一种纳米钯催化剂的制备方法

一种纳米钯催化剂的制备方法

一种纳米钯催化剂的制备方法

2016-07-20 13:23来源:内江洛伯尔材料科技有限公司作者:研发部

钯催化剂制备

钯催化剂是一种以金属钯为主要活性组分,使用钯黑或钯的盐类将钯载于氧化铝、沸石等载体上,以钠、镉、铅等盐为助催化剂,制成的各种催化剂,是化学和化工反应过程经常采用的一种催化剂,具有催化活性高,选择性强,催化剂制作方便,使用量少等优点,因此钯催化剂的发展前景远大。但是钯催化剂在催化部分有机反应时会产生钯黑导致催化剂失活,从而影响了钯催化剂的循环利用性能。离子液体就是在室温或稍高于室温下完全由离子组成的呈液态的体系,在组成上与“盐”的概念接近,其熔点通常低于室温,又称为“室温熔融盐”。离子液体是继超临界CO2之后的又一极具吸引力的“绿色溶剂”。

利用粒子液体制备纳米钯催化剂,制备步骤为:

1)将重量计15-25 份的离子液体加入到反应瓶中,25℃条件下磁力搅拌10-15min ;2)缓慢加入重量计25-40 份的表面活性剂,过程中不断向体系内通入氮气,在搅拌条件下使二者相互溶解;

3)向反应瓶中以1-3ml/min 的速度缓慢滴加蒸馏水,直至整个反应体系透明澄清,得到反应介质离子液体微乳液;

4)将上述配制好的微乳液加热到40-70℃,待温度恒定后加入6-10 份的氯化钯溶液,继续搅拌;

5)观察上述反应体系颜色,当体系从浅黄色转变成深黑色,同时反应瓶内没有沉淀体系均匀时,表示纳米钯催化剂制备完成,停止反应,获得最终的钯催化剂。

此方法制备的纳米钯催化剂,具备更高的催化活性,同时无挥发性无毒性,可以循环利用,复合绿色化学要求。

纳米催化剂

纳米催化剂的制备及应用 学院:化工学院专业:化学工程与技术 学生姓名:学号: 摘要:纳米催化剂具有大比表面积、高表面能、高度的光学非线性、特异催化性和光催化性等特性,在一些反应中表现出优良的催化性能。本文简要介绍了纳米催化剂的基本性质,综述了纳米催化剂的制备方法和特性,讨论了纳米催化在化工中的应用,对今后纳米催化材料研究方向进行了展望。 关键词:纳米催化剂制备在化工中的应用发展 近年来,纳米催化剂(Nanometer catalyst--NCs)的相关研究蓬勃发展。NCs 具有比表面积大、表面活性高等特点,显示出许多传统催化剂无法比拟的优异特性;此外,NCs还表现出优良的电催化、磁催化等性能,已被广泛地应用于石油、化工、能源、涂料、生物以及环境保护等许多领域。目前,纳米技术的研究主要向两个方向进行:一是通过新技术减少目前使用的材料如金属氧化物的用量;二是进行新材料的开发,如复合氧化物纳米晶。由于纳米粒子表面积大、表面活性中心多,所以是一种极好的催化材料。将普通的铁、钴、镍、钯、铂等金属催化剂制成纳米微粒,可大大改善催化效果。在石油化工工业采用纳米催化材料,可提高反应器的效率,改善产品结构,提高产品附加值、产率和质量。目前已经将纳米粉材如铂黑、银、氧化铝和氧化铁等直接用于高分子聚合物氧化、还原和合成反应的催化剂。纳米铂黑催化剂可使乙烯的反应温度从600e降至常温。随着世界对环境和能源问题认识的深入,纳米材料在处理污染、降解有毒物质方面有良好光解效果[1]。在润滑油中添加纳米材料可显著提高其润滑性能和承载能力,减少添加剂的用量,提高产品的质量。对纳米催化剂的研究无论理论上还是实际应用上都具有深远的意义。 1纳米催化剂的制备方法 纳米催化剂的制备方法直接影响到其结构、粒径分布和形态,从而影响其催化性能。文献中报道的制备方法多达数10种,本文主要介绍其中常用的几种。1.1溶胶-凝胶法 溶胶-凝胶法是指金属有机或无机化合物经过溶胶-凝胶化和热处理形成氧化物或其他固体化合物的方法。其过程是:用液体化学试剂(或粉状试剂溶于溶剂中)或溶胶为原料,而不是传统的粉状物为反应物,在液体中混合均匀并进行反

氧化物载体负载纳米钯金属催化剂的制备方法

氧化物载体负载纳米钯金属催化剂的制备方法 2016-11-02 13:52来源:内江洛伯尔材料科技有限公司作者:研发部 纳米钯金属催化剂的制备方法 纳米贵金属催化剂正逐渐成为高效催化剂的典型代表和催化剂研宄的热点。然而由于纳米颗粒极大的比表面积,使其非常的不稳定,极易发生团聚失活。同时在催化反应中,由于各种复杂的反应状况,催化剂颗粒也会发生团聚失活并伴有不同程度的流失。这些问题严重限制了纳米催化剂的制备和应用,因此制备稳定的(反应过程中)纳米催化剂显得尤为重要。纳米颗粒负载在固体载体上是最常用的,也是最有效的制备稳定的催化剂。近来,人们的研宄主要集中与纳米颗粒固载在金属氧化物上。主要的金属有氧化硅,氧化铝,氧化钛,氧化锆等。纳米钯金属催化剂在催化氢化、氧化、C-X耦合反应等领域具有重要的应用前景。 Copelin在欧洲专利中EP0009802中公开了一种Pd/Si02催化剂 及蒽醌法制备双氧水的方法,在该过程中钯催化剂比较稳定,可能由于钯催化剂一般都是以钯氧化物的形式存在,有效防止了催化剂的失活。Semagina等将Pd纳米颗粒置于聚环氧乙烷和聚乙烯基吡啶的嵌段共聚胶束的核心中,然后将该共聚物负载在Al 2O3上。该催化剂对丁炔二醇的选择性还原有极高的活性,可以回收使用多次,可见催化剂被很好的保护在胶束中(N.Semagina,et al Appl.

