DNA shuffling of methionine adenosyltransferase gene leads to improved S

DNA shuffling of methionine adenosyltransferase gene leads to improved S
DNA shuffling of methionine adenosyltransferase gene leads to improved S

Journal of Biotechnology 141(2009)97–103

Contents lists available at ScienceDirect

Journal of

Biotechnology

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /j b i o t e

c

DNA shuf?ing of methionine adenosyltransferase gene leads to improved S-adenosyl-l -methionine production in Pichia pastoris

Hui Hu,Jiangchao Qian ??,Ju Chu ?,Yong Wang,Yingping Zhuang,Siliang Zhang

State Key Laboratory of Bioreactor Engineering,National Engineering Research Center for Biotechnology (Shanghai),East China University of Science &Technology,130Meilong Road,Shanghai 200237,PR China

a r t i c l e i n f o Article history:

Received 22October 2008

Received in revised form 16February 2009Accepted 17March 2009Keywords:

S-adenosyl-l -methionine

Methionine adenosyltransferase DNA shuf?ing Pichia pastoris

a b s t r a c t

S-Adenosyl-l -methionine (SAM)is an important molecule for normal cell function and survival.To enhance methionine adenosyltransferase (MAT,EC2.5.1.6)activity and thus SAM production in recombi-nant Pichia pastori s,MAT genes from Escherichia coli ,Saccharmyces cerevisiae ,and Streptomyces spectabilis were recombined by DNA shuf?ing.The shuf?ed genes were transformed into P.pastoris GS115to con-struct recombinant strains and screened for high MAT activity and enhanced SAM production mutants.In the two best recombinant strains,the MAT activities were respectively 201%and 65%higher than the recombinant strains containing the starting MAT genes,and the SAM concentration increased by 103%and 65%respectively.The analysis on the deduced sequences of ?ve representative MAT variants showed that the K18R mutation probably resulted in the increased activity of the best MAT,which may provide new insights into structure-enzyme activity relationship of MAT and might shed light on the further rational evolution of MAT.Finally,a 6.14g l ?1of SAM production was reached in a 500l bioreactor with the best recombinant strain GS115/DS56,which showed a favorable foreground in industrial scale production of SAM.

?2009Elsevier B.V.All rights reserved.

1.Introduction

S-Adenosyl-l -methionine (SAM)is the major intracellular methyl donor in all living organisms (Park et al.,1996).In addition to acting as a methyl donor,SAM also plays an important role in transsulfuration and polyamine synthesis reactions.Considerable interest in SAM production has arisen because it can treat affec-tive disorders,liver disease,and neurological effectively (Lu,2000).Therefore,several strains have been screened successively to pro-duce SAM,such as yeast (Shiozaki et al.,1986;Shobayashi et al.,2005)and Kluyveromyces lactis (Mincheva and Balutsov,2002).

Methionine adenosyltransferase (MAT,EC2.5.1.6)is the only known enzyme to synthesize SAM in organisms.It catalyzes ATP and l -methionine (l -Met)to synthesize SAM.The recombinant Pichia pastoris (Li et al.,2002;Yu et al.,2003)and Escherichia coli (Mato et al.,1995;Yang et al.,2002)that over-expressed MAT were constructed for SAM production.A positive correlation was

Abbreviations:ATP,adenosine triphosphate;DO,dissolved oxygen;DCW,dry cell weight;l -Met,l -methionine;MAT,methionine adenosyltransferase;rpm,rota-tion per minute;SAM,S-adenosyl-l -methionine;VVM,volume of gas per volume of liquid per minute.

?Corresponding author.Tel.:+8602164253021;fax:+8602164253702.??Corresponding author.Tel.:+8602164250736;fax:+8602164253702.

E-mail addresses:jiangchaoqian@https://www.360docs.net/doc/7f19250773.html, (J.Qian),juchu@https://www.360docs.net/doc/7f19250773.html, (J.Chu).

revealed between SAM accumulation and MAT activity.Therefore,it is of great importance to enhance MAT activity for SAM accumu-lation.

Increasing MAT expression level is a routine method to enhance the enzyme activity.However,SAM,but not MAT,is the desired product of the bioprocess.Over-expression of MAT gene also might inhibit cell growth and SAM production due to the competition of resource and energy.Therefore,molecular evolution of MAT to increase its speci?c enzyme activity is a better way to enhance MAT activity for SAM accumulation.DNA is widely used for in vitro molecular evolution (Crameri et al.,1998).It involves the recombi-nation of multiple homologous DNA sequences to create a hybrid gene library for selection.This method has been shown to be a pow-erful engineering approach to tailor the properties of enzymes,such as thermostability (Suen et al.,2004;Emond et al.,2008),activity (Tatsuya and Yoshinori,2007;Ryu et al.,2008),and pH stability (Liu et al.,2005)of the enzymes.

The methylotrophic yeast P.pastoris has been developed into a commercially important host for the production of heterologous proteins because it has the unique ability to grow on minimal media at very high cell densities with the strong,tightly regulated alco-hol oxidase promoter (Cereghino and Cregg,2000).Furthermore,excess SAM in yeast is sequestered in the vacuole,so yeast itself can accumulate high level of SAM (Chan and Appling,2003;Megumi et al.,2007).Combined with these advantages,the recombinant P.pastoris has the potential to accumulate higher level of SAM.

0168-1656/$–see front matter ?2009Elsevier B.V.All rights reserved.doi:10.1016/j.jbiotec.2009.03.006

98H.Hu et al./Journal of Biotechnology141(2009)97–103

In this study,three homologous MAT genes from Saccharmyces cerevisiae,E.coli DH5?and Streptomyces spectabilis(GenBank acces-sion nos.M23368,AE000377,and AF117274),which share52–62% nucleic acid identity,were shuf?ed to generate a hybrid MAT gene library.The shuf?ed MAT genes were then transformed into P. pastoris GS115to enhance SAM production.The highest MAT activ-ity and SAM concentration of463U g?1DCW and1.64g l?1were achieved in the best strain(GS115/DS56)in shake?ask cultiva-tion,which had201%and102%improvement respectively over the recombinant strain harboring MAT gene from S.cerevisiae.The sequence alignment,conservation analysis,and tertiary structure construction were performed to speculate the mechanism of the altered activities of?ve selected shuf?ed MATs.Finally,the maxi-mum SAM concentration in GS115/DS56reached6.14g l?1in a500l bioreactor,which showed a favorable foreground in commercial production of SAM.

2.Materials and methods

2.1.General methods

E.coli DH5?was used for routine subcloning employing stan-dard growth media and conditions(Sambrook and Russell,2001). Plasmid pPIC3.5K was used for constructing MAT gene expression vector in P.pastoris GS115,and the transformation of DNA into P.pas-toris GS115was performed as described by the instruction manual of Pichia expression kit(Invitrogen BV,Groningen,The Nether-lands).The kits for plasmid isolation,restriction enzyme digestion, DNA ligation,DNA puri?cation,and isolation of the genomic DNA of E.coli DH5?and S.cerevisiae were purchased from TaKara Co. (Takara,Tokyo,Japan).Shuf?ed MAT genes were sequenced at TaKara Corporation(Takara,Tokyo,Japan).

2.2.Culture condition

The MD plate was used to screen His+recombinant P.pas-toris strains,and the YPD-Geneticin plate was used to estimate the copy number of MAT gene integrated into the chromosome of recombinant P.pastoris strain as described by the manual of Pichia Expression Kit(Invitrogen BV,Groningen,The Netherlands).

The cultivation of recombinant P.pastoris strains in250ml shake ?asks or15ml tubes for SAM production was similar to those described previously(Chen et al.,2007),with some modi?cations in the induction phase.During the induction phase,the concentra-tions of methanol were measured and100%methanol was added to a?nal concentration of1.2%(v/v)every12h,and the sterile l-Met(Bafeng,China)powder was added every24h to a?nal con-centration of0.1%(w/v)12h after induction to initiate the SAM synthesis.

For5l bioreactor(FUS,Guoqiang,China)cultivation,the initial batch phase procedure was carried out according to the method described previously(Hu et al.,2007).After the batch phase,the sterile50%(v/v)glycerol solution with1.2%(v/v)PTM1trace salts solution(Invitrogen BV,Groningen,The Netherlands)was fed for about16h with a constant rate of20.2g l?1h?1.Then,the strain was induced by100%methanol,fed together with1.2%(v/v)PTM1 trace salts solution with a constant rate of6.8g l?1h?1.The sterile l-Met powder(total15g l?1culture broth)was supplemented for three times,at a concentration of5g l?1every20h from12to52h of induction(Hu et al.,2007).

The cultivation in a500l bioreactor(B.Braun,Genmany)was similar to that in a5l bioreactor,but the feeding rate of50%glycerol (with1.2%(v/v)PTM1trace salts solution)and methanol(with1.2% (v/v)PTM1trace salts solution)was23.8and7.5g l?1h?1,respec-tively.Table1

Primers used for ampli?cation of homologous MAT genes.

Source Primers(5 –3 )a

E.coli DH5?,CCAGAATTCATGGCAAAACACCTTTTTACGTC

(forward primer)

TATGCGGCCGCTTACTTCAGACCGGCAGCATC

(Reverse Primer)

S.cerevisiae CCAGAATTCATGTCCAAGAGCAAAACTTTC

(forward primer)

TAAGCGGCCGCTTAAAATTCCAATTTCTTTG

(Reverse Primer)

S.spectabilis CCAGAATTCGTGTCCCGCCGTCTCTTCACCTCG

(forward primer)

TATGCGGCCGCTCAGTGAACAAGCGGCAGGAG

(Reverse Primer)

a Sequences added to introduce restriction endonuclease recognition sites(Eco RI and Not I)are underlined.

2.3.Plasmid and strain construction

The MAT genes from S.cerevisiae and E.coli DH5?were ampli-?ed from their genomic DNA,respectively.The MAT gene from S. spectabilis was ampli?ed from plasmid pWHM3-SAM(Chen et al., 2007).Primers used are listed in Table1.

