数学建模 美赛 2015 A题

数学建模 美赛 2015 A题
数学建模 美赛 2015 A题

Content

I. INTRODUCTION (1)

1.1 Background (1)

1.2 Previous work (1)

1.3 Our work (2)

II. THE DESCRIPTION OF THE PROBLEM (2)

2.1 How do we simulate future epidemic situation? (2)

2.2 How do we consider the influences of medication distribution? (2)

2.3 How do we analyze our results? (2)

III. MODELS (3)

3.1 Notations (3)

3.2 Assumptions (3)

3.3 Improved SEIR Epidemic Model (4)

3.3.1 Ascertainment of the Parameters (6)

3.3.2 Solution and Result (7)

3.3.3 Analysis of the Result (9)

3.4 Medication Distribution Optimization Model (9)

3.4.1 Ascertainment of terminology (10)

3.4.2 Solution and Result (11)

3.4.3 Analysis of the Result (13)

3.5 Medication Delivery Model (13)

3.5.1 Solution and Result (14)

IV. SENSITIVITY ANALYSIS (15)

4.1Influence of β (15)

4.1.1 Influence of βI (15)

4.1.2 Influence of βQ (16)

4.1.3 Influence of βF (17)

4.1.4 Analysis of results (17)

4.2 Time begin intervention (17)

V. CONCLUSIONS (18)

5.1 Conclusions of the problem (18)

5.2 Strengths and weaknesses (18)

5.2.1 Strengths (18)

5.2.2 Weaknesses (19)

VI. FUTURE WORK (19)

VII. REFERENCES (20)

VIII. MEMO (21)

I. Introduction

1.1 Background

Ebola virus disease (EVD), the disease with most fatality rate, spreads by direct contact with body fluids, such as blood, of an infected human or other animals. The current outbreak in west Africa, (first cases notified in March 2014), is the largest and most complex Ebola outbreak since the Ebola virus was first discovered in 1976. Ebola is not only fatal, but also with high risk of transmission. Even the body of Ebola patients are infectious, so improper burials may also cause infection. Another characteristic of Ebola is the latent period, which possibly varies from 4 to 6 days but can top to 29 days long. During the latent period, the infectious has little chance of transmission and appears no symptom.

Recently, drugs aiming at curing Ebola patients has been successfully developed. As a world-focusing virus, Ebola’s spread situation has been studied for a period of time. The new medicine is a great help to control the epidemic situation. Thus at present, we can assist the Ebola eradication process if optimal plan is proposed, which can be reached by building an mathematical simulation model of the epidemic situation. Furthermore, relevant factors, such as the quantity of the medicine needed, possible feasible delivery systems, locations of delivery, speed of manufacturing of the vaccine or drug and other possible ones, can also be addressed on the basis of the former model.

Among all infected countries, Guinea, Liberia and Sierra Leone are the three most affected ones. And there are still newly occurred cases daily. So every beneficial measurements counts. As long as the method is reasonable and scientific, the adoption of which can be of great importance, even save a large number of lives.

1.2 Previous work

The earliest outbreak of Ebola happened at Yambuku, Zaire in 1976, and happened again at Kiewit, Zaire in 1995. Then some relevant researches has been done in the next year. In 1996, Aimee Astacio and other scholars adopted SIR and SEIR model to simulate the spread of Ebola.[1]They fit the parameters based on data acquired from two former outbreaks. Ebola outbroke in Congo and Uganda 10 years later. J.Legrand and others brought out a new model called SEIHFR model modified from premier one.[2]They added two compartments: hospitalized and funeral, and improved the differential equations for Ebola’s features, such as the infectious patient body. The parameters are obtained by knowledge of statistics.

In 2014, Ebola appeared again in three west African countries and the relevant research became more. Caitlin.M.Rivers and others then added intervention into the SEIHFR model, and fit the parameters by former data in Sierra Leone and Libya. More analysis like the upgrade of quarantine and community isolation are also addressed.[3]Network Dynamics & Science

Laboratory of Virginia Tech University made long period simulation of Ebola epidemic in west Africa. [4] Noticeably, CDC released their simulation model as well.[5] The basic of their model is SEIR model with fit parameters. Moreover, a corrective index is used to rectify the deviation caused by lack of data.

1.3 Our work

Referring to the SEIHFR model, we come up with the SEIQFR model, and Q covers all effective kinds of quarantine. As the solid medicine is announced to be developed, we focus on the control effect of the medication. Based on our assumptions, we reach a distribution plan for Sierra Leone, and validate the positive effect brought by vaccine. Later on, we do the delivery optimization according to the distribution results. In the end, we do some sensitivity analysis by changing parameters, and find out the most impactful parameter. Some suggestions are mentioned in the memo on the basis of our results.

II. The Description of the Problem

2.1 How do we simulate future epidemic situation?

The Ebola cases data is available from the World Heath Organization. Based on the real data, we can depict the corresponding curve of them. As the differential equation of the transition process is established with unknown parameters, the simulated curve can be reached by fitting the original one. Therefore, the parameters are able to be calculated backwards. Then the epidemic model is completed. With the input of initial values, the simulated curve can be generated.

2.2 How do we consider the influences of medication distribution?

The medication involves two kinds. The first kind is the curative medicine for infected patients. When patients are cured, the parameters for contact rate may decrease, so the epidemic situation is eased. Another kind is the precautionary vaccine for susceptibles, after taking sufficient dose, individuals can probably resist the invasion of the Ebola virus, thus the constitution of population is changed.

2.3 How do we analyze our results?

After the problem solving, we evaluate the stability of the epidemic model by the basic reproduction number. At last, detailed analysis of sensibility are made. Concerning other possible interventions, the values of parameter may fluctuate with them thereby bring changes into the model. For instance, the popularize of the solid medicine may result smaller contact

rate between infected individuals and susceptible individuals. So as the more effective quarantine methods and more scientific burial ways, which can also make a difference on corresponding parameters. Comparing the changes before and after the parameter alteration, we can identify the one parameter with most impact on the result.

III. Models

3.1 Notations

Table1: Notation

Symbol Meaning

βcontact rate

1/αlatent period

1/γaverage period of process

δfatality rate

θthe fraction of infected quarantined

R0basic reproduction number

σthe effective probability of the vaccine

N whole population

S susceptible individuals

E exposed individuals

I infectious individuals

R removed individuals

Q quarantined individuals

F bodies infect on funeral

Im immune individuals

D demand for medication

n the total number of districts

V fitness value

p the period of medication delivery

A i the medication quantity delivered in one site

A total quantity of medication made in one period

d distanc

e between airport and district

c quantities of vaccine delivere

d from airport to district

3.2 Assumptions

The information obtained is mainly from the World Heath Organization. So the data we acquire should be valid.

To ensure the work done is significative. Unmentioned factors are considered not to affect the final results.

The models focus on the present strain of Ebola. So Ebola virus does not mutate in the forecast period.

People born and natural deaths are ignored to reduce the complexity of calculation.

There is relatively strict control of population flow in countries with Ebola outbreak.

Therefore import and export of population are ignored.

To simplify the model, parameters will not change with time.

Suggested by the reports, cured patients cannot get infected again.

