mfc by huaqiao univ 2

mfc by huaqiao univ 2
mfc by huaqiao univ 2

Nanograss array boron-doped diamond electrode for enhanced electron transfer from Shewanella loihica PV-4

Wenguo Wu a ,b ,Linling Bai a ,Xing Liu a ,Zuming Tang a ,Zhongze Gu a ,b ,?

a State Key Laboratory of Bioelectronics,Biological science and medical engineering department,Southeast University,Nanjing 210096,P.R.China

b

Suzhou Key Laboratory of Environment and Biosafety,Suzhou Academy of Southeast University,Dushuhu Lake Higher Education Town,Suzhou 215123,P.R.China

a b s t r a c t

a r t i c l e i n f o Article history:

Received 1March 2011

Received in revised form 18May 2011Accepted 19May 2011

Available online 27May 2011Keywords:

Microbial fuel cell

Boron-doped diamond Nanograss array Nanostructure

The inhibited electron transfer from electricigens to the electrode is one of the main limitations for the performance of microbial fuel cells (MFCs).This study compares catalytic current generation and electrochemical behavior of Shewanella loihica PV-4on boron-doped diamond (BDD)and nanograss array BDD electrode in an electrochemical cell.Experimental results show that the good biocompatibility and electron transportation ability of nanograss array BDD greatly improve the direct electron transfer and can make it suitable for the anode of high performance MFC.

?2011Elsevier B.V.All rights reserved.

1.Introduction

Microbial fuel cell (MFC),a green energy apparatus harvesting electricity from organic waste and renewable biomass,has attracted great interest recently [1–4].The microbial fuel cell consists of an anode,which accepts electrons liberated from the microbial metab-olism and passes electrons to a cathode,where they are used to reduce molecular oxygen.Shewanella loihica PV-4,a dissimilatory metal reducing bacterium,is renowned for the ability of directly transferring electrons from the cell to the electrode through outer membrane decaheme c-type cytochromes (OM c -Cyts)[5–7].However,the active site of OM c -Cyts,a heme group with a Fe 3+/2+redox center,is wrapped by non-conductive peptide chain,and thus direct electron transfer from the bacteria to the electrode is hindered [8].For this reason,soluble mediators have been added to facilitate electron transfer from the bacteria to the electrode [9–11].Modi ?cation of electrodes was also derived to enhance the electrochemical reaction of protein by directing the active center of the protein toward the electrode surface [12,13].In this case,nanostructured conductive materials with unique electrical and structural properties favorable for both bio-and electrocatalytic processes were found to be ef ?cient for improving the MFC performance [6,14–19].

Boron-doped diamond (BDD)?lm electrodes,due to their wide potential window,low background currents,remarkable chemical stability,and resistance to fouling,have been widely used for elec-trochemistry including electroanalysis,electrosynthesis and electro-chemical wastewater treatment [20].Apart from these advantages,BDD electrode also exhibits disadvantages of chemical inertness that makes it dif ?cult to be modi ?ed,and poor reproducibility after modi ?cation.However,some micro-and nanostructured BDD electrodes were successfully fabricated and showed excellent electri-cal and electrochemical activity [21–25].Herein,we utilized the BDD electrode and nanograss array BDD electrode as the working electrodes in an electrochemical cell inoculated with S.loihica PV-4and demonstrated the role of nanograss array in promoting electron transfer from the intracellular environment to the electrode surface.2.Experimental 2.1.Electrode preparation

The BDD electrode was prepared by microwave plasma chemical vapor deposition (MPCVD).The nanograss array on the BDD electrode surface with 20nm in diameter,200nm in length and 50nm in distance was obtained by reactive ion etching.The etching experi-ments were performed in a parallel-plate reactive ion etching plasma system with radio frequency (RF)powering at 13.56MHz (SAMCO,RIE-10NR).For all experiments the RF power was 300W,the pressure of the O 2plasma was 20Pa,and the total O 2?ow rate was 10sccm.As

a primary ion,O 2+

accelerated at 5.5kV was used [22].2.2.Bacteria culture

Shewanella loihica PV-4(ATCC BAA-1088)was aerobically cultured in 10mL of Marine Broth (20g L ?1)at 25°C for 24h.After centrifugation,

Electrochemistry Communications 13(2011)872–874

?Corresponding author at:Suzhou Key Laboratory of Environment and Biosafety,Suzhou Academy of Southeast University,Dushuhu Lake Higher Education Town,Suzhou 215123,P.R.China.Tel./fax:+862583795635.

E-mail address:gu@https://www.360docs.net/doc/851341953.html, (Z.

Gu).1388-2481/$–see front matter ?2011Elsevier B.V.All rights reserved.doi:

10.1016/j.elecom.2011.05.025

Contents lists available at ScienceDirect

Electrochemistry Communications

j o u r n a l h o m e p a g e :w ww.e l s ev i e r.c o m /l o c a t e /e l e c o m

the Marine Broth was replaced with 10mL of de ?ned media (DM)[6]at 25°C for 48h with sodium lactate (10mM)as substrate.The sus-pension was centrifuged for 10min and the resultant cell suspension was washed with DM three times prior to being used for electro-chemical experiments.

2.3.Electrochemical measurements

A single-chamber,three-electrode system was used for the electrochemical measurements,where BDD electrode or nanograss array BDD electrode was used as the working electrode on the bot-tom of the reactor,a platinum wire as the counter,and an Ag/AgCl (saturated KCl)electrode as the reference.The reactor ?lled with 4mL DM containing sodium lactate (10mM)was deaerated by purging with N 2gas (30min)and subsequently injected with bacterial culture (OD 6002.0)as described above at a constant poised potential of 0.2V using a CHI 660D potentiostat (CH Instruments,Chenhua Co.Shanghai,China)at 25°C,pH 7.8.3.Results and discussion 3.1.Chronoamperometry

