电子测量技术现状及发展趋势

电子测量技术现状及发展趋势
电子测量技术现状及发展趋势

电子测量技术现状及发展趋势

摘要:近几十年来,电子技术的飞速发展使之在各个行业各个领域都有着重要的应用。进入新世纪以后,以信息技术为代表的新兴技术更加促进了电子行业的飞速增长,也极大地推动了电子测量技术的快速发展。本文将简单的介绍电子测量技术的发展趋势。

关键词:电子测量技术,趋势,发展

一、引言

上世纪60年代中期,中小规模集成电路问世。集成电路的问世,使得原来的电路变得更小,因此,由集成电路做成的电子测量仪器体积更为减小,同时其测量范围更为宽广,测量精度大为提高。上世纪世纪70年代以来,计算机、微电子等技术迅猛发展。在它们的推动下,同时也是为适应现代化工农业生产甚至战争的新需求,测量技术与仪器不断进步,相继诞生了智能仪器、PC仪器、VXI仪器、虚拟仪器及互换性虚拟仪器等微机化仪器及其自动测试系统,计算机与现代仪器设备间的界限日渐模糊,测量领域和范围不断拓宽。中国电子测量技术经过40多年的发展,为我国国民经济、科学教育、特别是国防军事的发展做出了巨大贡献。随着世界高科技发展的潮流,中国电子测量仪器也步入了高科技发展的道路,特别是经过“九五”期间的发展,我国电子测量技术在若干重大科技领域取得了突破性进展,为我国电子测量仪器走向世界水平奠定了良好的基础。进入 21 世纪以来 ,科学技术的发展已难以用日新月异来描述。新工艺、新材料、新的制造技术催生了新的一代电子元器件 ,同时也促使电子测量技术和电子测量仪器产生了新概念和新发展趋势。

二、电子测量技术在我国现状及存在问题

在航天器、武器系统的单元系统中也设计了自检测功能,但在实用的自动测试系统中,尤其在武器系统的测试中,缺少实用的人工智能测试技术,故障诊断水平低、实用性差、网络化水平低。从测试体制的变革方面,国内尚没有边缘扫描技术和完善的智能内装测试系统。因此,与国外存在比较大的差距,国外20世纪八十年代末,九十年代初即提出了内装测试系统和可测试性概念,随后研制出了设备,并制订出了相应标准。近年来中国测量技术的可靠性和稳定性问题得到了很多方面的重视,状况有了很大改观。测试技术行业目前已经越过低谷阶段,重新回到了快速发展的轨道,尤其最近几年,中国本土测量技术取得了长足的进步,特别是通用电子测量设备和汽车电子设备的研发方面,与国外先进产品的差距正在快速缩小,对国外电子仪器巨头的垄断造成了一定的冲击。随着模块化和虚拟技术的发展,为中国的测试测量仪器行业带来了新的契机,加上各级政府日益重视,以及中国自主应用标准研究的快速进展,都在为该产业提供前所未有的动力和机遇。从中国电子信息产业统计年鉴中可以看出,中国的测试测量仪器每年都以超过30%以上的速度在快速增长。

三、电子测量技术的发展趋势

面向21世纪的我国电子测量技术的发展趋势和方向是:测量数据采集和处理的自动化、实时化、数字化;测量数据管理的科学化、标准化、规格化;测量数据传播与应用的网络化、多样化、社会化。GPS技术、RS技术、GIS技术、数字化测绘技术以及先进地面测量仪器等将广泛应用于工程测量中,并发挥其主导作用。

根据安捷伦公司在1996年对检测成本统计:硬件成本6%,检测开发24%,检测操作57%,维护成本占13%。除了硬件成本外,其它三项基本是软件开发、维护、操作成本。因此,对TPS的开发、移植、维护、重用,应是测试系统的重要研究内容。因此,美国在ABBET(广域测试)对测试软件作了重点描述和规范。它以信息模型对测试信息进行规格化描述,消除了层次间测试信息移植、共享和应用的障碍。将测试从宏观上划分为产品描述层、测试策略和要求层、测试过程层、测试资源管理层、仪器控制层等内容。其根本目的是建立一种通用的ATS开放系统体系结构,从该体系结构再衍生出由具体硬件、软件和系统实现的体系结构,达到测试贯穿于产品从设计思想到装备现场的整个寿命周期,包括从一个寿命周期阶段到另一个寿命周期阶段相关测试信息的传递;生成所需测试程序与过程中信息的使用;故障隔离和修理时,在编写报告和诊断操作中测试维护信息收集和诊断信息反馈。同时通过渐近方法确定ATS开放系统体系结构。计划了四个发展项目,每个发展项目完成后,产生一个ATS开放系统体系结构的完好部件,从而增加了该体系结

构的开放程度与能力水平。四个发展项目分别解决“仪器互换性和互操作性”、“TPS可移植性和互操作性”、“寿命周期信息交换”、“过程与工具”。通过四个发展项目产生了ATS信息架构和软件架构。在测试领域对人工智能技术应给予高度重视。

四、小结

综上所述 ,21 世纪的电子测量仪器随着芯片技术和 DSP 技术的发展将达到前所未有的高性能 ,随着计算机技术与仪器的进一步融合 , 仪器的易操作性 ,易升级性 ,测量能力 ,数据处理和分析能力 ,都得到了大幅度提高。与此同时 ,软件无线电正越来越多地被应用到各个领域 , 仿真技术将为用户的设计和验证提供了更加强大和方便的工具。自动测试系统经历了从GPIB 系统到 VXI 系统 ,从 VXI 系统到VXI 与 GPIB 混合系统的发展历程 , 越来越多的军工用户希望拥有一种长寿命且高性能的系统标准体系来承担日益复杂的测试压力和维护成本的压力 ,面对未来的挑战 ,LXI 仪器将在继承现有测试技术的基础之上 ,为下一代测试技术和测试仪器 ,特别是ATS 测试系统的革新带来新的希望。

参考文献

【1】向东游,电子测量技术的发展与未来,中国地质大学学报

【2】王欣,电子测量技术的发展

【3】Christopher K.Bart zontrolling New Product R&DProjects,(1993)

IEEE”&DManage mcnt”V ol.23iv’o.3.