Based on fact, in latent period, Ebola patients are not infectious.

No wastage of medication during the delivery to create an ideal environment for transportation.

Medication can be given out equally each day during one period of delivery. Thus the delivery system can remain effective.

3.3 Improved SEIR Epidemic Model

In order to estimate later epidemic situation, we need a model to accomplish the purpose. We implemented the SEIR model for disease transmission. According to the original SEIR model, the whole population (N) can be divided into four compartments. Taken into consideration of the features of Ebola virus disease, two extra compartments are added into the model.

As the name SEIR suggests, there exist four main kinds of individuals:

●Susceptible individuals (S), those who are vulnerable to the disease but have not been

infected yet;

●Exposed individuals (E), those who carry the virus but will not infect others and appear no

symptom;

●Infectious individuals (I), those who are infectious and begin showing certain symptoms; ●Removed individuals (R), those who are killed by the disease or completely cured.

In real situation, as long as the patient is diagnosed as Ebola carrier he will be quarantined in hospital or places alike. And for Ebola patients, they remain infectious even after they die, so the individuals in this situation should be addressed as well. Thus we have other two compartments:

●Quarantined individuals (Q), those who are diagnosed as Ebola carriers and quarantined in

hospital, thus are unable to infect other susceptibles;

●Bodies infect on funeral (F), those who are dead but are still infectious, thus can infect

others during the funeral.

Therefore, our model can be described as the SEIQFR epidemic model.

Obviously, when time moves on, the value of each compartments will change, therefore another set of variables are needed to indicate the affect of time. Likewise, we define S(t), E(t), I(t), R(t), Q(t) and F(t), which are frictions connected to the corresponding population. For instance, S(t) = S/N.

Fig 1: Compartmental flow

The figure above illustrates how compartments transit into each others. Solid lines are transition traces; dashed lines are infection traces. And sequence numbers are used to identify every process and parameters relevant.

Undoubtedly, there are possibilities that some compartments of individuals may transit into others. So between some of the compartments, there are transition chances described by parameters, which can be obtained by data fitting method. Ebola cases around the world have been collected and released by the World Health Organization, which can be a truthful source of information to set the initial value of the model, and to extract certain parameters.

11221212---[(1-)(1-)(1-)]-[(1-)](1-)-(1-)(1-)(1-)I Q F I Q F Q I D Q DQ IQ D DQ F I IQ F SI SQ SF dS dt

N SI SQ SF dE E dt N dI E I dt dQ I Q dt dF I Q F dt dR I Q F dt ββββββααγθγθδγθδγθγδγδγθδλδγγθδγδγ++?=??++?=???=++???=+???=+???=++?

(1) Above is the differential equation of the transition process. β is contact rate, the ratio of Ebola contact of a compartment (βI refers to the possibilities of susceptibles getting Ebola from infectious individuals); 1a is average latent period; 1is average period of certain process (1Q γrefers to average time before infectious get quarantined); δ is fatality rate (δ1 refers to

fatality rate for infected individuals while δ2 is for quarantined individuals); is the fraction of infected quarantined. Note that λ is a composite of all β transmission terms.

Table 2: Explanation for Parameter in Process

Process Number Parameter Explanation

1 λ

infection rate of S 2 1a

average latent period 3 θ fraction of infected quarantined

4 2DQ δγ?

funeral infection rate of Q 5

1Q γ

duration of traditional funeral 6 δ1 fatality rate of I

7 δ1(1-θ)γD funeral infection rate of I

8 δ2 fatality rate of Q

9 βQ contact rate between S and Q

10 βF contact rate between S and F

11 βI contact rate between S and I

Along with the function (1), table 2 gives the explanations of parameters or combinations of them governing each process.

3.3.1 Ascertainment of the Parameters

One of the essential parts of the model is confirming parameters, which will affect the type and the trend of the epidemic process curve considerably. Theoretically speaking, using the provided data from the World Health Organization, parameters mentioned in formula (1) can be obtained by data fitting. Implementing the morbidity data of Ebola cases into the least square method, we can reach to the estimated values of contact rates mentioned above. The differences between each real value and the value from the differential equation at the same time is noted as f t , according to the least square method, our object function is: 2min ()t F t f =∑ (2)

In F (t ), actually, there are several unknown numbers involving all contact rates. The solution is a set of parameters, which can produce the best fit curve of real data. We call the solution as estimated parameters.

We now get the best fit for real data, but the problem is that any combos of parameters may fit the same curve. Generally, the epidemic model yields a curve of infected individuals at the time that remains low and steady at the prophase, then soars to the summit in short period, and decreases continuously approaching to a small value. Based on the curve we get at present, we can adjust our estimated parameters by comparing with the general regulations of the epidemic curves.

If the later trend of the curve deviates from normal epidemic curves, then another fit is needed.

21min ()()t G t f F t =-∑

(3)

F (t 1) is the best fit we got before.

Therefore we acquire the second best fit parameters. In this way, the suitable set will be eventually reached after rounds of search.

3.3.2 Solution and Result

Taking Sierra Leone for study case, we use MATLAB to solve the problem. When deal with the calculation of parameters, the results are hard to reach perfection. Therefore, the assistance of relevant researches is generously adopted.

Referring to the research of Virginia Tech university [3], we ascertain the proper set as follows: Table 3: Parameter Set

Parameter Value α 0.1

βF 0.107743

βQ 0.076871

βI 0.121417

θ 0.265867

γI 0.05

γD 0.077336

γF 0.233802

γQ 0.242025

γDQ 0.113652

γIQ 0.063019

δ1 0.55

δ2 0.55

The values of parameters are mainly unchanged, while the values of γDQ and γDQ are calculated by

111DQ D Q γγγ=- and 111IQ I Q

γγγ=- respectively.

Then we generate the epidemic simulation curve, which is purely based on natural situation without any intervention from human.

Fig 2: Real case & Simulated case

The real data we acquire is until 01/02/2015, which should be fit by our model with proper parameters. In our model, I + Q should fits the real infected cases, and we can see an accordance between the real total cases and simulated I + Q cases in early time.

Later on, the simulated curve appears to climb up faster than the real one, which is probably because that intervention methods are taken afterwards so as to ease the epidemic aggravation to some extent.

Fig 3: Future epidemic simulation

The figure above is the simulation of the epidemic situation from 03/2014 to 08/2015, which period lasts long enough to allow us to observe the whole trend of the curve. There is an absence of the compartment S. It is because that the quantity of S is much larger than the other’s, the presence of S curve conceals the main features of other curves. And satisfactorily, the

simulated situations of all other compartments fit the general regulations well. Thus the model is valid enough to yield reasonable results.

3.3.3 Analysis of the Result

Inspecting the results yields from the model, we find them matching our expectation. At the prophase, the curve simulated can fit the real one, and the later trend of it is in accordance of general epidemic curves. To be specific:

The curve for E : the peak value appears first, for it is the source of the transition to other compartments. After the relevant period, people exposed will gradually become infected.

The curve for I : following the transition sequence, I peaks right after E . There is a dip of cases from E to I , which is due to the other transition traces of I .

The curve for Q : as the next stage of transition, the peak value of Q approximately halves of that of I . The other half died for the fatality of quarantined is set as 0.55.

