Recent Progress in CdTe and CdZnTe Detectors

Recent Progress in CdTe and CdZnTe Detectors
Recent Progress in CdTe and CdZnTe Detectors

a r X i v :a s t r o -p h /0107398v 1 20 J u l 2001

Recent Progress in CdTe and CdZnTe Detectors

Tadayuki Takahashi and Shin Watanabe

Abstract —

Cadmium telluride (CdTe)and cadmium zinc telluride (CdZnTe)have been regarded as promising semiconductor materials for hard X-ray and γ-ray detection.The high atomic number of the materials (Z Cd =48,Z T e =52)gives a high quantum ef?ciency in comparison with Si.The large band-gap energy (Eg ~1.5eV)allows us to operate the detector at room tempera-ture.However,a considerable amount of charge loss in these detectors pro-duces a reduced energy resolution.This problem arises due to the low mo-bility and short lifetime of holes.Recently,signi?cant improvements have been achieved to improve the spectral properties based on the advances in the production of crystals and in the design of electrodes.In this overview talk,we summarize (1)advantages and disadvantages of CdTe and CdZnTe semiconductor detectors and (2)technique for improving energy resolution and photopeak ef?ciencies.Applications of these imaging detectors in fu-ture hard X-ray and gamma-ray astronomy missions are brie?y discussed.Keywords —CdTe,CdZnTe,CZT,gamma-ray,Pixel Detector.

I.I NTRODUCTION

T

HERE are increasing demands for new semiconductor de-tectors capable of detecting hard X-ray and γ-rays.For imaging devices,their good energy resolution and the ability to fabricate compact arrays are very attractive features in com-parison with inorganic scintillation detectors coupled to either photodiodes or photomultiplier tubes.

Despite the excellent energy resolution and charge-transport properties of silicon (Si)and germanium (Ge)detectors,their low stopping power for high energy photons limits their appli-cation to hard X-ray and γ-ray detection.Furthermore,the small band gap of germanium forces us to operate the detector at cryo-genic temperatures.Therefore,room-temperature semiconduc-tors with high atomic numbers and wide band gaps have long been under development.These materials are useful not only in medical and industrial imaging systems but also in detectors for high energy particle-and astrophysics.

Cadmium Telluride (CdTe)has been regarded as a promis-ing semiconductor material for hard X-ray and γ-ray detection since the early 1970’s.The high atomic number of the materi-als gives a high quantum ef?ciency suitable for a detector op-erating typically in the 10?500keV range.A large band-gap energy (E gap =1.44eV)allows us to operate these detectors at room temperature.However,it became clear that it would be much more dif?cult to use CdTe in comparison with Si and Ge,especially for nuclear spectroscopy,where good spectroscopic performance is desired.The lack of stability also limited the usefulness of CdTe detectors in the past.Problems and efforts to improve the properties of CdTe detectors since its beginning are available in review articles[1],[2].

Manuscript received Febrary 2,2001.

T.Takahashi is with the Institute of Space and Astronautical Science (ISAS),Sagamihara,Kanagawa 229-8510,Japan and is also with Department of Physics,the University of Tokyo,Bunkyo,Tokyo 113-0033,Japan.(telephone:81-42-759-8150,e-mail:takahashi@astro.isas.ac.jp)

S.Watanabe is with the Institute of Space and Astronautical Science (ISAS),Sagamihara,Kanagawa 229-8510,Japan and is also with Department of Physics,the University of Tokyo,Bunkyo,Tokyo 113-0033,Japan.(telephone:81-42-759-8151,e-mail:watanabe@astro.isas.ac.jp)

Fig.1

L INEAR A TTENUATION C OEFFICIENTS FOR PHOTO ABSORPTION AND

C OMPTON SCATTERING IN C

D T

E ,S I ,G E ,AND N A I(T l )

In the 1990’s,the remarkable progress in the technology of producing a high quality single crystal of CdTe and the emer-gence of Cadmium Zinc Telluride (CdZnTe)have dramatically changed the situations of high resolution room temperature de-tectors [3].Furthermore,advances in application speci?c inte-grated circuits (ASICs)leads to fabrication of position sensitive detectors in the form of strip or pixellated detectors[4],[5].Here we summarize the recent progress of the development of CdTe and CdZnTe detectors.

II.C D T E

AND

C D Z N T E

SEMICONDUCTOR

Table I shows the physical characteristics of the elemen-tal and compound semiconductors.Among the range of semi-conductor detectors available for γ-ray detection,CdTe (and CdZnTe)have a privileged position[6],[7],[8],because of their high density and the high atomic number of their components,as well as a wide bandgap.As shown in Fig.1,CdTe has a high photoelectric attenuation coef?cient.Photoelectric absorp-tion is the main process up to 300keV for CdTe,as compared to 60keV for Si and 150keV for Ge.Fig.2shows the ef?ciency for 100keV γ-rays.Even a detector with a thickness of 0.5mm provides a good detection ef?ciency for γ-rays.Ef?ciencies cal-culated with a simulation code [9]are shown in Fig.3for a detector with a thickness of 5mm and 10mm.For a 511keV photon,an absorption ef?ciency of 15.5%can be obtained for a

TABLE I

P ROPERTIES OF THE SEMICONDUCTORS

Si 2.3314 1.12 3.69.37 Ge 5.33320.67 2.9 2.30 CdTe 5.8548,52 1.44 4.43 1.52 CdZnTe 5.81 1.6 4.6

HgI2 6.4080,53 2.13 4.2 1.16 GaAs 5.3231,33 1.42 4.3 2.29

Fig.4

C URRENT VOLTAGE(I-V)CHARACTERISTICS AT20?C OF THE C

D Z N T E

AND C D T E DETECTORS WITH DIMENSIONS OF4×4MM2AND A2MM

THICKNESS.T HE LEAKAGE CURRENT FOR THE C D T E DETECTOR

MEASURED AT5?C AND THE C D T E DIODE(DESCRIBED LATER)AT

20?C.T HE DIMENSIONS OF THE C D T E DIODE IS2×2×0.5MM3ARE

SHOWN FOR COMPARISON.T HE C D Z N T E DETECTOR WAS MANUFACTURED

BY E V P RODUCTS AND THE C D T E DETECTOR WAS MANUFACTURED BY

ACRORAD.

electrode system,it is reported that the CdTe wafer displays

good charge transport properties for both electrons(μeτe=1?2

×10?3cm2/V)and holes(μhτh=1×10?4cm2/V).The elec-

trical resistivity of~1×109?cm(p-type)is achieved by com-

pensating the native defects with Cl.Furthermore,with the usual

electrode con?guration with Pt which forms

Ohmic contacts,the

detector is free from problems with the stability[18].There are

no grain boundaries nor a distribution of Te inclusion in a wafer,

since it is a single crystal[17].The uniform charge transport

properties of the wafer are very important aspect not only for

fabricating large area strip or pixel detectors but also for con-

structing a large scaleγ-ray camera with many individual detec-

tors.Single crystals of50mm diameter are now commercially

available for THM-CdTe.The grown crystal is large enough

to obtain(111)-oriented single crystal wafers with an area

as large as30×30mm2.A similar approach to growing high

quality CdTe single crystals is reported with THM[19]and in a

conventional vertical Bridgman furnace[14].

C.Energy spectra of CdTe and CdZnTe

Because of the very high resistivity,CdTe and CdZnTe are

regarded as semi-insulating materials and usually operated as a

“solid ionization chamber”[23].The electron-hole pairs gener-

ated in the detector are collected by applying an appropriate bias

voltage.Figs.5(a)and(b)show the energy spectra ofγ-rays

from57Co obtained at20?C with the CdTe and CdZnTe detec-

tors used in the measurement of the I-V curve(Fig.5).In the

measurement,the charge signal is integrated in the Clear Pulse

CP-5102CSA and shaped by an ORTEC571ampli?er.The

Fig.5

57C O SPECTRA OBTAINED WITH(A)C D T E AND(B)C D Z N T E DETECTORS

AT20?C OBTAINED FROM THE SAME DETECTORS USED IN F IG.4.T HE

APPLIED BIAS VOLTAGE IS100V AND300V FOR C D T E AND C D Z N T E,

RESPECTIVELY.T HE SHAPEING TIME WAS SET AT0.5μS.

time constant of the shaping ampli?er was set at0.5μs for both

detectors.In order to minimize the effect of the incomplete-

ness of the hole collection,we irradiatedγ-rays from radioac-

tive sources on the negative electrode(cathode).The applied

bias voltages are chosen to be100V for the CdTe and300V for

the CdZnTe detector so that we obtain the comparable leakage

current.The energy resolution(FWHM)of the122keV line is

6.9keV for the CdTe detector and4.2keV for CdZnTe.