现代电子测量的认识

现代电子测量的认识 时光如流水一般划过指甲,不留一丝痕迹。很快这学期就过去了。通过这学期的学习对现代电子测量有了更深刻的认识! 第三次科技革命以来至今,科学技术的发展日新月异,以信息技术为代表的新技术促进了电子行业的飞速增长,也极大地推动了测试测量仪器和设备的快速发展。科学技术的不断发展对电子测量技术提出越来越高的要求,同样地电子测量技术是推动科学技术进步的重大力量。而电子测量技术凭借其诸多优势成为现代测量技术的主角,在信息获取与工业控制方面发挥着不可替代的作用。近年来的发展是基于大规模集成电路发展的重要时期,它同时也带来了电子测量仪器技术的革命。由于大规模集成电路的大量应用,使得现代电子测量仪器体积更小、功能更全面、可靠性更高、功耗更低。新工艺、新材料、新的制造技术催生了新的一代电子元器件,同时也促使电子测量技术和电子测量仪器产生了新概念和新发展趋势。 人类社会从远古时代发展到物质文明和精神文明都高度发达的今天,没有测量技术的作用是不可想象的。电子测量除具体运用电子科学的原理、方法和设备对各种电量、电信号及电路元器件的特性和参数进行测量外,还可以通过各种敏感器件和传感装置对非电量进行测量,这种测量方法往往更加方便、快捷、准确,有时是用其他测量方法不可替代的。因此,电子测量不仅用于电学这专业,也广泛用于物理学,化学,机械学,材料学,生物学,医学等科学领域。近几十年来计算机技术和微电子技术的迅猛发展为电子测量和测量仪器增添了巨大活力。电子计算机尤其是尤其是微型计算机与电子测量仪器相结合,构成了一代崭新的仪器和测试系统,即人们通常所说的“智能仪器”和“自动测试系统”,它们能够对若干电参数进行自动测量,自动量程选择,数据记录和处理,数据传输,误差修正,自检自校,故障诊断及在线测试等,不仅改变了若干传统测量的概念,更对整个电子技术和其他科学技术产生了巨大的推动作用。现在,电子测量技术已成为电子科学领域重要且发展迅速的分支学科。 一.电子测量的特点 频率范围宽。除测量直流电量外,还可以测量交流电量,其频率范围低至10-4Hz,高至THz。电子测量设备能够工作在这样宽的频率范围,这就使它的应用范围大大扩展。如果利用各种传感器,则几乎可以测量全部的电磁频谱物理量。当然对于不同频段的测量需采用不同的测量方法与测量仪器。 量程很广。量程是仪器测量范围上限值与下限值之差。由于所测量的大小相差极大,因而要求测量仪器的量程也必须极宽。同一台电子仪器,往往要求最高量程与最低量程要相差几个甚至几十个数量级,量程范围广正是电子测量的突出优点。 测量准确度高。电子仪器的准确度通常可比其它测量仪器高很多,例如,长度测量的准确度最高为10-8,而用电子测量方法对频率和时间进行测量,由于原子频标和原子秒作为基准,可以使测量准确度达到10-15的量级,这是目前人类在测量准确度方面达到的最高指标。 二.测量速度快。电子测量由于是通过电子的运动和电磁波的传播来进行工作的,因此具有通过其它测量方法通常无法类比的高速度。在有些测量中,希望在相同条件下对同一量进行多次测量,再用求平均值的方法以减小误差。 易于实现遥测和长期不间断的测量。电子测量同电子计算机相结合,使测量仪器智能化,并在自动化系统中占据重要的地位。可以把电子仪器或与它连接的传感器放到人类不便长期停留或无法到达的区域去进行遥测,而且可在被测对象正常工作的情况下进行测量。对于测量结果,电子测量的显示方法也比较清晰、直观。

微电子封装技术的发展现状

Welding Technology Vol.38No.11Nov.2009·专题综述·微电子封装技术的发展现状 张 满 (淮阴工学院机械系,江苏淮安223001) 摘要:论述了微电子封装技术的发展历程、发展现状及发展趋势,主要介绍了微电子封装技术中的芯片级互联技术与微电子装联技术。芯片级互联技术包括引线键合技术、载带自动焊技术、倒装芯片技术。倒装芯片技术是目前半导体封装的主流技术。微电子装联技术包括波峰焊和再流焊。再流焊技术有可能取代波峰焊技术,成为板级电路组装焊接技术的主流。从微电子封装技术的发展历程可以看出,IC 芯片与微电子封装技术是相互促进、协调发展、密不可分的,微电子封装技术将向小型化、高性能并满足环保要求的方向发展。关键词:微电子封装;倒装芯片;再流焊;发展现状中图分类号:TN6;TG454 文献标志码:A 收稿日期:2009-06-04 文章编号:1002-025X (2009)11-0001-05 0前言 上世纪90年代以来,以“3C ”,即计算机 (computer )、通信(communication )和家用电器等消费类电子产品(consumer electronics )为代表的IT 产业得到迅猛发展[1]。微电子产业已经成为当今世界第一大产业,也是我国国民经济的支柱产业。现代微电子产业逐渐演变为设计、制造和封装三个独立产业[2]。微电子封装技术是支持IT 产业发展的关键技术,作为微电子产业的一部分,近年来发展迅速。微电子封装是将数十万乃至数百万个半导体元件(即集成电路芯片)组装成一个紧凑的封装体,由外界提供电源,并与外界进行信息交流。微电子封装可以保证IC 在处理过程中芯片免受机械应力、环境应力(例如潮气和污染)以及静电破坏。封装必须满足器件的各种性能要求,例如在电学(电感、电容、串扰)、热学(功率耗散、结温)、质量、可靠性以及成本控制方面的各项性能指标要求。 现代电子产品高性能的普遍要求、计算机技术的高速发展和LSI ,VLSI ,ULSI 的普及应用,对PCB 的依赖性越来越大,要求越来越高。PCB 制作工艺中的高密度、多层化、细线路等技术的应用越来越广 泛。微电子封装越来越受到人们的重视。目前,表面 贴装技术(SMT )是微电子连接技术发展的主流,而表面贴装器件、设备及生产工艺技术是SMT 的三大要素。SMT 元器件及其装配技术也正快速进入各种电子产品,并将替代现行的PCB 通孔基板插装方法,成为新的PCB 制作支柱工艺而推广到整个电子行业。 1微电子封装的发展历程 IC 封装的引线和安装类型有很多种,按封装安 装到电路板上的方式可分为通孔插入式(TH )和表面安装式(SM ),或按引线在封装上的具体排列分为成列、四边引出或面阵排列。微电子封装的发展历程可分为3个阶段: 第1阶段,上世纪70年代以插装型封装为主, 70年代末期发展起来的双列直插封装技术(DIP )可 应用于模塑料、模压陶瓷和层压陶瓷3种封装技术中,可以用于I /O 数从8~64的器件,这类封装所使用的印刷线路板PWB 成本很高。与DIP 相比,面阵列封装(如针栅阵列PGA )可以增加TH 类封装的引线数,同时显著减小PWB 的面积。PGA 系列可以应用于层压的塑料和陶瓷两类技术,其引线可超过1 000。值得注意的是,DIP 和PGA 等TH 封装由于引 线节距的限制无法实现高密度封装。 第2阶段,上世纪80年代早期引入了表面安装 1