The curve for F : the value of F fluctuates with its source, so it has a similar trend and a lag from other curves.

Stability analysis

A key parameters describing the natural spread of an infection is the basic reproduction number R 0, which are defined as the number of secondary infections generated by an infected index case in the absence of control interventions.[6][7]

If R 0 drops below unity, the epidemic eventually stops, otherwise the epidemic will maintain at certain district (developing as an endemia), which we do not wish.

As the parameters are determined, R 0 can also be calculated by:

2210000(1)=

Q

Q DQ IQ I F I Q F F R R R R θγβγδγδβδβγ??+-=++++?? (4)

where Δ is confirmed as: 11=+(1)(1)(1)Q D I θγγθδγθδ??-+--

So we get the basic reproduction number of Sierra Leone is R 0 = 1.89, which exceeds unity. The result infers that without any intervention, the spread of Ebola epidemic will not stop by itself.

3.4 Medication Distribution Optimization Model

In the epidemic model, as long as the parameters are determined, then the later spread situation of Ebola virus can be estimated. To control the aggravation of the epidemic, medication should be provided properly. This model solves how the materials should be distributed before delivery.

First, the immune population is calculated by the vaccinated population and the successful vaccination rate. Then we define the demand of medication, which should be offered through

fixed sites. To meet the optimization objective (minimizing the sum of I in each district after a short period of days), a corresponding vaccine offering plan can be reached by intelligent algorithm. The solution is a plan describing ideal quantities of vaccine gave out in each site per day (vaccinating speed).

3.4.1 Ascertainment of terminology

● Immune Population

To address the problem, we introduced 1/γv as the vaccine period, like 3 days of vaccine and once per day. σ is the effective probability of the vaccine, for we consider the probability of people vaccinated acquiring the resistant ability may not be 100% but somewhat near it. Considering the people taking vaccine are either susceptibles or exposed, the population range of vaccine is S + E , while the vaccine has no effect on exposed individuals, so the effective rate is S /(S + E ). When offering vaccine, there is a limit on the capability of one site per day, which is indicated as A i /p , so the number of new immune people per day is

=i v A S Im S E p

γσ?+ (5) where A i is the medication quantity delivered in one site; p is the period of medication delivery. The properties of Im group are the same as the recovered group, thus R becomes bigger, which is one impact brought by vaccine. Simultaneously, S becomes smaller.

● Medication Demand

The medication needed in each district is depended on the epidemic stage. To be specific, a district with bigger E(t) and I(t) is on a more serious stage than those with smaller. Therefore, to achieve our objective, more medication should be distributed to districts on more serious stage. The needs for one person is set as one unit. The whole demand for medication is named as D . It is assumed that the site can equally give out all vaccine during one delivery period, while the constraint is manufacture speed, that is A i

● Vaccine Manufacture Speed

Another feature in this model is the medication supplement. Only with steady and sufficient manufacture process of vaccine, can the timely and sufficient delivery be assured.

Then the constraint mainly comes from the total quantity of medication made in one period (p ), which we set as A . As is mentioned before, there is a limited number of delivering vaccine in one site per period, which is indicated as A i and we have A i

● Medication Distribution

Our objective of this model is the medication distribution. That is, the values of A i . Our objective function is

(

)1min ()n p j j I =∑

(6)

where n is the total number of districts concerned; the values of I is used that for one period later. And we have

1 ,=1,2,,n s.t. 0n

i i i A A i D A =?=???>≥?∑

(7)

The connection between I and A i can be referred to formula (1) and (4).

Here we introduce Particle Swarm Optimization (PSO) to solve the problem, which is an intelligent algorithm used to find optimal solution. According to the formula (5), fitness value (V ) used to evaluate possible distributions is

(

)1n

p j j V I ==∑

So the objective is indicated by the fitness value, which is the sum of I for several days (a period) later.

Fig 4: Flow chart of MPSO algorithm

MPSO algorithm is illustrated as flow chart above. The modified algorithm enables faster running speed.[8] We may set proper iteration times to balance between the running time of the program and the quality of the solution. More times it updates, the better is the solution.

3.4.2 Solution and Result

We take Sierra Leone, a country with 14 districts, as a study case, so we have n = 14.

Other settings are: A = 1,000,000; p = 4; 1/γv = 3 and σ = 1. Based on epidemic model, we

calculate I in all 14 districts of Sierra Leone as the initial value:

Table 4: Initial value of I in initial value

District Kailahun Kenema Kono Bombali Kambia Port Loko Koinadugu I for 4th Feb 565 502 246 990 150 846 104

District Tonkolili Bo Bonthe Moyamba Pujehun Freetown

Rural Area I for 4th Feb 448 314 5 205 31 2029 1118 The initial values are extracted from the last day’s real data. So we get results:

Fig 5: Pie chart of vaccine distribution in Sierra Leone

The pie chart illustrates how vaccine should be delivered to each district. Theoretically, according to this plan, four days later, the sum of I should be a relevant small number. The results may not reach the overall best solution, for the iteration times are limited and the new plans generated are basically random. And the unit of quantities of vaccine is one share for one person at a time. For example, the optimal quantities delivered to West Rural Area is 209508 shares, which tops among all other districts of Sierra Leone. It is mainly resulted from the largest density of infected population there, that is the infected stage of the district.

Fig 6: Influence of vaccine on I in Sierra Leone

The bar chart shows there is a clear connection between I and vaccine quantities. And when offered more vaccine, I tends to become smaller, thus the vaccine has certain effect on reducing infected population.

3.4.3 Analysis of the Result

In the part of ‘Medication Demand’, we mentioned that there is a relation between the districts’ epidemic stage and the quantities of vaccine for each dis tricts. Comparing figure 5 and table 4, it is obvious that our results is reasonable. Bombali, Port Loko, Freetown and Western Rural Area, all has the large number of I, and large quantities of vaccine as well. Bontheand Pujehun, which with the lowest number of I, also have the lowest number of vaccine.

The initial value of this model are extracted from the statistical data on WHO website. From the statistical data of Sierra Leone, we could draw a conclusion that the epidemic stage of Sierra Leone is serious now. So that the influence of vaccine maybe more effective on the early epidemic stage.

3.5 Medication Delivery Model

In distribution model we ascertained the medication distribution for every district. If the departure location is confirmed, a medication delivery system is therefore developed. We build a delivery model to get an optimal plan of transporting corresponding amount of medication to each district.

Departure Locations

To address the meditation delivery system, we have to determine the locations for material receiving. A proper pick of locations will definitely benefits the delivery system.

Our model is based on real world situation, so we choose international airports for medication transportation. The airports receive the supply from medication manufacture sites, and send them to the capitals of each district to meet the optimal distribution plan.

Here we ignored the delivery process among manufacture sites and airports. Because the manufacture sites are located in other continents, the delivery system is affected by many unknown factors, which makes the problem rather complicated.

Transportation System

Now the sending sites and the receiving sites are determined, so are the quantities needed in each receiving sites. The optimal delivery system should has the shortest total travelled distance. It is described as our model objective:

11min ()n m ij ij i j c d ==∑∑

(8)

and

1

1

s.t. 0n

ij j

i m

ij i j ij

c y c x c ==?=???=???≥??