III.E FFECTS OF LOW TRANSPORT OF HOLES

Collecting full information due to the transit of both electrons

and holes is important for obtaining the ultimate energy resolu-

tion from the device.The mean drift path of the charge carrier

is expressed as the product ofμτand E,where E is the ap-

plied electric?eld in the device.Due to the slow mobility and

short lifetime of holes,the thickness of the detector should be

smaller thanμhτh E,whereμh andτh are the mobility and life-

time of holes.If a detector with a thickness l>μhτh E is used,

only a fraction of the generated signal charge is induced at the

detector electrode.The fraction and the resultant pulse height

depend on the interaction depth.This position dependency pro-

Fig.6

241A M SPECTRA OBTAINED WITH THE2MM THICK C D Z N T E DETECTOR USED IN F IG.4.T HE APPLIED BIAS VOLTAGE IS300V AND THE OPERATING TEMPERATURE IS5?C.γ-RAYS ARE IRRADIATED FROM THE CATHODE SIDE(SOLID LINE)AND THE ANODE SIDE(DASHED LINE).

duces a shoulder(tailing)in the peaks ofγ-ray lines towards the low energy region,which is seen in57Co spectra with CdTe and CdZnTe shown in Fig.5.Due to a distortion of the spec-trum.The energy resolution does not reach the theoretical limit expected from statistical?uctuations in the number of electron-hole pairs and the Fano factor.

The pulse height as a function of the depth of

interaction for a simple planar detector is given by the Hecht equation[20]:

P H(z)∝n0(μeτe E(1?exp(?

d?z

μhτh E

)))(2)

where n0is the number of electron-hole pairs generated in the detector and d is the detector thickness.The depth,z is mea-sured from the cathode.The reduction of the pulse height is severe for the event which takes place close to the anode elec-trode of a2mm thick detector,where the signal is mostly due to the hole transit.Only16%of the signal is collected forμhτh =2×10?5cm2/V(typical number for the recent HPB-grown CdZnTe detectors)as compared to the case forμhτh=∞with a bias voltage of300V.This effect is clearly seen in the241Am spectrum shown in Fig.6which was obtained with a CdZnTe detector with a thickness of2mm.When the detector is irra-diated byγ-rays from the cathode face,γ-ray peaks are clearly resolved.The energy resolution at60keV is3.3keV.However, if we irradiateγ-rays from the anode face,the peak structure is smeared out completely.The situation is slightly better for CdTe which has higherμhτh,but the spectral performance is still limited.

Many methods have been proposed and used to overcome the hole-trapping problem.One approach is to use the information contained in the pulse shape[2].In this approach,the pulses

Fig.7

S IMULATED SPECTRA OF THE122KE V LINE OF57C O OBTAINED WITH(A) 100V,(B)400V,AND(C)1400V.T HE DETECTOR THICKNESS IS0.5MM. T HE LOW ENERGY TAIL IN THE SPECTRUM IS SOLELY DUE TO THE HOLE TRAPPING.F OR THE THIS THICKNESS,1400V IS REQUIRED FOR

ELIMINATING LOW ENERGY TAIL AND OBTAINING AN ENERGY RESOLUTION CLOSE TO THE THERETICAL LIMIT.T HE ASSUMEDμeτe IS 2×10?3CM2/V ANDμhτh=1×10?4CM2/V.R ESOLUTION DUE TO STATISTICAL FLUCTUATION OF ELECTRON-HOLE PAIRS AND ELECTRONICS

IS NOT INCLUDED.

with a slow rise time are corrected or discriminated by means of specially designed electronics.A model of the pulse shape is described in[21].Another approach is the use of a hemispheric geometry[2].A logarithmetic?eld inside the detector enhances the collection of fast-moving electrons and restrain the hole col-lection.The application of hemispheric CdTe and CdZnTe de-tectors to safeguards measurements are described in[22]

IV.H IGH RESOLUTION C D T E DIODE AND ITS APPLICATION

TO THE STACK DETECTOR

The theoretical energy resolution of CdTe can be calculated from statistical?uctuations in the number of electron-hole pairs and the Fano factor(F)[23].By using?=4.5eV and F=0.15, the theoretical limit(FWHM)is200eV at10keV,610eV at 100keV,and1.5keV at600keV[30],if we could neglect elec-tronic noise.These resolutions are very attractive for applica-tions in astrophysics,where precise determinations of the central energy and the pro?le of X-ray andγ-ray lines are crucial[24]. For obtaining the ultimate energy resolution from the CdTe and CdZnTe detectors,collecting full information given by the tran-sit of both electrons and holes is important.Fig.7is the result of simulations showing that high bias voltage is important.In order to obtain a FWHM of700eV at the122keV line from 57Co,a bias voltage of1400V should be applied for a detector with a thickness of0.5mm forμhτh=1×10?4cm2/V.The thin CdTe device has an advantage over the thick one because suf?-cient bias voltage for full charge collection can be easily applied. Detectors with very low leakage current that allow such a high bias voltage have been developed by several groups thorough the use of diode structure either by a blocking electrode or PIN structure[24],[25],[26].

Takahashi et al.reported a signi?cant improvement in the spectral properties of CdTe detectors based on the advances made in the production of high quality CdTe single crystals[24],

Fig.8

241A M SPECTRA OBTAINED WITH THE C D T E DIODE DESCRIBED IN [24].

T HE ENERGY RESOLUTION AT60KE V IS0.83KE V(FWHM).T HE

DETECTOR HAS A SURFACE SIZE OF2MM×2MM AND A THICKNESS OF

0.5MM.T HE TIME CONSTANT OF THE SHAPING AMPLIFIER IS2μS.

[27],[28].The basic idea is to utilize indium as the anode elec-

trode on the Te-face of the p-type CdTe wafer with(1,1,1)orien-

tation[29].A high Schottky barrier formed on the In/p-CdTe in-

terface leads us to the operation of the detector as a diode(CdTe

diode).The leakage current of the2mm×2mm×0.5mm

detector was0.7nA with a bias voltage of400V at20?C(Fig.

4).

Fig.8shows the energy spectrum ofγ-rays from241Am ob-

tained with the CdTe diode.A bias voltage of1400V(internal

electric?eld of E=28kV/cm)was applied and the operating

temperature was?40?C.The FWHM of the59.5keV line

is0.83keV corresponding to an energy resolution(?E/E)of

1.4%.This is close to the energy resolution of HP-Ge detectors

cooled to liquid nitrogen temperature.The reduction of the low

energy tail even in the662keV line from137Cs results in a reso-

lution of2.1keV(0.3%),which is consistent with the theoretical

prediction[30].The improvement of the energy resolution by

adopting the Schottky junction is drastic,but the gain and reso-

lution degrade with time during room temperature operation.It

is reported that both a high electric?eld of several kV cm?1and

a low operating temperature(below several?C)ensure stability

on time scales longer than weeks[27].

An energy resolution of≤1%at a high photon energy of sev-

eral hundred keV under moderate operating conditions is very

attractive in high energy astrophysics.However,good energy

resolution with a thick CdTe diode will be dif?cult to achieve as

the bias voltage required for complete charge collection scales

with the second power of the detector thickness.We,therefore,

adopted the idea of a stacked detector(Fig.9),in which several

thin CdTe diodes are stacked together and operated as a single

detector.