The cells were inoculated into the reactor under potentiostatic conditions at 0.2V for 25h to prepare an electrode with attached cells.Fig.1shows the current generated by S.loihica PV-4on BDD electrode and nanograss array BDD electrode respectively.The addition of cells into the MFC resulted in an instantaneous current density peak of 1.2μA/cm 2and 3.8μA/cm 2for BDD electrode and nanograss array BDD electrode.Such a current peak is ascribed to the electrical connection from OM c -Cyts of the accumulated cells to the electrodes [5–8].Then the current decreased probably for reasons of the consumption of sodium lactate [26]and fouling of active sites on electrodes by the incompletely oxidation product of substrate and metabolic macromol-ecules [2,27].An independent experiment con ?rmed that the addition of sodium lactate causes the current to increase again.The current density was gradually stabilized to 1.2μA/cm 2for nanograss array BDD electrode,while it was 0.4μA/cm 2for BDD electrode.The current derived on nanograss array BDD electrode is also larger than the values reported for In 2O 3electrode [6]and bare glassy carbon electrode [14,28].SEM images in Fig.2and previous study [22]con ?rmed a different morphology of BDD electrode and nanograss array BDD electrode in micro-and nanoscale,respectively.The nanograss array BDD electrode apparently had higher surface roughness than the BDD electrode with ?at crystal surface.However,the augmentation of surface area was not bene ?cial to the accumulation of more bacteria in micrometer size.The result suggests that high current can be achieved without a signi ?cant amount of biomass attached to the electrode

surface,indicating that the catalytic activity of each individual cell is high.It is supposed that the surface defects of nanograss array greatly increase the reaction sites for more heme groups in each OM c -Cyt [29],which comprises ten putative heme groups,and accelerate electron transfer of each individual cell on nanograss array BDD electrode.Furthermore,nanograss array in nano-dimension could increase proximity to the active Fe 3+/2+redox center of heme group and thus directly transfer electrons from the respiration chain to the electrode surface.In addition,our previous electrochemical impedance spectra study [22]showed that nanograss array BDD electrode had a lower charge-transfer resistance (R ct )than bare BDD electrode,which could accelerate electron transfer and promote electrocatalytic activity.3.2.Cyclic voltammetry

The effect of nanograss array structure on enhancing electron transfer was evaluated by cyclic voltammograms (CVs).There were no obvious redox waves on BDD and nanograss array BDD electrodes in the absence of sodium lactate.After the addition of sodium lactate,both BDD and nanograss array BDD electrodes exhibited a pair of well-de ?ned redox waves (Fig.3a).No redox response from sodium lactate was observed on BDD and nanograss array BDD electrodes in the absence of the cells (data not shown).The results con ?rm a cellular sodium lactate oxidation process mediated by the OM c -Cyts.CVs after polarizing the BDD electrode for 25h revealed a sharp reductive peak

at

Fig.1.Time dependent variation of current density generated by S.loihica PV-4on BDD electrode (a)and nanograss array BDD electrode (b)poised at 0.2

V.

Fig.2.SEM images of BDD electrode (a)and nanograss array BDD electrode (b)after 2h of current generation.

873

W.Wu et al./Electrochemistry Communications 13(2011)872–874

?0.367V,and a broad oxidative peak at 0.053V.Such an asymmetric pro ?le was ascribed to the irreversible electrochemistry of OM c -Cyts and sluggish heterogeneous electron transfer of OM c -Cyts,similar results have been reported for Shewanella oneidensis [14,28].While a quasi-reversible CV with an oxidative peak at ?0.052V and a reductive peak at ?0.422V was observed on the nanograss array BDD electrode.These results showed that the reversibility of electrochemistry of OM c -Cyts depended on the nanostructure of the BDD electrode.It is known that the diamond has good biocompatibility [30,31],the nanograss array could act as a conducting bridge between the redox center of OM c -Cyts with native structure and the electrode surface,lower the electron-transfer distance,and promote direct electron transfer.

To further study the electron transfer kinetics of whole cell at nanograss array BDD electrode,the dependence of whole cell oxidative/reductive peak currents on scan rate was analyzed.From the double logarithmic plot of the peak current versus scan rate,both BDD electrode and nanograss array BDD electrode showed a linear relationship of the peak current with the scan rate.For BDD electrode,the slop is 0.28for the anodic curve and 0.45for the cathodic curve,while for nanograss array BDD electrode,the slop is 0.19for the anodic curve and it is 0.36for the cathodic curve (Fig.3b).Both of the linear correlations,indicating a mixed diffusion-adsorption controlled elec-trode process,con ?rmed a complex combination of catalytic and sub-strate diffusion processes in the whole cell electrochemical system.

Similar phenomenon was also observed when Geobacter sulfurreducens and Shewanella oneidensis were used as electricigens [14,32].4.Conclusions

In conclusion,we showed the enhanced electron transfer from S.loihicia PV-4on nanograss array BDD electrode.It was found that the good biocompatibility and electron transportation ability of nanograss array BDD electrode greatly improved the direct electron transfer by promoting electrochemistry of OM c -Cyts.As BDD electrodes are excellent in anti-fouling and long-term stability,they have great potential in application of MFCs.Acknowledgements

This work was supported by NSFC (Grant no.50925309),National Basic Research Program of China (Grant no.2007CB936300),and 333Talent Project Foundation of Jiangsu Province.The diamond elec-trodes were gifted by Prof.Akira Fujishima in Kanagawa Academy of Science and technology (Japan).References

[1] D.R.Lovley,Curr.Opin.Biotech.17(2006)327–332.[2] D.R.Lovley,Nat.Rev.Microbiol.4(2006)497–508.

[3] B.E.Logan, B.Hamelers,R.Rozendal,U.Schrorder,J.Keller,S.Freguia,P.

Aelterman,W.Verstraete,K.Rabaey,Environ.Sci.Technol.40(2006)5181–5192.[4]K.Rabaey,W.Verstraete,Trends Biotechnol.23(2005)291–298.

[5] A.Okamoto,R.Nakamura,K.Ishii,K.Hashimoto,Chembiochem 10(2009)

2329–2332.

[6]R.Nakamura,F.Kai,A.Okamoto,G.J.Newton,K.Hashimoto,Angew.Chem.Int.Ed.

48(2009)508–511.

[7]R.Nakamura,K.Ishii,K.Hashimoto,Angew.Chem.Int.Ed.48(2009)1606–1608.[8] B.H.Kim,H.J.Kim,M.S.Hyun,D.H.Park,J.Microbiol,Biotechnology 9(1999)127–131.[9] D.H.Park,J.G.Zeikus,Appl.Environ.Microbiol.66(2000)1292–1297.