∑∑ (9) where i identifies different airports; j identifies different districts; d ij is the distance between airport i and district j ; x i is the quantities of medication sent from airport i ; y i is the quantities of medication received by district j ; c ij is the quantities of medication delivered form airport i to district j .

The solution should be a matrix of c ij , which describes the whole delivery system.

3.5.1 Solution and Result

There are two international airports in Sierra Leone: SherBro International Airport and Lungi International Airport. We acquire the geographic coordinates of them, alone with the information of capitals of each district. So the distances among them can be calculated. Distance(km) n ma Kono Bombali a Loko gu

SherBro International Airport

229.6 151.2 210.5 158.9 181.6 140.5 245.8 Lungi International Airport

290.8 235.5 244.6 129.9 63.51 47.86 210.5

Distance(km) Tonkoli

li

Bo

Bonth

e

Moyam

ba

Pujehu

n

Freeto

wn

Rural

Area

SherBro International

Airport

146.2 97.89 1.59 70.52 90.51 132 107.6 Lungi International

Airport

138.1 176.2 143.1 97.98 215.1 15.28 34.52 The airports are only for sending out vaccine, and the capitals are only for receiving materials. So the distances needed exclude those among capitals.

We implement Lingo to solve the problem, and we get the delivery system as follows:

Table 6: Delivery system

Vaccine delivery amount Kailahu

n

Kene

ma

Kono Bombali

Kambi

a

Port

Loko

Koinadu

gu

SherBro International

Airport 60240 44925

4971

5

161781 0 0 22859

Lungi International

Airport

0 0 0 0 2842 137868 2815

Vaccine delivery amount Tonkoli

li

Bo

Bonth

e

Moyam

ba

Pujehu

n

Freeto

wn

Western

Rural

Area

SherBro International

Airport 54310 35045

1449

5

50093 1518 0 0

Lungi International

Airport

0 0 0 0 0 141948 209508 The table above indicates our final plan for Sierra Leone. Theoretically, the plan produced by the algorithm is the best solution of the problem.

IV. Sensitivity Analysis

4.1Influence of β

βI refers to the possibilities of susceptibles getting Ebola from infectious individuals, with βQ and βF meaning from quarantined individuals and funeral respectively. Although these three parameters all refer to the effective contact rate, the influence power on epidemic model of each other is different, because of the different infection source and other factors. Now we give a sensitivity analysis by changing the value of these parameters, then we get the evaluation of each contact rate.

Continuing our work on Sierra Leone and comparing with the results in first model, we reduce 0.2 in βI, βQ and βF respectively and observe the change under three circumstances.

4.1.1 Influence of βI

The value of βI in SEIQFR model decreases by 0.2, while other parameters are unchanged. We use MATLAB to draw the prediction curves with changed and unchanged parameters, the figure is as follows:

Fig 7: The spread situation with βI changed

It is obvious that the value of peak decreased by 100 thousands approximately, and the arrival time of peak is delayed about 3 months after changing the value of βI. The decrease of peak means that the epidemic situation is controlled effectively with the decrease of infection rate of I. And the delay of peak time gives us more chance to take other measures to control the spread of Ebola.

4.1.2 Influence of βQ

With only the value of βQ decreasing by 0.2, we compare the result and that in model one.

Fig 8: The spread situation with βQ changed

We find that the curve tendency is similar with former one. The difference between the values of two peaks is about 5 thousands, and the time delayed is 50 days.

4.1.3 Influence of βF

With only the value of βF decreasing by 0.2, we compare the result and that in model one.

Fig 9: The spread situation with βF changed

The difference between curve peak is about 2.5 thousands, and the time delayed is about 20 days.

4.1.4 Analysis of results

The dip of peak value between changed and former ones is due to a change of I. And the difference between peak time of changed and former curves means the deadline for we to take controlling measures. Both the peak value dip and the peak time delay are the bigger the better. So we can draw the conclusion that the influence of βF is the least, while βI is the greatest, which means that the contact rate between S and I is the most impactful parameter for controlling the epidemic.

4.2 Time begin intervention

When the outbreak happens, measurements will be took by the government. We focus on the intervention time of quarantine. To compare the difference caused by various intervention time, we simulate three situations with the same level of quarantine but only at different moment. And one case without intervention for reference.

2015全国大学生数学建模竞赛B题

“互联网+”时代的出租车资源配置 摘要 随着“互联网+”时代的到来,针对当今社会“打车难”的问题,多家公司建立了打车软件服务平台,并推出了多种补贴方案,这无论是对乘客和司机自身需求还是对出租车行业发展都具有一定的现实意义。本文依靠ISM解释结构、AHP-模糊综合评价、价格需求理论、线性规划等模型依次较好的解决了三个问题。 对于问题一求解不同时空出租车资源“供求匹配”程度的问题,本文先将ISM模型里的层级隶属关系进行改进,将影响出租车供求匹配的12个子因素分为时间、空间、经济、其它共四类组合,然后使用经过改进的AHP-模糊综合评价方法建立模型,提出了出租车空载率这一指标作为评价因子的方案,来分析冬季某节假日市南岗区出租车资源“供求匹配”程度。通过代入由1-9标度法确定的各因素相互影响的系数,得出各个影响因素的权重大小,利用无量纲化处理各影响因素,得出最终评判因子为0.3062,根据“供求匹配”标准,得出市南岗区出租车资源“供求匹配”程度处于供需合理状态的结论。同理,也得到了市不同区县、不同时间的供求匹配程度,最后作出市出租车“供求匹配”程度图。 对于问题二我们运用价格需求理论建立模型,以补贴前后打车人数比值与空驶率变化分别对滴滴和快的两个公司的不同补贴方案进行求解,依次得到补贴后对应的打车人数及空驶率的变化,再和无补贴时的状态对比,最后得出结论:当各公司补贴金额大于5元时,打车容易,即补贴方案能够缓解“打车难”的状况;当补贴小于5元时,不能缓解“打车难”的状况。 对于问题三,在问题二的模型下,建立了一个寻找最优补贴金额的优化模型,利用lingo软件[1]进行求解算出最佳补贴金额为8元,然后将这个值带入问题二的模型进行验证,经论证合理后将补贴金额按照4种分配方案分配给司机乘客。关键词:ISM解释结构模型;AHP-模糊综合评价;价格需求理论;线性规划

数学建模优秀论文设计模版

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的 资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参 考文献中明确列出。 我们重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则 的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展 示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. 2. 3. 指导教师或指导教师组负责人 (打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

