支持向量机在模式分类中的应用

支持向量机在模式分类中的应用
支持向量机在模式分类中的应用

支持向量机在模式分类中的应用

谢骏胡均川笪良龙

(海军潜艇学院战术水声环境数据中心,山东青岛266071)

摘要:介绍了支持向量机的基本思想,依据是否引入核函数,是否具有惩罚因子,支

持向量分类算法被分为线性分界面硬间隔、线性分界面软间隔、非线性分界面硬间隔和

非线性分界面软间隔四类,并讨论了它们的数学模型。以RBF为核函数的非线性支持向

量机对2类2维样本进行的仿真分析,并与最近邻法分类结果进行了比较,结果表明支

持向量机分类能力受核函数参数影响较大,当选取适当参数时,其分类性能与最近邻法

相当。

关键词:特征提取;最近邻分类法;支持向量机;模式分类

中图分类号:TP391.4 文献标识码:A 文章编号:

The Application of Support Vector Machines in Pattern Classification

XIE Jun,HUN Junchuan,DA Lianglong

(Naval Submarine Academy,QingDao266071, China)

Abstract:The foundations of support vector machines are introduced. Four mathematics models of support vector classifications including linearly hard margin SVM, linearly soft margin SVM, non- linearly hard margin SVM and non-linearly soft margin SVM are discussed. Comparison between non-linearly SVM classification with RBF kernel and nearest neighbour classification for a 2-dimension feature data set which contains two types.The results show that the classification performance of SVM is affected by kernel function parameter. the classification performance of SVM is equivalent with nearest neighbour classification while kernel function parameter is selected appropriately.

Key words:feature abstract; nearest neighbour classification ;support vector machines; pattern classification

1、引言

在模式识别领域如何设计一种具有较好泛化能力的优良分类器一直以来是个备受关注的问题。传统的模式识别或人工神经网络方法都都是以大样本统计理论为基础的,而许多实际问题中常常面对的是小样本。如何从小样本集出发,得到泛化能力较好的模型,是模式识别研究领域内的一个难点。Vapnik[1]等人早在20世纪60年代就开始研究有限样本情况下的机器学习问题,但这些研究长期没有得到充分的重视。近十年来,有限样本情况下的机器学习理论逐渐成熟起来,形成了一个较完善的统计学习理论(SLT)体系。而同时,神经网络等较新兴的机器学习方法的研究则遇到一些重要的困难,比如如何确定网络结构的问题、过拟合与欠拟合问题、局部极小点问题等。在这种情况下,试图从更本质上研究机器学习的SLT 体系逐步得到重视。1992-1995年,在SLT的基础上发展了支持向量机(SVM)算法[1],在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势。尤其是在非线性支持向量机中通过引入核函数,将原始空间的非线性问题转化为特征空间的线性问题来求解,而且核方法的引入从理论上较好的解决了经验风险最小化原则下统计学习的一致性条件,在这1

1基金项目:国防预研基金,51303060403-01;新世纪优秀人才支持计划NCET。

作者简介:谢骏(1976-), 男, 安徽颍上, 汉, 博士生, 讲师, 研究方向为声纳环境效应仿真、水下目标特性分析。

些条件下关于统计学习方法泛化性的界,在这些界的基础上建立小样本归纳推理原则,以及在此原则下如何构造学习算法等统计学习的基础理论问题。

2、支持向量机分类器的几种数学模型

支持向量机最初思想是对于线性可分问题如何寻求最优分类面,对于特征空间中线性可分问题,最优分类面就是间隔γ最大的分界面,根据上述核理论的分析可知,它的确是在保证样本被正确分类前提下,具有最好泛化能力的分界面。对于特征空间中线性不可分问题,可通过一个惩罚因子来综合考虑间隔和松弛因子的影响。根据面对的不同问题和采取的不同优化策略可将解决分类问题的支持向量机分为如下四类。

2.1 线性分界面硬间隔

当在原始空间中分界面是线性的,即解决的问题是在原始空间中寻求最优分界面问题。该问题的数学模型是:

,,min w b γ γ-

..s t (,)

,1,i i y b i γ??+≥=w x , 21=w

其中γ为间隔, 是训练样本数,i x 是训练样本矢量,w 是权矢量,b 是阈值,i y 为样本标记,11i y ?=?-? 12

i i x x ωω∈∈,i ω代表第i 类。 构造拉格朗日函数,得到

21

(,,,,)[()](1)i i i i L b a y b γλγγλ==--+-+-∑w w x w ,a

分别对,,b γw 求微分,得到

1(,,,,)

20i i i i L b a y γλλ=??-+==∑w w

x w a 1(,,,,)

0i i i L b b a y γλ=??-==∑w

a

1(,,,,)

10i i L b a γλγ=??-+==∑w

a

将上式代入拉格朗日函数,得到

2

1(,,,,)i i i i L b a y γλλλ==-+-∑w w x w ,a

=,1()4i j i j i j i j

a a y y x x λλ-?-∑

求λ得最优化,得到

1/2,1()2i j i j i j i j a a y y x x λ??=? ???

得到对偶拉格朗日函数 1/2

,()()i j i j i j i j L a a y y x x ??=-? ???