Fig.10shows the comparison between the energy spectrum

of133Baγ-rays obtained from a2mm thick planar CdZnTe de-

tector and that from the?rst four layers of the stack detector

which consists of12layers with a thickness of0.5mm,both op-

Fig.9

T HE STACKED C D T E DIODE.T WELVE C D T E DIODES WITH DIMENTSIONS

OF5MM×5MM×0.5MM ARE STACKED TOGETHER.T HE OUTPUT FROM

EACH DIODE WAS FED INTO AN INDIVIDUAL READOUT ELECTRONICS

SYSTEM,WHICH WERE OPERATED IN ANTI-COINCIDENCE(FROM[24].

erated at5?C.The applied voltages are300V for the CdZnTe

detector(E=1.5kV/cm)and400V for each layer of the stack

detector(E=8kV/cm).It is clearly shown that the peak to

valley ratio at300keV is much superior for the stacked CdTe

diode as compared to the2mm thick CdZnTe detector.This ap-

proach is particularly useful for energies below300keV,where

the dominance of photoelectric attenuation leads to single-site

absorption in a single layer.Whenγ-rays with an energy of300

keV are irradiated onto a2mm thick detector,9%of photons

deposit all their energy in the detector.Among them,75%are

stopped by a single photoabsorption.For a6mm thick detector

(12layers),44%and17%of the incident photons are stopped

by a single photoabsorption for200keV and300keVγ-rays,

respectively.

V.N OVEL E LECTRODE DESIGN FOR SINGLE CARRIER

CHARGE COLLECTION

In order to use CdTe and CdZnTe for the detection ofγ-rays

with energy higher than several hundred keV,the ef?ciency of a

thick(>5mm)detector is necessary.However,application of a

simple planar electrode con?guration seems to be dif?cult,be-

cause the required bias voltage to eliminate low energy tail at the

level to achieve a few keV resolution must be higher than a few

hundred kV.Soon after the emergence of HPB-grown CdZnTe,

new ideas based on the concept of single charge collection have

been proposed[31],[32],[34].These ideas utilize techniques to

form strip or pixel electrodes on the surface of the material and

to process many channels by means of high-density analog LSI

in the form of ASICs.Here we summarize some highlights of

the development of these novel electrode designs.

A.Coplanar grids

The idea of using the effects of Frisch grid found in gas and

liquid detectors was proposed by Luke in1994.In this method,

Fig.10

T HE COMPARISON BETWEEN THE ENERGY SPECTRUM OF 133B A γ-RAYS OBTAINED (A )FROM A 2MM THICK PLANAR C D Z N T E DETECTOR AND (B )

FROM THE FIRST FOUR LAYERS OF THE STACK DETECTOR WITH A TOTAL THICKNESS OF

2MM .A N ASYMMETRY NOTICED IN THE LINE SHAPE OF

THE STACKED DETECTOR ABOVE 250KE V IS DUE TO THE FACT THAT A BIAS VOLTAGE OF 400V IS STILL NOT SUFFICIENT FOR FULL CHARGE

COLLECTION .

an anode consisting of a pair of interleaved grids (Coplanar grid)is formed on a surface of the detector,as shown in Fig.11.A different bias is applied to each set of electrodes.This poten-tial difference is small compared to the overall potential across the detector.When electrons and holes move within the bulk material of the detector,they induce equal signals on both grid electrodes.When the electrons come close to the anode plane,the signal of the grid with the higher potential rises steeply.A net signal,which is obtained by subtracting the signals from the two grids,is sensitive to primarily to the electron signal (single polarity charge sensing).Since the depth dependent signal due to the movement of holes is subtracted,the low energy tail in the spectrum can be eliminated.The

dramatic improvement by the coplanar grid is demonstrated in Fig.12[35].

Fig.11

E LECTRODE CONFIGURATION O

F COPLANAR ELECTRODES

Fig.12

S PECTRA OF 137C S OBTAINED WITH THE

C D Z N T E DETECTOR (A )IN ITS

STANDARD CONFIGURATION AND (B )IN THE COPLANAR GRID

CONFIGURATION .T HE DIMENSIONS OF THE DETECTOR ARE 5×5×MM 3.T HE APPLIED BIAS VOLTAGE IS 500V AND THE PEAKING TIME OF THE

SHAPING AMPLIFIER WAS SET AT 2μS (TAKEN FROM [31])

B.Small pixels and control electrode

It has long been recognized that reducing the size of the elec-trode collecting the higherμτcarriers can potentially eliminate the low-energy tail by effectively achieving single-carrier charge collection through the”near-?eld effect”.Barret et al have shown that,if the pixel size is small in comparison with the de-tector thickness and the pixel electrode is biased to collect elec-trons,the incomplete charge collection due to severe hole trap-ping can be dramatically improved,because the induced charge on each pixel anode

is dominated by the number of electrons collected by the anode[32].For nuclear medicine applications, Barber et al.applied the idea of”small pixel effects”to a large CdZnTe array with a pixellated electrode produced on one side of the detector slab by photolithography that is bump bonded to a readout integrated circuit which reads out each pixel individu-ally[33].A64×64(2.5cm×2.5cm)CdZnTe arrays with380μm pitch has been constructed and tested by Barber et al.[50]. Pixel detectors with a pixel size of several hundred to a few mm have been developed by several groups.Optimum spectroscopic performance with electrode segmentation is discussed in[36]. Recently,Butler has proposed a new concept based on a con-trol electrode in addition to a cathode and small anode[34].The control electrode surrounds the anode pixel and accepts a large fraction of the charges induced by the carriers while they are

in transit.Similar to the effect of a coplanar grid,almost the full charge of the mobile electrons is induced on the anode. Mayer et al.extended this concept and developed an imaging device with orthogonal coplanar anodes(Fig.13)[37].The sig-nals induced on the strips are used to determine the interaction position in one dimension.The position information in the y-direction is inferred from the pixels which are interconnected to the strips.This electrode con?guration provides information of n2pixels with2n channels and reduces the complexity of the readout electronics.The energy resolution(FWHM)obtained from the detector is3.42keV at60keV and5.6keV at662keV.

C.3-D position sensitive semiconductor detector

In addition to signals from strips or pixels formed on the anode face,information from the cathode(common electrode) can be used to obtain theγ-ray interaction depth.The inter-action depth provide a correction for the electron path length and the trapping which are important for thick detectors(~1 cm).He et al.have performed extensive studies on this possi-bility[38],[39].The?st3-D position-sensitive semiconductor detector with CdZnTe yielded an energy resolution of10keV at 662keV and a depth resolution of0.5mm.Results from a sec-ond generation12.5×12.5×10mm3CdTe detector are reported in[40].

VI.A PPLICATION TO H ARD X-RAY ANDγ-RAY MISSION Hard X-rays andγ-rays are an important frequency window for expoloring the energetic universe.The CGRO satellite has revealed us the fact that a variety of gamma-ray sources exist in the sky[41].However,when compared with X-ray Astron-omy,gamma-ray astronomy is still immature;the sensitivity of instruments are far from the level achieved by the current X-ray missions employing focusing telescopes in the energy band be-

Fig.13

T HE ANODE GEOMETRY OF A C D Z N T E IMAGING DETECTOR WITH

COPLANAR GRID AND CONTROL ELECTRODE.T HE VERTICAL STRIPS MEASURE THE x-POSITION WHILE THE LINES OF INTERCONNECTED PIXEL

PROVIDES THE y-MEASUREMENT[37]

low10keV.Gamma-ray instruments in the21st century should provide much improved angular and spectral resolution over the instruments in use today.Cadmium Telluride(CdTe)and Cad-mium Zinc Telluride(CdZnTe)solid state detectors have several promising features which make them instruments for use as a fo-cal plane imager of a multi-layer grazing incidence mirror or a coded mask aperture for the next generation of hard X-ray and γ-ray astronomy satellites.