题目(黑体不加粗三号居中) 摘要(黑体不加粗四号居中) (摘要正文小4号,写法如下) (第1段)首先简要叙述所给问题的意义和要求,并分别分析每个小问题的特点(以下以三个问题为例)。根据这些特点对问题 1 用······的方法解决;对问题 2 用······的方法解决;对问题3 用······的方法解决。 (第2段)对于问题1,用······数学中的······首先建立了······ 模型I。在对······模型改进的基础上建立了······模型II。对模型进行了合理的理论证明和推导,所给出的理论证明结果大约为······,然后借助于······数学算法和······软件,对附件中所提供的数据进行了筛选,去除异常数据,对残缺数据进行适当补充,并从中随机抽取了3 组数据(每组8 个采样)对理论结果进行了数据模拟,结果显示,理论结果与数据模拟结果吻合。(方法、软件、结果都必须清晰描述,可以独立成段,不建议使用表格) (第3段)对于问题2用······ (第4段)对于问题3用······ 如果题目单问题,则至少要给出2种模型,分别给出模型的名称、思想、软 件、结果、亮点详细说明。并且一定要在摘要对两个或两个以上模型进行比较, 优势较大的放后面,这两个(模型)一定要有具体结果。 (第5段)如果在……条件下,模型可以进行适当修改,这种条件的改变可能来自你的一种猜想或建议。要注意合理性。此推广模型可以不深入研究,也可以没有具体结果。 关键词:本文使用到的模型名称、方法名称、特别是亮点一定要在关键字里出现,5~7个较合适。 注:字数700-1000 之间;摘要中必须将具体方法、结果写出来;摘要写满几乎 一页,不要超过一页。摘要是重中之重,必须严格执行!。 页码:1(底居中)

2014年数学建模美赛题目原文及翻译

2014年数学建模美赛题目原文及翻译 作者:Ternence Zhang 转载注明出处:https://www.360docs.net/doc/801021960.html,/zhangtengyuan23 MCM原题PDF: https://www.360docs.net/doc/801021960.html,/detail/zhangty0223/6901271 PROBLEM A: The Keep-Right-Except-To-Pass Rule In countries where driving automobiles on the right is the rule (that is, USA, China and most other countries except for Great Britain, Australia, and some former British colonies), multi-lane freeways often employ a rule that requires drivers to drive in the right-most lane unless they are passing another vehicle, in which case they move one lane to the left, pass, and return to their former travel lane. Build and analyze a mathematical model to analyze the performance of this rule in light and heavy traffic. You may wish to examine tradeoffs between traffic flow and safety, the role of under- or over-posted speed limits (that is, speed limits that are too low or too high), and/or other factors that may not be

2015年全国大学生数学建模C题月上柳梢头

2015高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号(从A/B/C/D中选择一项填写): 我们的报名参赛队号(12位数字全国统一编号): 参赛学校(完整的学校全称,不含院系名): 参赛队员(打印并签名) :1. 2. 3.

指导教师或指导教师组负责人(打印并签名): 日期:年月日 (此承诺书打印签名后作为纸质论文的封面,注意电子版论文中不得出现此页。以上容请仔细核对,特别是参赛队号,如填写错误,论文可能被取消评奖资格。) 赛区评阅编号(由赛区组委会填写): 2015高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅记录(可供赛区评阅时使用):

送全国评奖统一编号(由赛区组委会填写): 全国评阅统一编号(由全国组委会填写): 此编号专用页仅供赛区和全国评阅使用,参赛队打印后装订到纸质论文的第二页上。注意电子版论文中不得出现此页,即电子版论文的第一页为标题和摘要页。 月上柳梢头

数学建模美赛题目及翻译

PROBLEM A: The Keep-Right-Except-To-Pass Rule In countries where driving automobiles on the right is the rule (that is, USA, China and most other countries except for Great Britain, Australia, and some former British colonies), multi-lane freeways often employ a rule that requires drivers to drive in the right-most lane unless they are passing another vehicle, in which case they move one lane to the left, pass, and return to their former travel lane. Build and analyze a mathematical model to analyze the performance of this rule in light and heavy traffic. You may wish to examine tradeoffs between traffic flow and safety, the role of under- or over-posted speed limits (that is, speed limits that are too low or too high), and/or other factors that may not be explicitly called out in this problem statement. Is this rule effective in promoting better traffic flow? If not, suggest and analyze alternatives (to include possibly no rule of this kind at all) that might promote greater traffic flow, safety, and/or other factors that you deem important. In countries where driving automobiles on the left is the norm, argue whether or not your solution can be carried over with a simple change of orientation, or would additional requirements

2015全国大学生数学建模竞赛D题答案

2015高教社杯全国大学生数学建模竞赛D题评阅要点 [说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。本题的难点在于通过学习国家相关政策文件,理解真实案例中一次项目规划中的各种约束条件,以此为基础建立成本核算体系,借助各类模型或算法,衡量并调整众筹筑屋规划方案,以实现不同目标的优化问题。 评阅时请关注如下方面:建模的准备工作(对题目的正确理解,文献查询,核算模型的依据),模型的建立、求解、求解方法的灵活性和分析方法,计算程序的可运行性,结果的表述,合理性分析及其模型的拓广。 问题1:众筹筑屋规划方案Ⅰ的核算流程 需熟悉众筹筑屋的新型房地产形势,包括结合实际需求,考虑容积率约束,考虑税务和预估纯收益,这其中包括土地增值税的计算、对取得土地使用权所支付的金额、开发成本、开发费用、与之有关的税金、其它扣除项目等核算,并对核算方式进行说明,应该有文献支持。原始方案(规划方案Ⅰ)的核算: 结合附件中的数据,使用已建立的核算模型对原始开发方案进行一次核算,给出建设规划方案Ⅰ的总购房款、增值税、纯利润、容积率、总套数等计算结果。 问题2:考虑参筹者平均购买意愿最大的建设规划方案 建立模型,给出合理的约束项和目标函数,并解释。注意考虑必要的套数上下限约束和目标函数的非线性。 选取合适的算法进行求解,并对结果给出合理的解释。 问题3:项目能成功执行的建设规划方案 对问题2中的方案进行核算,得出投资回报率低于25%的结论,对方案进行改进。建立或修改得到新模型,包含投资回报率需达到25%的约束,建立单目标非线性整数优化问题,注意目标函数与约束中均存在非线性,同时目标函数中存在分段的特性,寻求算法并求解,对于求解结果进行合理解释。

数学建模美赛公式

数学建模美赛公式 由假设得到公式 1.W e assume laminar flow and use Bernoulli’s equation:(由假设得到的公式) 公式 W here 符号解释 A ccording to the assumptions, at every junction we have (由于假设) 公式 由原因得到公式 2.Because our field is flat, we have公 式, so the height of our source relative to our sprinklers does not affect the ex it speed v2 (由原因得到的公式); 公式 S ince the fluid is incompressible(由于液体是不可压缩的), we have 公式 W here 公式 用原来的公式推出公式 3.P lugging v1 into the equation for v2 ,we obtain (将公式1代入公式2中得到) 公式 11.P utting these together(把公式放在一 起), because of the law of conservation of energy, yields: 公式 12.T herefore, from (2),(3),(5), we have the ith junction(由前几个公式得) 公式 P utting (1)-(5) together, we can obtain pup at every junction . in fact, at th e last junction, we have 公式 P utting these into (1) ,we get(把这些公式代入1中) 公式 W hich means that the C ommonly, h is about F rom these equations, (从这个公式中我们知道)we know that ……… 引出约束条件 4.Using pressure and discharge data from Rain Bird 结果, W e find the attenuation factor (得到衰减因子,常数,系数)to be 公式 计算结果 6.T o find the new pressure ,we use the ( 0 0),which states that the volume of water flowing in equals the volume of water flowing out : (为了找到新值,我们用什么方程)