∑ a

原问题转化为如下最优化问题

min a ()L a

..s t 11i i a

==∑ ,10i i i a y ==∑

,0i a ≥,1,i = , 根据最优化理论,[()]i i i a y b γ+-w x ,=0为KKT 附加条件,只有少量样本具有非零拉格朗日乘子,这些样本即为支持向量,它们是数据集中最能提供信息的数据。

2.2线性分界面软间隔

问题在原始空间是非线性的,用线性分界面划分,需采用线性分界面软间隔,该问题的数学模型是:

,,min w b γ 1i i C γξ=-+∑

..s t (,),0,1,i i i i y b i γξξ??+≥

-≥=w x , 21=w

其中C 为惩罚因子,(),i i g b =??+x w x

应用拉格朗日乘子,得到

2

111(,,,,)[()](1)i i i i i i i i i i L b C a y b γλγξγξβξλ====-+-+-+-+-∑∑∑w w x w ,a

分别对分别对,,,b γξw 求微分并设其值为零,得到

,1(,)()4i j i j i j i j

L a a y y x x λλλ=-?-∑

a 在关于λ把这个函数最优化,可得到拉格朗日函数对偶形式

1/2

,()()i j i j i j i j L a a y y x x ??=-? ???

∑ a

和硬分隔结果一样,但要注意此时约束条件有差异。

原问题转化为如下最优化问题

min a ()L a ..s t 11i i a

==∑ ,10i i i a y ==∑

,0i a C ≤≤,1,i = , KKT 附加条件为

[()]i i i i a y b γξ+-+w x ,=0;()0i i a C ξ-= 1,i = ,

2.3非线性分界面硬间隔

通过引入核函数将问题从原始空间嵌入到特征空间,在特征空间中问题是线性可分的,求解特征空间中最优分界面。该问题数学模型如下

,,min w b γ γ-

..s t (,()),1,i i y b i φγ??+≥=w x

, 21=w

其中函数φ是原始空间到特征空间的映射。

与2.1推导过程类似,可得到对偶拉格朗日函数

1/2

,()()i j i j i j i j L a a y y x x κ??=-? ???

∑ a

其中函数κ是核函数,()(),()i j i j x x x x κφφ?=

原问题转化为如下最优化问题

min a ()L a

..s t 11i i a

==∑ ,10i i i a y ==∑

,0i a ≥,1,i = , KKT 附加条件

[(())]i i i a y b φγ+-w x ,=0。

2.4非线性分界面软间隔

通过引入核函数将问题从原始空间嵌入到特征空间,在特征空间中问题是非线性可分的,此时求解特征空间中最优分界面要考虑惩罚因子。该问题数学模型如下

,,min w b γ 1i i C γξ=-+∑

..s t (,()),0,1,i i i i y b i φγξξ??+≥-≥=w x

, 21=w

与2.2推导过程类似,可得到对偶拉格朗日函数 1/2,()()i j i j i j i j L a a y y x x κ??=-? ???

∑ a

原问题转化为如下最优化问题

min a ()L a

..s t 11i i a

==∑ ,10i i i a y ==∑

,0i a C ≤≤,1,i = , KKT 附加条件为

[(())]i i i i a y b φγξ+-+w x ,=0;()0i i a C ξ-= 1,i = ,

当1/()C ν= 时,此时支持向量机称为ν支持向量机,(0,1]ν∈。

从上述结果可知,线性和非线性支持向量机的区别是是否引入核函数,硬间隔和软件隔支持向量机的区别是是否具有惩罚因子。遗憾的是,有关支持向量机核函数和惩罚因子的选

择缺乏理论指导[2]。

3、 非线性支持向量机的仿真分析

以下是以RBF 为核函数非线性支持向量机对2类2维样本进行的仿真分析结果,两类样本点分别用黑色和浅灰色表示。图1~图4是核函数参数σ

,惩罚因子C 为不同值时的分类结果,相应分类错误率见表1,图中浅灰色线是贝叶斯分类器的分类边界,其分类错误率为13%。其中RBF 核定义为:2

2(,)exp{}i j

i j κσ-=-x x x x 。

从分类错误率结果来看,支持向量机性能受核函数参数和惩罚因子参数选择的影响很大。文献[3]针对两类样本情况,讨论了RBF 核函数参数空间中不同区域对应的SVM 的性能。C 越小,SVM 欠训练,倾向于把样本分到样本数占优的一类;C 越大,SVM 过训练,

σ越大,SVM 趋向线性分类器。σ越小,SVM 视C 的情况出现欠训练或过训练。图1~图4的仿真结果验证了这点。有关最优参数选择,文献[4]中提到采用网格方法、双线性和改进双线性法。文献[5]认为最近邻算法是一种直推的方法,即是一种直接从已知样本出发对特定未知样本进行识别的方法和原则,不同于SVM 试图设计一种分类器,使其对未来所有可能样本的预期性能最优的原则,这使得最近邻法在面对某一具体问题时,能够表现出很好的分类性能,图5的仿真结果也说明了这一点,最近邻法分类错误率为15%。