Catal.A:Gen. 2005, 280, 141-147)。Das 等在 MCM-41 中固载了单一分散的 Pd 纳米颗粒,颗粒在常温下还原得到,但是却表现出优异的稳定性。催化剂在500°C烧结后,纳米颗粒由2. 8nm仅增加到3. 4nm。该催化剂用于Suzuki反应,ICP测试分析表明滤液中只有6ppb 的Pd (D. D. Das, et al, J. Catal.,2007, 246, 60-65. 33)。这些纳米钯催化剂的制备方法可以获得高活性的纳米金属催化剂,但大多过程复杂,不利于大规模生产。 纳米钯金属催化剂的技术方案:将功能助剂与载体进行接枝,助剂会与金属钯发生配位作用,从而有利于过渡金属颗粒的生成、分散与稳定。在功能助剂的帮 助下,加入的金属钯化合物可以很快被载体从金属钯化合物溶液中捕获,集中到载体表面。随后加入还原剂硼氢化钠、水合肼,或在高温下通入氢气均可以还原得到纳米金属钯颗粒。最后利用包埋剂将金属钯颗粒进行分隔包覆,这样有利于催化剂在反应过程中的稳定,防止金属钯颗粒在反应过程中聚集和流失。本方法的技术特征在于的载体功能化接枝,以及纳米金属催化剂的分隔包覆,其技术效果表现为功能助剂的接枝作用有利于纳米钯金属颗粒的形成和分散,包埋剂能够使钯纳米颗粒催化剂的使用过程当中,增强催化剂的稳定性,有利于催化剂的回收,以便于重复使用。此催化剂制备方法简单方便,且原料便宜易得,适合进行工业化生产。

纳米催化剂的介绍及其制备

纳米催化剂的介绍及其制备 --工业催化剂小论文 姓名:蒋应战 班级:化工091 学号:0806044111(32号) 指导老师:宫惠峰老师 学校:邢台职业技术学院

目录 1.纳米材料作催化剂的特点 (2) 2.纳米催化剂制备……………………………….. ..2-3 3.微乳液法制备纳米催化剂………………………...4-9 4.纳米粒子催化剂的应用 (10) 5.纳米催化剂的展望................................. . (11) 参考文献................................. . .. (11)

纳米催化剂的介绍及其制备 纳米材料是指颗粒尺寸为纳米量级(1nm~l00nm)的超细粒子材料。纳米技术是当前材料学中研究的前沿和热点,纳米粒子具有比表面积大、表面晶格缺陷多,表面能高的特性,在一些反应中表现出优良的催化性能。纳米催化剂的制备已成为催化剂制备学科中的一个热点。纳米催化剂相对常规尺寸的催化剂具有更高的表面原子比和比表面积,其催化活性和选择性大大高于传统催化剂,可作为新型材料应用于化工中。 1. 纳米材料作催化剂的特点 工业生产中的催化剂应具有表面积大,稳定性好,活性高等优点。而纳米材料恰恰满足这些特点。采用纳米材料制备的催化剂比常规催化剂的催化效率选择性更高。例如,利用纳米材料可用作加氢催化剂,粒经小于0.3nm的镍和铜—锌合金的纳米材料的催化效率比常规镍催化剂高10倍。又如纳米稀土氧化物/氧化锌可作为二氧化碳选择性氧化乙烷制乙烯的催化剂,用这种纳米催化剂,乙烷和二氧化碳反应可高选择性地转化为乙烯,乙烷转化率可达60%,乙烯选择性可达90%。 1.1 纳米催化剂的表面与界面效应 纳米催化剂颗粒尺寸小,位于表面的原子占的体积分数很大,产生了相当大的表面能,随着纳米粒子尺寸的减少,比表面积急剧加大,表面原子数及所占的比例迅速增大。例如,某纳米粒子粒径为5nm时,比表面积为180/g,表面原子所占比例为50%,粒径为2nm时,比表面积为450/g,表面原子所占比例为80%,由于表面原子数增多,比表面积大,原子配位数不足,存在不饱和键,导致纳米颗粒表面存在许多缺陷,使其具有很高的活性,容易吸附其它原子而发生化学反应。这种表面原子的活性不但引起纳米粒子表面输送和构型的变化,同时也引起表面电子自旋、构象、电子能谱的变化。 1.2纳米催化剂的量子尺寸效应 当粒子的尺寸降到(1~10)nm时,电子能级由准连续变为离散能级,半导体纳米粒子存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽,此现象即量子尺寸效应,量子尺寸效应会导致能带蓝移,并有十分明显的禁带变宽现象,使得电子/空穴具有更强的氧化电位,从而提高了纳米半导体催化剂的光催化效率。 1..3纳米粒子宏观量子隧道效应 量子隧道效应是从量子力学观点出发,解释粒子能穿越比总能量高的势垒的一种微观现象。近年来发现,微颗粒的磁化强度和量子相干器的磁通量等一些宏观量也具有隧道效应,即宏观量子隧道效应。研究纳米这一特性,对发展微电子学器件将具有重要的理论和实践意义。 2. 纳米催化剂制备 目前制备纳米材料微粒的方法有很多,但无论采用何种方法,制备的纳米粒子必须符合下列要求:a.表面光洁;b.粒子形状、粒径及粒度分布可控;c.粒子不易团聚、易于收集;d.包产出率高。