[10] D.A.Lowy,L.M.Tender,J.G.Zeikus,D.H.Park,D.R.Lovley,Biosens.Bioelectron.21

(2006)2058–2063.

[11]R.Ganguli,B.S.Dunn,Fuel Cells 9(2009)44–52.

[12]M.Rivera,M.A.Wells,F.A.Walker,Biochem.Mosc.33(1994)2161–2170.

[13]T.Liu,J.Zhong,X.Gan,C.H.Fan,G.X.Li,N.Matsuda,Chemphyschem 4(2003)

1364–1366.

[14]L.Peng,S.-J.You,J.-Y.Wang,Biosens.Bioelectron.25(2010)1248–1251.

[15]J.J.Sun,H.Z.Zhao,Q.Z.Yang,J.Song,A.Xue,Electrochim.Acta 55(2010)3041–3047.[16]Y.Qiao,S.J.Bao,C.M.Li,X.Q.Cui,Z.S.Lu,J.Guo,ACS Nano 2(2008)113–119.[17]Y.Qiao,C.M.Li,S.J.Bao,Q.L.Bao,J.Power,Sources 170(2007)79–84.

[18]T.Sharma,A.L.M.Reddy,T.S.Chandra,S.Ramaprabhu,Int.J.Hydrog.Energy 33

(2008)6749–6754.

[19]Y.Fan,S.Xu,R.Schaller,J.Jiao,F.Chaplen,H.Liu,Biosens.Bioelectron.26(2011)

1908–1912.

[20] A.Fujishima,Y.Einaga,T.N.Rao,D.A.Tryk,Diamond Electrochem,BKC Inc.,Tokyo,

and Elsevier,Amsterdam,2005,pp.556–570.

[21]M.Wei,Z.Y.Xie,L.G.Sun,Z.Z.Gu,Electroanalysis 21(2009)138–143.

[22]M.Wei,C.Terashima,M.Lv,A.Fujishima,Z.Z.Gu,https://www.360docs.net/doc/851341953.html,mun.(2009)

3624–3626.

[23]M.Wei,L.G.Sun,Z.Y.Xie,J.F.Zhii,A.Fujishima,Y.Einaga,D.G.Fu,X.M.Wang,Z.Z.

Gu,Adv.Funct.Mater.18(2008)1414–1421.

[24] A.L.Colley,C.G.Williams,U.D.Johansson,M.E.Newton,P.R.Unwin,N.R.Wilson,

J.V.Macpherson,Anal.Chem.78(2006)2539–2548.

[25]M.Pagels,C.E.Hall,https://www.360docs.net/doc/851341953.html,wrence,A.Meredith,T.G.J.Jones,H.P.Godfried,C.S.J.

Pickles,J.Wilman,C.E.Banks,https://www.360docs.net/doc/851341953.html,pton,L.Jiang,Anal.Chem.77(2005)3705–3708.

[26]G.J.Newton,S.Mori,R.Nakamura,K.Hashimoto,K.Watanabe,Appl.Environ.

Microbiol.75(2009)7674–7681.

[27]U.Schroder,J.Niessen,F.Scholz,Angew.Chem.Int.Ed.42(2003)2880–2883.[28]L.Peng,S.-J.You,J.-Y.Wang,Biosens.Bioelectron.25(2010)2530–2533.

[29] C.E.Banks,T.J.Davies,G.G.Wildgoose,https://www.360docs.net/doc/851341953.html,pton,https://www.360docs.net/doc/851341953.html,mun.(2005)

829–841.

[30]R.-h.Tian,T.N.Rao,Y.Einaga,J.-f.Zhi,Chem.Mater.18(2006)939–945.

[31]L.Tang,C.Tsai,W.W.Gerberich,L.Kruckeberg,D.R.Kania,Biomaterials 16(1995)

483–488.

[32]K.Fricke,F.Harnisch,U.Schroder,Energy Environ.Sci.1(2008)144–

147.

Fig.3.(a)CVs of S.loihica PV-4obtained on BDD electrode (a,c)and nanograss array BDD electrode (b,d)in the absence (gray line)and presence of sodium lactate (dark line).Scan rate:100mV s ?1.(b)The double logarithmic plot of anodic (squares)and cathodic (triangles)peak currents versus scan rate,where closed symbols are for BDD electrode and open symbols are for nanograss array BDD electrode.

874W.Wu et al./Electrochemistry Communications 13(2011)872–874

哈工大机械原理大作业 凸轮机构设计 题

H a r b i n I n s t i t u t e o f T e c h n o l o g y 机械原理大作业二 课程名称: 机械原理 设计题目: 凸轮机构设计 一.设计题目 设计直动从动件盘形凸轮机构, 1.运动规律(等加速等减速运动) 推程 0450≤≤? 推程 009045≤≤? 2.运动规律(等加速等减速运动) 回程 00200160≤≤? 回程 00240200≤≤? 三.推杆位移、速度、加速度线图及凸轮s d ds -φ 线图 采用VB 编程,其源程序及图像如下: 1.位移: Private Sub Command1_Click() Timer1.Enabled = True '开启计时器 End Sub Private Sub Timer1_Timer() Static i As Single

Dim s As Single, q As Single 'i作为静态变量,控制流程;s代表位移;q代表角度 Picture1.CurrentX = 0 Picture1.CurrentY = 0 i = i + 0.1 If i <= 45 Then q = i s = 240 * (q / 90) ^ 2 Picture1.PSet Step(q, -s), vbRed ElseIf i >= 45 And i <= 90 Then q = i s = 120 - 240 * ((90 - q) ^ 2) / (90 ^ 2) Picture1.PSet Step(q, -s), vbGreen ElseIf i >= 90 And i <= 150 Then q = i s = 120 Picture1.PSet Step(q, -s), vbBlack ElseIf i >= 150 And i <= 190 Then q = i s = 120 - 240 * (q - 150) ^ 2 / 6400 Picture1.PSet Step(q, -s), vbBlue ElseIf i >= 190 And i <= 230 Then

哈工大机械原理大作业凸轮机构第四题

Harbin Institute of Technology 机械原理大作业二 课程名称:机械原理 设计题目:凸轮机构设计 姓名:李清蔚 学号:1140810304 班级:1408103 指导教师:林琳