微电子技术的发展历史与前景展望

微电子技术的发展历史与前景展望 姓名:张海洋班级:12电本一学号:1250720044 摘要:微电子是影响一个国家发展的重要因素,在国家的经济发展中占有举 足轻重的地位,本文简要介绍微电子的发展史,并且从光刻技术、氧化和扩散技术、多层布线技术和电容器材料技术等技术对微电子技术做前景展望。 关键词:微电子晶体管集成电路半导体。 微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、电路及系统的电子学分支,它主要研究电子或粒子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的科学,以实现电路的系统和集成为目的,实用性强。微电子产业是基础性产业,是信息产业的核心技术,它之所以发展得如此之快,除了技术本身对国民经济的巨大贡献之外,还与它极强的渗透性有关。 微电子学兴起在现代,在1883年,爱迪生把一根钢丝电极封入灯泡,靠近灯丝,发现碳丝加热后,铜丝上有微弱的电流通过,这就是所谓的“爱迪生效应”。电子的发现,证实“爱迪生效应”是热电子发射效应。 英国另一位科学家弗莱明首先看到了它的实用价值,1904年,他进一步发现,有热电极和冷电极两个电极的真空管,对于从空气中传来的交变无线电波具有“检波器”的作用,他把这种管子称为“热离子管”,并在英国取得了专利。这就是“二极真空电子管”。自此,晶体管就有了一个雏形。 在1947年,临近圣诞节的时候,在贝尔实验室内,一个半导体材料与一个弯支架被堆放在了一起,世界上第一个晶体管就诞生了,由于晶体管有着比电子管更好的性能,所以在此后的10年内,晶体管飞速发展。 1958年,德州仪器的工程师Jack Kilby将三种电子元件结合到一片小小的硅片上,制出了世界上第一个集成电路(IC)。到1959年,就有人尝试着使用硅来制造集成电路,这个时期,实用硅平面IC制造飞速发展.。 第二年,也是在贝尔实验室,D. Kahng和Martin Atalla发明了MOSFET,因为MOSFET制造成本低廉与使用面积较小、高整合度的特点,集成电路可以变得很小。至此,微电子学已经发展到了一定的高度。 然后就是在1965年,摩尔对集成电路做出了一个大胆的预测:集成电路的芯片集成度将以四年翻两番,而成本却成比例的递减。在当时,这种预测看起来是不可思议,但是现在事实证明,摩尔的预测诗完全正确的。 接下来,就是Intel制造出了一系列的CPU芯片,将我们完全的带入了信息时代。 由上面我们可以看出,微电子技术是当代发展最快的技术之一,是电子信息产业的基础和心脏。时至今日,微电子技术变得更加重要,无论是在航天航空技术、遥测传感技术、通讯技术、计算机技术、网络技术或家用电器产业,都离不开微电子技术的发展。甚至是在现代战争中,微电子技术也是随处可见。在我国,已经把电子信息产业列为国民经济的支拄性产业,微电子信息技术在我国也正受到越来越多的关注,其重要性也不言而喻,如今,微电子技术已成为衡量一个国家科学技术进步和综合国力的重要标志,微电子科学技术的发展水平和产业规模是一个国家经济实力的重要标志。

电子测量技术的发展及应用

电子测量技术的发展及 应用 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

电子测量论文

电子测量技术的发展及应用 摘要:近年来,以信息技术为代表的新技术促进了电子行业的飞速增长,也极大的促进了测量仪器和设备的快速发展。中国电子测量仪器经过40多年的发展,为我国国民经济、科学教育、特别是国防军事的发展做出了巨大贡献。随着世界高科技发展的潮流,中国电子测量仪器也步入了高科技发展的道路,特别是经过“九五”期间的发展,我国电子测量仪器在若干重大科技领域取得了突破性进展,为我国电子测量仪器走向世界水平奠定了良好的基础。 英国科学家A ? H ? 库克(cook )说:“测量是技术生命的神经系统。我们通过测量认识周围的,通过测量把这些知识变成,然后用数学方法把它整理成合乎逻辑的系统;通过测量,可使这种系统性知识借助于工程技术用来改造物质;世界精密的测量是精确的知识和经济的设计所必需,方便的测量是敏捷的通讯和有效的组织所必需。”这一段话深刻地揭示出了测量对于我们人类社会的重要性。人类社会从发展到物质文明和梢神文明都高度发达的今天,没有测量技术的作用是不可想象的。一、测量的意义 所谓测量就是借助于专用的技术工具通过实验和(或)计算,对被测对象收集信息的过程。在自然界中,对于任何被研究的对象,若要定量地进行评价,必须通过测量来实现。在电子技术领域中,中肯的分析只能来自正确的测量。通过测量,我们对大自然认识才由感性世界跨入了理性世界,才逐步对大自然有了理性的分析,通过分析和归纳,我们才能

得到规律性的知识来改造世界,科学技术才能得以高速发展。开创的早期自然科学的工作方法可归纳为“观察、实验、理论”,可见,人们是通过观测试验的结果和已经掌握的规律,进行概括、推理,再对所研究的事物取得定量的概念和发现它的规律性,然后上升到理论。因此,测量技术的水平在相当程度上影响着科学技术的发展速度和深度,科学技术上有一些突破是以测试技术的突破为基础的。 这种例子在科学发展史上是不胜枚举的。 在没有显微镜时,人眼只能看清大小为—毫米的东西,这大大限制了人类对自然界中的认识,在这种情况下,绝对不会有等技术的产生。16 世纪出现了,它的分辨率可达2000埃,相应的放大率约为1500倍,大大扩展了人的眼力。在显微镜的帮助下,人类发现了构成生物基础的细胞(大小约为10-100微米),使人类对生物界的认识有了一个极大的飞跃,这一发现对推动生物学各方面的研究作出了重要贡献,被誉为19世纪三大发现之一。20 世纪30 年代出现了,它的分辨本42领高达2一3 埃,又比提高了约三个数量级。由此可见电子技术引入测量领域的巨大的推动作用。在下,可以洞察小小细胞内的超微机构,连细胞膜也可清晰地辨出是由三个薄层组成的,并发现了致病的病毒、形成了的又一次飞跃。现代科学技术、生产和国防的重要特点之一,就是要进行大量的观测和统计。现代工业大生产,用到测量上的工时和费用约占整个生产所用的20%一30%。提高测量水平,降低测量成本,减少测量误差,提高测量效率,对国民经济各个领域都是至关重要的。