钯纳米催化剂的制备及催化性能研究

摘要 本文以聚苯乙烯-丙烯腈(P(S-AN))为载体,合成了负载型加氢催化剂,再利用电纺丝技术对高分子负载PdCl2催化剂进行纳米化,制备负载型纳米催化剂,并对所制备的催化剂进行了TEM、SEM、XPS、IR等表征。实验还研究了不同外界条件下制备的催化剂对1-辛烯催化加氢的效果,测试表明: 关键词:纳米催化剂,负载催化剂,静电纺丝,氢化

Abstract A series of hydrogenation catalysts supported by polystyrene-acrylonitrile, polyvinylpyrrolidone and Al2O3 were synthesized, then the supported nano-catalyst was prepared by means of the nano-treatment of polymer-supported PdCl2catalyst using elestrospinning. The catalysts were characterized by IR , UV , SEM , XPS and TG.. In the paper, the dependence of the diameter of nanofiber with voltage , receiving range , solvent concentration was also investigated respectively. The catalystic hydrogenation results of 1-hexene showed that the hydrogenation rate of P(S-AN)/PdCl2 nano-catalyst based on electrospinning was 4.7 times of the Al2O3/PdCl2catalyst(PdCl2mass percentage is 9.4%). Keywords:nano-catalyst, polymer supported catalyst, electrospinning, hydrogenation,

纳米催化剂

纳米催化剂

纳米催化剂进展 中国地质大学,材化学院,武汉430000 摘要:简要介绍了纳米催化剂的基本性质、其相对于其他催化剂的优势,并较详细地介绍了纳米催化剂类型、部分应用以及相对应类型催化剂例子的介绍,以及常见的制备方法及其表征手段,最后介绍了部分国内和国外纳米催化剂的应用,并对其发展方向进行一定的预测。 关键词:纳米催化剂应用制备催化活性进展 近年来, 纳米科学与技术的发展已广泛地渗透到催化研究领域, 其中最典型的 实例就是纳米催化剂(nanocatalysts—NCs)的出现及与其相关研究的蓬勃发展。NCs具有比表面积大、表面活性高等特点, 显示出许多传统催化剂无法比拟的优异特性;此外, NCs还表现出优良的电催化、磁催化等性能,已被广泛地应用于石油、化工、能源、涂料、生物以及环境保护等许多领域。本文主要就近年来NCs 的研究进展进行了综述。 1.纳米催化剂的性质 1.1表面效应 通常所用的参数是颗粒尺寸、比表面积、孔径尺寸及其分布等,有研究表明,当微粒粒径由10nm减小到1nm时, 表面原子数将从20%增加到90%。这不仅使得表面原子的配位数严重不足、出现不饱和键以及表面缺陷增加, 同时还会引起表面张力增大, 使表面原子稳定性降低, 极易结合其它原子来降低表面张力。此外,Perez等认为NCs的表面效应取决于其特殊的16种表面位置, 这些位置对外来吸附质的作用不同, 从而产生不同的吸附态, 显示出不同的催化活性。 1.2体积效应 体积效应是指当纳米颗粒的尺寸与传导电子的德布罗意波长相当或比其更小时, 晶态材 料周期性的边界条件被破坏, 非晶态纳米颗粒的表面附近原子密度减小, 使得其在光、电、声、力、热、磁、内压、化学活性和催化活性等方面都较普通颗粒相发生很大变化,如纳米级胶态金属的催化速率就比常规金属的催化速率提高了100倍。 1.3量子尺寸效应 当纳米颗粒尺寸下降到一定值时, 费米能级附近的电子能级将由准连续态分裂为分立能级, 此时处于分立能级中的电子的波动性可使纳米颗粒具有较突出的光学非线性、特异催化

催化剂制备方法大全

催 化 剂 的 制 备 方 法 与 成 型 技 术 总 结 应用化学系1202班 王宏颖 2012080201

催化剂的制备方法与成型技术 一、固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 二、催化剂传统制备方法 1、浸渍法 (1)过量浸渍法 (2)等量浸渍法(多次浸渍以防止竞争吸附) 2、沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂 加到盐溶液为正,反之为倒加) (1)单组分沉淀法 (2)多组分共沉淀法 (3)均匀沉淀法(沉淀剂:尿素) (4)超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) (5)浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 (6)导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝光沸石、Y型、X型分子筛。 3、共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬

纳米钯催化剂的催化应用

纳米钯催化剂的催化应用 摘要:介绍了纳米钯催化剂以及钯金属在工业生产中起着不可或缺的作用,详细说明了纳米钯催化剂对Heck 反应的影响以及纳米钯催化剂的电催化氧化还有纳米钯催化的Suzuki 偶联反应,简要说明了纳米钯催化芳卤羰化反应等。展望了纳米钯催化剂在工业生产中存在的一些问题并提出相关建议。 关键词:钯,催化剂,纳米,催化应用 1:前言 催化是现代社会生产生活的基础之一,大到化石能源的开发利用,小到食品工业的加氢重整,催化已经影响了人类生活的方方面面。催化的重要性毋庸赘言,因此科学工作者对催化过程的研究以及对催化本质的探求从未停歇。早在19世纪,催化反应的吸附理论和中间体等概念就已提出。 20世纪中叶,真空技术的发展拉开了现代表面化学的序幕,科学家成功地给出了在真空条件下化学反应如何在催化剂表面发生的细节。近半个世纪以来,纳米科技的高速发展对异相催化的研究产生了诸多积极影响,“纳米催化”或“纳米催化剂”等新名词得到了科学界的广泛关注。 应当指出,纳米催化并非有别于传统催化的新兴领域,因为大多数传统工业催化剂的尺寸本身就是纳米级的,正如人们所说,“催化天生是纳米的”。但不可否认,正是在纳米材料合成技术日臻成熟以及表征手段不断丰富的基础上,科学家才逐渐认识到催化剂活性、选择性、稳定性与催化剂的尺寸、形貌、组成、元素空间分布等因素的关系,为我们从分子水平上认识催化剂的构效关系提供了可能,同时也为催化剂的设计奠定了基础。因此,纳米催化作为一门古老又年轻的学科,具有重要的科学研究价值和工业应用前景。 VIII族元素钯位于元素周期表第四周期,价层电子构型为4d105s0。钯纳米催化剂广泛用于石油化工、汽车尾气处理、燃料电池等领域。钯在地壳中含量稀少,因此价格昂贵,我国的钯、铂金属资源更加稀缺,主要分布在云南、甘肃两省。如何提高贵金属钯、铂催化剂的活性、选择性以及稳定性对于我国稀有资源的高效利用和国民经济的发展具有重要的意义。 纳米尺度的钯主要用于汽车尾气处理,消耗量约占全球开采总量的一半。汽车尾气所含的污染物包括一氧化碳、氮氧化合物、碳氢化合物等,这些气体可引发酸雨、破坏臭氧层以及造成烟雾。尾气排出前会通过触媒转换器,经由Pt-Rh-Pd 组成的三元催化剂,转化为对环境低害的二氧化碳、氮气、水蒸气,转化率高达90%。钯纳米催化剂在石油炼制工业中也有重要应用。在原油精制过程中钯催化剂用于石油的加氢裂化过程。 纳米材料和纳米技术在石油和化学工业中有广泛的应用前景,特别是在催化领域具有巨大的潜力,而在我国目前对纳米技术的研究开发还仅仅开始纳米材料用作催化剂或催化剂载体,既具有高活性,高选择性,又有简单的制备工艺,不污染环境,可大量节省贵金属用量,降低生产成本,提高生产效益,可获取显著的收益。建议政府和企业家们给以财力、物力的支持和合作,尽快克服制约因素,使其实现产业化和市场化,使传统的化学工业重新焕发青春。 2:研究现状 2.1纳米钯催化剂对Heck 反应的影响

纳米金属催化剂的制备方法及其比较_宁慧森

纳米催化材料由于其特有的量子尺寸效应、宏观量子隧道效应等性能,显现出许多特有性质[1 ̄2],在催化领域的应用为广大催化工作者开拓了一个广阔空间,国际上已把纳米粒子催化剂称为第四代催化剂,因此纳米材料在催化领域的应用日益受到重视。许多发达国家都相继投入大量人力、财力开展纳米粒子作为高性能催化剂的研究,如美国的Nano中心,日本的Nano ST均把纳米材料催化剂的研究列为重点开发项目。我国对纳米材料的研究也给以高度重视,国家“863”计划、“973”计划大力支持纳米材料及纳米催化剂的研究,已取得了可喜成果[3 ̄5]。目前,国内外纳米催化剂的制备和应用逐步拓展到催化加氢[6]、脱氢[7 ̄9]、聚合、酯化、化学能源[10]、污水处理[11]等方面。纳米金属催化剂制备方法分为化学法及物理法:化学法包括溶胶-凝胶法、沉淀法、溶剂热合成法、微乳法和水解法等;物理法包括气相凝聚法、溅射法和机械研磨法等。 1 化学法制备金属纳米催化剂 1.1 溶胶-凝胶法 该法一般是以金属盐或半金属盐作前驱体,将适当的烷氧化物如四甲氧基硅烷与水、酸性或碱性催化剂与共熔剂,在搅拌超声下进行水解和缩聚反应形成SiO2三维网络结构。在成胶过程中引入的金属组分包埋在三维网络结构中,再进行凝胶老化过程,即将凝胶浸于液体中,继续聚合反应,凝胶强度增加。最后通过干燥,将溶剂从相互关联的多孔网格中蒸发掉,即可得到纳米尺寸的网格结构。溶胶-凝胶技术已成为实现化学剪裁合成纳米材料的主要手段[12 ̄13]。但该法使用的原料价格较昂贵;通常整个溶胶-凝胶过程所需时间较长,有时长达几天或几周;而且凝胶中存在大量微孔,在干燥过程中将逸出许多气体及有机物,并产生收缩。溶胶-凝胶法还被用来制备复合纳米金属催化剂,如Keiji Hashimoto等人[14]利用溶胶-凝胶工艺制备了K+[Zn3(SiO3Al)10(OH)2]-纳米粒子用于醇脱氢反应。李永丹等人[15]还利用溶胶-凝胶法制备了镍基催化剂,并对其进行了甲烷分解制备碳纳米管的研究,所制备的纳米管直径为10 ̄20nm。雷翠月[12]也利用此法,直接制备出了高比表面积、低堆积密度的纤维状纳米级负载型CuO-Al2O3 超细粒子,活性组分以远低于纳米级的微晶粒子簇状态均匀地分散在纳米级氧化铝载体表面,在500℃内具有较高的稳定性,晶粒未聚集长大,在十二醇催化胺化反应中表现出了较高的催化活性。陈立功等人[16]在醇催化胺化反应研究中开发了一种改进的溶胶-凝胶法,利用这种方法制备的铜基纳米催化剂的活性和稳定性都有了显著提高。 1.2 沉淀法 沉淀法是指包括1种或多种离子的可溶性盐溶液,加入沉淀剂(如OH-、C2O42-等)于一定温度下使溶液水解,形成不溶性的氢氧化物、水合氧化物或盐类而从溶液中析出,将溶剂和溶液中原有的阳离子洗去,经热解或热脱即得到所需的氧化物粉料。此法是传统制备氧化物方法之一[17],主要包括以下4种。 1.2.1 共沉淀法 将过量的沉淀剂加入混合后的金属盐溶液中, 纳米金属催化剂的制备方法及其比较 宁慧森,白国义 (河北大学化学与环境科学学院,河北保定 071002) 摘 要:纳米金属催化剂的制备方法包括化学法和物理法。化学法中主要有溶胶-凝胶法、沉淀法、溶剂热合成法、微乳法和水解法等;物理法主要有气相凝聚法、溅射法和机械研磨法等。其中化学法 中的溶胶-凝胶法及沉淀法应用最广。对纳米金属催化剂的制备方法进行了比较,并简要论述了制备及应 用过程中存在的主要问题。 关键词:纳米催化剂;催化;制备 中图分类号: TQ426.8 文献标识码: A 文章编号: 1672-2191(2007)03-0015-04 收稿日期:2007-03-25 基金项目:河北大学博士基金资助项目(2005046) 作者简介:宁慧森(1976-),男,河北保定人,在读硕士研究生,研究方向为精细化工和催化领域。 电子信箱:nhs-lyq@163.com 2007年第5卷第3期 Chemical Propellants & Polymeric Materials · 15 ·