A.INTEGRAL

The IBIS detector on board ESA’s INTEGRAL will be the ?rst space instrument that utilizes the good spectral resolution of CdTe.Major objectives of the mission are the detection and precise identi?cation ofγ-ray line spectra to study the high en-ergy processes and resulting nuclear interactions taking place at astrophysical sites.The detector consists of two layers of pixel-lated detector planes separated~10cm and operated as a focal plane detector of a coded mask aperture.The top layer detector plane is made of16384square CdTe detectors(4×4×2mm3) ,which gives a total sensitive area of2621cm2.The detector is divided into eight rectangular modules of128polycells,each polycell containing16detector pixels.In order to improve the energy resolution of the CdTe detector,a pulse height correction scheme is implemented by a specially designed ASIC.Accord-ing to the measurement of a prototype detector for IBIS[42],

Fig.14

C UT AWAY DRAWING OF THE BAT INSTRUMENT ONBOAR

D S WIFT SATELLITE.T H

E D-SHAPED CODED APERTURE MASK IS3M2WITH5MM PIXELS.T HE C D Z N T E ARRAY CONSISTS OF32768C D Z N T E DETECTORS WITH DIMENSITONS OF4MM×4MM×2MM.G RADED-Z

SHIELDING REDUCES THE BACKGROUND DUE TO COSMIC DIFFUSE EMISSION[43],[44]

spectral resolution of around4.5keV(FWHM)is obtained for the122keV line.The average mobilities are measured to be 946±50cm2V?1s?1for electrons and79.5±9cm2V?1s?1for holes while the average lifetime is reported to be1.2±0.1μs for electrons and4.6±0.2μs for holes.

B.Swift

Swift is a?rst of its kind multiwavelength transient observa-tory forγ-ray burst(GRB)astronomy,due to be launched in 2003.The BAT instrument on Swift is designed to provide the critical GRB trigger and quickly measure the burst position to better than4arcmin[43],[44].Since the energy emission from GRBs peaks at a few100keV,the BAT utilizes32768CdZnTe detector with dimensions of4×4×2mm3to form a1.2m×0.6 m sensitive area in the detector plane.There are256detector module(DM)in the BAT.One DM consists of8×16array of CdZnTe elements,which are connected to a128channel read-out ASIC(XA chip[45]).

C.Future Approach

For future X-ray astronomy missions,one of the main objec-tives is observation with a very high sensitivity in the10-100 keV band,where non-thermal emission becomes dominant over thermal emission[24].This could be achieved by employing a multi-layer,grazing incidence hard X-ray telescope(“super mir-ror”)in conjunction with a hard X-ray imaging detector as a fo-cal plane detector.The current goal for the imaging detector is a CdTe or CdZnTe pixel detector with both a?ne position resolu-tion of a few100μm and a high energy resolution better than1 keV(FWHM)in this energy range.In order to cover the?eld of view of the telescope,the detector should have an area of sev-eral cm2.Fast timing of several hundred ns will be required for the active shielding,which would be necessary to achieve a low background environment in space.

Fig.15

R ADIOGRAPHIC IMAGE OF AN OBJECT MADE OF SOLDERING WIRE IRRADIATED BYγ-RAYS FROM241A M OBTAINED WITH THE32×32C D T E PIXEL DETECTOR COVERING6.8MM×6.8MM AT ROOM TEMPERATURE.

T HE PIXEL SIZE IS200μM×200μM.

Research and development projects toward these goals are now under way by several groups[17],[46],[30],[47].To real-ize?ne pitch(?ner than several hundred microns)CdTe and/or CdZnTe pixel detectors,good detector material and low noise ampli?ers and a readout system for more than10,000indepen-dent channels will be the key technology.A simple and robust connection technology needs to be established,because high compression and/or high ambient temperature would damage the CdTe and CdZnTe crystal.Fig.15shows the radiograpic im-age obtained with?ne pixel detectors developed under the col-laboration between Bonn Universty and ISAS[48].The size of the pixels is200μm×200μm.They are directly bump bonded to a two-dimensional photon counting ASIC(MPEC2)by using newly developed gold-stud bump bonding technology[30].

In addition to pixel detectors,a large area array(~5000cm2) consisting of strips has been reported in[49].The detector is a 6×6array of CdZnTe strip detectors.Orthogonal patterns are imprinted on the top and bottom sides of each detector.With strips separated by100μm,a spatial resolution of<50μm has been demonstrated.

VII.C ONCLUSION

Owing to the signi?cant progress in producing high quality CdZnTe and CdTe crystals,these materials are now regarded as “serious”candidates for the next generation of hard X-ray and γ-ray detectors.Applications to nuclear medicine are reviewd in[50],[6],[16].Good energy resolution better than1keV is achieved for60keVγ-rays by the diode structure for a thin de-tector.A novel electrode con?guration solves the problem of incomplete charge collection for the detection of high energyγ-rays with a thick detector.As discussed by Fougeres et al.[19], the choice between CdTe and CdZnTe is still very dif?cult to make.There is still some room for improvements for real ap-

plications.These include the production of large and uniform single crystals,especially for the HPB-grown CdZnTe,and the bump technology speci?c to“fragile”CdTe and CdZnTe.The cost of the material is still high for a large scaleγ-camera.Fur-ther advances in application-speci?c integrated circuits(ASICs) are necessary for the fabrication of?ne-pitch pixel detectors. Extensive studies currently underway by many laboratories will boost the further advances of of these interesting materials.

VIII.A CKNOWLEDGMENT

We acknowledge constructive discussion with R.Ohno and C.Szeles.We thank G.Sato,M.Kouda,Y.Okada for the help of experiments and M.D.Audley for his critical reading of the manuscript.

R EFERENCES

[1]M.Richter and P.Siffert,“High resolution gamma ray spectroscopy,”

Nucl.Instr.Meth.,vol.A322,pp.529-537,1992.

[2]P.Siffert,“Cadmium telluride and related materials as X-and gamma-ray

detectors:A review of recent progress,”Proc.SPIE,vol.2305,pp.98-109,1994.

[3]Y.Eisen,“Current state-of-the-art industrial and research applications us-

ing room-temperature CdTe and CdZnTe solid state detectors,”Nucl.Instr.

Meth.,vol.A117,pp.431-439,1974.

[4] F.L.Augustine,“High resolution gamma ray spectroscopy,”Nucl.Instr.

Meth.,vol.A353,pp.201,1994.

[5]P.Weilhammer, A.Nygrad,W.Dulinski, A.Czermak, F.Djama,S.

Gadomski,S.Roe,A.Rudge,F.Schopper,J.Strobel,“Si pad detectors,”

Nucl.Instr.Meth.,vol.A383,pp.89-97,1996.

[6] C.Scheiber,“CdTe and CdZnTe gamma ray detectors in nuclear

medicine,”Nucl.Instr.Meth.,vol.A448,pp.513-524,2000.

[7]J.S.Iwanczyk,B.E.Patt,Y.J.Wang,A.Kh.Khusainov,“Comparison of

HgI2,CdTe,and Si(p-i-n)X-ray detectors,”Nucl.Instr.Meth.,vol.A380, pp.186-192,1996.

[8]W.Bencivelli,E.Bertoulucci,U.Bottigli,A.Del Guerra,A.Messineo,

W.R.Nelson,P.Randaccio,et al.,“Evaluation of elemental and com-pound semiconductors for X-ray digital radiography,”Nucl.Instr.Meth., vol.A310,pp.210-214,1991.

[9]Geant4,available from http:wwwinfo.cern.ch/asd/geant4/geant4.html

[10] F.P.Doty,J.F.Butler,J.F.Schetzina,and K.A.Bowers,“Properties of

CdZnTe crystals grown by a high pressure Bridgman method,”J Vac.Sci.

Technol.,vol.B10,pp.1418-1422,1992.

[11]J.F.Butler,C.L.Lingren and F.P.Doty“Cd1?x Zn x Te Gamma-ray Detec-

tors,”IEEE Trans.Nucl.Sci.,vol.39,4,pp.605-609,1992.

[12] C.Szeles,M.C.Driver,“Growth and properties of semi-insulating CdZnTe

for radiation detector applications,”Proc.SPIE,vol.3446,pp.1-8,1998.