All MAT genes were inserted into the Eco RI-Not I sites of pPIC3.5K to construct pPIC3.5K/EC,pPIC3.5K/SA,and pPIC3.5K/ST,respec-tively.Plasmid constructions were con?rmed by restriction enzyme digestion and DNA sequence analysis.The recombinant plasmids were linearized by Bgl II and transformed into P.pastoris GS115 and selected on MD plates.Positive clones were cultured on YPD-Geneticin plate.The resultant strains which could only grow on YPD-Geneticin plate containing0.25mg ml?1Geneticin(could not grow on YPD-Geneticin plate containing0.5mg ml?1Geneticin or higher)were selected and denoted as GS115/SA,GS115/EC,and GS115/ST,respectively.The plasmid pPIC3.5K was also linearized by Bgl II and transformed into P.pastoris GS115to generate a control strain(denoted as GS115/3.5K).

2.4.DNA shuf?ing

Three~1.4kb DNA fragments containing the MAT genes from pPIC3.5K/EC,pPIC3.5K/SA,and pPIC3.5K/ST were ampli?ed by using5 AOX1(5 -GACTGGTTCCAATTGACAAGC-3 )and3 AOX1(5 -GCAAATGGCATTCTGACATCC-3 )primers.Equal amounts of three MAT gene preparations were mixed,and digested with DNase I,then subjected to shuf?ing procedure as described previously(Zhao and Frances,1997)with minor modi?cations.The program of primerless PCR was changed as following:one cycle at94?C for3min,followed by50cycles at94?C for60s,30?C for60s,72?C for90s and one cycle at72?C for7min.The primerless PCR product was ampli-?ed by using5 AOX1and3 https://www.360docs.net/doc/7f19250773.html, Taq DNA polymerase (Takara,Tokyo,Japan)was used for all PCRs.The resulting MAT gene libraries were inserted into the Eco RI-Not I sites of pPIC3.5K and transformed into E.coli DH5?to maintain and propagate the shuf?ed libraries.Recombinant E.coli DH5?colonies(~104)were combined,and recombinant plasmids were extracted and puri?ed. The puri?ed recombinant plasmids were linearized by Bgl II diges-tion and transformed into P.pastoris GS115for screening.

2.5.Screening procedures

Recombinant strains harboring shuf?ed MAT genes were cul-tured in15ml tube and the intracellular SAM concentration was assayed after cultivation.Strains with improved SAM production were con?rmed by cultivation in250ml shake?asks.Recombinant strains harboring wild-type MAT genes were used as the control.

H.Hu et al./Journal of Biotechnology 141(2009)97–103

99

https://www.360docs.net/doc/7f19250773.html,parison of MAT activity (a),SAM concentration (b),and DCW (c)in GS115/3.5K (1)GS115/SA (2),GS115/EC (3),and GS115/ST (4).All strains were induced with methanol for 96h in shake ?ask cultivations.Data are means ±SE of three replicates.

2.6.Analytical methods

To determine the dry cell weight (DCW),cells were harvested by centrifugation at 12,000rpm for 5min,washed twice with deionized water,and dried to a constant weight at 80?C.SAM con-centration was assayed as described by Wanger et al.(1984)and MAT activity was assayed according to the method reported by Shiozaki et al.(1984).One unit (U)of enzyme was de?ned as that required to catalyze the transformation of 1?mol l -Met into SAM per hour at 37?C.

2.7.Conservation analysis and tertiary structure construction of MAT

The conservative sites of MAT were analyzed by NCBI Conserved Domains Search (https://www.360docs.net/doc/7f19250773.html,/Structure/cdd/wrpsb.cgi ).The tertiary structures of the shuf?ed and wild-type MAT were constructed using the Swiss-model server (https://www.360docs.net/doc/7f19250773.html,/SWISS-MODEL.html ).Reported structures of MAT from E.coli (pdb code:1xra)(Takusagawa et al.,1996)or human (pdb code:2p02,Structural Genomics Consortium,doi:10.2210/pdb2p02/pdb )were used as construction templates.The selection of template depended on the homology degree between the target and the modeled MAT.The putative active sites of the shuf?ed and wild-type MAT were deduced from the reported structure of MAT from E.coli (Takusagawa et al.,1996;John and George,1999)through DNA alignment.3.Results

3.1.Expression of exogenous MAT genes in P.pastoris

Three recombinant strains (GS115/SA,GS115/EC,and GS115/ST)harboring the wild-type MAT genes from S.cerevisiae ,E.coli ,and

S.

Fig.2.Relative SAM concentration in the recombinant strains harboring shuf?ed MAT gene.All strains were induced with methanol for 60h in tube cultivations.Recombinant strains harboring the wild-type MAT genes were used as the control and SAM concentration in GS115/SA was de?ned as 1.

spectabilis were cultured in the shake ?asks and strain GS115/3.5K was used as the control.After induced with methanol for 96h,MAT activity and SAM concentration were much higher in GS115/SA,GS115/EC,and GS115/ST than that in GS115/3.5K.MAT activity and SAM concentration in the best recombinant strain (GS115/SA)were 153.68±19.87U g ?1DCW and 0.81±0.11g l ?1,respectively,which were about 21times and 134times higher than those in GS115/3.5K,respectively.It could be concluded that high MAT activ-ity and improved SAM production were obtained in recombinant strains expressing exogenous MAT genes (Fig.1a and b).There was no obvious difference in the cell mass among the four strains,which indicated that MAT expression and SAM production did not markedly affect cell growth (Fig.1

c).

https://www.360docs.net/doc/7f19250773.html,parison of MAT activity (a),SAM concentration (b),and DCW (c)in GS115/SA (1)GS115/DS16(2),GS115/DS56(3),GS115/DS34(4),GS115/DS69(5),and GS115/DS4(6).All strains were induced with methanol for 96h in shake ?ask cultivations.Data are means ±SE of three replicates.

100H.Hu et al./Journal of Biotechnology 141(2009)

97–103

Fig.4.The tertiary structures of the shuf?ed and wild-type MAT constructed by Swiss-model server.The tertiary structures of pST (residues 2–392)(a),pDS56(residues 2–403)(b),and pDS4(residues 2–392)(c)were constructed by Swiss-model server using the structure of MAT from E.coli as a template.The tertiary structures of pSA (residues 6–384)(d),pDS16(residues 7–384)(e),and pDS69(residues 6–384)(f)were constructed by Swiss-model server using the structure of MAT from human as a template.Arrows indicated the different structure between pDS16and pSA.The putative active sites of MAT are shown in green and the mutations are shown in red (for interpretation of the references to color in this ?gure legend,the reader is referred to the web version of the article).

3.2.Screening of MAT gene variants obtained by DNA shuf?ing To obtain MAT with higher speci?c activity,MAT genes from S.cerevisiae ,E.coli ,and S.spectabilis (52–62%nucleic acid identity)were recombined by DNA shuf?ing.The Libraries of shuf?ed MAT genes were inserted into pPIC3.5K at the Eco RI-Not I sites and trans-formed into P.pastoris GS115to construct the recombinant strains for screening.Approximately 400clones were screened for produc-tion of SAM.The SAM concentration in GS115/SA was de?ned as 1,relative SAM concentration in GS115/EC and GS115/ST were 0.71and 0.58,respectively.Among the 412clones screened,13clones (3.2%)produced a relatively higher SAM concentration above 1,188clones (45.6%)produced a comparable SAM concentration between 0.58and 1,and 211clones (51.2%)produced a relative lower SAM concentration less than 0.58(Fig.2).

Among the 412clones tested,the two best (GS115/DS16and GS115/DS56)and three negative clones (GS115/DS4,GS115/DS34,and GS115/DS69)were picked for further study.All ?ve strains

H.Hu et al./Journal of Biotechnology141(2009)97–103101

were cultured in shake?asks.At the end of cultivation,MAT activ-ity and SAM concentration in GS115/DS56and GS115/DS16were signi?cantly higher than in GS115/SA(Fig.3a and b),which sug-gested that these two strains harbored the improved MAT genes that enhanced the SAM production.MAT activity and SAM con-centration in the best strain GS115/DS56were463.34±24.68U g?1 DCW and1.64±0.14g l?1,respectively,which were2.01and1.02 times higher than that of strain GS115/SA,respectively.The three negative strains were poor in MAT expression and SAM production (Fig.3a and b),which suggested that these three strains harbored the negative MAT genes generated by DNA Shuf?ing.The cell mass of the two best and three negative clones were nearly the same (Fig.3c),which agreed with the result shown in Fig.1c.

3.3.Sequence analysis of the MAT gene variants

The shuf?ed MAT genes integrated in the chromosome of the?ve selected strains were sequenced.The amino acid sequences of the shuf?ed MAT(denoted as pDS16,pDS56,pDS4,pDS34,and pDS69, respectively)were deduced from their DNA sequences.

The amino acid sequences of pDS16,pDS69and pDS34had99%, 98%and97%identity with MAT from S.cerevisiae(denoted as pSA), https://www.360docs.net/doc/7f19250773.html,pared with pSA,two site mutations(K5E and I337V)appeared in pDS16and four site mutations(C23A,A48D, D155G,and K278G)appeared in pDS69.A stop codon appeared in the DNA sequence of pDS34,which would lead to the incom-plete translation of pDS34with only117amino acid residues.This stop codon resulted in the nearly complete inactivation of pDS34 and thus almost no accumulation of SAM in GS115/DS34.Therefore, pDS34would not be discussed further.

The amino acid sequences of pDS4and pDS56had99%and98% identity with MAT from S.spectabilis(denoted as pST),respectively. Compared with pST,four site mutations(K18R,L31P,I65V,and D341G)appeared in pDS56and three site mutations appeared in pDS4(K187E,S281F,and R398D).There was also a frame shift muta-tion(395th–404th)in the DNA sequence of pDS56,which would lead to a truncated MAT with404amino acid residues.

To further analyze the structure-enzyme activity relationship of MAT,tertiary structures of the shuf?ed and wild-type MAT were constructed using Swiss-model server.The results showed that mutations,which appeared in all the selected MAT variants except pDS16(Fig.4e),did not affect the tertiary structure(Fig.4b,c,and f).Meanwhile,the conservative sites of MAT were also analyzed (Table2).