钯催化剂能快速处理三氯乙烯

钯催化剂能快速处理三氯乙烯 2016-05-05 12:57来源:内江洛伯尔材料科技有限公司作者:研发部 钯催化剂降解三氯乙烯示意图 三氯乙烯(TCE)是C2有机氯溶剂中溶解力最强的一种,是最佳的金属脱脂洗剂,主要用于彩电、电冰箱、汽车、空调、精密机械、微电子等行业作金属部件、电子元件的清洗剂,其主要优点是脱脂彻底。用在化工原料上可生产氯乙酸、二氯乙酰氯、八氯二丙醚、六氯乙烷等产品,还可以用作溶剂和萃取剂,在农药和医药行业也有一定用途。 TCE分子中的碳—氯键非常稳定,这在工业上很有用,但却对环境不利。TCE属中等毒性,可经呼吸道、消化道、皮肤吸收。短时间大量吸收可引起急性中毒,表现为头痛、头晕、嗜睡、恶心、呕吐、四肢无力等症状。TCE广泛用作脱脂剂和溶剂,已经有许多地区污染了地下水。在美国环保署有毒废弃物堆场污染清除基金国家优先项目列表中,超过一半废品堆场发现含有TCE,单是清除地下水中TCE 的成本估计要超过50亿美元。 近期美国莱斯大学和中国南开大学科学家合作,首次对6种钯基和铁基催化剂清除致癌物三氯乙烯(TCE)的能力进行了对比测试,发现钯破坏TCE的能力比铁要快得多,甚至高出铁粉10亿倍。研究人员指出,对于开展大规模TCE催化治理实验来说,这一发现有助人们从成本和效率两方面综合考虑,实现成本最优化。 “要打破碳—氯化学键非常困难,而处理TCE要求只打破某些键而不是所有碳—氯键,否则可能带来更危险的副产物如氯乙烯。这是个大难题。”论文作者之一、莱斯大学化学与生物分子工程教授迈克尔·翁说,“通行方法是不破坏这些键,而用气体或碳吸收方法物理性除去污染地下水中的TCE。这些方法容易实施却成本很高。”后来人们发现纯铁和纯钯能将TCE转变为无毒物质,以往的金属降解TCE是让其在水中发生腐蚀作用,但可能产生氯乙烯;后来人们用金属作催化剂来促进碳—氯键断裂,其本身并不与TCE反应。因为铁比钯要廉价得多,更容易操作,因此行业内已普遍用铁来除去TCE,钯只在实验室中使用。 迈克尔·翁和曾在莱斯大学做访问学者的中国南开大学李淑景(音译)等人对6种铁基和钯基催化剂进行了一系列实验,包括两种铁纳米粒子、两种钯纳米粒子,其中就有研究小组2005年开发的用于TCE治理的金—钯纳米粒子催化剂、铁粉和氧化钯铝粉末。 他们测试了6种催化剂分解掉含TCE的水溶液中90%的TCE所需时间。结果是,钯催化剂只花了不到15分钟,两种铁纳米粒子超过25小时,而铁粉则超过