微电子导论论文--发展及历史

中国微电子技术发展现状及发展趋势 论文概要: 介绍了中国微电子技术的发展现状,并阐述对微电子技术发展趋势的展望。针对日前世界局势紧张,战争不断的状况,本文在最后浅析了微电子技术在未来轻兵器上的应用。 一.我国微电子技术发展状况 1956年7月,国务院科学专业化规划委员会正式成立,组织数百各科学家和技术专家编制了十二年(1965—1967年)科学技术远景规划,这个著名的《十二年规划》中,明确地把发展计算机技术、半导体技术、无线电电子学、自动化和遥感技术放到战略的重点上,我国半导体晶体管是1957年研制成功的,1960年开始形成生产;集成电路始于1962年,于1968年形成生产;大规模集成电路始于70年代初,80年代初形成生产。但是,同世界先进水平相比较,我们还存在较大的差距。在生产规模上,目前我国集成电路工业还没有实现高技术、低价格的工业化大生产,而国外的发展却很快,美国IBM 公司在日本的野洲工厂生产64K动态存贮器,1983年秋正式投产后,每日处理硅片几万片,月产量为上百万块电路,生产设备投资约8000万美元。日本三菱电机公司于1981年2月开始动土兴建工厂,1984年投产,计划生产64K动态存贮器,月产300万块,总投资约为1.2亿美元。 此外,在美国和日本,把半导体研究成果形成工业化生产的周期也比较短。在美国和日本,出现晶体观后,形成工业生产能力是3年;出现集成电路后形成工业生产能力是1—3年;出现大规模集成电路后形成工业生产能力是1—2年;出现超大规模集成电路后形成工业生产能力是4年。我国半导体集成电路工业长期以来也是停留在手工业和实验室的生产方式上。近几年引进了一些生产线,个别单位才开始有些改观,但与国外的差距还是相当大的。 从产品的产值和产量方面来看,目前,全世界半导体与微电子市场为美国和日本所垄断。这两国集成电路的产量约占体世界产量的百分之九十,早期是美国独占市场,而日本后起直追。1975年美国的半导体与集成电路的产值是66亿美元,分离器件产量为110多亿只,集成路为50多亿块;日本的半导体与集成电路的产值是30亿美元,分离器件产量为122亿只,集成电路为17亿块。1982年美国的半导体与集成电路的产值为75美元,分离器件产量为260多亿只,集成电路为90多亿块;日本的半导体与集成电路的产值为38亿美元,分离器件产量300多亿只,集成电路40多亿块。我国集成电路自1976年至1982年,产量一直在1200万块至3000万块之间波动,没有大幅度的提高,1982年我国半导体与集成电路的产值是0.75亿美元,产量为1313万块,相当于美国1965年和日本1968年的水平。(1965年美国的半导体与集成电路的产值是0.79亿美元,产量为950万块;1968年日本的半导体与集成电路的产值为0.47亿美元,产量为1988万块)。 在价格、成本、劳动生产率、成品率等方面,差距比几十倍还大得多,并且我国小规模集成电路的成品率比国外低1—3倍;中规模集成电路的成品率比国外低3—7倍。目前中、小规模集成电路成品率比日本1969年的水平还低。从经济效益和原材料消耗方面考虑,国外一般认为,进入工业生产的中、小规模集成电路成品率不应低于50%,大规模集成电路成品率不应低于30%。我国集成电路成品率的进一步提高,已迫在眉睫,这是使我国集成电路降低成本,进入工业化大生产、提高企业经济效益带有根本性的一环。从价格上来看,集成电路价格是当前我国集成电路工业中的重大问题,产品优质价廉,市场才有立足之地。我国半导体集成电路价格,长期以来,降价较缓慢,近两三年来,集成电路的平均价格为每块10元左右,这种价格水平均相当于美国和日本1965

电子测量技术的现状及发展趋势

电子测量技术的现状及 发展趋势 Document number:PBGCG-0857-BTDO-0089-PTT1998

电子测量论文 题目:电子测量技术现状及发展趋势姓名: 班级: 学号:

摘要:本文综合论述了电子测量技术的现状和总体发展趋势,分析了电子测量仪器的研究开发,阐述了我国电子测量技术与国际先进技术水平的差距,进而提出了发展电子测量仪器技术的对策。特别是由于测试技术的突破带来的电子测量仪器的革命性变化.同时,针对业界自动测试系统的发展历史和现状提出了作者的一些看法,并介绍了业界的最新进展和最新标准.近年来,以信息技术为代表的新技术促进了电子行业的飞速增长,也极大地推动了测试测量仪器和设备的快速发展。鉴于中国在全球制造链和设计链的重要地位,使得这里成为全球各大测量仪器厂商的大战场,同时,也带动了中国本土测试测量技术研发与测试技术应用的迅速发展。 关键词: LXI ATE 自动测试系统智能化虚拟技术总线接口技术VXI

目录 摘要................................................................................................I 前言 (1) 第一章测试技术现状及其存在的问题 (2) 第二章电子测量技术的发展方向 (2) (一)总线接口技 术 (2) (二)软件平台技 术 (3) (三)专家系统技 术 (3) (四)虚拟测试技 术 (3) 第三章展望未来 (4) 参考文献 (5)

前言 中国电子测量技术经过40多年的发展,为我国国民经济、科学教育、特别是国防军事的发展做出了巨大贡献。随着世界高科技发展的潮流,中国电子测量仪器也步入了高科技发展的道路,特别是经过“九五”期间的发展,我国电子测量技术在若干重大科技领域取得了突破性进展,为我国电子测量仪器走向世界水平奠定了良好的基础。进入21世纪以来,科学技术的发展已难以用日新月异来描述。新工艺、新材料、新的制造技术催生了新的一代电子元器件,同时也促使电子测量技术和电子测量仪器产生了新概念和新发展趋势。本文拟从现代电子测量技术发展的三个明显特点入手,进而介绍下一代自动测试系统的概念和基本技术,引入合成仪器的概念,面向21世纪的我国电子测量技术的发展趋势和方向是:测量数据采集和处理的自动化、实时化、数字化;测量数据管理的科学化、标准化、规格化;测量数据传播与应用的网络化、多样化、社会化。GPS技术、RS技术、GIS技术、数字化测绘技术以及先进地面测量仪器等将广泛应用于工程测量中,并发挥其主导作用。