一.设计题目 设计直动从动件盘形凸轮机构,其原始参数见表 1 表一:凸轮机构原始参数 升程(mm ) 升程 运动 角(o) 升程 运动 规律 升程 许用 压力 角(o) 回程 运动 角(o) 回程 运动 规律 回程 许用 压力 角(o) 远休 止角 (o) 近休 止角 (o) 40 90 等加 等减 速30 50 4-5-6- 7多 项式 60 100 120

二.凸轮推杆运动规律 (1)推程运动规律(等加速等减速运动) 推程F0=90° ①位移方程如下: ②速度方程如下: ③加速度方程如下: (2)回程运动规律(4-5-6-7多项式) 回程,F0=90°,F s=100°,F0’=50°其中回程过程的位移方程,速度方程,加速度方程如下:

三.运动线图及凸轮线图 本题目采用Matlab编程,写出凸轮每一段的运动方程,运用Matlab模拟将凸轮的运动曲线以及凸轮形状表现出来。代码见报告的结尾。 1、程序流程框图 开始 输入凸轮推程回 程的运动方程 输入凸轮基圆偏 距等基本参数 输出ds,dv,da图像 输出压力角、曲率半径图像 输出凸轮的构件形状 结束

2、运动规律ds图像如下: 速度规律dv图像如下: 加速度da规律如下图:

3.凸轮的基圆半径和偏距 以ds/dfψ-s图为基础,可分别作出三条限制线(推程许用压力角的切界限D t d t,回程许用压力角的限制线D t'd t',起始点压力角许用线B0d''),以这三条线可确定最小基圆半径及所对应的偏距e,在其下方选择一合适点,即可满足压力角的限制条件。 得图如下:得最小基圆对应的坐标位置O点坐标大约为(13,-50)经计算取偏距e=13mm,r0=51.67mm.

VisualCMFC简要介绍(外文翻译

Introduction to MFC Programming with Visual C++ Version 6.x by Marshall Brain Visual C++ is much more than a compiler. It is a complete application development environment that, when used as intended, lets you fully exploit the object oriented nature of C++ to create professional Windows applications. In order to take advantage of these features, you need to understand the C++ programming language. If you have never used C++, please turn to the C++ tutorials in the C/C++ Tutorials page for an introduction. You must then understand the Microsoft Foundation Class (MFC) hierarchy. This class hierarchy encapsulates the user interface portion of the Windows API, and makes it significantly easier to create Windows applications in an object oriented way. This hierarchy is available for and compatible with all versions of Windows. The code you create in MFC is extremely portable. These tutorials introduce the fundamental concepts and vocabulary behind MFC and event driven programming. In this tutorial you will enter, compile, and run a simple MFC program using Visual C++. Tutotial 2 provides a detailed explanation of the code used in Tutorial 1. Tutorial 3 discusses MFC controls and their customization. Tutorial 4 covers message maps, which let you handle events in MFC. What is the Microsoft Foundations Class Library Let's say you want to create a Windows application. You might, for example, need to create a specialized text or drawing editor, or a program that finds files on a large hard disk, or an application that lets a user visualize the interrelationships in a big data set. Where do you begin A good starting place is the design of the user interface. First, decide what the user should be able to do with the program and then pick a set of user interface objects accordingly. The Windows user interface has a number of standard controls, such as buttons, menus, scroll bars, and lists, that are already familiar to Windows users. With this in mind, the programmer must choose a set of controls and decide how they should be arranged on screen. A time-honored procedure is to make a rough sketch of the proposed user interface (by tradition on a napkin or the back of an envelope) and play with the elements until they feel right. For small projects, or for the early prototyping phase of a larger project, this is sufficient. The next step is to implement the code. When creating a program for any Windows

两大主流MFC介绍HORIBA篇

堀场通过遍布全球的运营公司,提供面向多个行业的广泛的仪器和系统,其中包括汽车研发、过程和环境监测、体外医疗诊断、半导体生产与计量以及多种科学研发与质控测量。堀场出类拔萃的质量和值得信赖的性能,赢得了客户的广泛的信赖。 我们在“新奇有趣”这个别具一格的企业哲学的指引下,通过提供科学进步所需的一流产品,履行我们的社会责任——尤其是在保护健康、安全和环境方面。遍布全球每个角落的“堀场人”,期待着与您合作,为您提供满足需求的最佳分析解决方案。 2011年12月31号截止 商号株式会社堀场制作所 (HORIBA, Ltd.) 总公司〒601-8510 京都市南区吉祥院宫之东町2番地 创业1945年 (昭和20年)10月17日 成立1953年 (昭和28年)1月26日 注册本12,011百万日元 销售额123,456百万日元 股票上市东京证券交易所第1部大阪证券交易所第1部 结算日12月31日 公司主要生产和销售汽车排放测量系统、环境测量仪器、种类齐全的科学分析仪、医疗诊断分析仪和半导体行业使用的测量设备等。业务范围 堀场还生产和销售外围测量与分析设备。此外,公司还负责为实验室等机构提供用于研发、生产和其他应用的测量与分析设备。 董事局堀场厚董事会长、社长&首席执行官 石田耕三副社长工学博士 佐藤文俊常务董事 齊藤寿一董事 杉田正博董事 (MSD(株)监察) 宇野俊彦监察 石角完爾監察(千代田國際經營法律事務所所長兼首席律師) 石田敬輔監察((株)写真化学董事会长兼社长) 员工人数5,448名 (统计后) 公司位置 京都总部, 东京,仙台,福岛,枥木,筑波,横滨,滨松,丰田,名古屋,大阪,广岛,福冈,高松 (日本)

机械原理大作业3凸轮结构设计说明

机械原理大作业(二) 作业名称:机械原理 设计题目:凸轮机构设计 院系:机电工程学院 班级: 设计者: 学号: 指导教师:丁刚明 设计时间: 工业大学机械设计

1.设计题目 如图所示直动从动件盘形凸轮机构,根据其原始参数设计该凸轮。 表一:凸轮机构原始参数 序号升程(mm) 升程运动 角(o)升程运动 规律 升程许用 压力角 (o) 回程运动 角(o) 回程运动 规律 回程许用 压力角 (o) 远休止角 (o) 近休止角 (o) 12 80 150 正弦加速 度30 100 正弦加速 度 60 60 50 2.凸轮推杆运动规律 (1)推杆升程运动方程 S=h[φ/Φ0-sin(2πφ/Φ0)]