The K18R substitution is the only mutation in the conservative sites in pDS56(Table2).The tertiary structure of pDS56also showed that only the K18R mutation was near the putative active sites of the enzyme(Fig.4b).These results suggested that the K18R mutation probably resulted in the increased activity of pDS56.The tertiary structure of pDS16was changed,but the I337V mutation in pDS16 was away from the putative active sites of MAT(Fig.4e).The con-Table2

The conservative analysis of the mutations appeared in pDS4,pDS16,pDS56,and pDS69.

Proteins Mutations/conservation a

pDS165th/N337th/N

pDS6923rd/N48th/N155th/N278th/Y

pDS5618th/Y31st/N65th/N341st/N395th–404th/N pDS4187th/N281st/Y398th/N

a Y represents conservative and N represents not conservative.

servative analysis of mutations in pDS16also indicated that the two mutations were nonconservative(Table2).So the mechanism of the improved activity of pDS16was still enigmatic.

The conservative analysis of mutations(Table2)showed that there was only one conservative mutation in pDS4(S281F)and pDS69(K278G),respectively.The S281F mutation in pDS4was close to the putative active sites of the enzyme(Fig.4c)and the K278G mutation in pDS69was exactly at one of the putative active sites (Fig.4f).The C23A mutation in pDS69was also near the putative active sites of the enzyme(Fig.4f),but this site was not conserva-tive.And the same C23A mutation also happened in the wild-type MAT(Mautino et al.,1996).Other mutations in pDS4and pDS69 were all away from the putative active sites of MAT(Fig.4c and f). Therefore,the decreased activity of pDS4was probably due to the S281F mutation and the K278G mutation was likely to result in the inactivation of pDS4.

3.4.Production of SAM by strain GS115/DS56in5l and500l bioreactors

Strain GS115/DS56was cultured in a5l bioreactor.As shown in Fig.5a,the maximal MAT activity of587.2U g?1DCW was achieved in GS115/DS56after42h of induction,which was2.8times higher than that of GS115/SA.SAM concentration in GS115/DS56also increased markedly due to the improvement of MAT activity.The maximum SAM concentration in GS115/DS56reached5.59g l?1 after62h of methanol induction,which was about28%higher than that of GS115/SA(Fig.5b).Similar with the cultivation in shake ?asks(Fig.1c and Fig.3c),the cell mass of the four recombinant strains was not changed with the varied MAT activity and SAM production(Fig.5c).Finally,the cultivation scale was scaled up to 500l.The maximum SAM concentration of6.14g l?1was obtained in GS115/DS56,which showed a favorable foreground for industrial application.

4.Discussions

We succeeded in constructing a new recombinant

strain

(GS115/DS56)with increased MAT activity and SAM production in

both shake?asks and500l bioreactor by expressing an improved

https://www.360docs.net/doc/7f19250773.html,parison of MAT activity(a),SAM concentration(b),and DCW(c)in GS115/DS56(rectangle),GS115/SA(triangle),GS115/EC(pentagram),and GS115/ST(circle) cultured in a5l bioreactor.Arrows indicated the time for l-Met addition.

102H.Hu et al./Journal of Biotechnology141(2009)97–103

MAT gene.The increased MAT activity played a key role in the high SAM production.

There are two ways to increase the heterogenous enzyme activ-ity in the recombinant strains:one is to increase the expression level and the other is to improve the speci?c activity of the enzyme. However,increasing the expression level of heterogenous enzyme will consume more resource and energy,and even inhibit the cell growth.It was reported that full induction of styAB expression in E. coli JM101had led to a strong inhibition of cell growth and washout (Bruno et al.,2008).The similar effect was also observed in alkane monooxygenase-overproducing,E.coli(Favre-Bulle and Witholt, 1992).In this study,the desired product is not the enzyme itself (MAT),but the MAT-catalyzed product SAM.And ATP is another substrate in this MAT-catalyzed SAM biosynthesis reaction.Thus, the better way to increase MAT activity and SAM accumulation is to improve the speci?c activity of MAT.In this study,the enhanced activity of MAT variant should be attributed to the improved speci?c activity.Firstly,the MAT gene copy should be the same in all recom-binant strains harboring the shuf?ed or wild-type MAT genes.Since all the recombinant strains were cultured on the YPD-Geneticin plate and strains which could only grow on YPD-Geneticin plate containing0.25mg ml?1Geneticin but could not grow on YPD-Geneticin plate containing0.5mg ml?1Geneticin or higher were selected.This selection ensures that only one copy of the MAT gene should be integrated into the chromosome of the P.pastoris (Scorer et al.,1994).Secondly,the similar expression cassette(only several amino acid residue substitutions happened in the coding sequence of all the MAT gene variants)would lead to the similar MAT transcription level in each recombinant strain.Therefore,the varied MAT activities in the recombinant strains were mainly due to the different coding sequences of the MAT variants,and the high MAT activity in GS115/DS56should be attributed to the improved speci?c activity of pDS56encoded by the recombinant MAT gene obtained by DNA shuf?ing.

No crossovers happened in the?ve selected shuf?ed MAT genes, but we found a crossover appeared in another two sequenced MAT genes.It meant that the three homologous MAT genes were not completely shuf?ed.We supposed that the low nucleic acid identity between the three homologous MAT genes(52–62%)resulted in the uncompleted shuf?ing because the conserved nucleic acids among the three homologous MAT gene sequences were no more than10 bases long.To force crossover based on such short sequence iden-tity,a very low effective annealing temperature in the primerless PCR should be used(Stemmer,1994).Thus,the annealing tem-perature in the primerless PCR could be optimized in the further studies.

In our best recombinant strain GS115/DS56,the degree of increased MAT activity was much higher than that of SAM pro-duction.The MAT activity was83%higher in GS115/DS56than in GS115/DS16in the shake?ask cultivations,while the SAM concentration and speci?c SAM concentration(calculated by divid-ing the SAM concentration(g l?1)by the dry cell weight(g l?1)) only increased about22%and24%,respectively.This phenomenon also happened in the5l bioreactor https://www.360docs.net/doc/7f19250773.html,pared with GS115/SA,the maximum MAT activity in GS115/DS56had2.8times improvement,but the maximum SAM concentration and speci?c SAM concentration only increased about28%and13%,respectively. Therefore,MAT activity was not the only limiting factor for SAM production and too high MAT activity would not further increase SAM production signi?cantly.

It was demonstrated that alternate or mixed feeding of methanol and glycerol during the induction phase improved ATP synthesis and SAM production in the recombinant P.pastoris strain harbor-ing the MAT gene from S.cerevisiae although the MAT activity was decreased(Li et al.,2002;Hu et al.,2007).Furthermore,Virtreoscilla hemoglobin gene was transformed into the recombinant P.pastoris strain harboring the MAT gene from S.spectabilis to improve ATP synthesis and thus enhanced SAM production(Chen et al.,2007). Thus,it could be concluded that the ATP level was another limiting factor for SAM production.The l-Met feeding strategy also affected the SAM production.Liu et al.(2006)compared?ve different l-Met addition strategies and found that feeding l-Met continuously was the best strategy for SAM production.Therefore,further studies on the combined effects of MAT activity,ATP level,and l-Met feeding strategy should be carried out to optimize the SAM production.

Acknowledgements

We are grateful to National Basic Research Program(973 Program No.2007CB714306),the National High Technology Research and Development Program of China(863Program No.2007AA100601)and Science and Technology Commission of Shanghai Municipality(07pj14027)for their?nancial supports to this research.

References

Bruno,B.,Park,J.B.,Lars,M.B.,Schmid,A.,2008.NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain.Appl.

Environ.Microbiol.74(5),1436–1446.

Cereghino,J.L.,Cregg,J.M.,2000.Heterologous protein expression in the methy-lotrophic yeast Pichia pastoris.FEMS Microbiol.Rev.24,45–66.

Chan,S.Y.,Appling,D.R.,2003.Regulation of S-adenosylmethionine levels in Saccha-romyces cerevisiae.J.Biol.Chem.278,43051–43059.

Chen,H.X.,Chu,J.,Zhang,S.L.,Zhuang,Y.P.,Qian,J.C.,Wang,Y.H.,Hu,X.Q.,2007.Intra-cellular expression of Vitreoscilla hemoglobin improves S-adenosylmethionine production in a recombinant Pichia pastoris.Appl.Microbiol.Biotechnol.74(6), 1205–1212.

Crameri,A.,Raillard,S.A.,Bermudez,E.,Stemmer,W.P.,1998.DNA shu?ing of a family of genes from diverse species accelerates directed evolution.Nature391(6664), 288–291.

Emond,S.,Andre,I.,Jaziri,K.,Potocki-Veronese,G.,Mondon,P.,Bouayadi,K.,Kharrat,

H.,Monsan,P.,Remaud-Simeon,M.,https://www.360docs.net/doc/7f19250773.html,binatorial engineering to enhance

thermostability of amylosucrase.Protein Sci.17,967–976.

Favre-Bulle,O.,Witholt, B.,1992.Biooxidation of n-octane by a recombinant Escherichia coli in a two-liquid-phase system:effect of medium components on cell growth and alkane oxidation activity.Enzyme Microb.Technol.14,931–937.

Hu,X.Q.,Chu,J.,Zhang,S.L.,Zhuang,Y.P.,Wang,Y.H.,Zhu,S.,Zhu,Z.G.,Yuan,Z.Y.,2007.

A novel feeding strategy during the production phase for enhancing the enzy-

matic synthesis of S-adenosyl-l-methionine by methylotrophic Pichia pastoris.

Enzyme Microb.Technol.40,669–674.

John,C.T.,George,D.M.,1999.The bifunctional active site of S-adenosylmethionine synthetase.J.Biol.Chem.274(46),32909–32914.

Li,D.Y.,Yu,J.,Tian,L.W.,Ji,X.S.,Yuan,Z.Y.,2002.Production of SAM by recombinant Pichia pastoris.Chin.J.Biotechnol.3,295–299.

Liu,P.Y.,Zhu,D.H.,Tan,T.W.,2006.Effect of feeding pre-l-methionine on high-cell-density fermentation for S-adenosyl-l-methionine production.Chin.J.

Biotechnol.22(2),268–272.

Liu,Z.Q.,Sun,Z.H.,Zheng,P.,Leng,Y.J.,Qian,S.,2005.Directed evolution of d-lactonohydrolase by error prone PCR and DNA shuf?ing.Sheng Wu Gong Cheng Xue Bao21(5),773–781.

