的边界。 协同感知—— 协同(合作、协作)用来应对频谱感知中噪声不确定性、衰落和阴影等问题。解决隐终端问题,降低感知时间。提出有效的信息共享算法和处理增加的复杂度是协同感知要解决的难题。控制信道可利用:1)指配频带;2)非授权频带;3)衬于底层的UWB。 共享信息可以是软判决或硬判决结果。(基于能量检测的)感知合并方式:等增益合并、选择式合并、Switch & Stay(扫描式)合并。协同算法应:协议开支小;鲁棒性强;引入延迟小。 非协同感知,优点为计算和实现简单,缺点为存在隐终端问题、多径和阴影的影响。 协同感知,优点为更高的精度(接近最优)、可解决阴影效应和隐终端问题;缺点为复杂度高、额外通信流量开支和需要控制信道。 协同感知的两种实现形式: 1)中心式感知。中心单元广播可用频谱信息或直接控制CR通信。AP。硬信息合并、软信息合并。 2)分布式感知。彼此共享信息,自己对频谱做出判决。不需要配置基础结构网络。 外部感知—— 外部感知网络将频谱感知结果广播给CR。优点:可解决隐终端问题和衰落及阴影引起的不确定性;CR无需为感知分配时间,提高频谱效率;感知网络可以是固定的(避免电池供电)。外部感知可以是连续的或周期性的。感知数据传递给中心节点进一步处理,并将频谱占用信息共享。

对于频谱分析能量守恒的验证

对于频谱分析能量守恒的验证 A.环境:MA TLAB fftHvsL.m程序: %fftHvsL.m程序开始,MATLAB库函数fft()和手工函数对信号的频谱分析caiyangHZ=1000; dt=1/caiyangHZ; nfft=256; df=caiyangHZ/nfft; tfinal=dt*(nfft-1); t = 0:dt:tfinal; xinhaohz1=100*df; xinhaohz2=50*df; f1=3; f2=4; x=f1*sin(2*pi*xinhaohz1*t)+f2*sin(2*pi*xinhaohz2*t); m=8; N=256; nxd=bin2dec(fliplr(dec2bin([1:N]-1,m)))+1; y=x(nxd); for mm=1:m Nz=2^mm;u=1; WN=exp(-i*2*pi/Nz); for j=1:Nz/2 for k=j:Nz:N kp=k+Nz/2; t=y(kp)*u; y(kp)=y(k)-t; y(k)=y(k)+t; end u=u*WN; end end %自己编的FFT跟直接调用的函数运算以后的结果进行对比 y1=fft(x,256); Pyy=(abs(y)/nfft).^2; f = df*(0:127); figure(1); subplot(1,2,1);plot(f,Pyy(1:128)) axis([0,600,0,4.5]) title('.m by hand') xlabel('Frequency (Hz)') Pyy=(abs(y1)/nfft).^2;

认知无线电频谱检测

Xilinx大学生竞赛项目申请报告提纲及说明 1. 项目背景 (1)项目名称:认知无线电的频谱检测 (2) 项目背景:随着无线通信需求的不断增长,可用的频谱资源越来越少,呈现日趋紧张的状况;另一方面,人们发现 全球授权频段尤其是信号传播特性较好的低频段的频谱利 用率极低。认知无线电技术为解决频谱利用率低的问题提 供了行之有效的方法。由于认知无线电在使用空闲频段进 行通信的同时不断地检测授权用户的出现,一旦检测到授 权用户要使用该频段,认知无线电用户便自动退出并转移 到其他空闲频段继续通信,确保在不干扰授权用户的情况 下,与他们进行频谱共享。这样一来,在没有增加新频段 的情况下提升了用户量,且保证授权用户和认知用户通信 的可靠性,大大提高了频谱的使用效率。 (3)项目内容:本次课题主要研究认知无线电频谱检测的FPGA 实现。目前最为常用的认知无线电频谱检测方法是能量检 测。我们将一路电视信号下变频至基带信号再进入电路调 理模块对信号进行50欧匹配,并对信号进行放大,然后用 宽带A/D对信号进行采样,将采样后的数字信号做8点FFT 运算,再通入能量和累加电路,最后通过能量阈值判决电 路,判断频带的利用情况,从而找到频谱空穴,为认知无 线电的功能实现打下基础。 (4)项目难点:(1)高效低成本的FFT模块的设计与实现。 (2)累加器和阈值判决电路模块的设计与实现。 (5)项目的开发意义:认知无线电的显著特征是具有认知能 力,认知功能包括频谱感知,频谱分析和频谱判决。频谱 感知用于频谱空穴检测,是认知无线电系统实现的前提之 一。 (6) 硬件开发平台:Spartan 3E Board 2. 频谱感知的背景知识 本次设计以四通道的电视信号为例进行实现,在我国一路电视信号的传输需要8M的带宽,那么传输四路电视信号需要32M的带宽才 能实现。 我们将该四路电视信号进行复信号处理和频谱搬移,使其生成I,Q 两路正交信号,其AD频率采样为32MHZ,为了检测各个通道的频谱