2012-2015数学建模国赛题目

(请先阅读“全国大学生数学建模竞赛论文格式规范”) A题葡萄酒的评价 确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。请尝试建立数学模型讨论下列问题: 1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信? 2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。 3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。 4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量? 附件1:葡萄酒品尝评分表(含4个表格) 附件2:葡萄和葡萄酒的理化指标(含2个表格) 附件3:葡萄和葡萄酒的芳香物质(含4个表格)

(请先阅读“全国大学生数学建模竞赛论文格式规范”) B题太阳能小屋的设计 在设计太阳能小屋时,需在建筑物外表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V交流电才能供家庭使用,并将剩余电量输入电网。不同种类的光伏电池每峰瓦的价格差别很大,且每峰瓦的实际发电效率或发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架空)等。因此,在太阳能小屋的设计中,研究光伏电池在小屋外表面的优化铺设是很重要的问题。 附件1-7提供了相关信息。请参考附件提供的数据,对下列三个问题,分别给出小屋外表面光伏电池的铺设方案,使小屋的全年太阳能光伏发电总量尽可能大,而单位发电量的费用尽可能小,并计算出小屋光伏电池35年寿命期内的发电总量、经济效益(当前民用电价按0.5元/kWh计算)及投资的回收年限。 在求解每个问题时,都要求配有图示,给出小屋各外表面电池组件铺设分组阵列图形及组件连接方式(串、并联)示意图,也要给出电池组件分组阵列容量及选配逆变器规格列表。 在同一表面采用两种或两种以上类型的光伏电池组件时,同一型号的电池板可串联,而不同型号的电池板不可串联。在不同表面上,即使是相同型号的电池也不能进行串、并联连接。应注意分组连接方式及逆变器的选配。 问题1:请根据山西省大同市的气象数据,仅考虑贴附安装方式,选定光伏电池组件,对小屋(见附件2)的部分外表面进行铺设,并根据电池组件分组数量和容量,选配相应的逆变器的容量和数量。 问题2:电池板的朝向与倾角均会影响到光伏电池的工作效率,请选择架空方式安装光伏电池,重新考虑问题1。 问题3:根据附件7给出的小屋建筑要求,请为大同市重新设计一个小屋,要求画出小屋的外形图,并对所设计小屋的外表面优化铺设光伏电池,给出铺设及分组连接方式,选配逆变器,计算相应结果。 附件1:光伏电池组件的分组及逆变器选择的要求 附件2:给定小屋的外观尺寸图

2015年数模美赛ABCD题目

A题 The world medical association has announced that their new medication could stop Ebola and cure patients whose disease is not advanced. Build a realistic, sensible, and useful model that considers not only the spread of the disease, the quantity of the medicine needed, possible feasible delivery systems, locations of delivery, speed of manufacturing of the vaccine or drug, but also any other critical factors your team considers necessary as part of the model to optimize the eradication of Ebola, or at least its current strain. In addition to your modeling approach for the contest, prepare a 1-2 page non-technical letter for the world medical association to use in their announcement. 世界医学协会日前宣布,其新的药物可以阻止埃博拉病毒和治愈患者的疾病,谁的病没有进入晚期。因此,建立一个现实的、合理的,并且有用的模型是认为制造的疫苗或药物的不仅是这种疾病的传播、所述药物的所需要的数量、可能的可行交付系统、交付地点、制造的疫苗或药物的速度,但也可以是任何你的团队认为有必要为模型做贡献的其他关键因素,以便优化消灭埃博拉病毒或者至少抑制其目前的压力。除了为大赛的建模方法,你的队伍还需要准备为世界医学协会发表公告的一份1-2页非技术性的信。

2015年全国大学生数学建模比赛A题一等奖论文

太阳影子定位问题 摘要 目前,如何确定视频的拍摄地点和拍摄日期是计算机视觉的热点研究问题,是视频数据分析的重要方面,有重要的研究意义。本文通过建立数学模型,给出了通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的方法。 对于问题一,建立空间三维直角坐标系和球面坐标系对直杆投影和地球进行数学抽象,引入地方时、北京时间、太阳赤纬、杆长、太阳高度角等五个参数,建立了太阳光下物体影子的长度变化综合模型。求解过程中,利用问题所给的数据,得到太阳赤纬等变量,将太阳赤纬等参量代入模型,求得了北京地区的9:00至15:00的影子长度变化曲线,当12:09时,影子长度最短;并分析出影长随这些参数的变化规律,利用控制变量法思想,总结了五个参数与影子长度的关系。最后进行模型检验,将该模型运用于东京、西藏两地,得到了这两座城市的影长变化规律曲线,发现变化规律符合实际两地实际情况。 对于问题二,为了消除不同直角坐标系带来的影响,将实际坐标转换为二次曲线的极坐标,建立了极坐标下基于多层优化搜索算法的空间匹配优化模型。求解时,先将未知点的直角坐标系的点转换为极坐标,然后设计了多层优化搜索算法,通过多次不同精度的搜索,最后得出实际观测点的经纬度为东经E115?北纬N25?。同时对模型进行验证,实地测量了现居住地的某个时间段的值,通过模型二来求解出现居住地的经纬度,分析了误差产生的原因:大气层的折射和拟合误差。 对于问题三,将极坐标转换后的基本模型转换为优化模型,建立了基于遗传算法的时空匹配优化模型。将目标函数作为个体的适应度函数,将经度纬度及日期作为待求解变量,用遗传算法进行求解,得到可能的经度纬度及其日期:北纬20度,东经114度,5月21日;北纬20度,东经114度,7月24日;东经94.5度,北纬33.8度,6月19日。最后,将遗传算法与多层优化搜索算法进行对比分析,得出遗传算法的求解效率和求解精度均优于多层次搜索算法。 对于问题四,首先将视频材料以1min为间隔进行采样得到41帧(静态图片),将这些静止图片先利用matlab进行处理,后进行阀值归一化处理,得到这些帧的灰度值矩阵。在图片上建立参考模型,获得影子端点的参考位置。利用投影系统和模型二,建立了基于图形处理的视频拍摄地点搜索模型。利用模型二中多层搜索算法,求得满足精度的最优地点。最优的地点是:东经119,北纬48.7,在内蒙古的呼伦贝尔市。同时假设日期是未知量,将模型四与模型三相结合,得到了可能的地点和时间,并分析了可能出现误差的原因,最后回答了当视频日期未知,也可以确定其位置和日期。 最后,给出了模型的优缺点和改进方案。 关键词:极坐标化,多层优化搜索算法,遗传算法,图像处理,MATLAB

2012-2015数学建模国赛题目

2012-2015数学建模国赛题目

2012高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”) A题葡萄酒的评价 确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。请尝试建立数学模型讨论下列问题: 1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可 信? 2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。 3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。 4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量? 附件1:葡萄酒品尝评分表(含4个表格) 附件2:葡萄和葡萄酒的理化指标(含2个表格) 附件3:葡萄和葡萄酒的芳香物质(含4个表格)