V=hω1/Φ0[1-cos(2πφ/Φ0)] a=2πhω12sin(2πφ/Φ0)/Φ02 式中: h=150,Φ0=5π/6,0<=φ<=Φ0,ω1=1(为方便计算) (2)推杆回程运动方程 S=h[1-T/Φ1+sin(2πT/Φ1)/2π] V= -hω1/Φ1[1-cos(2πT/Φ1)] a= -2πhω12sin(2πT/Φ1)/Φ12 式中: h=150,Φ1=5π/9,7π/6<=φ<=31π/18,T=φ-7π/6 3.运动线图及凸轮线图 运动线图: 用Matlab编程所得源程序如下: t=0:pi/500:2*pi; w1=1;h=150; leng=length(t); for m=1:leng; if t(m)<=5*pi/6 S(m) = h*(t(m)/(5*pi/6)-sin(2*pi*t(m)/(5*pi/6))/(2*pi)); v(m)=h*w1*(1-cos(2*pi*t(m)/(5*pi/6)))/(5*pi/6); a(m)=2*h*w1*w1*sin(2*pi*t(m)/(5*pi/6))/((5*pi/6)*(5*pi/6)); % 求退程位移,速度,加速度 elseif t(m)<=7*pi/6 S(m)=h; v(m)=0; a(m)=0; % 求远休止位移,速度,加速度 elseif t(m)<=31*pi/18 T(m)=t(m)-21*pi/18; S(m)=h*(1-T(m)/(5*pi/9)+sin(2*pi*T(m)/(5*pi/9))/(2*pi)); v(m)=-h/(5*pi/9)*(1-cos(2*pi*T(m)/(5*pi/9))); a(m)=-2*pi*h/(5*pi/9)^2*sin(2*pi*T(m)/(5*pi/9)); % 求回程位移,速度,加速度

哈工大机械原理大作业_凸轮机构设计(第3题)

机械原理大作业二 课程名称:机械原理 设计题目:凸轮设计 院系:机电学院 班级: 1208103 完成者: xxxxxxx 学号: 11208103xx 指导教师:林琳 设计时间: 2014.5.2

工业大学 凸轮设计 一、设计题目 如图所示直动从动件盘形凸轮,其原始参数见表,据此设计该凸轮。 二、凸轮推杆升程、回程运动方程及其线图 1 、凸轮推杆升程运动方程(6 50π?≤≤) 升程采用正弦加速度运动规律,故将已知条件mm h 50=,650π= Φ带入正弦加速度运动规律的升程段方程式中得: ????? ???? ??-=512sin 215650?ππ?S ;

?? ??????? ??-=512cos 1601ππωv ; ?? ? ??=512sin 1442 1?πωa ; 2、凸轮推杆推程远休止角运动方程( π?π≤≤6 5) mm h s 50==; 0==a v ; 3、凸轮推杆回程运动方程(914π?π≤≤) 回程采用余弦加速度运动规律,故将已知条件mm h 50=,95' 0π= Φ,6s π =Φ带入余弦加速度运动规律的回程段方程式中得: ?? ????-+=)(59cos 125π?s ; ()π?ω--=5 9sin 451v ; ()π?ω-=5 9cos 81-a 21; 4、凸轮推杆回程近休止角运动方程(π?π29 14≤≤) 0===a v s ; 5、凸轮推杆位移、速度、加速度线图 根据以上所列的运动方程,利用matlab 绘制出位移、速度、加速度线图。 ①位移线图 编程如下: %用t 代替转角 t=0:0.01:5*pi/6; s=50*((6*t)/(5*pi)-1/(2*pi)*sin(12*t/5)); hold on plot(t,s); t=5*pi/6:0.01:pi; s=50; hold on plot(t,s); t=pi:0.01:14*pi/9; s=25*(1+cos(9*(t-pi)/5));

MFC银行业务介绍

MFC银行业务介绍 MFC银行是美国一间拥有雄厚资金实力的批发银行,主要从事大额美元借贷业务,拥有离岸牌照。为适应中国国情,结合自身银行的优势,主要致力于: 1、各级政府对本省、市、自治区、直辖市内进行基础设施、大型水力、电力项目、城市改造等建设; 2、企业能源、环保产品等的研制、开发、推广; 3、帮助符合资格的企业提供信用、保函、票据质押、贴现等银行金融服务; 4、协助中国企业谋求境外上市的机会 5、积极拓展与中国本土银行合作发展的空间。 中亚基金有限公司业务介绍中亚基金有限公司(Chaina Asia Fund Limited)是MFC银行授权中华人民共和国的咨询机构,任务是向国内有需要的政府、企业提供借贷申请的咨询服务;协助项目方与MFC银行进行有效沟通;为银行发掘众多有潜力的优质客户,寻找投资合作机会。 公司发展策略: 中亚基金有限公司作为MFC银行在中国地区的咨询机构,依靠银行在中国的良好口碑和强大资金优势,结合本公司不断扩大的商业人际网络,不断探索特色发展,打造专业优势,形成核心竞争力。 公司业务范围: 政府项目:国家级重点项目、个省市重点项目提供境内个融资。

企业融资:为扩张及发展新项目的国有企业、民营企业、中外合资企业、独资企业提供境内外融资渠道,针对具体项目设计一套合适的企业或项目融资计划。 融资方式包括:债权融资 银行信贷:按照MFC银行信贷政策和审贷程序的要求,协助客户进行账务重组。 国际商业贷款:协助企业向MFC银行申请项目贷款,主要设计基础建设、能源、环保、农牧业、化工、水电等项目。 股权融资:通过MFC银行安排之公司以股权投资的方式参与企业或项目建设。 组合融资:以最有利于企业的融资成本及发展的方向的组合融资方式,为企业最合理地获取资金并协助其建立最佳之中、长期资本运作架构,以顺应企业的长期发展方向。 上市财务顾问:引荐企业通过MFC银行安排在澳大利亚或其它境外资本市场IPO或买壳上市。 申贷企业条件: 1、申请企业未被国际银行业列入黑名单; 2、申请项目具有可行性,投资回报率较高; 3、申请项目至少要经当地市政府批准,并获得相关级别政发放的批文,手续齐全; 4、申请企业拥有通畅的外汇通道,具备国家外汇借贷额度或中外合资企业外汇投资;

