SVD(奇异值分解)算法及其评估

SVD(奇异值分解)算法及其评估
SVD(奇异值分解)算法及其评估

特征值分解与奇异值分解

特征值:一矩阵A作用与一向量a,结果只相当与该向量乘以一常数λ。即A*a=λa,则a 为该矩阵A的特征向量,λ为该矩阵A的特征值。 奇异值:设A为m*n阶矩阵,A H A的n个特征值的非负平方根叫作A的奇异值。记 (A) 为σ i 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的。在上篇文章中便是基于特征值分解的一种解释。特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中。而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景。奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩阵描述的是矩阵的重要的特性。就像是描述一个人一样,给别人描述说这个人长得浓眉大眼,方脸,络腮胡,而且带个黑框的眼镜,这样寥寥的几个特征,就让别人脑海里面就有一个较为清楚的认识,实际上,人脸上的特征是有着无数种的,之所以能这么描述,是因为人天生就有着非常好的抽取重要特征的能力,让机器学会抽取重要的特征,SVD是一个重要的方法。 在机器学习领域,有相当多的应用与奇异值都可以扯上关系,比如做feature reduction的PCA,做数据压缩(以图像压缩为代表)的算法,还有做搜索引擎语义层次检索的LSI(Latent Semantic Indexing) 另外在这里抱怨一下,之前在百度里面搜索过SVD,出来的结果都是俄罗斯的一种狙击枪(AK47同时代的),是因为穿越火线这个游戏里面有一把狙击枪叫做 SVD,而在Google上面搜索的时候,出来的都是奇异值分解(英文资料为主)。想玩玩战争游戏,玩玩COD不是非常好吗,玩山寨的CS有神马意思啊。国内的网页中的话语权也被这些没有太多营养的帖子所占据。真心希望国内的气氛能够更浓一点,搞游戏的人真正是喜欢制作游戏,搞Data Mining的人是真正喜欢挖数据的,都不是仅仅为了混口饭吃,这样谈超越别人才有意义,中文文章中,能踏踏实实谈谈技术的太少了,改变这个状况,从我自己做起吧。 前面说了这么多,本文主要关注奇异值的一些特性,另外还会稍稍提及奇异值的计算,不过本文不准备在如何计算奇异值上展开太多。另外,本文里面有部分不算太深的线性代数的知识,如果完全忘记了线性代数,看本文可能会有些困难。 一、奇异值与特征值基础知识: 特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法。两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征。先谈谈特征值分解吧:

基于深度极限学习机的K-SVD算法研究及其应用

太原理工大学硕士研究生学位论文 目录 摘要 ........................................................................................................................................... I ABSTRACT ............................................................................................................................. III 目录 ........................................................................................................................................... V 第一章 绪论 (1) 1.1课题来源 (1) 1.2论文研究背景及其意义 (1) 1.3课题研究现状国内外及存在的问题 (3) 1.3.1稀疏表示理论的研究现状 (3) 1.3.2特征表示学习的研究现状 (6) 1.4论文的主要工作和结构安排 (10) 1.4.1论文的主要工作 (10) 1.4.2论文的结构安排 (10) 第二章 特征表示学习理论 (13) 2.1深度学习理论的三种模型 (13) 2.1.1深信度网络 (14) 2.1.2卷积神经网络 (15) 2.1.3自动编码器 (16) 2.2极限学习机理论 (17) 2.2.1单隐层前馈神经网络与极限学习机 (18) 2.2.2基于自编码的深度极限学习机 (19) 2.3本章小结 (21) 第三章 基于深度极限学习机的K-SVD算法改进 (23) 3.1目标的稀疏表示 (23) 3.1.1K-SVD算法的基本原理 (23) 3.1.2K-SVD算法的去噪性能 (25) 3.2基于深度极限学习机的K-SVD算法改进 (26) V