微电子发展趋势及现状

1.1 引言 微电子(Microelectronics)技术和集成电路(Integrated Circuit, IC)作为20世 纪的产物,它是文明进步的体现和人类智慧的结晶。随着国际信息社会的发展,微电子技术已经广泛地应用于国民经济、国防建设等各个方面。尤其是近半个世纪以来,以微电子技术为支柱的微电子行业以每年平均15%的速率增长,成为整个信息产业的基础。集成电路也依照摩尔(Moore)定律(每隔3年芯片集成度提高4倍,特征尺寸减小30%)不断向着高度集成化、小间距化和高性能化的方向发展,成为了影响世界各国国家安全和经济发展的重要因素;它的掌控程度也已成为衡量一个国家综合实力的标志之一[1]。 电子信息产品的日益广泛应用,使得集成电路的需求也一直呈大幅度上涨的趋势。据统计,2000年世界集成电路市场总额达到2050亿美元,市场增幅高达37%;到2010年全球市场规模达到2983亿美元,市场增速达31.8%。虽然近些年来我国的技术水平了有了大幅度地提高,但是与国际的先进水平相比,差距没有得到有效缩小。而且由于我国国内市场的巨大和对集成电路的需求每年以20%的速度增长,我国集成电路产业自给能力不足,产业规模很小,市场上国内产品的占有率依旧很低。而且企业不仅规模小且分散,持续创新能力不强,掌握的核心技术少,与国外先进水平相比有较大差距;价值链整合能力较弱,芯片与整机联动机制尚不成熟,国内自主研发的芯片无法进入重点整机应用领域,所以只能大量依靠进口满足国内需求[2-4]。据海关的统计数据,2010年中国集成电路的进口额就高达1570亿美元。 因此,扩大集成电路产业规模和提高微电子技术水平发展迫在眉睫。 1.2 课题来源 本课题来源于国家重大基础研究发展计划项目(973计划)“IC制造装备基础问题研究”的课题3“超薄芯片叠层组合互连中多域能量传递与键合形成”(编号:2009CB724203)。 1.3 IC测试技术的发展与现状 集成电路产业是由设计业、制造业、封装业和测试业等四业组成[5]。测试业作为IC产业的重要一环,其生存和发展与IC产业息息相关。IC测试服务行业是测试行业的重要组成部分,从1999年开始,适应我国集成电路产业的发展正在逐渐兴起。集成电路测试是对集成电路或模块进行检测,通过测量将集成电路的输出响应和预期的输出作比较,以确定或评估集成电路元器件功能和性能的过程 [6-8]。

微电子技术的发展

什么是集成电路和微电子学 集成电路(Integrated Circuit,简称IC):一半导体单晶片作为基片,采用平面工艺,将晶体管、电阻、电容等元器件及其连线所构成的电路制作在基片上所构成的一个微型化的电路或系统。 微电子技术 微电子是研究电子在半导体和集成电路中的物理现象、物理规律,病致力于这些物理现象、物理规律的应用,包括器件物理、器件结构、材料制备、集成工艺、电路与系统设计、自动测试以及封装、组装等一系列的理论和技术问题。微电子学研究的对象除了集成电路以外,还包括集成电子器件、集成超导器件等。 集成电路的优点:体积小、重量轻;功耗小、成本低;速度快、可靠性高; 微电子学是一门发展极为迅速的学科,高集成度、低功耗、高性能、高可靠性是微电子学发展的方向; 衡量微电子技术进步的标志要在三个方面:一是缩小芯片器件结构的尺寸,即缩小加工线条的宽度;而是增加芯片中所包含的元器件的数量,即扩大集成规模;三是开拓有针对性的设计应用。 微电子技术的发展历史 1947年晶体管的发明;到1958年前后已研究成功一这种组件为基础的混合组件; 1958年美国的杰克基尔比发明了第一个锗集成电路。1960年3月基尔比所在的德州仪器公司宣布了第一个集成电路产品,即多谐振荡器的诞生,它可用作二进制计数器、移位寄存器。它包括2个晶体管、4个二极管、6个电阻和4个电容,封装在0.25英寸*0.12英寸的管壳内,厚度为0.03英寸。这一发明具有划时代的意义,它掀开了半导体科学与技术史上全新的篇章。 1960年宣布发明了能实际应用的金属氧化物—半导体场效应晶体管(metal-oxide-semiconductor field effect transistor ,MOSFET)。 1962年生产出晶体管——晶体管逻辑电路和发射极耦合逻辑电路; 由于MOS电路在高度集成和功耗方面的优点,70年代,微电子技术进入了MOS电路时代;随着集成密度日益提高,集成电路正向集成系统发展,电路的设计也日益复杂、费事和昂贵。实际上如果没有计算机的辅助,较复杂的大规模集成电路的设计是不可能的。 微电子发展状态与趋势 微电子也就是集成电路,它是电子信息科学与技术的一门前沿学科。中国科学院王阳元院士曾经这样评价:微电子是最能体现知识经济特征的典型产品之一。在世界上,美国把微电子视为他们的战略性产业,日本则把它摆到了“电子立国”的高度。可以毫不夸张地说,微电子技术是当今信息社会和时代的核心竞争力。 在我国,电子信息产业已成为国民经济的支柱性产业,作为支撑信息产业的微电子技术,近年来在我国出现、崛起并以突飞猛进的速度发展起来。微电子技术已成为衡量一个国家科学技术进步和综合国力的重要标志。 1.微电子发展状态 1956年五校在北大联合创建半导体专业:北京大学、南京大学、复旦大学、