表1 RBF 核函数对2类2维问题的分类错误率

(完整版)支持向量机(SVM)原理及应用概述

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

支持向量机分类器

支持向量机分类器 1 支持向量机的提出与发展 支持向量机( SVM, support vector machine )是数据挖掘中的一项新技术,是借助于最优化方法来解决机器学习问题的新工具,最初由V.Vapnik 等人在1995年首先提出,近几年来在其理论研究和算法实现等方面都取得了很大的进展,开始成为克服“维数灾难”和过学习等困难的强有力的手段,它的理论基础和实现途径的基本框架都已形成。 根据Vapnik & Chervonenkis的统计学习理论 ,如果数据服从某个(固定但未知的)分布,要使机器的实际输出与理想输出之间的偏差尽可能小,则机器应当遵循结构风险最小化 ( SRM,structural risk minimization)原则,而不是经验风险最小化原则,通俗地说就是应当使错误概率的上界最小化。SVM正是这一理论的具体实现。与传统的人工神经网络相比, 它不仅结构简单,而且泛化( generalization)能力明显提高。 2 问题描述 2.1问题引入 假设有分布在Rd空间中的数据,我们希望能够在该空间上找出一个超平面(Hyper-pan),将这一数据分成两类。属于这一类的数据均在超平面的同侧,而属于另一类的数据均在超平面的另一侧。如下图。 比较上图,我们可以发现左图所找出的超平面(虚线),其两平行且与两类数据相切的超平面(实线)之间的距离较近,而右图则具有较大的间隔。而由于我们希望可以找出将两类数据分得较开的超平面,因此右图所找出的是比较好的超平面。 可以将问题简述如下: 设训练的样本输入为xi,i=1,…,l,对应的期望输出为yi∈{+1,-1},其中+1和-1分别代表两类的类别标识,假定分类面方程为ω﹒x+b=0。为使分类面对所有样本正确分类并且具备分类间隔,就要求它满足以下约束条件: 它追求的不仅仅是得到一个能将两类样本分开的分类面,而是要得到一个最优的分类面。 2.2 问题的数学抽象 将上述问题抽象为: 根据给定的训练集

支持向量机原理及应用(DOC)

支持向量机简介 摘要:支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以求获得最好的推广能力 。我们通常希望分类的过程是一个机器学习的过程。这些数据点是n 维实空间中的点。我们希望能够把这些点通过一个n-1维的超平面分开。通常这个被称为线性分类器。有很多分类器都符合这个要求。但是我们还希望找到分类最佳的平面,即使得属于两个不同类的数据点间隔最大的那个面,该面亦称为最大间隔超平面。如果我们能够找到这个面,那么这个分类器就称为最大间隔分类器。 关键字:VC 理论 结构风险最小原则 学习能力 1、SVM 的产生与发展 自1995年Vapnik 在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面,但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解

支持向量机训练算法综述_姬水旺

收稿日期:2003-06-13 作者简介:姬水旺(1977)),男,陕西府谷人,硕士,研究方向为机器学习、模式识别、数据挖掘。 支持向量机训练算法综述 姬水旺,姬旺田 (陕西移动通信有限责任公司,陕西西安710082) 摘 要:训练SVM 的本质是解决二次规划问题,在实际应用中,如果用于训练的样本数很大,标准的二次型优化技术就很难应用。针对这个问题,研究人员提出了各种解决方案,这些方案的核心思想是先将整个优化问题分解为多个同样性质的子问题,通过循环解决子问题来求得初始问题的解。由于这些方法都需要不断地循环迭代来解决每个子问题,所以需要的训练时间很长,这也是阻碍SVM 广泛应用的一个重要原因。文章系统回顾了SVM 训练的三种主流算法:块算法、分解算法和顺序最小优化算法,并且指出了未来发展方向。关键词:统计学习理论;支持向量机;训练算法 中图分类号:T P30116 文献标识码:A 文章编号:1005-3751(2004)01-0018-03 A Tutorial Survey of Support Vector Machine Training Algorithms JI Shu-i wang,JI Wang -tian (Shaanx i M obile Communicatio n Co.,Ltd,Xi .an 710082,China) Abstract:Trai n i ng SVM can be formulated into a quadratic programm i ng problem.For large learning tasks w ith many training exam ples,off-the-shelf opti m i zation techniques quickly become i ntractable i n their m emory and time requirem ents.T hus,many efficient tech -niques have been developed.These techniques divide the origi nal problem into several s maller sub-problems.By solving these s ub-prob -lems iteratively,the ori ginal larger problem is solved.All proposed methods suffer from the bottlen eck of long training ti me.This severely limited the w idespread application of SVM.T his paper systematically surveyed three mains tream SVM training algorithms:chunking,de -composition ,and sequenti al minimal optimization algorithms.It concludes with an illustrati on of future directions.Key words:statistical learning theory;support vector machine;trai ning algorithms 0 引 言 支持向量机(Support Vector M achine)是贝尔实验室研究人员V.Vapnik [1~3]等人在对统计学习理论三十多年的研究基础之上发展起来的一种全新的机器学习算法,也使统计学习理论第一次对实际应用产生重大影响。SVM 是基于统计学习理论的结构风险最小化原则的,它将最大分界面分类器思想和基于核的方法结合在一起,表现出了很好的泛化能力。由于SVM 方法有统计学习理论作为其坚实的数学基础,并且可以很好地克服维数灾难和过拟合等传统算法所不可规避的问题,所以受到了越来越多的研究人员的关注。近年来,关于SVM 方法的研究,包括算法本身的改进和算法的实际应用,都陆续提了出来。尽管SVM 算法的性能在许多实际问题的应用中得到了验证,但是该算法在计算上存在着一些问题,包括训练算法速度慢、算法复杂而难以实现以及检测阶段运算量大等等。 训练SVM 的本质是解决一个二次规划问题[4]: 在约束条件 0F A i F C,i =1,, ,l (1)E l i =1 A i y i =0 (2) 下,求 W(A )= E l i =1A i -1 2 E i,J A i A j y i y j {7(x i )#7(x j )} = E l i =1A i -1 2E i,J A i A j y i y j K (x i ,x j )(3)的最大值,其中K (x i ,x j )=7(x i )#7(x j )是满足Merce r 定理[4]条件的核函数。 如果令+=(A 1,A 2,,,A l )T ,D ij =y i y j K (x i ,x j )以上问题就可以写为:在约束条件 +T y =0(4)0F +F C (5) 下,求 W(+)=+T l -12 +T D +(6) 的最大值。 由于矩阵D 是非负定的,这个二次规划问题是一个凸函数的优化问题,因此Kohn -Tucker 条件[5]是最优点 第14卷 第1期2004年1月 微 机 发 展M icr ocomputer Dev elopment V ol.14 N o.1Jan.2004