奇异值分解定理

奇异值分解定理:设,则存在m 阶正交矩阵U 和n 阶正交矩阵V ,使得 ,其中为矩阵A 的全部非零奇 异值,满足0r 21>≥≥?≥≥,σσσ,前几个值比较大,它们包含了矩阵A 的大部分信息。U 的列向量(左奇异向量)是 的特征向量,V 的列向量(右奇异向量)是的特征 向量。 奇异值分解的性质: 1. 奇异值的稳定性 定理1:假设, A 和 B 的SVD 分别为和 ,其中p =min ( m , n) ,则有。 定理1表明当矩阵A 有微小扰动时,扰动前后矩阵奇异值的变化不会大于扰动矩阵的-2范数。这个性质表明,对于存在灰度变化、噪声干扰等情况的图像,通过SVD 后,图像的特征向量不会出现大的变化。这一性质放宽了对图像预处理的要求, 并使匹配结果的准确性得到了保证。 2. 奇异值的比例不变性 因此,为了消除幅度大小对特征提取的影响,所进行的归一化处理不会从本质改变奇异值的相对大小。 3. 奇异值的旋转不变性 图像奇异值特征向量不但具有正交变换、旋转、位移、镜像映射等代数和几何上的不变性,而且具有良好的稳定性和抗噪性,广泛应用于模式识别与图像分析中。对图像进行奇异值分解的目的是:得到唯一、稳定的特征描述;降低特征空间的维数;提高抵抗干扰和噪声的能力。 欧氏距离(Euclidean distance )

欧氏距离定义:欧氏距离(Euclidean distance)是一个通常采用的距离定义,它是在m维空间中两个点之间的真实距离。欧氏距离看作信号的相似程度,距离越近就越相似。 设x,y是M× N 维的两幅图像,那么其在图像空间中可以表示为: 式中为图像x,y的第(k,l)个像素点。则图像的欧氏距离定义为 根据上述定义,一幅M×N 的图像可以看作M×N 维欧氏空间中的一点,每个坐标对应于一个像素的灰度值。 特征匹配算法 采用遍历搜索法,计算特征向量两两间的欧氏距离,确定向量之间的最近邻距离(MD)第二近邻距离(SMD),并计算二者的比值:MD/ SMD。设定阈值s,当MD/ SMD

SVD算法在MIMO系统模型降阶中的应用

龙源期刊网 https://www.360docs.net/doc/7618406377.html, SVD算法在MIMO系统模型降阶中的应用作者:闫哲卢方明周林 来源:《哈尔滨理工大学学报》2017年第02期 摘要:针对线性时不变高阶MIMO系统模型难以直接进行计算分析的问题,对高阶模型进行模型降阶。依据模型降阶理论,对线性时不变系统进行Lyapunov方程求解,得到线性系统的完全可控Gramians矩阵和完全可观Gramians矩阵,对Gramians矩阵进行Cholesky分 解,得到Cholesky分解因子,分解因子通过SVD(singular value decomposition)法求得Hankel奇异值,从而确定系统的平衡变换阵。计算可控可观Gramians矩阵的左右特征空间基底矩阵,利用左右特征空间的基底矩阵求得原系统降阶的系统,通过Hankel SVD 方法确定降阶之后的误差范围。利用Matlab对SLICOT测试库中的便携式CDPlayer 120阶的高阶模型进行降阶,获取到50、30、20阶的降阶模型,对研究算法进行验证,结果表明,降阶效果理想。 关键词:线性时不变系统;模型降阶;Hankel奇异值 DOI:10.15938/j.jhust.2017.02.010 中图分类号: TP13 文献标志码: A 文章编号: 1007-2683(2017)02-0050-05 Abstract:For linear time invariant highorder system calculation and analysis model is difficult to directly, so we need to study on model order reduction of the model According to the basic theory of model order reduction, Lyapunov equation solution to linear time invariant system, completely controllable Gramians matrix and considerable Gramians matrix completely are obtained for a linear system, the completely controllable and considerable Gramians matrix Cholesky decomposition,the Cholesky decomposition factor and the factor decomposition by SVD (singular value decomposition) method for Hankel singular value are given to determine the balance of the system transformation matrix. The reduced order system is given by based matrix of left and right feature space which is obtained by the controllable and considerable Gramians matrix.The error bound for several reducedorder models are computed by using the method of Hankel SVD.In order to obtain the several reduceorder models,using Mtalb to turn CDPlyer highorder model that stored in SLICOT test library to a loworder system. The results show that the above order reduction method is feasible. Keywords:linear time invariant system; model order reduction; balanced transformation 0引言

奇异值分解的一些特性以及应用小案例

第一部分:预备知识 1.1 矩阵的F-范数与矩阵迹的关系 引理:设m n A R ?∈,令()ij m n A a ?=,则2211 ||||||()()m n T T F ij i j A a tr AA tr A A === ==∑∑;其中,()tr ?定义如下: 令方阵11 12121 22212r r r r rr m m m m m m M m m m ?? ??? ?=???? ?? ,则11221 ()r rr ii i tr M m m m m ==+++=∑ ,即矩阵M 的迹。注意,()tr ?只能作用于方阵。 那么,下面来看下为什么有2211 ||||||()()m n T T F ij i j A a tr AA tr A A === ==∑∑? 首先,22 11 ||||||m n F ij i j A a === ∑∑这个等式是矩阵F-范数的定义,即一个矩阵的F-范数等于矩阵中每个元素的平方和。 其次,因11121212221 2 ()n n ij m n m m mn a a a a a a A a a a a ???????==?? ???? ,则11 2111222212m m T n n mn a a a a a a A a a a ?? ????=?? ? ? ?? ,易得2211 ()()||||||m n T T ij F i j tr AA tr A A a A ==== =∑∑。(T AA 或T A A 的第r 个对角元素等于第r 行或列元素的平方和,所有对角元素之和就是矩阵每个元素的平方和,即有上式成立。)此过程如图1和图2所示。