2012高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”) B题太阳能小屋的设计 在设计太阳能小屋时,需在建筑物外表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V交流电才能供家庭使用,并将剩余电量输入电网。不同种类的光伏电池每峰瓦的价格差别很大,且每峰瓦的实际发电效率或发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架空)等。因此,在太阳能小屋的设计中,研究光伏电池在小屋外表面的优化铺设是很重要的问题。 附件1-7提供了相关信息。请参考附件提供的数据,对下列三个问题,分别给出小屋外表面光伏电池的铺设方案,使小屋的全年太阳能光伏发电总量尽可能大,而单位发电量的费用尽可能小,并计算出小屋光伏电池35年寿命期内的发电总量、经济效益(当前民用电价按0.5元/kWh 计算)及投资的回收年限。

2015年MCM美赛题目及翻译

PROBLEM A: Eradicating(根除)Ebola The world medical association has announced that their new medication could stop Ebola and cure patients whose disease is not advanced(晚期的). Build a realistic, sensible, and useful model that considers not only the spread of the disease, the quantity of the medicine needed, possible feasible (可行的)delivery systems, locations of delivery, speed of manufacturing of the vaccine or drug, but also any other critical factors your team considers necessary as part of the model to optimize the eradication of Ebola, or at least its current strain(压力). In addition to your modeling approach for the contest, prepare a 1-2 page non-technical letter for the world medical association to use in their announcement. PROBLEM B: Searching for a lost plane Recall the lost Malaysian flight MH370. Build a generic(一般的)mathematical model that could assist "searchers" in planning a useful search for a lost plane feared to(恐怕) have crashed in open water such as the Atlantic, Pacific, Indian, Southern, or Arctic Ocean while flying from Point A to Point B. Assume that there are no signals from the downed (坠落的) plane. Your model should recognize that there are many different types of planes for which we might be searching and that there are many different types of search planes, often using different electronics or sensors. Additionally, prepare a 1-2 page non-technical paper for the airlines to use in their press conferences concerning their plan for future searches.

2012-2015数学建模国赛题目

2012高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规 范”) A题 葡萄酒的评价 确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。请尝试建立数学模型讨论下列问题: 1. 分析附件1中两组评酒员的评价结果有无显著性差异,哪 一组结果更可信? 2. 根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。 3. 分析酿酒葡萄与葡萄酒的理化指标之间的联系。 4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量? 附件1:葡萄酒品尝评分表(含4个表格) 附件2:葡萄和葡萄酒的理化指标(含2个表格) 附件3:葡萄和葡萄酒的芳香物质(含4个表格)

2012高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规 范”) B题太阳能小屋的设计 在设计太阳能小屋时,需在建筑物外表面(屋顶及外墙)铺设光伏电池,光伏电池组件所产生的直流电需要经过逆变器转换成220V交流电才能供家庭使用,并将剩余电量输入电网。不同种类的光伏电池每峰瓦的价格差别很大,且每峰瓦的实际发电效率或发电量还受诸多因素的影响,如太阳辐射强度、光线入射角、环境、建筑物所处的地理纬度、地区的气候与气象条件、安装部位及方式(贴附或架空)等。因此,在太阳能小屋的设计中,研究光伏电池在小屋外表面的优化铺设是很重要的问题。 附件1-7提供了相关信息。请参考附件提供的数据,对下列三个问题,分别给出小屋外表面光伏电池的铺设方案,使小屋的全年太阳能光伏发电总量尽可能大,而单位发电量的费用尽可能小,并计算出小屋光伏电池35年寿命期内的发电总量、经济效益(当前民用电价按0.5 元/kWh计算)及投资的回收年限。 在求解每个问题时,都要求配有图示,给出小屋各外表面电池组件铺设分组阵列图形及组件连接方式(串、并联)示意图,也要给出电池组件分组阵列容量及选配逆变器规格列表。 在同一表面采用两种或两种以上类型的光伏电池组件时,同一型号的电池板可串联,而不同型号的电池板不可串联。在不同表面上,即使是相同型号的电池也不能进行串、并联连接。应注意分组连接方式及逆

美赛历年题目_pdf

马剑整理 历年美国大学生数学建模赛题 目录 MCM85问题-A 动物群体的管理 (3) MCM85问题-B 战购物资储备的管理 (3) MCM86问题-A 水道测量数据 (4) MCM86问题-B 应急设施的位置 (4) MCM87问题-A 盐的存贮 (5) MCM87问题-B 停车场 (5) MCM88问题-A 确定毒品走私船的位置 (5) MCM88问题-B 两辆铁路平板车的装货问题 (6) MCM89问题-A 蠓的分类 (6) MCM89问题-B 飞机排队 (6) MCM90-A 药物在脑内的分布 (6) MCM90问题-B 扫雪问题 (7) MCM91问题-B 通讯网络的极小生成树 (7) MCM 91问题-A 估计水塔的水流量 (7) MCM92问题-A 空中交通控制雷达的功率问题 (7) MCM 92问题-B 应急电力修复系统的修复计划 (7) MCM93问题-A 加速餐厅剩菜堆肥的生成 (8) MCM93问题-B 倒煤台的操作方案 (8) MCM94问题-A 住宅的保温 (9) MCM 94问题-B 计算机网络的最短传输时间 (9) MCM-95问题-A 单一螺旋线 (10) MCM95题-B A1uacha Balaclava学院 (10) MCM96问题-A 噪音场中潜艇的探测 (11) MCM96问题-B 竞赛评判问题 (11) MCM97问题-A Velociraptor(疾走龙属)问题 (11) MCM97问题-B为取得富有成果的讨论怎样搭配与会成员 (12) MCM98问题-A 磁共振成像扫描仪 (12) MCM98问题-B 成绩给分的通胀 (13) MCM99问题-A 大碰撞 (13) MCM99问题-B “非法”聚会 (14) MCM2000问题-A空间交通管制 (14) MCM2000问题-B: 无线电信道分配 (14) MCM2001问题- A: 选择自行车车轮 (15) MCM2001问题-B 逃避飓风怒吼(一场恶风...) .. (15) MCM2001问题-C我们的水系-不确定的前景 (16) MCM2002问题-A风和喷水池 (16) MCM2002问题-B航空公司超员订票 (16) MCM2002问题-C (16) MCM2003问题-A: 特技演员 (18)

2015全国赛数学建模

A题太阳影子定位 如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。 1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用你们建立的模型画出2015年10月22日北京时间 9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。 2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点。将你们的模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。 3. 根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点和日期。将你们的模型分别应用于附件2和附件3的影子顶点坐标数据,给出若干个可能的地点与日期。4.附件4为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估计出直杆的高度为2米。请建立确定视频拍摄地点的数学模型,并应用你们的模型给出若干个可能的拍摄地点。 如果拍摄日期未知,你能否根据视频确定出拍摄地点与日期? B题“互联网+”时代的出租车资源配置 出租车是市民出行的重要交通工具之一,“打车难”是人们关注的一个社会热点问题。随着“互联网+”时代的到来,有多家公司依托移