铂钯双金属纳米催化剂的催化活性

第25卷第1期 中南民族大学学报(自然科学版) Vol.25No.1 2006年3月 Jour nal of South-Central U nivers ity for Nationalities(Nat.Sci.Edition) Mar.2006 a铂钯双金属纳米催化剂的催化活性 王 然 何宝林* [马来]刘光荣 盘荣俊 (中南民族大学化学与材料科学学院催化材料科学湖北省重点实验室,武汉430074) 摘 要 由聚合物稳定的铂纳米催化剂对环己烯催化加氢反应具有较高的催化活性,在铂纳米催化剂中引入第二金属元素钯,即在纳米铂颗粒上包裹一层钯,形成具有球壳结构Pt-Pd双金属催化剂,随引入钯的量不同,其催化能力的大小发生了变化,而且调节反应溶液的pH值,催化能力也发生变化. 关键词 钯铂催化剂;环己烯;催化氢化;pH值 中图分类号 TB383 文献标识码 A 文章编号 1672-4321(2006)01-0001-04 Investigation of Catalytic Activity of Pt/Pd Nanobimetallic Catalyst Wang Ran H e Ba olin [Malaysia]Liew Kongrong Pa n Rongjun Abstr act P olymer stabilized platinum nano-size cat alyst has relatively high hydr ogenation activit y.Intr oduction of a second metal,palladium,to for m a cor e shell str ucture with P d as the shell and Pt as the cor e,enhances the catalytic activit y substantially.The enhancement var ies with t he amount of Pd introduced.Changes in pH was also found t o have significant effects on t he cata lytic activity. Keywor ds P d/Pt bim et al cata lyst;cyclohexene;catalytichydr ogenation;pH Wa ng Ran Master′s Candidate,Key laborat or y for Cat alysis and Mater ial Science of Hubei Pr ovince,College of Chemistr y and M aterial Science,SCUF N,Wuhan430074,China 在室温常压条件下铂族贵金属纳米催化剂对各种小分子底物的催化氢化具有很高的催化能力和选择性[1~4],所以铂族贵金属在催化领域引起了科学界浓厚的研究兴趣.近年来,聚合物稳定的2种或2种以上金属元素组成均相多金属催化剂的研究引起了很多关注,可能是双金属催化剂具有一些比单金属催化剂优异的性能,例如,提高反应速率、选择性以及新的反应类型[5,6],还可以为研究不同合金的形成提供模型,而且其本身有特殊的组成结构[7].在本文中,主要探索了在有PVP稳定的单金属催化剂Pt 纳米颗粒表面引入第二元素Pd形成Pt-Pd双金属纳米催化剂后,催化性能的变化、催化活性与pH值的关系. 1 实验部分 1.1 催化剂的制备 1.1.1 单金属铂纳米催化剂的制备 本文催化剂采用化学醇还原来制备,甲醇为还原剂,聚乙烯吡咯烷酮PVP(K30)为稳定剂[8].过程如下:在250mL的圆底烧瓶里,将0.555g(即5 mmol单体)PV P和0.065g0.125mmol H2PtCl6?H2O溶于由65mL甲醇、75mL H2O组成的混合溶剂中,在磁力搅拌下回流180min得到清澈色泽棕黑的Pt纳米胶体,在反应过程中滴加10mL0.1 mol/L氢氧化钠甲醇溶液. 1.1.2 Pt/Pd双金属纳米催化剂的制备 双金属纳米催化剂的制备方法与单金属制备方法类似,本文以Pt纳米颗粒为晶种再还原Pd,以PVP-Pt0.5sPd0.5为例(0.5表示晶种纳米Pt用量为1.1.1中Pt的用量的0.5倍,即用量为0.625mmol, n Pt/n Pd=1/1),制备过程为:将75mL PVP-Pt纳米胶体、0.287g PVP(即2.5mmol单体)和6.5mL 9.6mmol/L H2PdCl4?n H2O溶于由32.5mL甲醇31.0mL水组成的溶剂中,在磁力搅拌下回流180 a收稿日期 2005-10-31 *通讯联系人hebl@https://www.360docs.net/doc/871370099.html, 作者简介 王 然(1980-),女,硕士研究生,研究方向:贵金属纳米催化剂的制备和催化性能,E-mail:wengdyzhongnan @https://www.360docs.net/doc/871370099.html, 基金项目 国家民委重点基金资助项目(MZY02019)

纳米催化剂及其应用(可编辑修改word版)

纳米催化剂及其应用 四川农业大学化学系应用化学201401 徐静20142672 摘要:近年来,纳米科学与技术的发展已广泛地渗透到催化研究领域,其中最典型的实例就是纳米催化剂(nanocatalysts——NCS)的出现及与其相关研究的蓬 勃发展。纳米材料具有独特的晶体结构及表面特性,其催化活性和选择性大大高于传统催化剂,目前已经被国内外作为第 4 代催化剂进行研究和开发。本文简要 介绍了纳米催化剂的基本性质、独特的催化活性等;并较详细地介绍了纳米催 化剂分类以及常见的制备方法;最后对其研究动态进行了分析,预测了其可能 的发展方向。 关键词:纳米催化剂材料制备催化活性应用 Nano - catalyst and its application Abstract: In recent years, the development of nano-science and technology has been widely penetrated into the field of catalysis research. The most typical example is the emergence of nanocatalysts (NCS) and the flourishing of related research. Nanomaterials have unique crystal structure and surface characteristics, and their catalytic activity and selectivity are much higher than those of traditional catalysts. At present, they have been researched and developed as the 4th generation catalyst at home and abroad. In this paper, the basic properties of nanocatalysts and their unique catalytic activity are briefly introduced. The classification of nanocatalysts and their preparation methods are introduced in detail. At the end of this paper, the research trends are analyzed and the possible development trends are predicted. Key words: nanocatalyst material preparation catalytic activity application 催化剂又称触媒,其主要作用是降低化学反应的活化能,加速反应速率, 因此被广泛应用于炼油、化工、制药、环保等行业。催化剂的技术进展是推动 这些行业发展的最有效的动力之一。一种新型催化材料或新型催化剂工业的问世,往往引发革命性的工业变革,并伴随产生巨大的社会和经济效益。1913 年,