奇异值分解法计算广义逆

奇异值分解法计算广义逆 线性最小二乘问题的广义逆求解 (丁梁波 整理) 对于任意的n m ?方程组:b Ax = 其中?? ?? ? ?????=mn m n a a a a A 1111 ???? ? ?????=n x x x 1 ???? ? ?????=m b b b 1 如果n m =,只要n 方阵A 非奇异,就有逆阵1-A ,从而得到解b A x 1-=。然而,对于n m ≠的一般情况,A 是长方阵,就没有通常的逆阵。不过它仍然可以有相应于特定方程类型的几种形式的广义逆矩阵,其中适于任何情况的广义逆叫做Penrose 广义逆,记为+A 。于是,方程的解可以为: b A x += 由奇异值分解(SVD )可以将A 分解为: T V U A ∑= 其中U ,V 分别为m ,n 阶正交阵 ??? ?????? ? ????? ???? ?=∑001 r σσ 这样A 的广义逆+A 可表示为: T U V A 1-+∑= 其中 ?? ?? ??∑=∑- -0001 1 r ???? ??????=∑---1111r r σσ 这样我们可以看出,完成A 的奇异值分解后,求解A 的广义逆就变得很简单,从

而可以方便地求出方程组的最小二乘解。下面我们说明对矩阵进行奇异值分解的方法和步骤。 通常情况下我们考虑m>n 时矩阵A 的奇异值分解,因为当m

基于奇异值分解计算MIMO信道容量

基于奇异值分解计算MIMO 信道容量 摘要 无线MIMO 技术是未来无线通信系统中实现高数据速率传输、改善传输质量、提高系统容量的重要途径,它被认为是现代通信技术中的重大突破之一,受到了广泛的研究与关注。信道容量是信道的一个参数,反映了信道所能传输的最大信息量。因此研究MIMO 的信道容量具有巨大的指导意义。本文利用矩阵理论的相关知识,首先建立了MIMO 信道模型,利用信息论理论和奇异值分解的理论详细推导出MIMO 信道容量,并得出重要结论。 关键词: MIMO ;信道容量;奇异值分解 一、 引言 MIMO 系统是能够有效提高无线频谱利用率最重要的方案之一。MIMO 系统使用多根发射天线、多根接收天线, 在系统容量、频谱效率、发射机和接收机的设计上都与传统的单发单收系统有很大差别。然而,MIMO 无线系统大容量的实现和其它性能的提高极大地依赖于MIMO 无线信道的特性,MIMO 无线通信的难点也正在于信道的处理。矩阵理论在通信,自动控制等工程领域里应用广泛,将矩阵理论与无线信道的研究是一个很好的切入点。目前,MIMO 技术的信道容量和空时编码,空时复用等技术都离不开矩阵理论的应用。 二、 奇异值分解的概念 下面介绍一下矩阵奇异值分解的理论。 首先,给出奇异值的概念。 设,m n H r A C A A ?∈的特征值为 121n 0r r λλλλλ+≥≥≥>===…… (2.1) 则称1,2,...,)i i r σ= =为矩阵A 的正奇异值。 进而,奇异值分解理论可以阐述为: 对任意矩阵m n r A C ?∈,12,,...,r σσσ是A 的r 个正奇异值,则存在m 阶酉矩阵U 及n 阶酉矩阵V ,使得 D 0V 00A U ??= ??? (2.2) 其中12D=diag ,,...,),r δδδ(而i δ满足||(1,2,...,)i i i r δσ==的复数。 三、 MIMO 信道模型的建立 为了描述MIMO 信道,考虑考虑基站(BS)天线数R n ,移动台(MS)天线数为T n 的两个均匀线性天线阵列,假定天线为全向辐射天线。每个符号周期内,移动台天线阵列上的发射信号为 12()[(),(),...,()]T n s t s t s t s t =,其中()m s t 表示第m 个天线元上的发射信号。同样地,基站天线阵列上的