[13]J.E.Toney,T.E.Schlesinger,and R.B.James,“Optimal bandgap variants

of Cd1?x Zn x Te for high-resolution X-ray and gamma-ray spectroscopy,”

Nucl.Instr.Meth.,vol.A428,pp.14-24,1999.

[14] C.Szeles,E.E.Eissler,D.J.Reese,S.E.Cameron,“Radiation Detector

Performance of CdTe Single Crystals Grown by the Conventional Vertical Bridgman Technique,’Proc.SPIE,vol.3768,pp.98-107,1999.

[15] A.Burger,K.Chattopadhyay,H.Chen,X.Ma,J-O.Ndap,M.Scheiber,et

al.,“Defects in CZT crystals and their relationship to gamma-ray detector performance,”Nucl.Instr.Meth.,vol.A448,pp.586-590,2000.

[16]Y.Eisen,A.Shor,I Mardor,“CdTe and CdZnTe gamma ray detectors for

medical and industrial imaging system,”Nucl.Instr.Meth.,vol.A428,pp.

158-170,1999.

[17] C.M.Stahle,B.H.Parker,A.M.Parsons,L.M.Barbier,S.D.Barthelmy,

N.A.Gehrels,D.M.Palmer,S.J.Snodgrass and J.Tuller,“CdZnTe and CdTe detector array for hard X-ray and gamma-ray astronomy,”Nucl.In-str.Meth.,vol.A436,pp.138-145,1999.

[18]M.Funaki,T.Ozaki,K.Satoh,and R.Ohno,“Growth and Characteriza-

tion of CdTe Single Crystal for Radiation Detectors,”Nucl.Instr.Meth., vol.A436,pp.120-126,1999.

[19]P.Fougeres,P.Siffert,M.Hageali,J.M.Koebel,R.Regal,“CdTe and

Cd1?x Zn x Te for nuclear detector:facts and?ctions,”Nucl.Instr.Meth., vol.A428,pp.38-44,1999.

[20]K.Hecht,”Zum Mechanismus des lichtelektrischen Prim¨a rstromes in

isolierenden Kristallen,”Zeits,Phys.,vol.77,p.235,1932.

[21]Chr.Bargoltz,E.Fumero,and L.Martensson,“Model-based pulse shape

correction for CdTe detectors,”Nucl.Instr.Meth.,vol.A434,pp.399-411, 1999.[22]R.Arlt and D.E.Rundquist,“Room temperature semiconductor detectors

for safeguards measurements,”Nucl.Instr.Meth.,vol.A380,pp.455-461, 1996.

[23]G.F.Knoll,Radiation Detection and Measurement.3rd ed.,John Wiley&

Sons Inc.,New York,2000.

[24]T.Takahashi,B.Paul,K.Hirose,C.Matsumoto,R.Ohno,T.Ozaki,K.

Mori,and Y.Tomita“High-resolution Schottky CdTe diode for hard X-ray and gamma-ray astronomy,”Nucl.Instr.Meth.,vol.A436,pp.111-119, 1999.

[25]R.Arlt,V.Ivanov,and A.Khusainov,“Advances in High-Resolution CdTe

and Large V olume CdZnTe Detectors,”Proc.SPIE,vol.3115,pp.76-89, 1994.

[26]M.Niraula,D.Mochizuki,T.Aoki,Y.Hatanaka,Y.Tomita,T.Nihashi,

“Improved spectrometric performance of CdTe radiation detectors in a p-i-n design,”Appl.Phys.Lett.,vol.75,15,pp.2322-2324,1999.

[27]T.Takahashi,K.Hirose,C.Matsumoto,K.Takizawa,R.Ohno,T.Ozaki,

K.Mori,and Y.Tomita“Performance of a New Schottky CdTe Detector for Hard X-ray Spectroscopy,”Proc.SPIE,vol.3446,pp.29-37,1998. [28] C.Matsumoto,T.Takahashi,K.Takizawa,R.Ohno,T.Ozaki,and K.Mori

“Performance of a New Schottky CdTe Detector for Hard X-ray Spec-troscopy,”IEEE Trans.Nucl.Sci.,vol.45,pp.428-432,1998.

[29]T.Ozaki,Y.Iwase,H.Takamura,and M.Ohmori,“Thermal treatment of

CdTe surfaces for radiation detectors,”Nucl.Instr.Meth.,vol.A380,pp.

141-144,1996.

[30]T.Takahashi,S.Watanabe,M.Kouda,G.Sato,S.Kubo,Y.Kuroda et al.,

“High Resolution CdTe Detector and Applications to Imaging Devices,”

IEEE Trans.Nucl.Sci.2001in press.

[31]P.N.Luke,“Single-polarity charge sensing in ionization detectors using

coplanar electrodes,”Appl.Phys.Lett.vol.65pp.2884-2886,1994. [32]H.H.Barrett,J.D.Eskin,H.B.Barber,“Charge Transport in Arrays of

Semiconductor Gamma-Ray Detector,”Phys.Rev.Lett.,vol.75,pp.156-159,1995.

[33]H.B.Barber,D.G.Marks,B.A.Apotovsky,F.L.Augustine,H.H.Barret,

J.F.Butler,E.L.Dereniak,et al.,“Progress in developing focal-plane-multiplexer readout for large CdZnTe arrays for nuclear medicine appli-cations,”Nucl.Instr.Meth.,vol.A380,pp.262-265,1996.

[34]J.F.Butler,“Novel electrode design for single-carrier charge collection in

semiconductor nuclear detectors,”Nucl.Instr.Meth.,vol.A396,pp.427-430,1997.

[35]P.N.Luke,“Electrode con?guration and energy resolution in gamma-ray

detector,”Nucl.Instr.Meth.,vol.A380,pp.232-237,1996.

[36] A.Shor,Y.Eisen,and I.Mardor,“Optimum spectroscopic performance

from CZTγ-and X-ray detectors with pad and strip segmentation,”Nucl.

Instr.Meth.,vol.A428,pp.182-192,1999.

[37]M.L.McConnel,J.R.Macri,J.M.Ryan,https://www.360docs.net/doc/812404376.html,rson,L.-A.Hamel,G.

Bernard et al.,“Three-dimensional imaging and detection ef?ciency per-formance of orthogonal coplanar CZT strip detectors,”Proc.SPIE,vol.

4141,pp.157-167,2000.

[38]Z.He,“1-D position sensitive single carrier semiconductor detectors,”

Nucl.Instr.Meth.,vol.A380,pp.228-231,1996.

[39]Z.He,W.Li,G.F.Knoll,D.K.Wehe,J.Berry,C.M.Stahle,“3-D posi-

tion sensitive CdZnTe gamma-ray spectrometers,”Nucl.Instr.Meth.,vol.

A422,pp.173-178,1999.

[40]W.Li,Z.He,G.F.Knoll,and D.K.Wehe,“Interaction Depth in

CdTe/CdZnTe Spectrometers by Electron Drift Time,”submitted to IEEE Trans.Nucl.Sci.2001.

[41]N.Gehrels and J.Paul,“The new gamma-ray astronomy,”Physics Today,

vol.51,no2,pp.26-32,1998.

[42]O.Limousing,C.Blondel,J.Cretolle,H.Dzitko,https://www.360docs.net/doc/812404376.html,urent,F.Lebrun,

J.P.Leray,et al.“The ISGRI CdTe gamma-ray camera?rst steps,”Nucl.

Instr.Meth.,vol.A442,pp.244-249,2000.

[43]N.Gehrels,“The Swift Gamma Ray Burst MIDEX,”SPIE,vol.4140,pp.

42-49,2000.

[44]S.D.Barthelmy,“The Burst Alert Telescope(BAT)on the Swift MIDEX

mission,”SPIE,vol.4140,pp.50-63,2000.

[45]Integrated Detector and Electronics AS,Norway,http://www.ideas.no

[46]J.L.Matteson,F.Duttweiler,G.L.Huszar,P.C.Leblanc,R.E.Skelton,E.A.