电子测量技术未来的发展方向

电子测量技术未来的发 展方向 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

我国电子测量仪器的现状、机遇及测量技术五大发展趋势 前言:《电子测量》一书编写的目的是使我们掌握现代电子测量的基本原理和方法,熟悉新型电子测量仪器的应用技术,在科学实验中具有制定先进、合理测量和测试方案,正确的选用测量仪器,严格的处理数据,已获得最佳测试结果的能力,通过分析单元电路和整机电路 能够提高我们理论联系实际,分析问题和解决问题的能力。开始我还以为电子测量仅仅是几个仪器的原理简单分析,细细听课后发现还有好多的测量方法和不懂的数据处理方法,使我对测量技术又有了新的认识,因为我个人在感性方面不是那么细腻,所以在期末考试的论文上想浅谈我国电子测量仪器的现状、机遇及测量技术五大发展趋势。下面介绍我的浅析。 摘要:近年来,以信息技术为代表的新技术促进了电子行业的飞速增长,也极大地推动了测试测量仪器和设备的快速发展。鉴于中国在全球制造链和设计链的重要地位,使得这里成为全球各大仪器厂商逐鹿的大战场,同时,也带动了中国本土测试测量仪器研发与测试技术应用的迅速发展。 一.中国电子测量仪器设备的发展现状与机遇 近年来中国测量仪器的可靠性和稳定性问题得到了很多方面的重视,状况有了很大改观。测试仪器行业目前已经越过低谷阶段,重新回到了快速发展的轨道,尤其最近几年,中国本土仪器取得了长足的进步,特别是通用电子测量设备和汽车电子设备的研发方面,与国外先进产品的差距正在快速缩小,对国外电子仪器巨头的垄断造成了一定的冲击。随着模块化和虚拟技术的发展,为中国的测试测量仪器行业带来了新的契

(完整版)微电子技术发展现状与趋势

本文由jschen63贡献 ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 微电子技术的发展 主要内容 微电子技术概述;微电子发展历史及特点;微电子前沿技术;微电子技术在军事中的应用。 2010-11-26 北京理工大学微电子所 2 2010-11-26 北京理工大学微电子所 3 工艺流程图 厚膜、深刻蚀、次数少多次重复 去除 刻刻蚀 牺牲层,释放结构 多 工艺 工工艺 2010-11-26 工 5 微电子技术概述 微电子技术是随着集成电路,尤其是超大规模集成电路而发展起来的一门新的技术。微电子技术包括系统电路设计、器件物理、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术,微电子技术是微电子学中的各项工艺技术的总和;微电子学是一门发展极为迅速的学科,高集成度、低功耗、高性能、高可靠性是微电子学发展的方向;衡量微电子技术进步的标志要在三个方面:一是缩小芯片中器件结构的尺寸,即缩小加工线条的宽度;二是增加芯片中所包含的元器件的数量,即扩大集成规模;三是开拓有针对性的设计应用。 2010-11-26 北京理工大学微电子所 6 微电子技术的发展历史 1947年晶体管的发明;到1958年前后已研究成功以这种组件为基础的混合组件; 1962年生产出晶体管——晶体管逻辑电路和发射极耦合逻辑电路;由于MOS电路在高度集成和功耗方面的优点,70 年代,微电子技术进入了MOS电路时代;随着集成密度日益提高,集成电路正向集成系统发展,电路的设计也日益复杂、费时和昂贵。实际上如果没有计算机的辅助,较复杂的大规模集成电路的设计是不可能的。 2010-11-26 北京理工大学微电子所 7 微电子技术的发展特点 超高速:从1958年TI研制出第一个集成电路触发器算起,到2003年Intel推出的奔腾4处理器(包含5500 万个晶体管)和512Mb DRAM(包含超过5亿个晶体管),集成电路年平均增长率达到45%;辐射面广:集成电路的快速发展,极大的影响了社会的方方面面,因此微电子产业被列为支柱产业。

浅谈我对微电子的认识

[键入公司名称] 浅谈我对微电子的认识 [键入文档副标题] X [选取日期] [在此处键入文档摘要。摘要通常为文档内容的简短概括。在此处键入文档摘要。摘要通常为文档内容的简短概括。]

我是电子信息科学与技术专业的学生,考虑到微电子对我们专业知识学习的重要性,我怀着极大的热情报了《微电子入门》这门选修课。希望通过这门课的学习,使我对微电子有更深入的认识,以便为以后的专业课学习打下基础。 微电子是一门新兴产业,它的发展关系着国计民生。它不仅应用于科学领域,也被广泛应用于国防、航天、民生等领域。它的广泛应用,使人们的生活更见方便。现代人的生活越来越离不开电子。因此,对电子的了解显得十分重要。微电子作为电子科学的一个分支,也发挥着日益重要的作用。通过几周的学习,我对微电子有了初步的认识。 首先,我了解了微电子的发展史,1947年晶体管的发明,后来又结合印刷电路组装使电子电路在小型化的方面前进了一大步。到1958年前后已研究成功以这种组件为基础的混合组件。集成电路的主要工艺技术,是在50年代后半期硅平面晶体管技术和更早的金属真空涂膜学技术基础上发展起来的。1964年出现了磁双极型集成电路产品。 1962年生产出晶体管——晶体管理逻辑电路和发射极藉合逻辑电路。MOS集成电路出现。由于MOS电路在高度集成方面的优点和集成电路对电子技术的影响,集成电路发展越来越快。 70年代,微电子技术进入了以大规模集成电路为中心的新阶段。随着集成密度日益提高,集成电路正向集成系统发展,电路的设计也日益复杂、费时和昂贵。实际上如果没有计算机的辅助,较复杂的大规模集成电路的设计是不可能的。70年代以来,集成电路利用计算机的设计有很大的进展。制版的计算机辅助设计、器件模拟、电路模拟、逻辑模拟、布局布线的计算辅助设计等程序,都先后研究成功,并发展成为包括校核、优化等算法在内的混合计算机辅助设计,乃至整套设备的计算机辅助设计系统。 微电子技术是随着集成电路,尤其是超大型规模集成电路而发展起来的一门新的技术。微电子技术包括系统电路设计、器件物理、工艺技术、材料制备、自动测试以及封装、组装等一系列专门的技术,微电子技术是微电子学中的各项工艺

电子测量技术在现在科技方面的作用与发展

电子测量技术在现在科技方面的作 用与发展 电子测量技术在现在科技方面的作用与发展中国电子测量仪器经过40多年的发展,为我国国民经济、科学教育、特别是国防军事的发展做出了巨大贡献。随着世界高科技发展的潮流,中国电子测量仪器也步入了高科技发展的道路,特别是经过“九五”期间的发展,我国电子测量仪器在若干重大科技领域取得了突破性进展,为我国电子测量仪器走向世界水平奠定了良好的基础。一、成功研制出微波毫米波矢量网络分析仪我们已经成功地研制了被称为“世界电子测量仪器之王”的微波毫米波矢量网络分析仪。随着我国新体制电子信息系统和新式武器装备的发展,占领和利用有限的频谱资源已经成为高新技术发展和军事电子技术及装备发展的一个重要特点,其中