催化剂制备方法大全

催化剂制备方法简介 1、催化剂制备常规方法 (1)浸渍法 a过量浸渍法 b等量浸渍法(多次浸渍以防止竞争吸附) (2)沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂加到盐溶液为正,反之为倒加) a单组分沉淀法 b多组分共沉淀法 c均匀沉淀法(沉淀剂:尿素) d超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) e浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 f导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝光沸石、Y型、X型分子筛。 (3)共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬酐的水溶液和少许石墨)然后送入压片机制成圆柱形,在100 o C烘2h即可。 (4)热分解法 硝酸盐、碳酸盐、甲酸盐、草酸盐或乙酸盐。 (5)沥滤法 制备骨架金属催化剂的方法,Raney 镍、铜、钴、铁等。 (6)热熔融法 合成氨催化剂Fe-K2O-Al2O3;用磁铁矿Fe3O4、KNO3和Al2O3高温熔融而得。 (7)电解法 用于甲醇氧化脱氢制甲醛的银催化剂,通常用电解法制备。该法以纯银为阳极和阴极,硝酸银为电解液,在一定电流密度下电解,银粒在阴极析出,经

洗涤、干燥和活化后即可使用。 (8)离子交换法 NaY 制HY (9)滚涂法和喷涂法 (10)均相络合催化剂的固载化 (11)金属还原法 (12)微波法 (13)燃烧法(高温自蔓延合成法) 常用尿素作为燃烧机 (14)共沸蒸馏法 通过醇和水的共沸,改变沉淀的形貌、孔结构。 2、催化剂制备新技术 (1)溶胶-凝胶法(水溶液Sol-gel 法和醇盐Sol-gel 法) 金属醇盐 醇 水水解聚合胶溶剂解胶陈化溶胶 a 胶体凝胶法(胶溶法) 胶体凝胶法是通过金属盐或醇盐完全水解后产生无机水合金属氧化物,水解产物与胶溶剂(酸或碱)作用形成溶胶,这种溶胶转化成凝胶是胶粒聚集在一起构成网络,胶粒间的相互作用力是静电力(包括氢键)和范德华力。 b 聚合凝胶法(分子聚合法) 聚合凝胶法通过金属醇盐控制水解,在金属上引入OH 基,这些溶胶转化成凝胶时,在介质中继续缩合,靠化学键形成氧化物网络。 两种方法的区别在于加入水量的不同, 注意事项:1)水的加入量;2)醇的加入量;3)水解温度;4)胶溶剂加入量 (2)超临界技术 a 气凝胶催化剂的制备(超临界干燥) b 超临界条件下的催化反应 能够改进反应的传质、传热性能,改进产物的分离过程 c 用于因结焦、积垢和中毒而失活催化剂的再生。 具有温度低、不发生局部过热现象的特性,从而有效地防止催化剂的烧结失活。 (3)纳米技术 a 固相合成法 1)物理粉碎法(又称为机械研磨法或机械合金化法) 采用超细磨制备超微粒,很难使粒径小于100 nm 。

纳米材料及纳米催化剂的制备

纳米材料及纳米催化剂的制备 纳米技术是一门崭新的综合性科学技术,当物质被“粉碎”到纳米级并制成纳米材料时,不仅光、电、热、磁等性能发生变化,而且具有辐射、吸收、催化、吸附等许多新特性,可较大地改变目前的产业结构[1],纳米技术有着广阔的发展前景。 1纳米材料科学的基本原理 200年来,人们对宏观物体与微观基本粒子进行了深入的研究,发现它们虽然化学组成相同,但理化性质却相差很大,因此想象,处于宏观物质与微观粒子之间应该有一个过度状态,物质处于这个颗粒尺寸为0~100nm的过度状态即为纳米微粒(NanoParticles)和纳米团族(NanoClusters)。随着显微技术发展到扫描隧道显微镜(STM)和原子显微镜(AMF),使观察、制备、表征纳米材料成为可能,又由于处于纳米过度状态的物质与处于宏观状态的物质,在电子性质、表面性质等方面异差非常大,一门新的学科—纳米科学技术随即问世。 1.1纳米材料 纳米材料包括纳米颗粒、纳米薄膜、纳米晶体、纳米非晶体、纳米纤维、纳米块体等。纳米颗粒尺寸大于原子族,小于超细微粒,在1至100nm之间。纳米颗粒沿一维方向的排布则形成纳米丝;沿二维方向排布则形成纳米膜;沿三维方向排布则形成纳米块体。由于纳米材料颗粒的大小可以人工控制,又由于尺寸小,比表面积大,表面的键态和颗粒内部不同及表面原子配位不全等,从而导致表面的活性部位增加。另外,随着粒经的减小,表面光滑程度较差,形成了凹凸不平的原子台阶,这样就增加了化学反应的接触面。这些性质恰恰满足了纳米催化材料和助剂材料所要求的其颗粒大小、表面积大小、电子性质、吸附性能和催化反应性能等。 1.2纳米材料的制备方法 1.2.1超声波震荡法制备纳米材料 例如将材料A和材料B一起加热至全部熔化,保持熔融状态,用超声波震荡粉碎,直到材料A的纳米液分散在材料B中,然后固化成纳米固体颗粒和纳米复合材料,这是一种易于人为控制、简便的制备纳米材料的方法。 1.2.2固相化学反应制备纳米材料 例如制备过渡金属超细微粒就是用这种方法。它是用固态的金属氯化物和固态的硼氢化钾(钠)一起研磨,然后在氮气气氛下200~450℃下焙烧,再经水洗得到非晶态的超细微粒。 1.2.3熔胶—凝胶法制备纳米级α-AL2O3颗粒 此方法是采用一般铝盐为材料,加入一定的添加剂形成溶胶,在溶胶中加入高氯物单体、关联剂或引发剂,在高温下经溶胶—凝胶过程形成高聚凝胶,再经1200℃热处理得到10~50nm尺寸的α-AL2O3颗粒。1.2.4沉淀法制备纳米结构的氧化物和氢氧化物[6]。此方法是使反应剂溶液喷雾雾化进入前体溶液中,以形成纳米结构的氧化物或氢化物沉淀溶液,然后对该沉淀物进行热处理,接着是声处理;或者是先声处理,接着再热处理。可得到掺杂和未掺杂的氢氧化镍、二氧化锰以及氧化钇稳定的氧化锆。可得到不寻常形态的超细结构,包括完好的圆柱体或纳米棒状物,以及氢氧化镍和二氧化锰的新结构,包括纳米结构纤维的组合、纳米结构纤维和纳米结构粒子的附聚物以及纳米结构纤维和纳米结构粒子的组合。这些纳米材料具有高渗透速率和高密度的活性部位,特别适合于作催化剂。 2纳米材料作催化剂的特点 工业生产中的催化剂应具有表面积大,稳定性好,活性高等优点。而上文中介绍的纳米材料恰恰满足这些特点。采用纳米材料制备的催化剂比常规催化剂的催化效率选择性更高。例