主成份(PCA)与奇异值分解(SVD)的通俗解释

主成份(PCA)与奇异值分解(SVD)的通俗解释 主成分分析 1.问题描述 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律。多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上增加了数据采集的工作量,更重要的是在大多数情况下,许多变量之间可能存在相关性,从而增加了问题分析的复杂性,同时对分析带来不便。如果分别对每个指标进行分析,分析往往是孤立的,而不是综合的。盲目减少指标会损失很多信息,容易产生错误的结论。 2.过程 主成分分析法是一种数据转换的技术,当我们对一个物体进行衡量时,我们将其特征用向量(a1,a2,a3,...an)进行表示,每一维都有其对应的variance(表示在其均值附近离散的程度);其所有维的variance之和,我们叫做总的variance;我们对物体进行衡量时,往往其特征值之间是correlated的,比如我们测量飞行员时,有两个指标一个是飞行技术(x1),另一个是对飞行的喜好程度(x2),这两者之间是有关联的,即correlated的。我们进行PCA(主成分分析时),我们并

没有改变维数,但是我们却做了如下变换,设新的特征为(x1,x2,x3...,xn); 其中 1)x1的variance占总的variance比重最大; 2)除去x1,x2的variance占剩下的variance比重最大;.... 依次类推; 最后,我们转换之后得到的(x1,x2,...xn)之间都是incorrelated,我们做PCA时,仅取(x1,x2,....xk),来表示我们测量的物体,其中,k要小于n。主成分的贡献率就是某主成分的方差在全部方差中的比值。这个值越大,表明该主成分综合X1,X2,…,XP信息的能力越强。如果前k 个主成分的贡献率达到85%,表明取前k个主成分基本包含了全部测量指标所具有的信息,这样既减少了变量的个数又方便于对实际问题的分析和研究。 注意,当(a1,a2,a3,...an)之间都是incorrelated时,我们就没有做PCA的必要了 数据点在上图所示的方向上进行投影后,数据仍然有着很大的variance,但在下图所示的方向上,投影后的数据的variance就很小。

奇异值分解

地球物理系反演报告 实验一奇异值分解计算广义逆G+ 专业:地球物理学 姓名: 学号: 指导教师:邵广周

实验一 奇异值分解计算广义逆G + 一、基本原理 对于任意的n m ?方程组:b Ax = 其中??????????=mn m n a a a a A 1 111 ?? ?? ? ?????=n x x x 1 ??????????=m b b b 1 如果n m =,只要n 方阵A 非奇异,就有逆阵1-A ,从而得到解b A x 1-=。然而,对于n m ≠的一般情况,A 是长方阵,就没有通常的逆阵。不过它仍然可以有相应于特定方程类型的几种形式的广义逆矩阵,其中适于任何情况的广义逆叫做Penrose 广义逆,记为+A 。于是,方程的解可以为: b A x += 由奇异值分解(SVD )可以将A 分解为: T V U A ∑= 其中U ,V 分别为m ,n 阶正交阵 ? ????????? ????? ???? ?=∑00 1 r σσ 这样A 的广义逆+A 可表示为: T U V A 1-+∑= 其中 ??????∑=∑--0001 1 r ????????? ?=∑---1111r r σσ

这样我们可以看出,完成A 的奇异值分解后,求解A 的广义逆就变得很简单,从而可以方便地求出方程组的最小二乘解。下面我们说明对矩阵进行奇异值分解的方法和步骤。 通常情况下我们考虑m>n 时矩阵A 的奇异值分解,因为当m

基于奇异值分解的MVDR谱估计

现代信号处理 学号: 小组组长: 小组成员及分工: 任课教师: 教师所在学院:信息工程学院

2015年11月 论文题目 基于奇异值分解的MVDR方法及其在信号频率估计领域的 应用 摘要:本文主要是介绍和验证MVDR的算法,此算法应用于信号频率估计的领域中。我们通过使用经典的MVDR算法验证算法的可行性,再通过引用了奇异值分解的思想对MVDR方法进行了改进,在验证这种改进思想的方法可行性时,我们发现基于这种奇异值分解的MVDR方法在信号频率估计上具有提高检测精度的特性,这也说明了这种思想在应用信号频率估计时是可行的。 关键词:MVDR算法奇异值分解信号频率估计