Lu,S.C.,2000.S-adenosylmethionine.Int.J.Biochem.Cell Biol.32,391–395. Mato,J.M.,Pajares,M.A.,Mingorance,J.,Avarez,L.,1995.Production of S-adenosyl-methionine(SAM)by fermentation of transformed bacteria.European patent 0647712A1.

Mautino,M.R.,Barra,J.L.,Rosa,A.L.,1996.eth-1,the neurospora crassa locus encoding S-adenosylmethionine synthetase:molecular cloning,sequence analysis and in vivo overexpression.Genetics142(3),789–800.

Megumi,S.,Tsutomu, F.,Haruyuki,I.,2007.Effects of accumulated S-adenosylmethionine on growth of yeast cells.Biosci.Biotechnol.Biochem.71

(6),1595–1597.

Mincheva,K.P.,Balutsov,V.M.,2002.Isolation of S-adenosyl-l-methionine from an enriched Kluyveromyces lactis mutant grown in whey media.Prikl.Biokhim.

Mikrobiol.38(4),389–392.

Park,J.H.,Tai,J.Z.,Roessner,C.A.,Sott,A.T.,1996.Enzymatic synthesis of S-adenosyl-l-methionine on the preparative scale.Bioorg.Med.Chem.4(12),2179–2185.

Ryu,K.,Kang,J.H.,Wang,L.,LeeJ,E.K.,2008.Expression in yeast of secreted lignin peroxidase with improved24-dichlorophenol degradability by DNA shuf?ing.

Biotechnology135(3),241–246.

Sambrook,J.,Russell,D.W.,2001.Molecular Cloning:A Laboratory Manual,third ed.

Cold Spring Harbor Laboratory Press,New York,NY.

Scorer,C.A.,Clare,J.J.,McCombie,W.R.,Michael,A.,Romanos,Sreekrishna,K.,1994.

Rapid selection using G418of high copy number transformants of Pichia pastoris for high-level foreign gene expression.Biotechnology12(2),181–184.

H.Hu et al./Journal of Biotechnology141(2009)97–103103

Shiozaki,S.,Shimizu,S.,Yamaha,H.,1984.Unusual intracellular accumulation of S-adenosyl-l-methionine by microorganisms.Arric.Biol.Chem.48,2293–2300. Shiozaki,S.,Shimizu,S.,Yamada,H.,1986.Production of S-adenosyl-l-methionine by Saccharomces sake.J.Biotechnol.4(6),345–354.

Shobayashi,M.,Mukai,N.,Iwashita,K.,Hiraga,Y.,lefuji,H.,2005.A new method for isolation of S-adenosylmethionine(SAM)-accumulating yeast.Appl.Microbiol.

69,704–710.

Stemmer,W.P.C.,1994.DNA shuf?ing by random fragmentation and reassem-bly:in vitro recombination for molecular evolution.Proc.Natl.Acad.Sci.91, 10747–10751.

Suen,W.C.,Zhang,N.,Xiao,L.,Madison,V.,Zaks,A.,2004.Improved activity and thermo-stability of Candida antarctica lipase B by DNA family shuf?ing.Protein.

Eng.Des.Sel.7(2),133–140.

Takusagawa,F.,Kamitori,S.,Misaki,S.,George,D.M.,1996.Crystal structure of S-adenosylmethionine synthetase.J.Biol.Chem.271(1),136–147.Tatsuya,T.,Yoshinori,H.,2007.Development of innovative Pediocin PA-1by DNA Shuf?ing among Class IIa Bacteriocins.Appl.Environ.Microbiol.73,5292–5299.

Wanger,J.,Danzin,C.,Huot-Olivier,S.,Claveric,N.,Palfreyman,M.G.,1984.High performance liquid chromatographic analysis of S-adenisylmethionine and its metabolites in rat tissues:interrelationship with changes in biogenic catechol levels following treatment with l-dopa.J.Chromatogr.290,247–262.

Yang,J.,Wang,M.,Sun,J.,Wei,P.H.,Tang,W.G.,2002.Cloning of S-adenosyl-l-methionine synthetase gene from Saccharomyces ceverisiae and its expression in E.coli.J.China Pharm.Univ.3,253–255.

Yu,Z.L.,Wu,X.J.,Li,D.Y.,Yang,S.,Zhou,Z.,Cai,J.Z.Y.,2003.Enhancement of the production of SAM by overexpression of SAM synthetase in Pichia pastoris.Sheng Wu Wu Li Xue Bao,Shanghai35,127–132.

Zhao,H.M.,Frances,H.A.,1997.Optimization of DNA shuf?ing for high?delity recom-bination.Nucleic Acids Res.25(6),1307–1308.

超氧化物歧化酶(SOD)的研究、应用和展望

超氧化物歧化酶(SOD)的研究、应用和展望 作者:李敬玺, 王选年, 银梅, 唐海蓉, 王新华 作者单位:河南科技学院,河南 新乡 453003 本文读者也读过(10条) 1.时沁峰.曹威荣超氧化物歧化酶(SOD)的研究概况[期刊论文]-畜禽业2009(4) 2.曹淑华.查向东超氧化物歧化酶研究综述[期刊论文]-安徽农业科学2003,31(4) 3.杨卫健.张双全超氧化物歧化酶的研究及应用前景[期刊论文]-淮阴师范学院学报(自然科学版)2002,1(4) 4.陈鸿鹏.谭晓风.CHEN Hong-peng.TAN Xiao-feng超氧化物歧化酶(SOD)研究综述[期刊论文]-经济林研究2007,25(1) 5.李敬玺.刘继兰.王选年.银梅.葛亚明.唐海蓉.LI Jing-xi.LIU Ji-lan.WANG Xuan-nian.YIN Mei.GE Ya-ming. TANG Hai-rong超氧化物歧化酶研究和应用进展[期刊论文]-动物医学进展2007,28(7) 6.王岚超氧化物歧化酶的研究及应用概况[期刊论文]-武汉工业学院学报2002(1) 7.盛良全.郑晓云.闫向阳.肖厚荣.厦炳乐.刘少民.SHENG Liangquan.ZHEN Xiaoyun.YAN Xiangyang.XIAO Hourong .XIA Binle.LIU Shaomin生命体中的超氧化物歧化酶(综述)[期刊论文]-安徽卫生职业技术学院学报2002,1(2) 8.杨东升超氧化物歧化酶的研究与应用[期刊论文]-化学与生物工程2004,21(3) 9.于平.Yu Ping超氧化物歧化酶研究进展[期刊论文]-生物学通报2006,41(1) 10.沈良.郭洪超氧化物歧化酶及其模拟研究[期刊论文]-杭州师范学院学报(自然科学版)2002,1(3) 本文链接:https://www.360docs.net/doc/7f19250773.html,/Conference_7003085.aspx

超氧化物歧化酶资料

超氧化物歧化酶 超氧化物歧化酶,别名肝蛋白、奥谷蛋白,简称:SOD。SOD是一种源于生命体的活性物质,能消除生物体在新陈代谢过程中产生的有害物质。对人体不断地补充SOD具有抗衰老的特殊效果。超氧化物歧化酶是1938年Marn等人首次从牛红血球中分离得到超氧化物歧化酶开始算起,人们对SOD的研究己有七十多年的历史。1969年McCord等重新发现这种蛋白,并且发现了它们的生物活性,弄清了它催化过氧阴离子发生歧化反应的性质,所以正式将其命名为超氧化物歧化酶。 SOD(超氧化物歧化酶)是国际上公认的具有人体垃圾“清道夫”、“抗衰王”、“美容骄子”之称,是对抗“百病之源”活性氧自由基最有力的物质,是近半个世纪以来社会科学界、医学界、生物界最举世瞩目的价值发现,它的研究与发展代表着生物医药的高科技技术发展的前沿,在科技成果及学术领域占据重要的国际地位。SOD(超氧化物歧化酶)被国家列入生物医药“国家十一五规划”重点项目。2011年是“国家十二五规划”的第一年,SOD行业将再次跻身国家当前优先发展的高科技产业化项目,标志着中国健康产业链SOD新兴行业的崛起, 使全人类迈入健康经济时代。利用超氧化物歧化酶(SOD)产业化建设,一方面可架构生物医药、保健食品、日用美容化妆品、化工化学、农业五大版块经济支柱的绿色产业链循环经济圈发展。另一方面打造SOD科技应用成果转化的孵化器平台引领生化医药美容化妆品食品等行业的新型健康原料的应用,有利于促进再生资源利用,产生巨大的社会效益和经济效益。 一、反应机理 超氧化物岐化酶,它催化如下的反应: 2O2-+2H+→H2O2+O2 O2-称为超氧阴离子自由基,是生物体多种生理反应中自然生成的中间产物。它是活性氧的一种,具有极强的氧化能力,是生物氧毒害的重要因素之一。 SOD是机体内天然存在的超氧自由基清除因子,它通过上述反应可以把有害的超氧自由基转化为过氧化氢。尽管过氧化氢仍是对机体有害的活性氧,但体内的过氧化氢酶(CAT)和过氧化物酶(POD)会立即将其分解为完全无害的水。这样,三种酶便组成了一个完整的防氧化链条。 SOD属于金属蛋白酶,按照结合金属离子种类不同,该酶有以下三种:含铜与锌超氧化物歧化酶(Cu-ZnSOD )、含锰超氧化物歧化酶(Mn-SOD )和含铁超氧化物歧化酶(Fe-SOD )。三种SOD都催化超氧化物阴离子自由基,将之歧化为过氧化氢与氧气。 目前,人们认为自由基(也称游离基)与绝大部分疾病以及人体的衰老有关。所谓的自由基就是当机体进行代谢时,能夺去氧的一个电子,这样这个氧原子就变成自由基。自由基很不稳定,它要在身体组织细胞的分子中再夺取电子来使自己配对,当细胞分子推陈出新动一个电子后,它也变成自由基,又要去抢夺细胞膜或或细胞核分子中的电子,这样又称会产生新的自由基。如,超氧化物阴离子自由基、羟自由基、氢自由基和甲基自由基,等等。在细胞由于自由基非常活泼,化学反应性极强,参与一系列的连锁反应,能引起细胞生物膜上的脂质过氧化,破坏了膜的结构和功能。它能引起蛋白质变性和交联,使体内的许多酶及激素失去生物活性,机体的免疫能力、神经反射能力、运动能力等系统活力降低,同时还能破坏核酸结构和导致整个机体代谢失常等,最终使机体发生病变。因此,自