支持向量机数据分类预测

支持向量机数据分类预测 一、题目——意大利葡萄酒种类识别 Wine数据来源为UCI数据库,记录同一区域三种品种葡萄酒的化学成分,数据有178个样本,每个样本含有13个特征分量。50%做为训练集,50%做为测试集。 二、模型建立 模型的建立首先需要从原始数据里把训练集和测试集提取出来,然后进行一定的预处理,必要时进行特征提取,之后用训练集对SVM进行训练,再用得到的模型来预测试集的分类。 三、Matlab实现 3.1 选定训练集和测试集 在178个样本集中,将每个类分成两组,重新组合数据,一部分作为训练集,一部分作为测试集。 % 载入测试数据wine,其中包含的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量 load chapter12_wine.mat; % 选定训练集和测试集 % 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集 train_wine = [wine(1:30,:);wine(60:95,:);wine(131:153,:)]; % 相应的训练集的标签也要分离出来 train_wine_labels = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)]; % 将第一类的31-59,第二类的96-130,第三类的154-178做为测试集 test_wine = [wine(31:59,:);wine(96:130,:);wine(154:178,:)]; % 相应的测试集的标签也要分离出来 test_wine_labels = [wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)]; 3.2数据预处理 对数据进行归一化: %% 数据预处理 % 数据预处理,将训练集和测试集归一化到[0,1]区间 [mtrain,ntrain] = size(train_wine); [mtest,ntest] = size(test_wine); dataset = [train_wine;test_wine]; % mapminmax为MATLAB自带的归一化函数 [dataset_scale,ps] = mapminmax(dataset',0,1); dataset_scale = dataset_scale';

支持向量机(SVM)算法推导及其分类的算法实现

支持向量机算法推导及其分类的算法实现 摘要:本文从线性分类问题开始逐步的叙述支持向量机思想的形成,并提供相应的推导过程。简述核函数的概念,以及kernel在SVM算法中的核心地位。介绍松弛变量引入的SVM算法原因,提出软间隔线性分类法。概括SVM分别在一对一和一对多分类问题中应用。基于SVM在一对多问题中的不足,提出SVM 的改进版本DAG SVM。 Abstract:This article begins with a linear classification problem, Gradually discuss formation of SVM, and their derivation. Description the concept of kernel function, and the core position in SVM algorithm. Describes the reasons for the introduction of slack variables, and propose soft-margin linear classification. Summary the application of SVM in one-to-one and one-to-many linear classification. Based on SVM shortage in one-to-many problems, an improved version which called DAG SVM was put forward. 关键字:SVM、线性分类、核函数、松弛变量、DAG SVM 1. SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。 对于SVM的基本特点,小样本,并不是样本的绝对数量少,而是与问题的复杂度比起来,SVM算法要求的样本数是相对比较少的。非线性,是指SVM擅长处理样本数据线性不可分的情况,主要通过松弛变量和核函数实现,是SVM 的精髓。高维模式识别是指样本维数很高,通过SVM建立的分类器却很简洁,只包含落在边界上的支持向量。

基于支持向量机的分类方法

基于支持向量机的分类方法 摘要:本文首先概述了支持向量机的相关理论,引出了支持向量机的基本模型。当训练集的两类样本点集重合区域很大时,线性支持向量分类机就不适用了,由此介绍了核函数相关概念。然后进行了核函数的实验仿真,并将支持向量机应用于实例肿瘤诊断,建立了相应的支持向量机模型,从而对测试集进行分类。最后提出了一种支持向量机的改进算法,即根据类向心度对复杂的训练样本进行预删减。 1、支持向量机 给定训练样本集1122{[,],[,], ,[,]}()l l l T a y a y a y Y =∈Ω?L ,其中n i a R ∈Ω=,Ω是输入空间,每一个点i a 由n 个属性特征组成,{1,1},1,,i y Y i l ∈=-=L 。分类 就是在基于训练集在样本空间中找到一个划分超平面,将不同的类别分开,划分超平面可通过线性方程来描述: 0T a b ω+= 其中12(;;;)d ωωωω=K 是法向量,决定了超平面的方向,b 是位移项,决定 了超平面与原点之间的距离。样本空间中任意点到超平面的距离为|| |||| T a b r ωω+=。 支持向量、间隔: 假设超平面能将训练样本正确分类,即对于[,]i i a y T ∈,若1i y =+,则有 0T i a b ω+>,若1i y =-,则有0T i a b ω+<。则有距离超平面最近的几个训练样本点使得 11 11 T i i T i i a b y a b y ωω?+≥+=+?+≤-=-? 中的等号成立,这几个训练样本点被称为支持向量;两个异类支持向量到超平面 的距离之和2 |||| r ω=被称为间隔。 支持向量机基本模型: 找到具有最大间隔的划分超平面,即 ,2max ||||..()1,1,2,...,b T i i s t y a b i m ωωω+≥= 这等价于 2 ,||||min 2..()1,1,2,...,b T i i s t y a b i m ωωω+≥= 这就是支持向量机(SVM )的基本模型。 支持向量机问题的特点是目标函数2 ||||2 ω是ω的凸函数,并且约束条件都是 线性的。