Stephan et al.,“Position-sensitive CZT detector module,”SPIE,vol.3446, pp.192-2011998.

[47]V.V.Sushkov,W.J.Hamilton,K.Hurley,D.G.Maeding,H.Ogelman,R.J.

Paulos,et al.“Preliminary Test Results of a New High Energy Resolution Silicon&CdZnTe Pixel Detectors for Application to X-ray Astronomy,”

SPIE,vol.3765,pp.379-3871999.

[48]P.Fischer,M.Kouda,H.Krueger,M.Lindnera,G.Sato,T.Takahashi,

S.Watanabe,and N.Wermes,“A Counting CdTe Pixel Detector for Hard X-ray Imaging,”submitted to IEEE Trans.Nucl.Sci.2001.

[49] C.M.Stahle,Z.Q.Shi,K.Hu,S.D.Barthlmy,S.J.Sodgrass,L.M.Barlett

et al.,“Fabrication of CdZnTe strip detectors for large area arrays,”Proc.

SPIE,vol.3115,pp.90-97,1997.

[50]H.B.Barber,“Applications of semiconductor detectors to nuclear

medicine,”Nucl.Instr.Meth.,vol.A436,pp.102-111,1999.

磁控溅射法制备薄膜材料综述

磁控溅射法制备薄膜材料综述 摘要薄膜材料的厚度是从纳米级到微米级,具有尺寸效应,在国防、通讯、航空、航天、电子工业等领域有着广泛应用,其有多种制造方法,目前使用较多的是溅射法,其中磁控溅射的应用较为广泛。本文主要介绍了磁控溅射法的原理、特点,以及制备过程中基片温度、溅射功率、溅射气压和溅射时间等工艺条件对所制备薄膜性能的影响。 关键字磁控溅射;原理;工艺条件;影响 Brief Introduction to Thin Films by Magnetron Sputtering Abstract: The thickness of thin films is from the nano to the micron level.With its size effect, the films are widely used in the defense, telecommunication, aviation, aerospace, electronics and other fields.It can be prepared by many ways,of which the sputtering is used mostly.And magnetron sputtering is popular.The principle and characteristics of magnetron sputtering, and how substrate temperature, sputtering power, sputtering pressure and sputtering time influence the the properties of the films during the preparing process are introduced in this paper. Key Words: magnetron sputtering; principles; conditions; lnfluence 1 引言 薄膜是指尺度在某个一维方向远远小于其他二维方向,厚度可从纳米级到微 米级的材料,由于薄膜的尺度效应,它表现出与块体材料不同的物理性质,有广 泛应用。薄膜的制备大致可分为物理方法和化学方法两大类[1]。物理方法主要包 括各种不同加热方式的蒸发,溅射法等,化学方法则包括各种化学气相沉积 (CVD)、溶胶-凝胶法(sol-gel)等。 溅射沉积法由于速率快、均一性好、与基片附着力强、比较容易控制化学剂 量比及膜厚等优点,成为制备薄膜的重要手段。溅射法根据激发溅射离子和沉积 薄膜方式的不同又分直流溅射、离子溅射、射频溅射和磁控溅射,目前多用后两 种。本文主要介绍磁控溅射制备薄膜材料的原理及影响因素。 2 磁控溅射法 2.1磁控溅射基本原理

三种主要的薄膜太阳能电池详解

三种主要的薄膜太阳能电池详解 摘要:上述电池中,尽管硫化镉薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。 关键字:薄膜太阳能电池, 砷化镓, 单晶硅电池 单晶硅是制造太阳能电池的理想材料,但是由于其制取工艺相对复杂,耗能大,仍然需要其他更加廉价的材料来取代。为了寻找单晶硅电池的替代品,人们除开发了多晶硅,非晶硅薄膜太阳能电池外,又不断研制其它材料的太阳能电池。其中主要包括砷化镓III-V族化合物,硫化镉,碲化镉及铜锢硒薄膜电池等。来源:大比特半导体器件网 上述电池中,尽管硫化镉薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。来源:大比特半导体器件网 砷化镓太阳能电池 GaAs属于III-V族化合物半导体材料,其能隙为 1.4eV,正好为高吸收率太阳光的值,与太阳光谱的匹配较适合,且能耐高温,在250℃的条件下,光电转换性能仍很良好,其最高光电转换效率约30%,特别适合做高温聚光太阳电池。砷化镓生产方式和传统的硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆的直径通常为4—6英寸,比硅晶圆的12英寸要小得多。磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品IC成本比较高。磊晶目前有两种,一种是化学的MOCVD,一种是物理的MBE。GaAs等III-V化合物薄膜电池的制备主要采用MOVPE和LP E技术,其中MOVPE方法制备GaAs薄膜电池受衬底位错,反应压力,III-V比率,总流量等诸多参数的影响。GaAs(砷化镓)光电池大多采用液相外延法或MOCVD技术制备。用GaAs作衬底的光电池效率高达29.5%(一般在19.5%左右) ,产品耐高温和辐射,但生产成本高,产量受限,目前主要作空间电源用。以硅片作衬底,MOCVD技术

非晶硅薄膜太阳能电池及制造工艺

非晶硅薄膜太阳能电池及制造工艺 一、非晶硅薄膜太阳能电池结构、制造技术简介 1、电池结构 分为:单结、双结、三结 2、制造技术 ①单室,多片玻璃衬底制造技术。主要以美国Chronar、APS、EPV公司为代表 ②多室,双片(或多片)玻璃衬底制造技。主要以日本KANEKA公司为代表 ③卷绕柔性衬底制造技术(衬底:不锈钢、聚酰亚胺)。主要以美国Uni-Solar 公司为代表。 所谓“单室,多片玻璃衬底制造技术”就是指在一个真空室内,完成P、I、N 三层非晶硅的沉积方法。 作为工业生产的设备,重点考虑生产效率问题,因此,工业生产用的“单室,多片玻璃衬底制造技术”的非晶硅沉积,其配置可以由X个真空室组成(X为≥1的正整数),每个真空室可以放Y个沉积夹具(Y为≥1的正整数),例如:?1986年哈尔滨哈克公司、1988年深圳宇康公司从美国Chronar公司引进的内联式非晶硅太阳能电池生产线中非晶硅沉积用6个真空室,每个真空室装1个分立夹具,每1个分立夹具装4片基片,即生产线一批次沉积6×1×4=24片基片,每片基片面积305mm×915mm。 ?1990年美国APS公司生产线非晶硅沉积用1个真空室,该沉积室可装1个集成夹具,该集成夹具可装48片基片,即生产线一批次沉积1×48=48片基片,每片基片面积760mm×1520mm。 ?本世纪初我国天津津能公司、泰国曼谷太阳公司(BangKok Solar Corp)、泰国光伏公司(Thai Photovoltaic Ltd)、分别引进美国EPV技术生产线,非晶硅沉积也是1个真空室,真空室可装1个集成夹具,集成夹具可装48片基片,即生产线一批次沉积1×48=48片基片,每片基片面积635mm×1250mm。 ?国内有许多国产化设备的生产厂家,每条生产线非晶硅沉积有只用1个真空室,真空室可装2个沉积夹具,或3个沉积夹具,或4个沉积夹具;也有每条生产线非晶硅沉积有2个真空室或3个真空室,而每个真空室可装2个沉积夹具,或3个沉积夹具。总之目前国内主要非晶硅电池生产线不管是进口还是国产均主要是用单室,多片玻璃衬底制造技术,下面就该技术的生产制造工艺作简单介绍。 二、非晶硅太阳能电池制造工艺 1、内部结构及生产制造工艺流程 下图是美国Chronar公司技术为代表的内联式单结非晶硅电池内部结构示意图:图1、内联式单结非晶硅电池内部结构示意图