无线电频谱检测技术研究

龙源期刊网 https://www.360docs.net/doc/7818186920.html, 无线电频谱检测技术研究 作者:侯晋军 来源:《科学与财富》2020年第02期 摘要:在我国不断繁荣昌盛的背景下,我国经济的不断发展,科技水平的不断提升,促进了我国的无线电技术的广泛应用,这不仅改善了我们日常生活,还使得我们的生活变得更加便利。在无线电技术应用范围变得愈加广泛的同时,对无线电网管理方面的问题也随之产生,这成为了阻碍无限电技术进一步发展的主要因素。 关键词:无线电;频谱检测;技术 引言 我们通常情况下所提及的无线电技术所指的就是通过运用无线电磁波搭载信息进行传输的一项通信技术,在通电的导线中改变电流的大小会在导线周围产生磁场,变化的磁场又会产生电场从而形成电磁波以无线电波的形式传播出去,利用这个原理可以将电信号进行调制搭载与无线电波上进行传输。 1无线电监测系统的基本原理 频谱监测系统的工作原理十分简单,利用频谱监测系统,能够有效的监测在无线电工作环境下所产生的数据,与此同时,运用频谱监测系统能够有效的检测出限制的频谱系统,并对其加以利用,从而实现对无线电资源的整合与合理地分配和利用,以解决频谱资源紧缺的问题,同时还能在一定程度上减少对无线电监测所产生的影响。运用无线电频谱监测技术的有利之处在于能够减少运用过程中对用户造成的影响,确保用户的正常使用,与此同时还能够对准确的检测出闲置的无线电频谱系统,并加以从分利用。无线电频谱监测技术时无线电监测技术中最有效的、应用范围最广的监测系统,在我们的日程生活中,无线电监测系统扮演者重要的角色,是我们不可或缺的一部分。 2无线电频谱监测关键技术的分类 2.1确定监测频段,合理设置扫描起止频率 设置无线电监测系统相关参数时,相关工作人员应尽可能地设置同种业务扫描频段,并合理设置扫描步进、滤波带宽及起止频率等,以提升无线电监测系统的运营效率。同时,工作人员可根据ITU频谱监测手册中关于频谱占用度测量技术指标的相关规定,科学合理地选择频段、扫描方式以及测量方法等,从而使无线电监测系统的回扫时间满足標准。此外,为进一步保证监测数据的准确性和合理性,工作人员设置连续监测时间时,应尽量合理地延长时间间