用于分类的支持向量机

文章编号:100228743(2004)0320075204 用于分类的支持向量机 黄发良,钟 智Ξ (1.广西师范大学计算机系,广西桂林541000;  2.广西师范学院数学与计算机科学系,广西南宁530001) 摘 要:支持向量机是20世纪90年代中期发展起来的机器学习技术,建立在结构风险最小化原理之上的支持向量机以其独有的优点吸引着广大研究者,该文着重于用于分类的支持向量机,对其基本原理与主要的训练算法进行介绍,并对其用途作了一定的探索. 关键词:支持向量机;机器学习;分类 中图分类号:TP181 文献标识码:A 支持向量机S VM (Support Vector Machine )是AT&T Bell 实验室的V.Vapnik 提出的针对分类和回归问题的统计学习理论.由于S VM 方法具有许多引人注目的优点和有前途的实验性能,越来越受重视,该技术已成为机器学习研究领域中的热点,并取得很理想的效果,如人脸识别、手写体数字识别和网页分类等. S VM 的主要思想可以概括为两点:(1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能;(2)它基于结构风险最小化理论之上在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界. 1 基本原理 支持向量机理论最初来源于数据分类问题的处理,S VM 就是要寻找一个满足要求的分割平面,使训练集中的点距离该平面尽可能地远,即寻求一个分割平面使其两侧的margin 尽可能最大. 设输入模式集合{x i }∈R n 由两类点组成,如果x i 属于第1类,则y i =1,如果x i 属于第2类,则y i =-1,那么有训练样本集合{x i ,y i },i =1,2,3,…,n ,支持向量机的目标就是要根据结构风险最小化原理,构造一个目标函数将两类模式尽可能地区分开来,通常分为两类情况来讨论,(1)线性可分,(2)线性不可分. 1.1 线性可分情况 在线性可分的情况下,就会存在一个超平面使得训练样本完全分开,该超平面可描述为: w ?x +b =0(1) 其中,“?”是点积,w 是n 维向量,b 为偏移量. 最优超平面是使得每一类数据与超平面距离最近的向量与超平面之间的距离最大的这样的平面.最优超平面可以通过解下面的二次优化问题来获得: min <(w )= 12‖w ‖2(2) Ξ收稿日期:2004202206作者简介:黄发良(1975-),男,湖南永州人,硕士研究生;研究方向:数据挖掘、web 信息检索. 2004年9月 广西师范学院学报(自然科学版)Sep.2004 第21卷第3期 Journal of G u angxi T eachers Education U niversity(N atural Science Edition) V ol.21N o.3

支持向量机SVM分类算法

支持向量机SVM分类算法 SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。 支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力[14](或称泛化能力)。 以上是经常被有关SVM 的学术文献引用的介绍,我来逐一分解并解释一下。 Vapnik是统计机器学习的大牛,这想必都不用说,他出版的《Statistical Learning Theory》是一本完整阐述统计机器学习思想的名著。在该书中详细的论证了统计机器学习之所以区别于传统机器学习的本质,就在于统计机器学习能够精确的给出学习效果,能够解答需要的样本数等等一系列问题。与统计机器学习的精密思维相比,传统的机器学习基本上属于摸着石头过河,用传统的机器学习方法构造分类系统完全成了一种技巧,一个人做的结果可能很好,另一个人差不多的方法做出来却很差,缺乏指导和原则。所谓VC维是对函数类的一种度量,可以简单的理解为问题的复杂程度,VC维越高,一个问题就越复杂。正是因为SVM关注的是VC维,后面我们可以看到,SVM解决问题的时候,和样本的维数是无关的(甚至样本是上万维的都可以,这使得SVM很适合用来解决文本分类的问题,当然,有这样的能力也因为引入了核函数)。 结构风险最小听上去文绉绉,其实说的也无非是下面这回事。 机器学习本质上就是一种对问题真实模型的逼近(我们选择一个我们认为比较好的近似模型,这个近似模型就叫做一个假设),但毫无疑问,真实模型一定是不知道的(如果知道了,我们干吗还要机器学习?直接用真实模型解决问题不就可以了?对吧,哈哈)既然真实模型不知道,那么我们选择的假设与问题真实解之间究竟有多大差距,我们就没法得知。比如说我们认为宇宙诞生于150亿年前的一场大爆炸,这个假设能够描述很多我们观察到的现象,但它与真实的宇宙模型之间还相差多少?谁也说不清,因为我们压根就不知道真实的宇宙模型到底是什么。 这个与问题真实解之间的误差,就叫做风险(更严格的说,误差的累积叫做风险)。我们选择了一个假设之后(更直观点说,我们得到了一个分类器以后),真实误差无从得知,但我们可以用某些可以掌握的量来逼近它。最直观的想法就是使用分类器在样本数据上的分类的结果与真实结果(因为样本是已经标注过的数据,是准确的数据)之间的差值来表示。这个差值叫做经验风险Remp(w)。以前的机器学习方法都把经验风险最小化作为努力的目标,但后来发现很多分类函数能够在样本集上轻易达到100%的正确率,在真实分类时却一塌糊涂(即所谓的推广能力差,或泛化能力差)。此时的情况便是选择了一个足够复杂的分类函数(它的VC维很高),能够精确的记住每一个样本,但对样本之外的数据一律分类错误。回头看看经验风险最小化原则我们就会发现,此原则适用的大前提是经验风险要确实能够逼近真实风险才行(行话叫一致),但实际上能逼近么?答案是不能,因为样本数相对于现实世界要分类的文本数来说简直九牛