神通数据库参数配置工具手册

神通数据库 参数配置工具手册 版本6.0 天津神舟通用技术有限公司 2010年1月

版权声明 神通数据库是天津神舟通用技术有限公司开发的数据库管理系统软件产品。神通数据库的版权归天津神舟通用技术有限公司,任何侵犯版权的行为将追究法律责任。 《神通数据库SQL语言参考手册》的版权归天津神舟通用技术有限公司所有。 未经天津神舟通用技术有限公司的书面准许,不得将本手册的任何部分以任何形式、采用任何手段(电子的或机械的,包括照相复制或录制)、或为任何目的,进行复制或扩散。 (c)Copyright 2010 天津神舟通用技术有限公司。版权所有,翻制必究。 天津神舟通用技术有限公司不对因为使用该软件、用户手册或由于该软件、用户手册中的缺陷所造成的任何损失负责。

阅读指南 〖阅读对象〗 本手册是为使用神通数据库管理系统的用户编写的。使用神通数据库的用户在安装神通数据库之前应当认真阅读本手册,以便熟悉安装程序的使用,进行神通数据库管理系统的安装。 〖内容简介〗 本手册介绍了如何使用神通数据库系统参数配置工具对神通数据库运行参数进行配置,目的是让用户该工具有一个全面的了解,方便用户配置神通数据库参数。 神通数据库系统参数配置工具采用Java语言编写,具有跨平台性,可以在Windows 、Linux 等多种系统平台上运行,用户在一个操作系统平台上熟悉了该工具的使用后,可以很容易的在其他系统平台上使用该工具。 〖相关文档〗 使用本手册时可以参考神通数据库的手册集,手册集包含以下文档: 《神通数据库安装手册》 《神通数据库备份恢复工具使用手册》 《神通数据库DBA管理工具使用手册》 《神通数据库系统管理员手册》 《神通数据库嵌入式SQL语言手册》 《神通数据库交互式SQL查询工具使用手册》 《神通数据库JDBC开发指南》 《神通数据库过程语言手册》 《神通数据库OLEDB/ADO用户手册》 《神通数据库迁移工具使用手册》 《神通数据库ODBC程序员开发指南》 《神通数据库审计管理》 《神通数据库审计工具使用手册》 《神通数据库性能监测工具使用手册》 《神通数据库作业调度工具使用手册》 〖手册约定〗 本手册遵循以下约定: 所有标题均使用黑体字。 如果标题后跟有“【条件】”字样,说明该标题下正文所要求的内容只是在一定条件下必须的。 【注意】的意思是请读者注意那些需要注意的事项。 【警告】的意思是请读者千万注意某些事项,否则将造成严重错误。 【提示】的意思是提供给读者一些实用的操作技巧。

用磁控溅射制备薄膜材料的概述

用磁控溅射制备薄膜材料的概述 1.引言 溅射技术属于PVD(物理气相沉积)技术的一种,是一种重要的薄膜材料制备的方法。它是利用带电荷的粒子在电场中加速后具有一定动能的特点,将离子引向欲被溅射的物质制成的靶电极(阴极),并将靶材原子溅射出来使其沿着一定的方向运动到衬底并最终在衬底上沉积成膜的方法。磁控溅射是把磁控原理与普通溅射技术相结合利用磁场的特殊分布控制电场中的电子运动轨迹,以此改进溅射的工艺。磁控溅射技术已经成为沉积耐磨、耐蚀、装饰、光学及其他各种功能薄膜的重要手段。 2.溅射技术的发展 1852年,格洛夫(Grove)发现阴极溅射现象,从而为溅射技术的发展开创了先河。采用磁控溅射沉积技术制取薄膜是在上世纪三四十年代开始的,但在上世纪70年代中期以前,采蒸镀的方法制取薄膜要比采用磁控溅射方法更加广泛。这是凶为当时的溅射技术140刚起步,其溅射的沉积率很低,而且溅射的压强基本上在lpa以上但是与溅射同时发展的蒸镀技术由于其镀膜速率比溅射镀膜高一个数量级,使得溅射镀膜技术一度在产业化的竞争中处于劣势溅射镀膜产业化是在1963年,美国贝尔实验室和西屋电气公司采用长度为10米的连续溅射镀膜装置,镀制集成电路中的钽膜时首次实现的。在1974年,由J.Chapin发现了平衡磁控溅射后,使高速、低温溅射成为现

实,磁控溅射更加快速地发展起来。 溅射技术先后经历了二级、三级和高频溅射。二极溅射是最早采用,并且是目前最简单的基本溅射方法。二极溅射方法虽然简单,但放电不稳定,而且沉积速率低。为了提高溅射速率以及改善膜层质量,人们在二极溅射装置的基础上附加热阴极,制作出三极溅射装置。 然而像这种传统的溅射技术都有明显的缺点: 1).溅射压强高、污染严重、薄膜纯度差 2).不能抑制由靶产生的高速电子对基板的轰击,基片温升高、淀积速率低 3).灯丝寿命低,也存在灯丝对薄膜的污染问题 3.磁控溅射的原理: 磁控溅射就是以磁场束缚和延长电子的运动路径,改变电子的运动方向,提高工作气体的电离率和有效利用电子的能量。具有低温、高速两大特点。 电子在加速的过程中受到磁场洛仑兹力的作用,被束缚在靠近靶面的等离子体区域内: F=-q(E+v×B) 电子的运动的轨迹将是沿电场方向加速,同时绕磁场方向螺旋前进的复杂曲线。即磁场的存在将延长电子在等离子体中的运动轨迹,提高了它参与原子碰撞和电离过程的几率,因而在同样的电流和气压下可以显著地提高溅射的效率和沉积的速率。 具体地说来磁控溅射系统在真空室充入0.1~1OPa压力的惰性气

薄膜太阳能电池技术及市场发展现状

薄膜电池技术发展现状 太阳能电池发展中,薄膜电池从一开始就以低成本成为众人关注的亮点,目前国际上已经能进行产业化大规模生产的薄膜电池主要有3种,硅基薄膜太阳能电池、铜铟镓硒薄膜太阳能电池(CIGS )、碲化镉薄膜太阳能电池(CdTe ),其中,硅基薄膜电池以其特有的优势快速发展。 2010年行业专家预测,a-Si ,CdTe ,CIGS 3种电池将分别占有薄膜光伏市场的52%,37%和11%。可 见,硅基薄膜电池在中长期发展阶段仍将占据薄膜光伏市场的主导地位。薄膜电池近几年全球产量、市场份额趋势预测见表1、表2。笔者将重点介绍硅基薄膜太阳电池技术和薄膜太阳能电池市场发展现状。 摘 要:详细叙述了硅基薄膜太阳能电池结构、工艺制造技术,a-Si 沉积设备,并针对薄膜电池技术的发展现状, 分析了薄膜电池引起波动和变化的原因,展望了BIPV 薄膜电池在未来城市建筑中的应用前景。关键词:薄膜太阳能电池;非晶硅;转换效率中图分类号:TN604 文献标志码:A 收稿日期:2011-05-12;修回日期:2011-06-16 作者简介:张世伟(1962-),男,山西运城人,高级工程师,主要从事电子工艺及专用设备研究,E-mail :scjs@https://www.360docs.net/doc/812404376.html, 。 薄膜太阳能电池技术及市场发展现状 (中国电子科技集团公司第二研究所,山西 太原 030024) 张世伟 文章编号:1674-9146(2011)07-0041-04 表1 近几年薄膜电池全球产量 200920102011201220137211224196027373136185.5341.5484627.577311041605214426493151 2010.53170.545886013.5706054.9150.6246.7344.0544.63 9.2310.7710.5510.4310.9535.8638.6142.7245.5144.42年份 碲化镉(CdTe ) /MW 铜铟镓硒(CIGS ) /MW 非晶硅薄膜 /MW 全球产量/MW CdTe 市场份额/%CIGS 市场份额/%非晶硅薄膜市场份额 /% 表2 市场份额及趋势预测 2009201020112012201311531865270535553625464591.5721.5880107020902680311937464158 3707513765458181885356.3952.1847.6545.7946.97 12.5211.5111.0210.7612.0931.163.3141.3343.4540.95年份 碲化镉(CdTe )/MW 铜铟镓硒(CIGS )/MW 非晶硅薄膜 /MW 全球产量/MW CdTe 市场份额/%CIGS 市场份额/%非晶硅薄膜市场份额 /%