DNA分子的结构教案

DNA分子的结构 教学目标 知识目标: 1.说出DNA分子基本组成单位的化学组成 2.概述DNA分子的结构特点 能力目标: 1.培养观察能力和分析理解能力:通过计算机多媒体课件和对DNA分子 直观结构模型的观察来提高观察能力、分析和理解能力。 2.培养创造性思维的能力:以问题为导向激发独立思考,主动获取新知 识的能力。 情感态度与价值观目标: 1.通过DNA的结构学习,探索生物界丰富多彩的奥秘,从而激发学生 学科学,用科学,爱科学的求知欲望。 教学重点: 1.DNA分子结构的主要特点 2.碱基互补配对原则。 教学难点: 1.DNA分子的双螺旋结构 难点突破方案: 1.用直观模型进行教学。 2.用多媒体课件显示DNA分子结构组成的动态过程 3.总结典型碱基计算规律,配合习题加深学生的理解。 教具准备:1.DNA分子的直观结构模型 课时安排:1课时 教学过程: 新课导入: 展示图片美军方如何鉴别真伪萨达姆?照片对照可靠吗?回答DNA鉴定引入那么DNA分子为什么能起鉴定作用呢?为了弄清楚这个问题,我们就需要对DNA进行更深入的学习。 那么我们今天就首先来学习DNA分子的结构。 教学目标达成过程:

【知识连接】 1.组成DNA的基本元素 2. DNA的组成单位是,它是由一分子 , 一分子 和所构成的, 不同决定了核苷酸种类的不同. 共有种 【承转过渡】蛋白质是一种大分子物质,组成人体蛋白质的基本单位是氨基酸(20种),各种氨基酸可以通过方式形成大分子的蛋白质的(提问)。那么,一个个的脱氧核苷酸又是如何形成DNA大分子的呢? 一、双螺旋结构模型的构建历程(检查学生阅读情况,展示过程) 学生课前阅读课本资料,初步形成DNA分子结构的基本概念。 (1)沃森和克里克利用了他人的哪些经验和科学成果?这对你理解生物科学的发展有什么启示? ①科学界已有证据:DNA的单位是脱氧核苷酸, 由含4种脱氧核苷酸为单位连接而成的长链构成。 ②(英)威尔金斯和富兰克林提供的图谱是DNA X射线衍射图谱 ③(美)生化学家鲍林揭示生物大分子的方法是 ④(奥地利)生化学家査可夫研究成果是A的量总是等于T嘧啶的量, G的量总是等于C嘧啶的量(2)他们在建构模型的过程中出现过哪些错误? 他们是如何对待和纠正这些错误的? ①错误:将脱氧核糖和磷酸交替排列在内侧、碱基排列在外侧。 纠正: ②错误碱基进行配对方式。 纠正:A的量总是等于T嘧啶的量,G的量总是等于C嘧啶的量 所以A与T配对,G与C配对 (3)沃森和克里克默契配合,发现了DNA双螺旋结构的过程,作为科学家合作研究的典范,在科学界传为佳话。他们的这种工作方式给了你哪些启示? ①要善于利用他人的研究成果和经验;要善于与与他人交流和沟通,闪光的思想是在交流与撞击中获得的; ②研究小组成员在知识背景上最好是互补的。 二、DNA双螺旋结构模型的制作(见实验报告) 【活动四】: DNA分子空间结构的构建 请三组同学板书自所构建的DNA分子内的碱基对。 播放PPT构建DNA全过程模拟动画

发育与生殖重要哺乳动物模型的建立

项目名称:发育与生殖重要哺乳动物模型的建立首席科学家:赖良学中国科学院广州生物医药与健 康研究院 起止年限:2011.1至2015.8 依托部门:中国科学院

二、预期目标 总体目标: 通过进化基因组学、比较基因组学等方法,规模化创造和挖掘猪的基因资源;了解小型猪发育、生理、生殖的基本规律,阐明小型猪早期胚胎基因表达调控机理;完善小型猪遗传修饰的相关技术平台,推动小型猪模型的研究,获得一批在生殖和发育研究领域具有重要应用价值的小型猪模型;取得拥有自主知识产权的新发现、新技术和新方法,建立小型猪模型研究的国际一流基地;造就一支具有国际竞争力的,由优秀中青年科学家组成的创新团队,培养一批能独立从事高水平科学研究的后备力量,加快医用小型猪在生物医学和基础研究中的应用,为发育和生殖研究提供理想的动物模型,最终确立我国在这一极富竞争性的前沿探索领域的领先地位。 五年预期目标: 1. 建立猪的基因组学研究技术方案,利用猪的基因组学等分子生物学手段充分挖掘猪的基因资源,获得较为完善的小型猪基因组学数据库; 2. 建立完善的小型猪发育、生理、生殖等相关数据库; 3. 新发现3-5个在早期胚胎发育中表现有显著差异的关键基因,阐明新发现的关键基因在早期胚胎分化过程中对靶基因转录的调控作用; 4. 筛选并验证3-5个在小型猪早期胚胎发育过程中起关键作用的miRNA,并阐明其调控机制。 5. 解析早期胚胎分化关键基因的调控网络。 6. 利用体细胞核移植技术与基因组修饰技术建立5-8种生殖发育相关猪模型; 7. 培养研究生40名,造就一支具有国际竞争力的,由优秀中青年科学家组成的 创新团队,培养一批能独立从事高水平科学研究的后备力量; 8. 在本领域的国际代表性学术SCI刊物上发表40 余篇学术论文,其中影响因子 高于5的不少于12篇。

超氧化物歧化酶的现状研究进展(一)

超氧化物歧化酶的现状研究进展(一) 关键词:超氧化物歧化酶;生理功能;特性;应用摘要:超氧化物歧化酶是生物体内清除超氧阴离子自由基的一种重要酶,具有重要的生理功能,在医药、食品、化妆品中有广泛的应用前景。现从分类、分布、结构、性质、催化机理、制备、应用等方面探讨了超氧化物歧化酶的基础研究进展。 关键词:超氧化物歧化酶;生理功能;特性;应用Advanceincurrentresearchofsuperoxidedismutase. Abstract:SuperoxideDismutase(SOD)isanimportantenzymeinorganism,whichcanremovesuperoxidefreeradical.Itiswide-lyusedinclinicaltreatment,food,andcosmeticindustryforitsimportantphysiologicfunction.Thisreviewpresentsabasicreseachoutline ofSOD,includingclassification,distribution,structure,property,thecatalysemechanism,preparationandapplication. Keywords:Superoxidedismutase;Physiologicfunction;Property;Application 1938年Mann和Keilin〔1〕首次从牛红细胞中分离出一种蓝色的含铜蛋白质(Hemocuprein),1969年Mccord及Fridovich〔2〕发现该蛋白有催化O2,发生歧化反应的功能,故将此酶命名为超氧化物歧化酶(SuperoxideDismutase,SOD,EC1.15.1.1)。该酶是体内一种重要的氧自由基清除剂,能够平衡机体的氧自由基,从而避免当体内超氧阴离子自由基浓度过高时引起的不良反应,同时SOD是一种很有用途的药用酶。有关SOD的研究受到国内外学者的广泛关注,涉及到化学、生物、医药、日用化工、食品诸领域,是一个热门研究课题。通过多年努力,在SOD的基础研究方面取得了巨大成果。目前,SOD临床应用主要集中在抗炎症方面(以类风湿以及放射治疗后引起的炎症病人为主),此外对某些自身免疫性疾病(如红斑狼疮、皮肌炎)、肺气肿、抗癌和氧中毒等都有一定疗效;在食品工业主要用作食品添加剂和重要的功能性基料;在其它方面也有相关应用。现就有关SOD的基础研究进展及应用方面作以简述。 1SOD的种类与分布 SOD是一类清除自由基的蛋白酶,对需氧生物的生存起着重要的作用,是生物体防御氧毒性的关键。迄今为止,科学家已从细菌、真菌、原生动物、藻类、昆虫、鱼类、植物和哺乳动物等生物体内都分离得到了SOD。基于金属辅基不同,这些SOD至少可以分为Cu/Zn-SOD、Mn-SOD、Fe-SOD三种类型〔3〕。 表1不同种类型的SOD分布(略) 一般来说,Fe-SOD是被认为存在于较原始的生物类群中的一种SOD类型;Mn-SOD是在Fe-SOD 基础上进化而来的一种蛋白类型,由于任何来源的Mn-SOD和Fe-SOD的一级结构同源性都很高,均不同于Cu/Zn-SOD的序列,可见它们来自同一个祖先;Cu/Zn-SOD分布最广,是一种真核生物酶,广泛存在于动物的血、肝和菠菜叶、刺梨等生物体中。 除以上三种SOD外,Sa-OukKang等人最近又从链霉菌Streptomycesspp.和S.coelicotor中发现了两种新的SOD,一种是含镍酶即Ni-SOD,另一种是含铁和锌的酶即Fe/ZnSOD,它们均为四聚体,表观分子量分别是13KD和22KD,它们之间没有免疫交叉反应〔4~6〕。 2SOD的催化机理 超氧化物歧化酶作用的底物是超氧阴离子自由基(O·-2),它既带一个负电荷,又只有一个未成对的电子。在不同条件下,O·-2既可作还原剂变成O2,又可作氧化剂变成H2O2,H2O2又在过氧氢酶(Catalase,CAT)的作用下,生成H2O和O2,由此可见,有毒性的O·-2在H2O2又在过氧氢酶(Catalase,CAT)的作用下,生成H2O和O2,由此可见,有毒性的O·-2在SOD和CAT共同作用下,变成了无毒的H2O和O2。其作用机理如下:SOD+O·-2SOD-+O2SOD-+O·-2+2H+SOD+H2O22O·-2+2H+SODO2+H2O2H2O2CATH2O+O2