20.ENVI4.3 支持向量机分类原理、操作及实例分析

ENVI4.3 支持向量机分类原理、操作及实例分析 一、支持向量机算法介绍 1.支持向量机算法的理论背景 支持向量机分类(Support Vector Machine或SVM)是一种建立在统计学习理论(Statistical Learning Theory或SLT)基础上的机器学习方法。 与传统统计学相比,统计学习理论(SLT)是一种专门研究小样本情况下及其学习规律的理论。该理论是建立在一套较坚实的理论基础之上的,为解决有限样本学习问题提供了一个统一的框架。它能将许多现有方法纳入其中,有望帮助解决许多原来难以解决的问题,如神经网络结构选择问题、局部极小点问题等;同时,在这一理论基础上发展了一种新的通用学习方法——支持向量机(SVM),已初步表现出很多优于已有方法的性能。一些学者认为,SLT和SVM正在成为继神经网络研究之后新的研究热点,并将推动机器学习理论和技术的重大发展。 支持向量机方法是建立在统计学习理论的VC维(VC Dimension)理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。 支持向量机的几个主要优点有: (1)它是专门针对有限样本情况的,其目标是得到现有信息下的最优解而不仅仅是样本数趋于无穷大时的最优值; (2)算法最终将转化成为一个二次型寻优问题,从理论上说,得到的将是全局最优点,解决了在神经网络方法中无法避免的局部极值问题; (3)算法将实际问题通过非线性变换转换到高维的特征空间(Feature Space),在高维空间中构造线性判别函数来实现原空间中的非线性判别函数,特殊性质能保证机器有较 好的推广能力,同时它巧妙地解决了维数问题,其算法复杂度与样本维数无关; 2.支持向量机算法简介 通过学习算法,SVM可以自动寻找那些对分类有较大区分能力的支持向量,由此构造出分类器,可以将类与类之间的间隔最大化,因而有较好的推广性和较高的分类准确率。 最优分类面(超平面)和支持向量

支持向量机等各种算法和模型的优点和缺点

1决策树(Decision Trees)的优缺点 决策树的优点: 一、决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。 二、对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。 三、能够同时处理数据型和常规型属性。其他的技术往往要求数据属性的单一。 四、决策树是一个白盒模型。如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。 五、易于通过静态测试来对模型进行评测。表示有可能测量该模型的可信度。 六、在相对短的时间内能够对大型数据源做出可行且效果良好的结果。 七、可以对有许多属性的数据集构造决策树。 八、决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小。 决策树的缺点: 一、对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。 二、决策树处理缺失数据时的困难。 三、过度拟合问题的出现。 四、忽略数据集中属性之间的相关性。 2 人工神经网络的优缺点 人工神经网络的优点:分类的准确度高,并行分布处理能力强,分布存储及学习能力强,对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系,具备联想记忆的功能等。人工神经网络的缺点:神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;学习时间过长,甚至可能达不到学习的目的。 3 遗传算法的优缺点 遗传算法的优点: 一、与问题领域无关切快速随机的搜索能力。 二、搜索从群体出发,具有潜在的并行性,可以进行多个个体的同时比较,鲁棒性好。 三、搜索使用评价函数启发,过程简单。 四、使用概率机制进行迭代,具有随机性。 五、具有可扩展性,容易与其他算法结合。 遗传算法的缺点: 一、遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码, 二、另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.没有能够及时利用网络的反馈信息,故算法的搜索速度比较慢,要得要较精确的解需要较多的训练时间。 三、算法对初始种群的选择有一定的依赖性,能够结合一些启发算法进行改进。 4 KNN算法(K-Nearest Neighbour) 的优缺点