充分利用频谱资源中的电磁波幅度、频率、相位和极化信息是现代电子装备的核心特点。而现代电子装备的发展又急需能同时获得被测对象的幅度、相位和群时延特性的高性能矢量网络分析仪。特别是雷达相控阵列技术的普遍应用,对相位和群时延特性的测试要求越来越高,因此矢量网络分析仪便成为现代电子装备必备的、关键的测试设备,是其他测试设备无法取代的重要检测手段。另外微波毫米波有源器件CAD技术正在日益普及,而有源CAD的基础是提取有源器件的S参数,当前只有矢量网络分析仪有能力同时获得有源器件的S参数,使CAD的设计结果更接近于实际应用。除此之外,矢量网络分析仪已走出传统的线性网络的应用领域,而在非线性、大功率网络的测试和分析中发挥着重要作用。另外,以矢量网络分析仪为核心可以组成天线、RCS、大功率、T/R 组件等自动测试系统,因此它的应用领域将是非常广阔的。为了适应我

微电子技术发展趋势及未来发展展望

微电子技术发展趋势及未来发展展望 论文概要: 本文介绍了穆尔定律及其相关内容,并阐述对微电子技术发展趋势的展望。针对日前世界局势紧张,战争不断的状况,本文在最后浅析了微电子技术在未来轻兵器上的应用。由于这是我第一次写正式论文,恳请老师及时指出文中的错误,以便我及时改正。 一.微电子技术发展趋势 微电子技术是当代发展最快的技术之一,是电子信息产业的基础和心脏。微电子技术的发展,大大推动了航天航空技术、遥测传感技术、通讯技术、计算机技术、网络技术及家用电器产业的迅猛发展。微电子技术的发展和应用,几乎使现代战争成为信息战、电子战。在我国,已经把电子信息产业列为国民经济的支拄性产业。如今,微电子技术已成为衡量一个国家科学技术进步和综合国力的重要标志。 集成电路(IC)是微电子技术的核心,是电子工业的“粮食”。集成电路已发展到超大规模和甚大规模、深亚微米(0.25μm)精度和可集成数百万晶体管的水平,现在已把整个电子系统集成在一个芯片上。人们认为:微电子技术的发展和应用使全球发生了第三次工业革命。 1965年,Intel公司创始人之一的董事长Gorden Moore在研究存贮器芯片上晶体管增长数的时间关系时发现,每过18~24个月,芯片集成度提高一倍。这一关系被称为穆尔定律(Moores Law),一直沿用至今。 穆尔定律受两个因素制约,首先是事业的限制(business Limitations)。随着芯片集成度的提高,生产成本几乎呈指数增长。其次是物理限制(Physical Limitations)。当芯片设计及工艺进入到原子级时就会出现问题。 DRAM的生产设备每更新一代,投资费用将增加1.7倍,被称为V3法则。目前建设一条月产5000万块16MDRAM的生产线,至少需要10亿美元。据此,64M位的生产线就要17亿美元,256M位的生产线需要29亿美元,1G位生产线需要将近50亿美元。 至于物理限制,人们普遍认为,电路线宽达到0.05μm时,制作器件就会碰到严重问题。 从集成电路的发展看,每前进一步,线宽将乘上一个0.7的常数。即:如果把0.25μm看作下一代技术,那么几年后又一代新产品将达到 0.18μm(0.25μm×0.7),再过几年则会达到0.13μm。依次类推,这样再经过两三代,集成电路即将到达0.05μm。每一代大约需要经过3年左右。 二.微电子技术的发展趋势 几十年来集成电路(IC)技术一直以极高的速度发展。如前文中提到的,著名的穆尔(Moore)定则指出,IC的集成度(每个微电子芯片上集成的器件数),每3年左右为一代,每代翻两番。对应于IC制作工艺中的特征线宽则每代缩小30%。根据按比例缩小原理(Scaling Down Principle),特征线条越窄,IC的工作速度越快,单元功能消耗的功率越低。所以,IC的每一代发展不仅使集成度提高,同时也使其性能(速度、功耗、可靠性等)大大改善。与IC加工精度提高的同时,加工的硅圆片的尺寸却在不断增大,生产硅片的批量也不断提高。以上这些导致

电子测量技术现状及发展趋势

电子测量论文 题目:电子测量技术现状及发展趋势姓名: 班级: 学号:

摘要:本文综合论述了电子测量技术的现状和总体发展趋势,分析了电子测量仪器的研究开发,阐述了我国电子测量技术与国际先进技术水平的差距,进而提出了发展电子测量仪器技术的对策。特别是由于测试技术的突破带来的电子测量仪器的革命性变化.同时,针对业界自动测试系统的发展历史和现状提出了作者的一些看法,并介绍了业界的最新进展和最新标准.近年来,以信息技术为代表的新技术促进了电子行业的飞速增长,也极大地推动了测试测量仪器和设备的快速发展。鉴于中国在全球制造链和设计链的重要地位,使得这里成为全球各大测量仪器厂商的大战场,同时,也带动了中国本土测试测量技术研发与测试技术应用的迅速发展。 关键词: LXI ATE 自动测试系统智能化虚拟技术总线接口技术VXI

摘要……………………………………………………………………………………I 前言 (1) 第一章测试技术现状及其存在的问题 (2) 第二章电子测量技术的发展方向 (2) (一)总线接口技术 (2) (二)软件平台技术 (3) (三)专家系统技术 (3) (四)虚拟测试技术 (3) 第三章展望未来 (4) 参考文献 (5)

中国电子测量技术经过40多年的发展,为我国国民经济、科学教育、特别是国防军事的发展做出了巨大贡献。随着世界高科技发展的潮流,中国电子测量仪器也步入了高科技发展的道路,特别是经过“九五”期间的发展,我国电子测量技术在若干重大科技领域取得了突破性进展,为我国电子测量仪器走向世界水平奠定了良好的基础。进入21世纪以来,科学技术的发展已难以用日新月异来描述。新工艺、新材料、新的制造技术催生了新的一代电子元器件,同时也促使电子测量技术和电子测量仪器产生了新概念和新发展趋势。本文拟从现代电子测量技术发展的三个明显特点入手,进而介绍下一代自动测试系统的概念和基本技术,引入合成仪器的概念,面向21世纪的我国电子测量技术的发展趋势和方向是:测量数据采集和处理的自动化、实时化、数字化;测量数据管理的科学化、标准化、规格化;测量数据传播与应用的网络化、多样化、社会化。GPS技术、RS 技术、GIS技术、数字化测绘技术以及先进地面测量仪器等将广泛应用于工程测量中,并发挥其主导作用。