DNA分子的结构教学设计教案

教学设计 第二节DNA分子的结构 学校:锡盟东乌旗综合高中 科目:生物 姓名:武雪峰

教学设计 内容:人教版高中生物必修二 第三章基因的本质 第二节DNA分子的结构 教案 一、设计思路: 本节课是以“导学案”的形式通过课前进行预习、课堂进行问题探究、课堂知识达标检测、课后训练四个环节,让学生自主参与,合作探究,充分调动学生学习的积极性、主动性和创造性,从而激发学生学习新知的兴趣,使学生在主动探究、合作交流中,分析问题和解决问题的能力得到培养和提升,把课堂真正还给了学生。 二、教学目标 1.知识方面:概述DNA分子结构的主要特点 2.能力方面:①对图片及模型的观察和分析能力 ②合作学习的能力 ③制作DNA双螺旋结构模型的能力 3.情感态度和价值观方面:认同与人合作在科学研究中的重要性;体验科学探索不是一帆风顺的,需要锲而不舍的精神。 三、教学重点 1. DNA分子结构的主要特点 2.制作DNA双螺旋结构模型 四、教学难点:DNA分子结构的主要特点 五、教学方法:自主合作、讨论法、演示法 六、课前准备:教师:多媒体课件 学生:自主完成导学案 1、学生以学习小组为单位:2人小组、6人大组、全班团队; 2、决定小组成员的角色分配。 3、向学生解释学习任务; 七、教学用具: DNA分子结构模型组件、DNA分子结构的模型

八、教学过程 1、复习导入新课(课件显示)。 2、展示本节课的学习目标。 3、检查预习案自主纠错。 4、教与学的互动过程:组织学生讨论、展示、点评。对于学生在讨论、展示中存在的问题及不完善的答案、书写不规则的地方老师给予纠正、补充、指点;对于学生在点评时可能会出现的疑惑和生成性问题,以多媒体图片、动画预设情景,引导学生互动、对话、交流。对于重点、难点内容借助多媒体图片、动画、模型建构等予以突破和解决。 探究一、资料分析,模型构建的历史过程及模型构建的科学研究方法:学生课前自主预习DNA双螺旋结构模型的构建过程,可课堂上组织学生以小组为单位讨论以下问题: (1)沃森和克里克开始研究DNA结构时,科学界对DNA已有的认识是什么? (DNA分子是以4种脱氧核苷酸为基本单位连接而成的长链,呈螺旋结构。)(2)沃森、克里克在前人已有的认识上,采用什么方法研究DNA结构?(模型建构。) (3)沃森和克里克先后分别提出了怎样的模型? (a、螺旋结构(三螺旋、双螺旋):碱基位于外部;b、双螺旋结构:磷酸-脱氧核糖位于外部,碱基位于内部,相同碱基配对;c、双螺旋结构:磷酸-脱氧核糖(骨架)位于外部,碱基A-T,G-C配对,位于内部。) (4)、沃森和克里克默契配合,发现DNA双螺旋结构的过程,作为科学家合作的典范,在科学界传为佳话。他们的这种工作方式给予你哪些启示? (多学科的综合应用、精诚的合作、失败面前锲而不舍的精神、在学习和工作中要善于沟通、勤于积累、善于总结、勇于实践,不要轻言放弃。……) 探究二、DNA的双螺旋结构: 教师引导,以“基本单位—单链—平面双链—立体空间结构”逐步深入,学生根据资料信息利用模型盒尝试构建DNA结构模型 (1)组装一个脱氧核苷酸模型:(注意三种物质的连接位置)

生物的生殖,发育和遗传

C2. 生物的遗传和变异 通俗来说,遗传(heredity)是指亲子间的相似性,变异(varaiation)是指亲子间和子代个体间的差异。生物的遗传和变异是通过生殖和发育而实现的。 C2.1生物的遗传 遗传是亲子间及子代间性状存在相似性,表明性状可以从亲代传递给子代的现象。 C2.1.1遗传的物质基础 C2.1.1.1 基因控制生物性状 性状包括形态结构特征,生理特性,行为方式等。任何生物都有许多性状,同种生物的不同性状常有不同的表现形式,同一性状的不同表现方式称为相对性状。 【遗传性状是由基因控制的。】父母通过将基因传递给子代传递性状;转基因鼠因为注射了生长激素基因而表现出了体积大的性状。C2.1.1.2 基因与染色体,DNA间的关系 【DNA是主要的遗传物质。基因是包含遗传信息的DNA片段,它们位于细胞的染色体上。】 染色体是DNA和蛋白质组成的结构。基因大多有规律地集中在细

胞核内的染色体上,且每种生物细胞内染色体的形态和数目都是一定的。 生物的体细胞中,染色体成对存在;基因也成对存在,分别位于成对的染色体上。如人的体细胞中23对染色体含有64个DNA分子,含有数万对基因,决定着人体可遗传的性状。 C2.1.1.3 基因的传递 性状的遗传实质上是亲代通过生殖行为把基因传给子代,而精子和卵细胞就是基因在亲子间传递的桥梁。携带亲代染色体的精子和卵细胞结合形成受精卵,受精卵发育成子代。 在形成精子或卵细胞的细胞分裂过程中,每对染色体各有一条进入精子或卵细胞,使染色体数减少一半。结合形成受精卵则受精卵染色体数和亲代保持一致,且基因一半来自父方,一半来自母方。

锰过氧化物酶(Manganese peroxidase,Mnp)试剂盒说明书

货号: QS3110 规格:50管/24样锰过氧化物酶(Manganese peroxidase,Mnp)试剂盒说明书 可见分光光度法 注意:正式测定之前选择2-3个预期差异大的样本做预测定。 测定意义: 锰过氧化物酶(EC1.11.1.13)是一种含亚铁血红素的过氧化物酶,主要存在于担子菌中,属于木质素降解酶系,能有效的降解木质素及废水和土壤中比较难降解的氯化物,叠氮化合物、DTT,多环芳烃等。 测定原理: 锰过氧化物酶在Mn2+存在的条件下,将愈创木酚氧化为四邻甲氧基连酚,在465nm有特征吸收峰。 自备实验用品及仪器: 天平、研钵、低温离心机、可见分光光度计、1 mL玻璃比色皿、恒温水浴锅。 试剂组成和配制: 试剂一:液体75mL×1瓶,4℃保存。 试剂二:液体5mL×1瓶,4℃保存。 试剂三:液体10mL×1瓶,4℃避光保存。 试剂四:液体5mL×1瓶,4℃保存。 酶液提取: 1.组织:按照质量(g):试剂一体积(mL)为1:5~10的比例(建议称取约0.1g,加入1mL试 剂一)加入试剂一,冰浴匀浆后于4℃,10000g离心10min,取上清置于冰上待测。 2.细胞:按照细胞数量(104个):试剂一体积(mL)为500~1000:1的比例(建议500万细 胞加入1mL试剂一),冰浴超声波破碎细胞(功率300w,超声3秒,间隔7秒,总时间3min); 然后4℃,10000g离心10min,取上清置于冰上待测。 3.培养液或其它液体:直接检测。 测定操作: 1、分光光度计预热30min以上,调节波长至465nm,蒸馏水调零。 2、测定前将试剂一、二、三、四在37℃(哺乳动物)或25℃(其它物种)放置10min以上。 465nm下30s时的吸光值A1和2min30s后的吸光值A2。计算ΔA=A2-A1。 注意:若一次性测定样本较多,可将试剂一、二、三、四按比例配成混合液,在37℃(哺乳 第1页,共2页

超氧化物歧化酶(SOD)

超氧化物歧化酶(SOD) 超氧化物歧化酶(Superoxide dismutase)简称SOD,是一种广泛存在于自然界的生物酶,按所含金属种类不同可分为铜锌SOD、锰SOD和铁SOD三种。现在市场上出售的SOD大多都从血液中提取,属铜锌SOD(Cu,Zn-SOD)。Cu,Zn-SOD 分子由两个亚基组成,每个亚基含有一个铜离子和一个锌离子,分子量在32000左右。SOD是一种生物酶,其化学本质是蛋白质,国内外对其毒性进行了广泛的研究。实验表明,它对人体无毒副作用,是一种纯天然的生物活性物质。 SOD的抗氧化作用 1969年发现SOD 能催化清除超氧阴离子自由基的反应。自由基是具有不配对价电子的原子或原子团, 分子或离子构成。在正常生理状况下, 生物体内不断地产生自由基, 自由基的产生与清除处于平衡状态。但在某些病理情况下, 自由基产生量多时, 就会对DNA、蛋白质和脂类等生物大分子造成损伤, 导致机体疾病的产生。由于自由基具有高度的化学活性, 是人体生命活动中多种生化反应的中间代谢产物, 自由基攻击生物大分子导致组织损伤是许多疾病发生发展的根源。因而SOD在防御生物体免受超氧阴离子自由基损伤, 抗辐射, 抗肿瘤及延缓机体衰老等方面具有重要的作用。 1、清除机体代谢过程中产生过量的超氧阴离子自由基 延缓由于自由基侵害而出现的衰老现象, 即延缓皮肤衰老和脂褐素沉淀的出现。衰老自由基学说认为衰老是来自机体正常代谢过程中所产生的自由基随机附带破坏性的作用结果, 自由基引起机体衰老的主要机制可概括为以下三方面。 (1)减少生物大分子的交联聚合和脂褐素的堆积; (2)减缓器官组织细胞的损伤与减少; (3)防止免疫能力的降低。 2、提高人体对自由基损伤而诱发疾病的抵 抗力自由基损伤而诱发疾病的抵抗力主要包括肿瘤、炎症、肺气肿、白内障和自身免疫疾病等当SOD作为功能性食品基料加入食品中时, 可有效抑制许多疾