随机森林与支持向量机分类性能比较

随机森林与支持向量机分类性能比较 黄衍,查伟雄 (华东交通大学交通运输与经济研究所,南昌 330013) 摘要:随机森林是一种性能优越的分类器。为了使国内学者更深入地了解其性能,通过将其与已在国内得到广泛应用的支持向量机进行数据实验比较,客观地展示其分类性能。实验选取了20个UCI数据集,从泛化能力、噪声鲁棒性和不平衡分类三个主要方面进行,得到的结论可为研究者选择和使用分类器提供有价值的参考。 关键词:随机森林;支持向量机;分类 中图分类号:O235 文献标识码: A Comparison on Classification Performance between Random Forests and Support Vector Machine HUANG Yan, ZHA Weixiong (Institute of Transportation and Economics, East China Jiaotong University, Nanchang 330013, China)【Abstract】Random Forests is an excellent classifier. In order to make Chinese scholars fully understand its performance, this paper compared it with Support Vector Machine widely used in China by means of data experiments to objectively show its classification performance. The experiments, using 20 UCI data sets, were carried out from three main aspects: generalization, noise robustness and imbalanced data classification. Experimental results can provide references for classifiers’ choice and use. 【Key words】Random Forests; Support Vector Machine; classification 0 引言 分类是数据挖掘领域研究的主要问题之一,分类器作为解决问题的工具一直是研究的热点。常用的分类器有决策树、逻辑回归、贝叶斯、神经网络等,这些分类器都有各自的性能特点。本文研究的随机森林[1](Random Forests,RF)是由Breiman提出的一种基于CART 决策树的组合分类器。其优越的性能使其在国外的生物、医学、经济、管理等众多领域到了广泛的应用,而国内对其的研究和应用还比较少[2]。为了使国内学者对该方法有一个更深入的了解,本文将其与分类性能优越的支持向量机[3](Support Vector Machine,SVM)进行数据实验比较,客观地展示其分类性能。本文选取了UCI机器学习数据库[4]的20个数据集作为实验数据,通过大量的数据实验,从泛化能力、噪声鲁棒性和不平衡分类三个主要方面进行比较,为研究者选择和使用分类器提供有价值的参考。 1 分类器介绍 1.1 随机森林 随机森林作为一种组合分类器,其算法由以下三步实现: 1. 采用bootstrap抽样技术从原始数据集中抽取n tree个训练集,每个训练集的大小约为原始数据集的三分之二。 2. 为每一个bootstrap训练集分别建立分类回归树(Classification and Regression Tree,CART),共产生n tree棵决策树构成一片“森林”,这些决策树均不进行剪枝(unpruned)。在作者简介:黄衍(1986-),男,硕士研究生,主要研究方向:数据挖掘与统计分析。 通信联系人:查伟雄,男,博士,教授,主要研究方向:交通运输与经济统计分析。 E-mail: huangyan189@https://www.360docs.net/doc/7618830933.html,.

支持向量机资料

支持向量机 1基本情况 Vapnik等人在多年研究统计学习理论基础上对线性分类器提出了另一种设计最佳准则。 其原理也从线性可分说起,然后扩展到线性不可分的情况。甚至扩展到使用非线性函数中去,这种分类器被称为支持向量机(Support Vector Machine,简称SVM)。支持向量机的提出有很深的理论背景 支持向量机方法是在近年来提出的一种新方法。 SVM的主要思想可以概括为两点: ⑴它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能; ⑵它基于结构风险最小化理论之上在特征空间中建构最优分割超平面, 使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上 界。 例子 如图: 将1维的“线性不可分”上升到2维后就成为线性可分了。 在学习这种方法时,首先要弄清楚这种方法考虑问题的特点,这就要从线性可分的最简单情况讨论起,在没有弄懂其原理之前,不要急于学习线性不可分等较复杂的情况,支持向量机在设计时,需要用到条件极值问题的求解,因此需用拉格朗日乘子理论。 2一般特征 ⑴SVM学习问题可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数

的全局最小值。而其他分类方法(如基于规则的分类器和人工神经网络)都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解。 ⑵SVM通过最大化决策边界的边缘来控制模型的能力。尽管如此,用户必须提供其他 参数,如使用核函数类型和引入松弛变量等。 ⑶通过对数据中每个分类属性引入一个哑变量,SVM可以应用于分类数据。 ⑷SVM一般只能用在二类问题,对于多类问题效果不好。 3原理简介 SVM方法是通过一个非线性映射p,把样本空间映射到一个高维乃至无穷维的特征空 间中(Hilbert空间),使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线 性可分的问题.简单地说,就是升维和线性化.升维,就是把样本向高维空间做映射,一般 情况下这会增加计算的复杂性,甚至会引起“维数灾难”,因而人们很少问津.但是作为分类、回归等问题来说,很可能在低维样本空间无法线性处理的样本集,在高维特征空间中却可以通过一个线性超平面实现线性划分(或回归).一般的升维都会带来计算的复杂化,SVM 方法巧妙地解决了这个难题:应用核函数的展开定理,就不需要知道非线性映射的显式表达式;由于是在高维特征空间中建立线性学习机,所以与线性模型相比,不但几乎不增加计算的复杂性,而且在某种程度上避免了“维数灾难”.这一切要归功于核函数的展开和计算理论. 选择不同的核函数,可以生成不同的SVM,常用的核函数有以下4种: ⑴线性核函数K(x,y)=x·y; ⑵多项式核函数K(x,y)=[(x·y)+1]^d; ⑶径向基函数K(x,y)=exp(-|x-y|^2/d^2) ⑷二层神经网络核函数K(x,y)=tanh(a(x·y)+b). 最优分类面:最优超平面 SVM是从线性可分情况下的最优分类面发展而来的,基本思想可用图2的两维情况说明。 如图:方形点和圆形点代表两类样本,H为分类线,H1,H2分别为过各类中离分类线最近的样本且平行于分类线的直线,他们之间的距离叫分类间隔。 最优分类线就是要求分类线不但能将两类正确分开(训练错误率为0),且使分类间隔最大。 推广到高维空间,最优分类线就变为最优分类面。