频谱感知

https://www.360docs.net/doc/7818186920.html,/article/11-09/422921315975560.html 频谱感知,是指认知用户通过各种信号检测和处理手段来获取无线网络中的频谱使用信息。从无线网络的功能分层角度看,频谱感知技术主要涉及物理层和链路层,其中物理层主要关注各种具体的本地检测算法,而链路层主要关注用户间的协作以及对本地感知、协作感知和感知机制优化3 个方面。因此,目前频谱感知技术的研究大多数集中在本地感知、协作感知和感知机制优化3个方面。文章正是从这3个方面对频谱感知技术的最新研究进展情况进行了总结归纳,分析了主要难点,并在此基础上讨论了下一步的研究方向。 1 本地感知技术 1.1 主要检测算法 本地频谱感知是指单个认知用户独立执行某种检测算法来感知频谱使用情况,其检测性能通常由虚警概率以及漏检概率进行衡量。比较典型的感知算法包括: 能量检测算法,其主要原理是在特定频段上,测量某段观测时间内接收信号的总能量,然后与某一设定门限比较来判决主信号是否存在。由于该算法复杂度较低,实施简单,同时不需要任何先验信息,因此被认为是CR系统中最通用的感知算法。 匹配滤波器检测算法,是在确知主用户信号先验信息(如调制类型,脉冲整形,帧格式)情况下的最佳检测算法。该算法的优势在于能使检测信噪比最大化,在相同性能限定下较能量检测所需的采样点个数少,因此处理时间更短。 循环平稳特征检测算法,其原理是通过分析循环自相关函数或者二维频谱相关函数的方法得到信号频谱相关统计特性,利用其呈现的周期性来区分主信号与噪声。该算法在很低的信噪比下仍具有很好的检测性能,而且针对各种信号类型独特的统计特征进行循环谱分析,可以克服恶意干扰信号,大大提高检测的性能和效率。 协方差矩阵检测算法,利用主信号的相关性建立信号样本协方差矩阵,并以计算矩阵最大、最小特征值比率的方法做出判决。文献[1]提出基于过采样接收信号或多路接收天线的盲感知算法。通过对接收信号矩阵的线性预测和奇异值分解(QR)得到信号统计值的比率来判定是否有主用户信号。 以上这些算法都是对主用户发射端信号的直接检测,基本都是从经典的信号检测理论中移植过来的。此外,近期一些文献从主用户接收端的角度提出了本振泄露功率检测和基于干扰温度的检测。有些文献对经典算法进行了改进,如文献[2]提出了一种基于能量检测-循环特征检测结合的两级感知算法。文献[3]研究了基于频偏补偿的匹配滤波器检测、联合前向和参数匹配的能量检测、多分辨率频谱检测和基于小波变换频谱检测等。表2归纳了文献中提及较多的一些感知算法,并对其优缺点进行了比较。

认知无线电学习笔记三-频谱感知技术研究

认知无线电的频谱感知技术研究 0 引言 随着无线通讯业务的增长,可利用的频带日趋紧张,频谱资源匾乏的题目日益严重。世界各国现行的频率使用政策除分配极少的ISM频段之外,大多采用许可证制度。而获得许可的用户,并非全部都是全天候占用许可频段,一些频带部分时间内并没有用户使用,另有一些偶然才被占用,即使系统频谱使用率低,仍无法将空间的频谱分配给其他系统使用,即无法实现频谱共享。怎样才能进步频谱利用率,在不同区域和不同时间段里有效地利用不同的空闲频道,成为人们非常关注的技术题目。为了解决该题目,Joseph Mito1a于1999年在软件无线电的基础上提出了认知无线电(Cognitive Radio,简称CR)的概念,要实现动态频谱接进,首先要解决的题目就是如何检测频谱空穴,避免对主用户的干扰,也就是频谱感知技术。CR用户通过频谱感知检测主用户是否存在,从而利用频谱空穴。 1 匹配滤波器检测(Matched Filtering) 匹配滤波器是一种最优的信号检测法,由于在输出端它能够使信号的信噪比达到最大。匹配滤波器最大的优点就是能够在短时间里获得高处理增益。但是使用匹配滤波器进行信号检测必须知道被检测的主用户信号的先验知识,比如调制方式、脉冲波形、数据包格式等,假如这些信息不正确就会严重影响其性能,同时匹配滤波器计算量也较大。因此它可以用来检测一些特定的信号,但是每类主用户认知无线电都要有一个专门的接收器,这就增加了系统的资源耗费量和复杂度。 2 能量检测(Energy Detector—Based Sensing) 能量检测是一种较简单的信号非相干检测方法。根据基本假设模型,在高斯加性白噪声(AWGN)信道情况下,采用能量检测法进行主用户信号检测的性能。在AWGN信道非衰落的环境中,可知信道增益h是确定的。在H1下,当接收到的信号超过判决门限进时,判定主用户信号存在。在H0下,当接收信号超过判决门限时,则会作出错误的判定。分别用Pd 和Pf,来表示检测到主用户的概率(检测概率)和错误判定警报的(虚警)概率,对H.Urkowitz 的研究结果进行简化,可以得到通过无衰落的AWGN信道检测的概率和虚警概率的近似表达式为 其中:γ是信噪;σ是一个正数;r0,r(,g)是方差;是完整和不完整Gamma函数;Qm是普遍马库姆(Marcum)函数,其定义为

相关文档
最新文档