Visual-C++ MFC简要介绍大学毕业论文外文文献翻译及原文

毕业设计(论文)外文文献翻译 文献、资料中文题目:Visual C++ MFC 简要介绍 文献、资料英文题目: 文献、资料来源: 文献、资料发表(出版)日期: 院(部): 专业: 班级: 姓名: 学号: 指导教师: 翻译日期: 2017.02.14

Introduction to MFC Programming with Visual C++ Version 6.x by Marshall Brain Visual C++ is much more than a compiler. It is a complete application development environment that, when used as intended, lets you fully exploit the object oriented nature of C++ to create professional Windows applications. In order to take advantage of these features, you need to understand the C++ programming language. If you have never used C++, please turn to the C++ tutorials in the C/C++ Tutorials page for an introduction. You must then understand the Microsoft Foundation Class (MFC) hierarchy. This class hierarchy encapsulates the user interface portion of the Windows API, and makes it significantly easier to create Windows applications in an object oriented way. This hierarchy is available for and compatible with all versions of Windows. The code you create in MFC is extremely portable. These tutorials introduce the fundamental concepts and vocabulary behind MFC and event driven programming. In this tutorial you will enter, compile, and run a simple MFC program using Visual C++. Tutotial 2 provides a detailed explanation of the code used in Tutorial 1. Tutorial 3 discusses MFC controls and their customization. Tutorial 4 covers message maps, which let you handle events in MFC. What is the Microsoft Foundations Class Library? Let's say you want to create a Windows application. You might, for example, need to create a specialized text or drawing editor, or a program that finds files on a large hard disk, or an application that lets a user visualize the interrelationships in a big data set. Where do you begin? A good starting place is the design of the user interface. First, decide what the user should be able to do with the program and then pick a set of user interface objects accordingly. The Windows user interface has a number of standard controls, such as buttons, menus, scroll bars, and lists, that are already familiar to Windows users. With this in mind, the programmer must choose a set of controls and decide how they should be arranged on screen. A time-honored procedure is to make a rough sketch of the proposed user interface (by tradition on a napkin or the back of an envelope) and play with the elements until they feel right. For small projects, or for the early prototyping phase of a larger project, this is sufficient. The next step is to implement the code. When creating a program for any Windows platform, the programmer has two choices: C or C++. With C, the programmer codes at the level of the Windows Application Program Interface (API). This interface consists of a collection of hundreds of C functions described in the Window's API Reference books. For Window's NT, the API is typically referred to as the "Win32 API," to distinguish it from the original 16-bit API of lower-level Windows products like Windows 3.1. Microsoft also provides a C++ library that sits on top of any of the Windows APIs and makes the programmer's job easier. Called the Microsoft Foundation Class library (MFC), this library's primary advantage is efficiency. It greatly reduces the amount of code that must be written to create a Windows program. It also provides all the advantages normally found in C++

哈工大机械原理大作业二凸轮机构设计(29)

设计说明书 1 设计题目 如图所示直动从动件盘形凸轮机构,其原始参数见下表,据此设计该凸轮机构。 2、推杆升程、回程运动方程及位移、速度、加速度线图 2.1凸轮运动理论分析 推程运动方程: 01cos 2h s π?????=-?? ?Φ???? 1 00sin 2h v πωπ??? = ?ΦΦ?? 22 12 00cos 2h a πωπ???= ?ΦΦ?? 回程运动方程: ()0' 1s s h ?-Φ+Φ?? =- ??Φ ? ? 1'0 h v ω=- Φ 0a = 2.2求位移、速度、加速度线图MATLAB 程序 pi= 3.1415926; c=pi/180; h=140; f0=120; fs=45; f01=90; fs1=105; %升程 f=0:1:360; for n=0:f0

s(n+1)=h/2*(1-cos(pi/f0*f(n+1))); v(n+1)=pi*h/(2*f0*c)*sin(pi/f0*f(n+1)); a(n+1)=pi^2*h/(2*f0^2*c^2)*cos(pi/f0*f(n+1)); end %远休程 for n=f0:f0+fs s(n+1)=140; v(n+1)=0; a(n+1)=0; end %回程 for n=f0+fs:f0+fs+f01 s(n+1)=h*(1-(f(n+1)-(f0+fs))/f01); v(n+1)=-h/(f01*c); a(n+1)=0; end %近休程 for n=f0+fs+f01:360; s(n+1)=0; v(n+1)=0; a(n+1)=0; end figure(1);plot(f,s,'k');xlabel('\phi/\circ');ylabel('s/mm');grid on;title('推杆位移线图') figure(2);plot(f,v,'k');xlabel('\phi/\circ');ylabel('v/(mm/s)');grid on;title('推杆速度线图') figure(3);plot(f,a,'k');xlabel('\phi/\circ');ylabel('a/(mm/s2');grid on;title('推杆加速度线图') 2.3位移、速度、加速度线图

哈工大机械原理大作业-凸轮机构设计(第3题)

机械原理大作业二 课程名称: 机械原理 设计题目: 凸轮机构设计 院 系: 机电学院 班 级: 1208103 完 成 者: xxxxxxx 学 号: xx 指导教师: 林琳 设计时间: 2014.5.2 哈尔滨工业大学 凸轮机构设计 一、设计题目 二、凸轮推杆升程、回程运动方程及其线图 1 、凸轮推杆升程运动方程(6 50π?≤≤) 升程采用正弦加速度运动规律,故将已知条件mm h 50=,650π= Φ带入正弦加速度运动规律的升程段方程式中得:

?? ??????? ??-=512sin 215650?ππ?S ; ?? ??????? ??-=512cos 1601ππωv ; ?? ? ??=512sin 1442 1?πωa ; 2、凸轮推杆推程远休止角运动方程( π?π≤≤6 5) mm h s 50==; 0==a v ; 3、凸轮推杆回程运动方程(914π?π≤≤) 回程采用余弦加速度运动规律,故将已知条件mm h 50=,95' 0π= Φ,6s π =Φ带入余弦加速度运动规律的回程段方程式中得: ?? ????-+=)(59cos 125π?s ; ()π?ω--=5 9sin 451v ; ()π?ω-=5 9cos 81-a 21; 4、凸轮推杆回程近休止角运动方程(π?π29 14≤≤) 0===a v s ; 5、凸轮推杆位移、速度、加速度线图 根据以上所列的运动方程,利用matlab 绘制出位移、速度、加速度线图。 ①位移线图 编程如下: %用t 代替转角 t=0:0.01:5*pi/6; s=50*((6*t)/(5*pi)-1/(2*pi)*sin(12*t/5)); hold on plot(t,s); t=5*pi/6:0.01:pi; s=50; hold on plot(t,s); t=pi:0.01:14*pi/9; s=25*(1+cos(9*(t-pi)/5));

MFC常用类介绍

MFC常用类介绍(一) C++学习 2010-06-27 11:43:05 阅读332 评论0 字号:大中小订阅 CStatic CObject └CCmdTarget └CWnd └CStatic CStatic类提供了一个Windows静态控件的性能。一个静态控件用来显示一个文本字符串,框,矩形,图标,光标,位图,或增强的图元文件。它可以被用来作为标签,框,或用来分隔其它的控件。一个静态控件不接收输入,也不提供输出;但是,如果它是用SS_NOTIFY风格创建的,则它可以通知其父有关设备点击的消息。创建一个静态控件分两步。首先,调用构造函数来构造此CStatic对象,然后调用Create成员函数来创建此静态控件并将它与该CStatic对象连接。如果你是在一个对话框中创建了一个静态控件(通过一个对话框资源),则当用户关闭这个对话框时,此CStatic对象被自动销毁。如果你是在一个窗口中创建了一个CStatic对象,则必须由你来销毁它。在一个窗口的堆栈中创建的CStatic对象将自动被销毁。如果你是使用new函数在堆中创建CStatic对象,则当你使用完后,必须调用delete来销毁这个CStatic 对象。 #include 请参阅: CWnd,CButton,CComboBox,CEdit,CListBox,CScrollBar,CDialog CStatic类成员 构造 CStatic构造一个CStatic对象 初始化 Create创建Windows静态控件并将它与该CStatic对象连接 操作符 SetBitmap指定要在此静态控件中显示的位图 GetBitmap获取先前用SetBitmap设置的位图的句柄 SetIcon指定一个要在此静态控件中显示的图标 GetIcon获取先前用SetIcon设置的图标的句柄 SetCursor指定要显示在此静态控件中的光标图像 GetCursor获取先前用SetCursor设置的光标图像的句柄 SetEnhMetaFile指定要显示在此静态控件中的增强的图元文件 GetEnhMetaFile获取先前用SetEnhMetaFile设置的增强图元文件的句柄 CEdit CObject └CCmdTarget └CWnd └CEdit

哈工大机械原理大作业凸轮机构设计第题

哈工大机械原理大作业-凸轮机构设计(第题)

————————————————————————————————作者:————————————————————————————————日期:

机械原理大作业二 课程名称:机械原理 设计题目:凸轮机构设计 院系:机电学院 班级:1208103 完成者:xxxxxxx 学号:11208103xx 指导教师:林琳 设计时间:2014.5.2 哈尔滨工业大学

凸轮机构设计 一、设计题目 如图所示直动从动件盘形凸轮机构,其原始参数见表,据此设计该凸轮机构。 序号 升程(mm ) 升程运动角(°) 升程运动规律 升程许用压力角(°) 回程运动角(°) 回程运动规律 回程许用压力角 (°) 远休止角(°) 近休止角 (°) 3 50 150 正弦加速度 30 100 余弦加速度 60 30 80 二、凸轮推杆升程、回程运动方程及其线图 1 、凸轮推杆升程运动方程(6 50π?≤ ≤) 升程采用正弦加速度运动规律,故将已知条件mm h 50=,6 50π =Φ带入正弦加速度运动规律的升程段方程式中得: ??? ?????? ??-=512sin 215650?ππ?S ; ??? ?? ???? ??-= 512cos 1601ππωv ; ω

?? ? ??= 512sin 1442 1?π ωa ; 2、凸轮推杆推程远休止角运动方程( π?π ≤≤6 5) mm h s 50==; 0==a v ; 3、凸轮推杆回程运动方程(9 14π ?π≤≤) 回程采用余弦加速度运动规律,故将已知条件mm h 50=,9 5'0π= Φ,6 s π = Φ带入余弦加速度运动规律的回程段方程式中得: ?? ? ???-+=)(59cos 125π?s ; ()π?ω--=59 sin 451v ; ()π?ω-=59 cos 81-a 21; 4、凸轮推杆回程近休止角运动方程(π?π 29 14≤≤) 0===a v s ; 5、凸轮推杆位移、速度、加速度线图 根据以上所列的运动方程,利用matlab 绘制出位移、速度、加速度线图。 ①位移线图 编程如下: %用t 代替转角 t=0:0.01:5*pi/6; s=50*((6*t)/(5*pi)-1/(2*pi)*sin(12*t/5)); hold on plot(t,s); t=5*pi/6:0.01:pi; s=50; hold on plot(t,s); t=pi:0.01:14*pi/9; s=25*(1+cos(9*(t-pi)/5)); hold on plot(t,s); t=14*pi/9:0.001:2*pi;

哈工大机械原理大作业凸轮机构设计题

哈工大机械原理大作业凸轮机构设计题 标准化管理部编码-[99968T-6889628-J68568-1689N]

H a r b i n I n s t i t u t e o f T e c h n o l o g y 机械原理大作业二 课程名称: 机械原理 设计题目: 凸轮机构设计 一.设计题目 设计直动从动件盘形凸轮机构, 1.运动规律(等加速等减速运动) 推程 0450≤≤? 推程 009045≤≤? 2.运动规律(等加速等减速运动) 回程 00200160≤≤? 回程 00240200≤≤? 三.推杆位移、速度、加速度线图及凸轮s d ds -φ 线图 采用VB 编程,其源程序及图像如下: 1.位移: Private Sub Command1_Click() = True '开启计时器 End Sub Private Sub Timer1_Timer() Static i As Single Dim s As Single, q As Single 'i 作为静态变量,控制流程;s 代表位移;q 代表角度 = 0 = 0 i = i +