支持向量机理论及工程应用实例

《支持向量机理论及工程应用实例》 支持向量机理论及工程应用实例 求助编辑百科名片 《支持向量机理论及工程应用实例》共分为8章,从机器学习的基本问题开始,循序渐进地介绍了相关的内容,包括线性分类器、核函数特征空间、推广性理论和优化理论,从而引出了支持向量机的算法,进而将支持向量机应用到实际的工程实例中。《支持向量机理论及工程应用实例》适合高等院校高年级本科生、研究生、教师和相关科研人员及相关领域的工作者使用。《支持向量机理论及工程应用实例》既可作为研究生教材,也可作为神经网络、机器学习、数据挖掘等课程的参考教材。 书名: 支持向量机理论及工程应用实例 作者: 白鹏 张斌 ISBN : 9787560620510 定价: 16.00 元 出版社: 西安电子科技大学出版社 出版时间: 2008 开本: 16 LIBSVM 的简单介绍 2006-09-20 15:59:48 大 中 小 1. LIBSVM 软件包简介 LIBSVM 是台湾大学林智仁(Chih-Jen Lin)博士等开发设计的一个操作简单、易于使用、快速有效的通用SVM 软件包,可以解决分类问题(包括C- SVC 、n - SVC )、回归问题(包括e - SVR 、n - SVR )以及分布估计 (one-class-SVM )等问题,提供了线性、多项式、径向基和S 形函数四种常

用的核函数供选择,可以有效地解决多类问题、交叉验证选择参数、对不平衡样本加权、多类问题的概率估计等。LIBSVM 是一个开源的软件包,需要者都可以免费的从作者的个人主页 处获得。他不仅提供了LIBSVM的C++语言的算法源代码,还提供了Python、Java、R、MATLAB、Perl、Ruby、LabVIEW以及C#.net 等各种语言的接口,可以方便的在Windows 或UNIX 平台下使用。另外还提供了WINDOWS 平台下的可视化操作工具SVM-toy,并且在进行模型参数选择时可以绘制出交叉验证精度的等高线图。 2. LIBSVM 使用方法简介 LibSVM是以源代码和可执行文件两种方式给出的。如果是Windows系列操作系统,可以直接使用软件包提供的程序,也可以进行修改编译;如果是Unix类系统,必须自己编译。 LIBSVM 在给出源代码的同时还提供了Windows操作系统下的可执行文件,包括:进行支持向量机训练的svmtrain.exe;根据已获得的支持向量机模型对数据集进行预测的svmpredict.exe;以及对训练数据与测试数据进行简单缩放操作的svmscale.exe。它们都可以直接在DOS 环境中使用。如果下载的包中只有C++的源代码,则也可以自己在VC等软件上编译生成可执行文件。 3. LIBSVM 使用的一般步骤是: 1)按照LIBSVM软件包所要求的格式准备数据集; 2)对数据进行简单的缩放操作; 3)考虑选用RBF 核函数; 4)采用交叉验证选择最佳参数C与g ; 5)采用最佳参数C与g 对整个训练集进行训练获取支持向量机模型; 6)利用获取的模型进行测试与预测。 4. LIBSVM使用的数据格式 1)训练数据和检验数据文件格式如下:

支持向量机SVM原理及应用概述

东北大学 研究生考试试卷 考试科目:信号处理的统计分析方法 课程编号:09601513 阅卷人: 刘晓志 考试日期:2012年11月07日 姓名:赵亚楠 学号:1001236 注意事项 1.考前研究生将上述项目填写清楚. 2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室, 专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室. 东北大学研究生院培养办公室

目录 一、SVM的产生与发展3 二、支持向量机相关理论4 (一)统计学习理论基础4 (二)SVM原理4 1.最优分类面和广义最优分类面5 2.SVM的非线性映射7 3.核函数8 三、支持向量机的应用研究现状9(一)人脸检测、验证和识别9(二)说话人/语音识别10 (三)文字/手写体识别10 (四)图像处理11 (五)其他应用研究11 四、结论和讨论12

一、SVM 的产生与发展 自1995年Vapnik 在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面,但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support VectorMachines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support VectorMachine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。上述改进模型中,v-SVM 是一种软间隔分类器模型,其原理是通过引进参数v ,来调整支持向量数占输入数据比例的下限,以及参数ρ来度量超平面偏差,代替通常依靠经验选取的软间隔分类惩罚参数,改善分类效果;LS-SVM 则是用等式约束代替传统SVM 中的不等式约束,将求解QP 问题变成解一组等式方程来提高算法效率;LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题,它提供常用的几种核函数可由用户选择,并且具有不平衡样本加权和多类分类等功能,此外,交叉验证(cross validation)方法也是LIBSVM 对核函数参数选取问题所做的一个突出贡献;SVM-1ight 的特点则是通过引进缩水(shrinking)逐步简化QP 问题,以及缓存(caching)技术降低迭代运算的计算代价来解决大规模样本条件下SVM 学习的复杂性问题。

相关文档
最新文档