DNA的结构教学设计

篇一:《dna分子的结构》一等奖教学设计 《dna分子的结构》教学设计 dna分子的结构导学案 学习目标: 【知识目标】:概述dna分子结构的主要特点 【能力目标】: 制作dna双螺旋结构模型,培养科学思维及动手能力 【情感目标】:体验结构模型的构建历程,感悟科学研究中蕴含的科学思想和科学态度。 新知准备: 画出一个脱氧核苷酸,各部分名称是什么? 教学过程: dna双螺旋结构模型的构建 实验报告制作dna双螺旋结构模型第___组 【实验原理】 1、dna分子具有独特的空间结构----规则的___________结构, 2、dna分子由两条_________排列的脱氧核苷酸长链盘旋而成,____________排列在外侧,_______排列在内侧。【材料用具】 dna基本组成单位塑料模型【方法步骤】 依据自己构建的模型,填写下表 探究1、dna分子的结构特点: (1)从总体上看,dna是一种什么结构?是由几条链构成的?两条链的方向如何? (2)dna分子中外侧排列的是什么?内侧排列的是什么?磷酸和脱氧核糖的排列有什么规律?哪一部分是dna的基本骨架? (3)dna中的碱基是依靠什么结构连接起来的?遵循什么原则? 拓展延伸: 双链dna分子中各种碱基之间存在怎样的数量关系? a= , g= , a+g= ,也就是:(a+g)/(t+c)= 小试牛刀: 某生物细胞dna分子的碱基中,腺嘌呤的分子数占18%,则鸟嘌呤的分子数占多少? 探究2、dna分子的特性: (1)不同dna两条长链上的什么结构是稳定不变的? (2)什么结构是千变万化的? (3)每个dna分子各自的碱基排列顺序是特定的吗? (4)以上三个问题分别体现了dna的什么特性? 课堂反馈: 1、某同学制作一dna片段模型,现准备了10个碱基a塑料片,8个碱基t塑料片,40个脱氧核糖和磷酸的塑料片,那么至少还需准备碱基c塑料片的数目是() a.8 b. 24 c.16 d. 12 2、如下图所示,下列制作的dna双螺旋模型中,连接正确的是() 3、在dna分子的两条链上排列顺序稳定不变的物质是() a.四种脱氧核苷酸 b.碱基对c.脱氧核糖和磷酸 d.核糖核苷酸 4、下列有关dna分子双螺旋结构中碱基对特征的表述,错误的是() a、两条主链上的对应碱基以氢键连接成对 b、配对碱基的互补关系为a—g,t—c c、各个碱基对的平面之间呈平行关系 d、碱基对排列在双螺旋的内侧 课下思考: 如何以构建的模型为基础,形成2个完全相同的dna分子(即dna分子是如何完成复制的)?

中华绒螯蟹(Eriocheirsinensis)生殖相关基因的克隆及其表达模式研究

目录 第一章文献综述 (1) 1前言 (1) 1.1原始生殖细胞的起源和迁移 (1) 1.2中华绒螯蟹性腺发育分期情况 (2) 1.3中华绒螯蟹的生长发育史 (5) 2各生殖相关基因的选取 (7) 3本研究的目的及意义 (8) 第二章中华绒螯蟹vasa基因的表达分析及表达模式研究 (10) 1前言 (10) 2材料与方法 (11) 2.1材料 (11) 2.1.1实验动物 (11) 2.1.2实验仪器 (11) 2.2方法 (13) 3结果 (19) 3.1中华绒螯蟹vasa mRNA在胚胎及幼体发育阶段的表达情况 (19) 3.2vasa基因在中华绒螯蟹组织和幼体中的表达图式 (21) 4.讨论 (23) 4.1中华绒螯蟹vasa基因在胚胎发育和幼体发育中的作用 (23) 4.2中华绒螯蟹vasa基因作为分子标记示踪生殖腺的形成 (24) 第三章中华绒螯蟹piwi基因克隆及表达研究 (26) 1前言 (26) 2材料和方法 (27) 2.1材料 (27) 2.2方法 (28) 3结果 (36) 3.1中华绒螯蟹性腺RNA的提取 (36)

3.2中华绒螯蟹piwi基因全长cDNA的获得 (37) 3.3氨基酸组成分析 (38) 3.4跨膜区分析 (39) 3.5序列比较和进化分析 (39) 3.6组织表达分析 (42) 3.7piwi基因在中华绒螯蟹性腺和幼体发育中的表达图式 (46) 4讨论 (48) 4.1中华绒螯蟹piwi基因的特点 (48) 4.2中华绒螯蟹piwi基因的表达特征 (49) 第四章中华绒螯蟹nanos基因克隆及表达研究 (51) 1前言 (51) 2材料和方法 (52) 2.1材料 (52) 2.2方法 (53) 3结果 (54) 3.1中华绒螯蟹nanos基因全长cDNA的获得 (54) 3.2氨基酸组成分析 (55) 3.3跨膜区分析 (56) 3.4序列比较和进化分析 (56) 3.5组织表达分析 (58) 3.6nanos基因在中华绒螯蟹组织和幼体中的表达图式 (62) 4.讨论 (64) 4.1中华绒螯蟹nanos基因的特点 (64) 4.2中华绒螯蟹nanos基因的表达特征 (65) 第五章中华绒螯蟹PL10基因克隆及表达研究 (67) 1前言 (67) 2材料和方法 (67) 2.1材料 (67) 2.2方法 (68) 3结果 (69)

超氧化物歧化酶(SOD)

简介 超氧物歧化酶(Superoxide Dismutase简称SOD)是一种新型酶制剂。它在生物界的分布极广,几乎从动物到植物,甚至从人到单细胞生物,都有它的存在。SOD被视为生命科技中最具神奇魔力的酶、人体内的垃圾清道夫。 SOD是氧自由基的自然天敌,是机体内氧自由基的头号杀手,是生命健康之本。全球118位科学家发表联合声明:自由基是百病之源,SOD是健康之本。体内的SOD活性越高,寿命就越长。 SOD类型:超氧化物歧化酶按其所含金属辅基(活性中心)不同可分为三种,第一种是含铜(Cu)锌(Zn)金属辅基的称(Cu.Zn—SOD),最为常见的一种酶,呈绿色,主要存在于机体细胞浆中;第二种是是含锰(Mn)金属辅基的称(Mn—SOD),呈紫色,存在于真核细胞的线粒体和原核细胞内;第三种是含铁(Fe)金属辅基的称(Fe—SOD),呈黄褐色,存在于原核细胞中。 耐热SOD是国家“十五”、“十一五”863计划重大课题项目(课题编号:2004AA214080、 2007AA100604),由中国科学院国家重点实验室采用先进技术,历时八年开发出来的新一代SOD酶产品(专利号:ZL200510005207.9)。 SOD是Super Oxide Dismutase 缩写,中文名称超氧化物歧化酶,是生物体内重要的抗氧化酶,广泛分布于各种生物体内,如动物,植物,微生物等。SOD具有特殊的生理活性,是生物体内清除自由基的首要物质。SOD在生物体内的水平高低意味着衰老与死亡的直观指标;现已证实,由氧自由基引发的疾病多达60多种。它可对抗与阻断因氧自由基对细胞造成的损害,并及时修复受损细胞,复原因自由基造成的对细胞伤害。由于现代生活压力,环境污染,各种辐射和超量运动都会造成氧自由基大量形成;因此,生物抗氧化机制中SOD的地位越来越重要! SOD是是一种含有金属元素的活性蛋白酶,是目前生物学、医学和生命科学领域中世界级的高、尖、精课题。超氧化物歧化酶(SOD)目前世界范围内的开发,大都从动物血里提取,不但代价昂贵,而且动物性SOD的排他性、不易常温保存,有艾滋病等血液病毒的交叉感染及其它潜在危险,故国际卫生组织呼吁:立刻停止动物性SOD的使用。SOD是中国卫生部批准的具有抗衰老、免疫调节、调节血脂、抗辐射、美容功能的物质之一,法定编号为ECl.15.1.1;CAS[905489]1。 (一) 简介 超氧化物岐化酶(SuperoxideDismutase),简称SOD,ECl.15.1.1,它催化如下的反应: 2O2-+2H+→H2O2+O2 ;O2-+H+→HO2.(过氧羟自由基)、HO2.+HO2.→H2O2 O2-称为超氧阴离子自由基,是生物体多种生理反应中自然生成的中间产物。它是活性氧的一种,具有极强的氧化能力,是生物氧毒害的重要因素之一。 SOD是机体内天然存在的超氧自由基清除因子,它通过上述反应可以把有害的超氧自由基转化为过氧化氢。尽管过氧化氢仍是对机体有害的活性氧,但体内的过氧化氢酶(CAT)和过氧化物酶(POD) 会立即将其分解为完全无害的水。这样,三种酶便组成了一个完整的防氧化链条。 自由基 自由基(Free Radical)是一类非常活跃的化学物质,是个有不成对(奇数)电子的原子、原子团、分子和离子。其中最重要的是氧自由基,它可聚集在体表、心脏、血管、肝脏和脑细胞中。如果它沉积在血管壁上,会使血管发生纤维性病变,导致动脉管硬化,高血压,心肌梗塞;沉积在脑细胞时,会引起老年人神经官能不全,导致记忆、智力障碍以及抑郁症,甚至老年性痴呆等,是造成人类衰老和疾病的元凶。 氧自由基可分为两类: (1)无机氧自由基:超氧自由基、羟基自由基

发育与生殖研究国家重大科学研究计划-国家科技部

附件4: 发育与生殖研究国家重大科学研究计划 “十二五”专项规划 一、形势与需求 发育与生殖研究及其应用涉及生命科学和生物医药等诸多领域,其发展不仅可以推动生命科学多个科学问题的解决和多个学科的发展,还将在基因治疗、细胞治疗、组织器官移植、新药开发等领域产生极其重要的影响。对生殖与发育过程中各种细胞、组织和器官形成调节机理的深入探讨,将有助于从根本上理解各种生殖与发育过程、认识人类生殖障碍及胎儿发育缺陷产生的原因。 我国是世界上人口出生缺陷和不孕不育症的高发国之一。尽管当前辅助生殖技术如人工授精、试管婴儿等已经在临床应用上有了长足的发展,但其潜在风险日益成为人类社会关注的焦点,这也使得辅助生殖技术的全面安全评估以及更加先进的低损伤操作技术的发展成为未来辅助生殖技术发展的重要方向。同时,越来越多的研究显示人类重大疾病的发生与发育异常相关。因