动互联网建立了打车软件服务平台,实现了乘客与出租车司机之间的信息互通,同时推出了多种出租车的补贴方案。 请你们搜集相关数据,建立数学模型研究如下问题: (1) 试建立合理的指标,并分析不同时空出租车资源的“供求匹配”程度。 (2) 分析各公司的出租车补贴方案是否对“缓解打车难”有帮助? (3) 如果要创建一个新的打车软件服务平台,你们将设计什么样的补贴方案,并论证其合理性。 C题月上柳梢头 “月上柳梢头,人约黄昏后”是北宋学者欧阳修的名句,写的是与佳人相约的情景。请用天文学的观点赏析该名句,并进行如下的讨论:1. 定义“月上柳梢头”时月亮在空中的角度和什么时间称为“黄昏后”。根据天文学的基本知识,在适当简化的基础上,建立数学模型,分别确定“月上柳梢头”和“人约黄昏后”发生的日期与时间。并根据已有的天文资料(如太阳和月亮在天空中的位置、日出日没时刻、月出月没时刻)验证所建模型的合理性。 2. 根据所建立的模型,分析2016年北京地区“月上柳梢头,人约黄昏后”发生的日期与时间。根据模型判断2016年在哈尔滨、上海、广州、昆明、成都、乌鲁木齐是否能发生这一情景?如果能,请给出相应的日期与时间;如果不能,请给出原因。

2010美赛数学建模

连环作案嫌疑人“地理轮廓”估计的统计模型 摘要:在不同地点发生的系列谋杀案对社会的危害极大,如何确定其犯罪嫌疑人的住所是破案的关键。对犯罪嫌疑人住所的估计,给出了3种方法,即圆周假设、质心法和最小距离法,通过对比验证表明,最小距离法较优;一般犯罪分子都会选择”不近不远”的作案地点,基本上服从二维正态分布。同时考虑犯罪分子的心理特征,作案方式等进一步对模型进行优化,得出更合理的模型,提高对连环作案的案件的效率。 关键字:连环作案、圆周假设、质心法、最小距离、概率分布一.问题叙述: 1.1问题重述 1981年Peter Sutcliffe(萨克利夫)被判刑因为他参与了十三起谋杀和对其他人的恶毒攻击。缩小搜索Sutcliffe的方法之一是发现一个攻击位置的“质心”.最终犯罪嫌疑人恰好生活在该方法预测的同一个小镇。从那时起,已经发展出一系列更加复杂的技术用来预测基于犯罪地点的具有地理效应(地理轮廓)的系列犯罪行为。 你的团队被一个当地警察局要求发展出一种方法用来帮助他们的系列犯罪调查。 (1)你们的方法应该至少需要利用两种不同的情景以生成地理效应(地理轮廓),进而根据不同情况下的分析结果对执法人员提供有效的预测。 (2)基于以往犯罪的时间和位置,预测信息应该提供一些估计或指导下次可能的犯罪地点。如果在预测中用到了其它的信息,必须提供特别的细节说明告诉我们这些信息是如何被整合的。 (3)你们的方法中也应该包括在给定条件下(包括适当警告信息)下预测的可靠性估计。 1.2“地理画像” 地理轮廓是是一项刑事调查方法,分析确定最有可能的罪犯居住面积确定的罪行的连接一连串的位置。通过采用定性和定量的方法,它有助于理解空间的违法行为和针对较小的区域的社会调查。通常用于在连环谋杀或强奸(但还纵火,轰炸,抢劫及其他犯罪)的情况下,技术可帮助警方侦探优先考虑大规模的重大犯罪调查,往往需要成百上千个嫌疑人和提示中的信息。基本原则是犯罪相关的地点提供关于受害人的资料和罪犯的与地理环境的相互作用。它甚至可以显示罪犯对周边地理情况的熟悉程度和罪犯对安全距离的界定,可以反映了他的非刑事空间生活方式方面即其居住地的规划。 二.模型假设: 由于犯罪活动的巨大变动以及几乎所有连环杀人案的凶手通常患有心理疾病,所以采用相对简单的计算机模型去预测连环杀人案一般都面临几个障碍。以下是应用我们模型的对犯罪行为所采取的假设: 犯罪是单独作案的。我们假设模型中的案件都是由单独个体作案的,我们的模型不对有组织的犯罪,团伙犯罪和暴动进行分析。

数学建模美赛00a

问题A 空间交通管制 为加强安全并减少空中交通指挥员的工作量,联邦航空局(FAA)考虑对空中交通管制系统添加软件,以便自动探测飞行器飞行路线可能的冲突,并提醒指挥员。为完成此项工作,FAA的分析员提出了下列问题。 要求A: 对于给定的两架空中飞行的飞机,空中交通指挥员应在什么时候把该目标视为太靠近,并予以干预。 要求B: 空间扇形是指某个空中交通指挥员所控制的三维空间部分。给定任意一个空间扇形,我们怎样从空中交通工作量的方位来估量它是否复杂当几个飞行器同时通过该扇形时,在下面情形所确定的复杂性会达到什么程度:(1)在任一时刻(2)在任意给定的时间范围内(3)在一天的特别时间内在此期间可能出现的冲突总数是怎样影响着复杂性来的 提出所添加的软件工具对于自动预告冲突并提醒指挥员,这是否会减少或增加此种复杂性 在作出你的报告方案的同时,写出概述(不多于二页)使FAA分析员能提交给FAA当局Jane Garvey ,并对你的结论进行答辩。

问题B 无线电信道分配 我们寻找无线电信道配置模型.在一个大的平面区域上设置一个传送站的均衡網絡,以避免干扰.一个基本的方法是将此区域分成正六边形的格子(蜂窝状),如图 1.传送站安置在每个正六边形的中心点. 容许频率波谱的一个区间作为各传送站的频率.将这一区间规则地分割成一些空间信道,用整数1,2,3,…来表示.每一个传送站将被配置一正整数信道.同一信道可以在许多局部地区使用,前提是相邻近的传送站不相互干扰. 根据某些限制设定的信道需要一定的频率波谱,我们的目标是极小化频率波谱的这个区间宽度.這可以用跨度这一概念.跨度是某一个局部区域上使用的最大信道在一切滿足限制的配置中的最小值.在一个获得一定跨度的配置中不要求小于跨度的每一信道都被使用. 令s为一个正六边形的一侧的长度.我们集中考虑存在两种干扰水平的一种情况. 要求A: 频率配置有几个限制,第一,相互靠近的两个传送站不能配给同一信道.第二,由于波谱的传播,相互距离在2s內的传送站必须不配给相同或相邻的信道,它们至少差2.在這些限制下,关于跨度能说些什么. 要求B: 假定前述图1中的格子在各方向延伸到任意远,回答要求A. 要求C: 在下述假定下,重复要求A和B.更一般地假定相互靠近的传送站的信道至少差一个给定的整数k,同时那些隔开一点的保持至少差1.关于跨度和关于设计配置的有效策略作为k的一个函数能说点什么. 要求D: 考虑问题的一般化,比如各种干扰水平,或不规则的传送站布局.其他什么因素在考虑中是重要的. 要求E: 写一篇短文(不超过两页)给地方报纸,阐述你的发现. 问题:大象题 大象群落的兴衰归根到底,如果象群对于栖息地造成不尽人意的影响,就要考虑对它们的驱除,即使是运用淘汰法则。国家地理杂志(地球年鉴)1999年12月 在位于南非的一个巨大的国家公园里,栖息着近乎11000只象。管理策略要求一个健康的环境

相关文档
最新文档