论文题目(English) MVDR method based on singular value decomposition and its application in signal frequency estimation Abstract:In this paper, the algorithm of MVDR is introduced, and the algorithm is applied to the field of signal frequency estimation. By using the classical MVDR algorithm to verify the feasibility of the algorithm, and then through the use of the idea of singular value decomposition to improve the MVDR method, in the verification of the feasibility of the method, we found that the MVDR method based on the singular value decomposition has the characteristics of improving the detection accuracy in signal frequency estimation. It also shows that this idea is feasible in the application of signal frequency estimation. Key words: MVDR method Singular value decomposition Signal frequency estimation

K-SVD算法

K-SVD算法学习1:稀疏表示: 考虑线性等式,或者是线性逼近。,这里的D是 的矩阵。称为字典(字典学习中),测量矩阵(压缩感知中),权重矩阵(多任务学习中),其中。 中的每一列称为原子。其模型为 等价于 当然其中 可以用其最优凸近似 来近似替代进行求解。 如图,即为稀疏表示模型。我们对 取 范数,就是要求 中的元素非0元尽可能少,0元素尽可能多,故为稀疏表示。有由上图可以看到, 只有三个位置非0,也即是 可以由字典 的第四个原子,第七个原子,第13个原子线性表出,而系数的大小,由 中的非0元确定。 2:K-means 算法 所谓K-means 算法,聚类方法中最简单的一种。其目的就是寻找潜在的 个类别,从而使样本 合理的归属到不同的类别 中。其具体算法是如下两步: :首先随机选取 个质心:重复如下两步直到收敛: 1)把样本 归属到某一类中,具体的做法如下: 表示的是如果 到 距离最小的话,那么就把 归属到 这一类中。对样本中所有元素都如此进行分类。 2)重新计算质心的位置 。最简单的办法就是把一类中的所有元素的坐标求平均。d 法e 斯 X =Da M ?P M <

其实K-means也是一中稀疏表示:对于样本元素,目的是找到其距离最近的质心 。其解决如下优化问题: 字典中含有 个原子或者说是质心。对于样本 ,约束要求的是,找到对应的稀疏表示 ,只有一个原子被选中,也即是稀疏表示 中只有一个元素不为0。那么样本样本 即属于相应的质心。近似模型如下: 3:K-svd算法 K-means算法是字典中只有一个原子被选中,也就是这个元素只由一个原子来表示。而K-svd 松弛了这一要求:用尽可能少的原子来近似表出。其模型如下: 其中 为样本数据, 为稀疏表示矩阵。对于样本,约束条件要求的是,用尽可能少的原子(<个)来近似表示。也可以用如下模型来近似: 关于其直观描述如下图: 其中矩阵 为稀疏表示矩阵。也即是对于样本,用第三个原子和第十个原子线性表出。同样的可以看出其他的样本。 K-svd的算法求解: 1)固定,更新求解。暂且还没看。 2)更新 。在这个过程中,只更新的一列,一列更新完,更新下一列。更新第列的时候,其他的列固定,那么原问题可以写成如下分解方式: 其中需要说明的是是的第列,是 第行。这意思是原子对整个样本矩阵的影响或者说贡献,把所有 支 支分题 d 法 Y D K Y i X i X i Y i Y i X A X i T 0X i A X 1D A D D K d k D K a k T A K d k

并行计算奇异值分解

并行计算奇异值分解--Jacobi旋转 鉴于矩阵的奇异值分解SVD在工程领域的广泛应用(如数据压缩、噪声去除、数值分析等等,包括在NLP领域的潜在语义索引LSI核心操作也是SVD),今天就详细介绍一种SVD的实现方法--Jacobi旋转法。跟其它SVD算法相比,Jacobi法精度高,虽然速度慢,但容易并行实现。 一些链接 https://www.360docs.net/doc/7618406377.html,/Article/CDMD-10285-1012286387.htm并行JACOBI方法求解矩阵奇异值的研究。本文呈现的代码就是依据这篇论文写出来的。 https://www.360docs.net/doc/7618406377.html,/javanumerics/jama/ Jama包是用于基本线性代数运算的java包,提供矩阵的cholesky 分解、LUD分解、QR分解、奇异值分解,以及PCA中要用到的特征值分解,此外可以计算矩阵的乘除法、矩阵的范数和条件数、解线性方程组等。 http://users.telenet.be/https://www.360docs.net/doc/7618406377.html,rmuseau/SVD.htm在线SVD运算器。 http://www.bluebit.gr/matrix-calculator/ bluebit在线矩阵运算器,提供矩阵的各种运算。 https://www.360docs.net/doc/7618406377.html,/Projects/Matrix/C++ Matrix library提供矩阵的加减乘除、求行列式、LU分解、求逆、求转置。本文的头两段程序就引用了这里面的matrix.h。 基于双边Jacobi旋转的奇异值分解算法 V是A的右奇异向量,也是的特征向量; U是A的左奇异向量,也是的特征向量。 特别地,当A是对称矩阵的时候,=,即U=V,U的列向量不仅是的特征向量,也是A 的特征向量。这一点在主成分分析中会用到。 对于正定的对称矩阵,奇异值等于特征值,奇异向量等于特征向量。 U、V都是正交矩阵,满足矩阵的转置即为矩阵的逆。 双边Jacobi方法本来是用来求解对称矩阵的特征值和特征向量的,由于就是对称矩阵,求出的特征向量就求出了A的右奇异值,的特征值开方后就是A的奇异值。 一个Jacobi旋转矩阵J形如:

矩阵分解及其简单应用

矩阵分解是指将一个矩阵表示为结构简单或具有特殊性质若干矩阵之积或之和,大体分为三角分解、分解、满秩分解和奇异值分解.矩阵地分解是很重要地一部分内容,在线性代数中时常用来解决各种复杂地问题,在各个不同地专业领域也有重要地作用.秩亏网平差是测量数据处理中地一个难点,不仅表现在原理方面,更表现在计算方面,而应用矩阵分解来得到未知数地估计数大大简化了求解过程和难度. 矩阵地三角分解 如果方阵可表示为一个下三角矩阵和一个上三角矩阵之积,即,则称可作三角分解.矩阵三角分解是以消去法为根据导出地,因此矩阵可以进行三角分解地条件也与之相同,即矩阵地前个顺序主子式都不为,即.所以在对矩阵进行三角分解地着手地第一步应该是判断是否满足这个前提条件,否则怎么分解都没有意义.矩阵地三角分解不是唯一地,但是在一定地前提下,地分解可以是唯一地,其中是对角矩阵.矩阵还有其他不同地三角分解,比如分解和分解,它们用待定系数法来解求地三角分解,当矩阵阶数较大地时候有其各自地优点,使算法更加简单方便.资料个人收集整理,勿做商业用途 矩阵地三角分解可以用来解线性方程组.由于,所以可以变换成,即有如下方程组:资料个人收集整理,勿做商业用途 先由依次递推求得,,……,,再由方程依次递推求得,,……,. 资料个人收集整理,勿做商业用途 必须指出地是,当可逆矩阵不满足时,应该用置换矩阵左乘以便使地个顺序主子式全不为零,此时有:资料个人收集整理,勿做商业用途 这样,应用矩阵地三角分解,线性方程组地解求就可以简单很多了. 矩阵地分解 矩阵地分解是指,如果实非奇异矩阵可以表示为,其中为正交矩阵,为实非奇异上三角矩阵.分解地实际算法各种各样,有正交方法、方法和方法,而且各有优点和不足.资料个人收集整理,勿做商业用途 .正交方法地分解 正交方法解求分解原理很简单,容易理解.步骤主要有:)把写成个列向量(,,……,),并进行正交化得(,,……,);) 单位化,并令(,,……,),(,,……,),其中;). 这种方法来进行分解,过程相对较为复杂,尤其是计算量大,尤其是阶数逐渐变大时,就显得更加不方便.资料个人收集整理,勿做商业用途 .方法地分解 方法求分解是利用旋转初等矩阵,即矩阵()来得到地,()是正交矩阵,并且(()).()地第行第列 和第行第列为,第行第列和第行第列分别为和,其他地都为.任何阶实非奇异矩阵可通过左连乘()矩阵(乘积为)化为上三角矩阵,另,就有.该方法最主要地是在把矩阵化为列向量地基础上找出和,然后由此把矩阵地一步步向上三角矩阵靠近.方法相对正交方法明显地原理要复杂得多,但是却计算量小得多,矩阵()固有地性质很特别可以使其在很多方面地应用更加灵活.资料个人收集整理,勿做商业用途 .方法地分解 方法分解矩阵是利用反射矩阵,即矩阵,其中是单位列向量,是正交矩阵,.可以证明,两个矩阵地乘积就是矩阵,并且任何实非奇异矩阵可通过连乘矩阵(乘积为)化为上三角矩阵,则.这种方法首要地就是寻找合适地单位列向量去构成矩阵,