此,防治不孕不育、出生缺陷以及发育相关重大成年疾病,实现我国人口健康战略将有赖于继续深入开展发育与生殖基础研究,进一步揭示生物个体的配子形成、受精、胚胎植入和发育、组织器官的发生和形成、个体衰老等过程的生物学规律。 “十一五”期间,发育与生殖重大科学研究计划在组织器官发育、胚胎操作安全性、生殖调控等领域取得了一批重要的研究成果。在发育生物学方面,以模式动物秀丽线虫为对象,揭示了一种新的凋亡细胞清除机制,并揭示了凋亡细胞清除过程中吞噬受体的调控机制。在生殖生物学方面,发现辅助生育技术中胚胎操作导致子代小鼠发生神经系统退行性疾病的风险性增高,提示目前的活检技术有一定的潜在安全风险。利用自发基因突变小鼠模型,证明了卵泡颗粒细胞中的C-型钠肽及其受体是维持卵母细胞减数分裂阻滞的因子。在Cell、Nature、Science等国际著名杂志上发表了一系列高质量的论文。各种先进的工具、手段及模式动物的运用使我国发育与生殖研究的发展逐步与国际前沿接轨,为下一步做出原始创新成果和完善辅助生殖技术奠定了扎实的基础。在已有初步布局的基础上,“十二五”期间我国应重点加强发育与生殖基础研究的模式动物平台和研究系统,尤其是亟待重点

超氧化物歧化酶SOD1

一、超氧化歧化酶(SOD)简介 超氧化物歧化酶(Superoxide Dismutase, EC1.15.1.1, SOD)是1938年Marn等人首次从牛红血球中分离得到超氧化物歧化酶开始算起,人们对SOD的研究己有七十多年的历史。1969年McCord等重新发现这种蛋白,并且发现了它们的生物活性,弄清了它催化过氧阴离子发生歧化反应的性质,所以正式将其命名为超氧化物歧化酶。 超氧化物歧化酶Orgotein (Superoxide Dismutase, SOD),别名肝蛋白、奥谷蛋白,简称:SOD。SOD是一种源于生命体的活性物质,是一种新型酶制剂。能消除生物体在新陈代谢过程中产生的有害物质。对人体不断地补充SOD具有抗衰老的特殊效果。它在生物界的分布极广,几乎从动物到植物,甚至从人到单细胞生物,都有它的存在。SOD被视为生命科技中最具神奇魔力的酶、人体内的垃圾清道夫。SOD是氧自由基的自然天敌,是机体内氧自由基的头号杀手,是生命健康之本。全球118位科学家发表联合声明:自由基是百病之源,SOD是健康之本。体内的SOD活性越高,寿命就越长。 二、超氧化物歧化酶(SOD)的化学修饰 1、SOD修饰的原因 超氧化物歧化酶(SOD)广泛存在于自然界一切生物体内,通过催化超氧阴离子自由基发生歧化反应,减轻或消除?O-2对机体的氧化或过氧化损害。研究表明,机体的衰老、病变及辐射伤害都与自由基的形成和损伤有关,故SOD的应用有抗衰老、抗辐射、抗炎症、抗自身免疫性疾病、抑制肿瘤和癌症的功能。研究还表明,SOD与胃病、帕金森综合症、老年痴呆症、心血管疾病等有着密切关系。目前,在医药、食品、保健品、化妆品、美容等行业也已开始使用SOD。SOD 具有许多独特的生物学特性和生理学功能,但天然的SOD稳定性较差,分子量较大,半衰期短,细胞膜通透性差,且多来源于异源性,具免疫原性,而限制了其在相关领域的应用。 2、SOD修饰改造的方法 目前国内外已有很多的研究,化学修饰、基因重组、SOD模拟化合物,而以下则重点介绍的为化学修饰法.

超氧化物歧化酶的现状研究进展

关键词:超氧化物歧化酶;生理功能;特性;应用摘要:超氧化物歧化酶是生物体内清 除超氧阴离子自由基的一种重要酶,具有重要的生理功能,在医药、食品、化妆品中有广泛 的应用前景。现从分类、分布、结构、性质、催化机理、制备、应用等方面探讨了超氧化物 歧化酶的基础研究进展。关键词:超氧化物歧化酶;生理功能;特性;应用Advanceincurrentresearchofsuperoxidedismutase. Abstract:SuperoxideDismutase(SOD)isanimportantenzymeinorganism,whichcanremovesuperoxidefreeradical.Itiswide-lyusedinclinicaltreatment,food,andcosmeticindustryforitsimportantphysiologicfunction.Thisreviewpresentsabasicre seachoutlineofSOD,includingclassification,distribution,structure,property,thecatalysemechanism,preparationandapplication. Keywords:Superoxidedismutase;Physiologicfunction;Property;Application 1938 年Mann和Keilin[1]首次从牛红细胞中分离出一种蓝色的含铜蛋白质(Hemocuprein),1969 年Mccord及Fridovich[2]发现该蛋白有催化O2,发生歧化反应的功能,故将此酶命名为 超氧化物歧化酶(SuperoxideDismutase,SOD,EC1.15.1.1)。该酶是体内一种重要的氧自由 基清除剂,能够平衡机体的氧自由基,从而避免当体内超氧阴离子自由基浓度过高时引起的 不良反应,同时SOD是一种很有用途的药用酶。有关SOD的研究受到国内外学者的广泛关注, 涉及到化学、生物、医药、日用化工、食品诸领域,是一个热门研究课题。通过多年努力, 在SOD的基础研究方面取得了巨大成果。目前,SOD临床应用主要集中在抗炎症方面(以类 风湿以及放射治疗后引起的炎症病人为主),此外对某些自身免疫性疾病(如红斑狼疮、皮肌炎)、肺气肿、抗癌和氧中毒等都有一定疗效;在食品工业主要用作食品添加剂和重要的功能 性基料;在其它方面也有相关应用。现就有关SOD的基础研究进展及应用方面作以简述。 1SOD的种类与分布SOD是一类清除自由基的蛋白酶,对需氧生物的生存起着重要的作用,是生物体防御氧毒性的关键。迄今为止,科学家已从细菌、真菌、原生动物、藻类、昆虫、鱼类、植物和哺乳动物等生物体内都分离得到了SOD。基于金属辅基不同,这些SOD至 少可以分为Cu/Zn-SOD、Mn-SOD、Fe-SOD三种类型[3]。表1不同种类型的SOD分布(略)一般来说,Fe-SOD是被认为存在于较原始的生物类群中的一种SOD类型;Mn-SOD 是在Fe-SOD基础上进化而来的一种蛋白类型,由于任何来源的Mn-SOD和Fe-SOD的一级结构 同源性都很高,均不同于Cu/Zn-SOD的序列,可见它们来自同一个祖先;Cu/Zn-SOD分布最广, 是一种真核生物酶,广泛存在于动物的血、肝和菠菜叶、刺梨等生物体中。除以上三 种SOD外,Sa-OukKang等人最近又从链霉菌Streptomycesspp.和S.coelicotor中发现了两 种新的SOD,一种是含镍酶即Ni-SOD,另一种是含铁和锌的酶即Fe/ZnSOD,它们均为四聚体, 表观分子量分别是13KD和22KD,它们之间没有免疫交叉反应[4~6]。[!--empirenews.page--] 2SOD的催化机理超氧化物歧化酶作用的底物是超氧阴 离子自由基(O·-2),它既带一个负电荷,又只有一个未成对的电子。在不同条件下,O·-2 既可作还原剂变成O2,又可作氧化剂变成H2O2,H2O2又在过氧氢酶(Catalase,CAT)的作 用下,生成H2O和O2,由此可见,有毒性的O·-2在H2O2又在过氧氢酶(Catalase,CAT)的作用下,生成H2O和O2,由此可见,有毒性的O·-2在SOD和CAT共同作用下,变成了无 毒的H2O和O2。其作用机理如下:SOD+O·-2SOD-+O2SOD-+O·-2+2H+SOD+H2O22O·-2+2H+SODO2+H2O2H2O2CATH2O+O2 3SOD 的结构和性质 3.1不同SOD的结构超氧化物歧化酶(SOD)从结构上可分为两族:CuZn-SOD为第一族,Mn-SOD和Fe-SOD为第二族。天然存在的SOD,虽然活性中心离子不同,但催化活性部位却具有高度的结构同一性和进化的保守性,即活性中心金属离子都是与 3或4个组氨酸(His)、咪唑基(Mn-SOD含1个天门冬氨酸羧基配位)和1个H2O分子呈畸 变的四方锥或扭曲的四面体配位。CuZn-SOD作为SOD结构上的第一族,是人们对于SOD

《DNA的结构和DNA的复制》教案(2)(1)

DNA的结构和DNA的复制 一、教学目标 1.知识目标: (1)概述DNA分子结构的主要特点。 (2)通过介绍DNA双螺旋模型的建立过程,使学生了解现代遗传学的研究方法,强化对学生进行科学态度和方法的教育。 (3)使学生理解DNA的双螺旋结构模型和DNA分子的复制过程,掌握运用碱基互补配对原则分析问题的方法。 (4)利用DNA的性质进行实验分析和实验设计。 2.能力目标: (1)在尝试模拟制作基础上,结合资料分析DNA双螺旋结构模型的科学性,反思建模过程,体会建模的思想,提高建模能力。 (2)通过DNA复制的学习,体会DNA半保留复制的方法。 (3)通过建构DNA的双螺旋结构,培养学生的动手能力。 3.情感、态度和价值观目标: (1)交流课题研究中搜集的分子结构模型建立过程的相关资料,体验建立DNA双螺旋结构模型的艰辛与曲折,体验科学家的奉献精神,形成勇于创新的科学态度与为科学献身的精神。 (2)认同人类对科学的认识是一个不断深化不断完善的过程。 二、教学重点难点 重点: (1)DNA的双螺旋结构及其特点的分析。 (2)DNA分子复制的条件、过程和特点。 难点: (1)制作DNA结构模型掌握DNA分子的双螺旋结构的特点. (2)DNA分子复制的过程。 三.教学方法 1.可以根据学生的认知水平,充分挖掘教材内容,把基础知识与经典实验有机结合在一起,建立一个自然流畅、逻辑清晰的教学过程。 2.通过设置问题情境,引导学生在思索中学习新知识。 3.以讲述法、谈话法为线索,引导学生自学教材,归纳知识,形成知识体系。 四.课前准备 1.学生的学习准备: (1)搜集J.D.沃森和F.H.C.克里克建立DNA 分子双螺旋结构模型的资料,制作一个DNA分子双螺旋结构模型。

相关文档
最新文档