If i <= 45 Then q = i s = 240 * (q / 90) ^ 2 Step(q, -s), vbRed ElseIf i >= 45 And i <= 90 Then q = i s = 120 - 240 * ((90 - q) ^ 2) / (90 ^ 2) Step(q, -s), vbGreen ElseIf i >= 90 And i <= 150 Then q = i s = 120 Step(q, -s), vbBlack ElseIf i >= 150 And i <= 190 Then q = i s = 120 - 240 * (q - 150) ^ 2 / 6400 Step(q, -s), vbBlue ElseIf i >= 190 And i <= 230 Then q = i s = 240 * (230 - q) ^ 2 / 6400 Step(q, -s), vbRed ElseIf i >= 230 And i <= 360 Then q = i s = 0 Step(q, -s), vbBlack Else End If End Sub 2.速度 Private Sub Command2_Click() = True '开启计时器 End Sub Private Sub Timer2_Timer() Static i As Single Dim v As Single, q As Single, w As Single 'i为静态变量,控制流程;q代表角度;w代表角速度,此处被赋予50 = 0 = 0 w = 50 i = i + If i <= 45 Then q = i v = 480 * w * q / 8100 Step(q, -v), vbRed ElseIf i >= 45 And i <= 90 Then q = i

简介MFC访问数据库的几种方式

简介MFC访问数据库的几种方式 简介MFC访问数据库的几种方式 2010-04-22 09:06 从功能简单的数据库(如Jet Engine)到复杂的大型数据库系统(如oracle),VC++6.0都提供了一些编程接口。本文主要介绍以下五种: 1.ODBC API;2.MFC ODBC类;3.MFC DAO 类;(数据访问对象)4.MFC的OLE/DB;5.ActiveX数据对象(ADO)。6.RDO远程数据访问 1.开放数据库连接(ODBC API):提供了一个通用的编程接口,允许程序与多种不同的数据库连接。它为Oracle,SQL Server,MS Excel等都提供了驱动程序,使得用户可以使用SQL语句对数据库进行直接的底层功能操作。在使用ODBC API时,用户须引入的头文件为"sql.h","sqlext.h","sqltypes.h"。用ODBC API创建数据库应用程序遵循一定的基本步骤: 第一步是分配ODBC环境,使一些内部结构初始化。完成这一步,须分配一个SQLHENV类型的变量在ODBC环境中做句柄使用。 第二步是为将要使用的每一个数据源分配一个连接句

柄,由函数SQLALLocHandle()完成。 第三步是使用SQLConnect()把连接句柄与数据库连接,可以先通过SQLSetConnectAttr()设置连接属性。 然后就可以进行SQL语句的操作,限于篇幅,相关的函数就不具体介绍了,读者可以参考相关书籍。 操作完成后,用户取回相应的结果,就可以取消与数据库的连接。 最后需要释放ODBC环境。 ODBC API的特点是功能强大丰富,提供了异步操作,事务处理等高级功能,但相应的编程复杂,工作量大。 2.MFC ODBC类:MFC1.5后的版本里引入封装了ODBC 功能的类。通过这些类提供与ODBC的接口,使得用户可以不须处理ODBC API中的繁杂处理就可以进行数据库操作。主要的MFC ODBC类如下。 CDatabase类:一个CDatabase对象表示一个到数据源的连接,通过它可以操作数据源。应用程序可使用多个CDatabase对象:构造一个对象并调用OpenEx()成员函数打开一个连接。接着构造CRecordSet对象以操作连接的数据源,并向CDatabase对象传递记录集构造程序指针。完成使用后用Close()成员函数销毁CDatabase对象。一般情况下并不需要直接使用CDatabase对象,因为CRecordSet对象可以实现大多数的功能。但是在进行事务处理时,CDatabase就

凸轮机构设计大作业

大作业(二)凸轮机构设计(题号:8)班级: 姓名、学号: 成绩: 完成日期: 目录

1.凸轮机构大作业题目 (2) 2.推杆运动规律及凸轮廓线方程 (3) 3.程序流程图 (3) 4.源程序…………………………………………………^5 5.计算结果 (14) 6.凸轮机构图 (16) 7.体会及建议 (19) 8.参考资料 (20) 一、凸轮机构大作业题目 试用计算机辅助设计完成下列摆动滚子推杆盘形凸轮机构的设计,已知数据如下表所示,凸轮沿着逆时针方向做匀速转动。 表1 凸轮机构的推杆运动规律 表2 两种凸轮机构的推杆在近休、推程、远休及回程阶段的凸轮转角 表3 摆动滚子推杆盘形凸轮机构的已知参数

要求:每组(每三人为一组,每人一题)至少打印出一份源程序,每人打印出原始数据;凸轮理论轮廓和实际轮廓的坐标值;推程和回程的最大压力角,以及出现最大压力角时凸轮的相应转角;凸轮实际轮廓曲线的最小曲率半径,以及相应的凸轮转角;和最后说确定的基圆半径。计算点数N=72~120。 绘出凸轮的理论轮廓和实际轮廓(可用计算机绘图)。 二、推杆运动规律及凸轮廓线方程: 推程(正弦加速度):s=h[(δ/δ0)-sin(2πδ/δ0)/(2π)] 回程(等加速段):s=h-2hδ2/δ'02 回程(等减速段):s=2h(δ'0-δ)2/δ'02 凸轮理论廓线方程:x=l OA sinδ-l AB sin(δ+φ+φ0) y=l OA cosδ-l AB cos(δ+φ+φ0) 式中,φ0为推杆的初始位置角,其值为: φ0

四、源程序 clear; r0=22;%初选的基圆半径 dr0=0.05; a=72; %机架长度 L=68;%摆杆长度 rr=18;%滚子半径 fai=28*pi/180;%推杆摆角 PI=3.141592653; alpha1=45;%许用压力角α1 alpha2=65;%许用压力角阿尔法2 lambda=6.3;%许用最小曲率半径 N=120;%取用点的个数 delta1=180*pi/180;%推程凸轮最大转角 delta2=70*pi/180; %远休凸轮最大转角 delta3=80*pi/180;%回程凸轮最大转角 delta4=30*pi/180;%近休凸轮最大转角 alphamax1=0;% 推程最大压力角初值 alphamax2=0; %回程最大压力角初值 roumin=100; %凸轮最小曲率半径初值

相关文档
最新文档