SVD奇异值分解

有关SVD奇异值分解的研究 ZDP 有关SVD奇异值分解,主要看了两个方面的内容:1.关于矩阵的SVD分解。 2.SVD所代表的最小二乘问题。主要是为了用SVD求取最小二乘解。 1. 关于矩阵的SVD分解:相当于主成分分析,找出哪些特征比较重要。奇异值的大小代表了左奇异向量和右奇异向量的重要程度。舍弃一些小奇异值对应的向量相当于消除一些没有太大影响的特征,从而提取出矩阵的主要特征。可以用于压缩从而减少内存的使用,以及滤波去噪。 2.关于最小二乘主要参考了网上的一份资料,SVD(奇异值分解)算法及其评估,在附件中可以找到。 这里主要说一下看资料时遇到的问题以及一些注意事项。矩阵的乘法本质上就是进行坐标的变换,由一种坐标系转变为另一种坐标系的过程。由行空间的一组正交基经由A矩阵变换为列空间一组正交基的过程。A?V=U?Σ。A=U?Σ?V T这里U为A的列空间正交基,Σ为奇异值,V为行空间正交基。V中所谓的行空间正交基,是[V1,V2,??,V n],也是列向量的形式。 针对方程组:A?X=b可以理解成X向量经由矩阵A变换成了b向量。同时可以表示成U?Σ?V T?X=b这里要注意是X向量的变换为从右向左的。V T?X为第一次变换,?Σ为第二次变换,?U为第三次变换。 从另一个角度看坐标变换的问题,A?V=U?Σ这个式子可以理解为一组正交基经矩阵A变换成了另一组正交基,这里Σ为缩放因子。 方程组的解X=V?Σ+?U T?b这里由于矩阵A不一定为方阵,引入广义逆的概念将SVD的应用范围进行了推广。 进行SVD的具体数值解法在文章中都有具体的介绍,这里介绍两个比较有意思的公式:A T A=V?ΣTΣ?V T;AA T=U?ΣΣT?U T。其中A T A为对称正定阵,V为A T A的特征向量,U为AA T的特征向量,ΣTΣ=ΣΣT为特征值。 https://www.360docs.net/doc/7618406377.html,/s/blog_b1b831150101ey41.html

PCA算法的数学知识---特征值分解和奇异值分解

PCA算法的数学知识---特征值分解和奇异值分解: 1)特征值: 如果说一个向量v是方阵X的特征向量,将一定可以表示成下面的形式: = Xv vλ 这时候λ就被称为特征向量v对应的特征值,一个矩阵的一组特征向量是一组正交向量。特征值分解是将一个矩阵分解成下面的形式: 1 =∑ X Q Q- 其中Q是这个矩阵X的特征向量组成的矩阵,Σ是一个对角阵,每一个对角线上的元素就是一个特征值。 首先,要明确的是,乘以一个矩阵其实就是一个线性变换,而且将一个矩阵乘以一个向量后得到的向量,其实就相当于对这个向量进行了线性变换。如果我们想要描述好一个变换,那我们就描述好这个变换主要的变化方向就好了。分解得到的Σ矩阵是一个对角阵,里面的特征值是由大到小排列的,这些特征值所对应的特征向量就是描述这个矩阵变化方向(从主要的变化到次要的变化排列)。通过特征值分解得到的前N个特征向量,就对应了这个矩阵最主要的N个变化方向。我们利用这前N个变化方向,就可以近似这个矩阵(变换)。也就是:提取这个矩阵最重要的特征。 总结一下,特征值分解可以得到特征值与特征向量,特征值表示的是这个特征到底有多重要,而特征向量表示这个特征是什么,可

少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了。也就是说,我们也可以用前r 大的奇异值来近似描述矩阵,这里定义一下部分奇异值分解: ****T n p n r r r r p X U V ≈∑ r 是一个远小于n 、p 的数,右边的三个矩阵相乘的结果将会是一个接近于X 的矩阵,在这儿,r 越接近于p ,则相乘的结果越接近于X 。而这三个矩阵的面积之和(在存储观点来说,矩阵面积越小,存储量就越小)要远远小于原始的矩阵X ,我们如果想要压缩空间来表示原矩阵X ,我们存下这里的三个矩阵:U 、Σ、V 就好了。 奇异值与主成分分析(PCA ): PCA 的全部工作简单点说,就是对原始的空间中顺序地找一组相互正交的坐标轴,第一个轴是使得方差最大的,第二个轴是在与第一个轴正交的平面中使得方差最大的,第三个轴是在与第1、2个轴正交的平面中方差最大的,这样假设在N 维空间中,我们可以找到N 个这样的坐标轴,我们取前r 个去近似这个空间,这样就从一个N 维的空间压缩到r 维的空间了,但是我们选择的r 个坐标轴能够使得空间的压缩使得数据的损失最小。 假设矩阵每一行表示一个样本,每一列表示一个特征,用矩阵的语言来表示,对一个n* p 的矩阵X 进行坐标轴的变化,P 就是一个变换的矩阵,从一个p 维的空间变换到另一个p 维的空间,在空间中就会进行一些类似于旋转、拉伸的变化。