PVP负载钯纳米丝状催化剂的制备及催化加氢性能_于建香

第24卷第12期高分子材料科学与工程 Vol.24,N o.12 2008年12月 POLYMER MAT ERIALS SCIENCE AND ENGINEERING Dec.2008 PVP 负载钯纳米丝状催化剂的制备及催化加氢性能 于建香1,2,刘太奇2 (1.北京化工大学材料科学与工程学院,北京100029;2.北京石油化工学院环境材料研究中心,北京102617) 摘要:用电纺丝技术和加热交联技术制备了聚乙烯吡咯烷酮(PV P)负载纳米钯的纳米丝状催化剂PVP -Pd,并对所制备的催化剂进行了SEM ,T EM ,U V 和T G 的表征。利用P VP -P d 对烯烃和硝基苯的催化氢化反应研究了所制备催化剂的催化性能,结果表明纳米纤维态PV P -Pd 催化剂在室温、氢气条件下催化氢化 -辛烯和环己烯的转化率可以达到100%,对硝基苯也有很好的催化活性。关键词:静电纺丝;催化加氢;烯烃;纳米 中图分类号:T B383 文献标识码:A 文章编号:1000-7555(2008)12-0191-04 收稿日期:2007-10-19;修订日期:2007-11-30 联系人:刘太奇,主要从事纳米材料制备及环境材料的研究, E -mail:liutaiqi@https://www.360docs.net/doc/871370099.html, 近十多年来纳米制备和纳米结构表征的精细化和多元化,使得多相催化剂的研究开发进入了纳米催化剂的新阶段[1]。高分子表面化学环境和结构相对可控,可以制备分散度极高、比表面积很大的纳米粒子催化剂,高分子链的隔离保护作用及粒子与高分子载体间的相互作用则有利于粒子不易聚集、脱落和失活,并且高分子与金属纳米粒子间往往以配位键相结合,相互作用较强,使得金属纳米粒子的寿命延长,易回收,重复使用性好 [2] 。高分子负载的金属 纳米催化剂往往也会表现出独特的高分子效应,使催化剂具有较高的反应活性和选择性。电纺丝技术[3~5] 可以简便高效地制备纳米至亚微米纤维,已被广泛应用于生物、光学、催化、过滤及药物包覆等领域的研究。电纺丝的基本原理是溶液在电场力作用下克服表面张力形成一股带电的喷射流并发生分裂形成类似非织造布的纳米纤维毡。本文以聚乙烯吡咯烷酮为载体,制备出金属钯纳米催化剂,由于PVP 构架的空间阻碍作用以及本身所含有的富电子基团,使钯粒子相互间的聚集受到限制,再利用电纺丝技术把负载钯的PVP 纺制成纳米纤维,从而获得了高度分散和稳定的金属纳米催化剂。1 实验部分 1.1 试剂与仪器 氯化钯、N,N -二甲基甲酰胺(DM F)、烯烃:均为分析纯;聚乙烯吡咯烷酮: M n =3 104 g /mol,北京化学试剂公司产品。 电纺丝实验装置一套;热失重分析仪,法国SETARAM,TG labsys ;JSM -6301F 扫描电子显 微镜,日本电子公司;JEM -100XII 透射电子显微镜,日本电子公司;UV -2401紫外光谱仪,日本岛津;色谱-质谱联用仪6890N(Network GC System),5973(Netw ork Mass selective Detec -tor),美国安捷伦。1.2 PVP 负载钯的制备 0.1g PdCl 2和5mol/L 盐酸溶液2m L 加入到盛有乙醇的100mL 单口烧瓶中,搅拌使PdCl 2充分溶解,然后加入溶有1g PVP 的乙醇溶液,回流48h,溶液由黄色逐渐变为亮棕色。减压蒸馏至20%~25%(质量分数)得到纺丝液。 1.3 PVP/Pd 纳米纤维的制备及交联 注射器内放入(质量分数)20%~25%的PVP -PdCl 2乙醇溶液,在自制的静电纺丝装置上进行纳米无纺布的制备。将高压电源阳极输出端连接在注射器一端,阴极输出端连于铝制的接收板上。纺丝参数为:电压20kV ~25

相关文档
最新文档