微电子技术发展现状及未来的认识和看法

微电子技术发展现状及未来的认识和看法 摘要:本文通过对半导体材料、微电子器件及集成电路技术近几年取得的重要成果进行的充分调研,介绍当下微电子的各项新成果。在此基础之上,充分阐述了微电子发展的现状,并对微电子的未来的发展方向给予一些见解。 关键字:微电子半导体 半导体材料是指电阻率在10-3~108Ωcm,介于金属和绝缘体之间的材料。上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。 1 半导体材料、微电子器件及集成电路技术近几年取得的重要成果及发展的现状。 1、1我国国微电子产业简介 我国硅晶片生产企业主要有北京有研硅股、浙大海纳公司、洛阳单晶硅厂、上海晶华电子、浙江硅峰电子公司和河北宁晋单晶硅基地等。有研硅股在大直径硅单晶的研制方面一直居国内领先地位,先后研制出我国第一根6英寸、8英寸和12英寸硅单晶,单晶硅在国内市场占有率为40%。2000年建成国内第一条可满足0.25μm线宽集成电路要求的8英寸硅单晶抛光片生产线;在北京市林河工业开发区建设了区熔硅单晶生产基地,一期工程计划投资1.8亿元,年产25t 区熔硅和40t重掺砷硅单晶,计划2003年6月底完工;同时承担了投资达1.25亿元的863项目重中之重课题——“12英寸硅单晶抛光片的研制”。浙大海纳主要从事单晶硅、半导体器件的开发、制造及自动化控制系统和仪器仪表开发,近几年实现了高成长性的高速发展。 自1965 年,我国研制出第一块双极型集成电路以来,经过40 多年的发展,我国集成电路产业目前已初步形成了设计业、芯片制造业及封装测试业三业并举、比较协调的发展格 局,并将持续保持良好的发展势头。我国微电子产业处在高速发展阶段我国现已成为世界电子产品生产大国,数字电视、3G 等电子产品未来几年内将进入高速发展阶段。据信息产业部预计,2007 年-2011 年这 5 年间,中国集成电路产业销售收入的年均复合增长率将达到27.7%。到2011年,中国集成电路产业销售收入将突破3000亿元,达到3415.44 亿元。届时中国将成为世界重要的集成电路制造基地之一。 1、2 我国微电子产业取得的主要成就 (1)超深亚微米集成技术研究逐渐接近国际先进水平。由于多方面的原因,我国在这一领域的研究工作长期处于劣势,不能与国际先进水平相提并论。在“863”等项目的支持下,清华、北大、中科院微电子所和半导体所等微电子基础条件较好的单位率先开展了面向超深亚微米集成技术的研究,在新型器件结构

微电子行业前景与就业形势

微电子行业前景与就业形势 当前,我们正在经历新的技术革命时期,虽然它包含了新材料、新能源、生物工程、海洋工程、航空航天技术和电子信息技术等等,但是影响最大,渗透性最强,最具有新技术革命代表性的乃是以微电子技术为核心的电子信息技术。 自然界和人类社会的一切活动都在产生信息,信息是客观事物状态和运动特征的一种普通形式,它是为了维持人类的社会、经济活动所需的第三种资源(材料、能源和信息)。社会信息化的基础结构,是使社会的各个部分通过计算机网络系统,连结成为一个整体。在这个信息系统中由通讯卫星和高速大容量光纤通讯将各个信息交换站联结,快速、多路地传输各种信息。在各信息交换站中,有多个信息处理中心,例如图形图像处理中心、文字处理中心等等;有若干信息系统,例如企事业单位信息系统,工厂和办公室自动化系统,军队连队信息系统等等;在处理中心或信息系统中还包含有许多终端,这些终端直接与办公室、车间、连队的班排、家庭和个人相连系。像人的神经系统运行于人体一样,信息网络系统把社会各个部分连结在信息网中,从而使社会信息化。海湾战争中,以美国为首的多国部队的通讯和指挥系统基本上也是这样一个网络结构,它的终端是直接武装到班的膝上(legtop)计算机,今后将发展到个人携带的PDA(Person-al Date Assistant)。 实现社会信息化的关键部件是各种计算机和通讯机,但是它的基础都是微电子。当1946年2月在美国莫尔学院研制成功第一台名为电子数值积分器和计算器(Electronic Numlerical Inte-grator and Computer)即ENIAC问世的时候,是一个庞然大物,由18000个电子管组成,占地150平方米,重30吨,耗电140KW,足以发动一辆机车,然而不仅运行速度只有每秒5000次,存储容量只有千位,而且平均稳定运行时间才7分钟。试设想一下,这样的计算机能够进入办公室、企业车间和连队吗所以当时曾有人认为,全世界只要有4台ENIAC就够了。可是现在全世界计算机不包括微机在内就有几百万台。造成这个巨大变革的技术基础是微电子技术,只有在1948年Bell实验室的科学家们发明了晶体管(这可以认为是微电子技术发展史上的第一个里程碑),特别是1959年硅平面工艺的发展和集成电路的发明(这可以认为是微电子技术第二个里程碑),才出现了今天这样的以集成电路技术为基础的电子信息技术和产业。而1971年微机的问世(这可以认为是微电子技术第三个里程碑),使全世界微机现在的拥有率达到%,在美国每年由计算机完成的工作量超过4000亿人年的手工工作量。美国欧特泰克公司总裁认为:微处理器、宽频道连接和智能软件将是下世纪改变人类社会和经济的三大技术创新。 当前,微电子技术发展已进入“System on Chip”的时代,不仅可以将一个电子子系统或整个电子系统“集成”在一个硅芯片上,完成信息加工与处理的功能,而且随着微电子技术的成熟与延拓,可以将各种物理的、化学的敏感器(执行信息获取的功能)和执行器与信息处理系统“集成”在一起,从而完成信息获取、处理与执行的系统功能,一般称这种系统为微机电系统(MEMS:Micro Electronics Machinery System),可以认为这是微电子技术又一次革命性变革。集成化芯片不仅具有“系统”功能,并且可以以低成本、高效率的大批量生产,可靠性好,耗能少,从而使电子信息技术广泛地应用于国民经济、国防建设乃至家庭生活的各个方面。在日本每个家庭平均约有100个芯片,它已如同细胞组成人体一样,成为现代工农业、国防装备和家庭耐用消费品的细胞。集成电路产业产值以年增长率≥13%,在技术上,集成度年增长率46%的速率持续发展,世界上还没有一个产业能以这样高的速度持续地增长。1990年日本以微电子为基础的电子工业产值已超过号称为第一产业的汽车工业而成为第一大产业。2000年电子信息产业,将成为世界第一产业。集成电路的原料主

相关文档
最新文档