K-SVD算法的图像去噪的实验

K-SVD 算法的图像去噪的实验 一:引言 现实中的图像在数字化和传输过程中由于常受到成像设备与外部环境噪声干扰等影响,从而降低了图像的质量,对图像的理解和解译造成了不小的困难,因此,在图像处理中,图像噪声抑制成为关键,也是后续图像的特征提取、分割、识别等工作的基础。噪声抑制技术的主要目标就是:在有效的去除噪声的同时保持纹理、边缘等细节信息。 传统的图像噪声抑制的方法有空间滤波技术和变换域滤波技术。其中空间滤波技术主要包括均值滤波、中值滤波、Lee 滤波等,这些方法虽然比较简单,且易于实现,但是会造成图像边缘和线性目标的模糊。变化域滤波技术主要包括小波变换、平稳小波、Bandelet 变换、Curvelet 变换和非下采样Contourlet 变换等。这些变换域滤波相比经典空间滤波方法来说,图像的边缘及线性目标的保持能力有了很大的提高。但大都需要对变换域的系数做某种统计假设,而这些假设是经验性的,无理论依据。且噪声和图像边缘具有相似的频率特性,即都是高频信号。因此噪声抑制后的图像在均匀区域和边缘附近常有伪吉布斯效应。 目前,一种新兴的“字典训练法”在图像处理中得到了广泛的研究和应用,其核心是字典的训练过程,称为K--SVD 方法。此算法首先是由 Aharon 、Elad 等人提出的。研究表明:K--SVD 方法不仅可以有效的抑制加性高斯白噪声,而且可以较好的保留边缘和纹理等重要信息,尤其是对纹理图像的结果更好。最重要的是此方法具有很好的适应性。 本文首先诠释下K--SVD 算法的基本思想,然后通过几个实验对比下该算法与之前的算法的去噪效果。 二:K--SVD 算法的基本思想 1:K-均值 因为K-SVD 算法是由K-均值扩展而来,先简单介绍K-均值算法。K-均值算法要解决的问题是:求解一个包括K 个代码的码本,求在此码本上,根据最近邻分配法则,对包括N 个信号的信号集1{y }N i i Y ==,N>>K 进行分类,使得最佳分类的问题。此时,Y 中各向量被归类于与之距离最小的代码所代表的类中,用此代码压缩或描述类中的向量误差最小。 矢量量化(VQ )中,码本的训练可以用典型的K-均值算法实现。令12[c ,c ,...,c ]K C =为码本,C 中的列c i 为码本中的代码。当码本C 给定时,每个信号用最近(2 l 范数意义下)的一个代码表示。也就是说,i i y Cx ≈,其中i j x e =是自然基中的一个向量(除第j 个值为1外,其他的值都是0)。j 满足: 22 22 ,i j i k k j y Ce y Ce ?≠-≤- (1) 这相当于稀疏编码的一个特例:只用一个原子来表示信号i y ,同时强制系数等于1,这

K-SVD算法总结

这几天看了稀疏表示的一些文章,对字典学习方法K-SVD[1]查阅了相关资料,特此总结如下,如有理解上不正确的地方,还望指正,本人还处于初学者的状态。 一、概述 K-SVD是一种迭代算法,是K-means算法的扩展,一般是用来在稀疏表示问题中的字典训练方面。这里的“字典”是一个过完备的矩阵,由其,使得一个信号向量可以表示成字典中原子(字典的列向量)的稀疏线性组合。 K-SVD和K-means方法本质上都属于一种压缩的思想,都主要包含以下两个步骤: 1)稀疏编码 2)字典更新 在K-means方法中,K-means 先随机选择K个初始点作为字典,K个初始点就代表K类。然后在每次迭代过程中,稀疏编码阶段:计算数据集中每个数据点与这K个点的距离,距离最短则代表改点属于该类;字典更新:每一类中所有点的均值作为新的字典。 而在K-SVD中,稀疏编码可以采用任何基方法(MP、OMP、BP);字典更新采用SVD奇异值分解。文章原文引用如下:The K-SVD algorithm is an iterative method that alternates between sparse coding of the examples based on the current dictionary and an update process for the dictionary atoms so as to better fit the data, generalizing the K-means algorithm. The update of the dictionary columns is done jointly with an update the sparse representation coefficients related to it, resulting in accelerated convergence. 二、K-SVD方法 这里给出文章中对K-SVD方法的描述 6 i

相关文档
最新文档