实验磁控溅射法制备薄膜材料

实验磁控溅射法制备薄 膜材料 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

实验4 磁控溅射法制备薄膜材料 一、实验目的 1. 掌握真空的获得 2. 掌握磁控溅射法的基本原理与使用方法 3. 掌握利用磁控溅射法制备薄膜材料的方法 二、实验原理 磁控溅射属于辉光放电范畴,利用阴极溅射原理进行镀膜。膜层粒子来源于辉光放电中,氩离子对阴极靶材产生的阴极溅射作用。氩离子将靶材原子溅射下来后,沉积到元件表面形成所需膜层。磁控原理就是采用正交电磁场的特殊分布控制电场中的电子运动轨迹,使得电子在正交电磁场中变成了摆线运动,因而大大增加了与气体分子碰撞的几率。用高能粒子(大多数是由电场加速的气体正离子)撞击固体表面(靶),使固体原子(分子)从表面射出的现象称为溅射。 1. 辉光放电: 辉光放电是在稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。溅射镀膜基于荷能离子轰击靶材时的溅射效应,而整个溅射过程都是建立在辉光放电的基础之上的,即溅射离子都来源于气体放电。不同的溅射技术所采用的辉

光放电方式有所不同,直流二极溅射利用的是直流辉光放电,磁控溅射是利用环状磁场控制下的辉光放电。 如图1(a)所示为一个直流 气体放电体系,在阴阳两极之间 由电动势为的直流电源提供电压 和电流,并以电阻作为限流电 阻。在电路中,各参数之间应满 足下述关系: V=E-IR 使真空容器中Ar气的压力保持一定,并逐渐提高两个电极之间的电压。在开始时,电极之间几乎没有电流通过,因为这时气体原子大多仍处于中性状态,只有极少量的电离粒子在电场的作用下做定向运动,形成极为微弱的电流,即图(b)中曲线的开始阶段所示的那样。 图1 直流气体放电 随着电压逐渐地升高,电离粒子的运动速度也随之加快,即电流随电压上升而增加。当这部分电离粒子的速度达到饱和时,电流不再随电压升高而增加。此时,电流达到了一个饱和值(对应于图曲线的第一个垂直段)。

磁控溅射制备铝薄膜毕业论文

磁控溅射制备铝薄膜毕业论文 目录 第1章绪论 (1) 1.1 引言 (1) 1.1.2 薄膜研究的发展概况 (1) 1.1.3 薄膜的制备方法 (4) 1.1.4 薄膜的特征 (5) 1.1.5 薄膜的应用 (7) 第2章射频反应磁控溅射制备方法机理分析 (8) 2.1 射频反应磁控溅射法原理 (8) 2.1.1 直流辉光放电 (8) 2.1.2 射频辉光放电 (9) 2.1.3 射频原理 (9) 2.1.4 磁控原理 (11) 2.1.5 反应原理 (12) 2.2. 溅射机理 (13) 2.2.1 基本原理 (13) 2.2.2 基本装置 (13) 2.3 溅射的特点和应用 (15) 2.3.1 溅射的特点 (15) 2.3.2 溅射的应用 (16) 第3章实验 (17) 3.1 课题的研究线路 (17) 3.2 实验材料以及设备 (17) 3.3 实验仪器的原理 (18) 3.3.1 磁控溅射镀膜仪的原理 (18) 3.3.2 椭圆偏振测厚仪的原理 (19) 3.3.3 原子力显微镜的原理 (23) 3.3.4 表面预处理 (27) 3.3.5 薄膜制备 (28) 第4章实验结果及数据分析 (30) 4.1 薄膜测试与分析 (30) 4.1.1 衬底温度对于铝薄膜属性的影响 (30) 4.1.2 衬底温度对于铝薄膜生长的影响 (31)

4.1.3 不同的气压对于铝薄膜生长的影响 (34) 结论 (40) 致 (41) 参考文献 (42) 附录X 译文 (43) 利用CO/SiC衬底上制备单层石墨薄膜 (43) 附录Y 外文原文 (48)

第一章绪论 1.1 薄膜概述 1.1.1 引言 人工薄膜的出现是20世纪材料科学发展的重要标志。自70年代以来,薄膜材料、薄膜科学、与薄膜技术一直是高新技术研究中最活跃的研究领域之一,并已取得了突飞猛进的发展。薄膜材料与薄膜技术属于交叉学科,其发展几乎涉及所有的前沿学科,其应用与推广渗透到了各相关技术领域。正是由于薄膜材料和薄膜技术的发展才极促进了微电子技术、光电子技术、计算机技术、信息技术、传感器技术、航空航天技术和激光技术的发展,也为能源、机械、交通等工业部门和现代军事国防部门提供了一大批高新技术材料和器件。 薄膜是不同于其它物质(气态、液态、固态和等离子态)的一种新的凝聚态,有人称之为物质的第五态。顾名思义,薄膜就是薄层材料。它可以理解为气体薄膜,如吸附在固体表面的气体薄层;也可理解为液态薄膜,如附着在液体和固体表面的油膜。我们这里所指的薄膜是固体薄膜,即使是固体薄膜,也可分为薄膜单体和附着在某种基体上的另一种材料的固体薄膜,这里所指的薄膜属于后者[1]。 薄膜的基底材料有绝缘体,如玻璃、瓷等;也有半导体,如硅、锗等;也各种金属材料。薄膜材料也可以是各种各样的,如从导电性来分,可以是金属、半导体、绝缘体或超导体。从结构上来分,它可以是单晶、多晶、非晶(无定形)、微晶或超晶格的。从化学组成上来看,它可以是单质,也可以是化合物,它可阻是无机材料,也可以是有机材料。 1.1.2 薄膜研究的发展概况 薄膜科学是由多个学科交叉、综合、以系统为特色,逐步发展起来的新兴学科,以“表面”及“界面”为研究核心,在有关学科的基础上,应用表面技术及其复合表面技术为特点,逐步形成了与其他学科密切相关的薄膜科

射频磁控溅射详细操作流程与真空系统

磁控溅射操作流程 1、开循环水(总阀、分子泵),放气(两个小金属片打开;旁抽阀;V6)放完气后关闭; 2、开总电源,开腔装样品,开机械泵,抽到10pa以下; 3、开电磁阀,抽到10pa以下,开分子泵(按下绿色start按钮,分子泵加速,显示为400) 时,关旁抽阀,再打开高阀;开溅射室烘烤,将电压调节至75V,烘烤时间为1h; 4、抽到1·10-4pa后,抽管道(缓慢打开V1截止阀,V2阀);打开质量流量计电源,待示 数稳定后,将阀开关拨至“阀控”位置,再将设定旋钮向右调节至最大,待示数变为“0” 时,将阀门开关拨至“关闭”,同时将设定旋钮设定为0; 5、开气瓶(一定要确定阀开关处于“关闭”位置,调节分压阀数值约为0.1mp;待质量流 量计示数稳定后,将阀开关拨至“阀控”位置,调节到所需设定值,如20sccm; 6、开A靶、水冷盘、其他靶的循环水; 7、慢慢讲高阀回调,调节气压至1~3pa,起辉(开总控制电源、A靶射频电源、A靶),调 节功率至60w,(A靶处的tune、load先处于WN状态,要进行调节时,应调节至Auto),调节tune为50%,Load值为10%~20之间(调节后需调回WN状态);再按R.F起辉; 8、将高阀门调至最外,待气压稳定之后预溅射15分钟,在此期间要对齿轮挡板进行定位(先 将小刚圈上提右转放下,然后向外旋转“马达”旁边的齿轮,直到听到“啪”的一声,最后左转上提小刚圈); 9、打开电脑后面右边的三个电源开关,开电脑; 10、实验。调节好实验所需压强、功率、气体等,设置“样品位置”,“样品编号”,“挡板位 置”(样品位置以A靶为标准,样品编号即为此时位于A靶上方样品的编号,挡靶位置在装挡板时就已位于B靶处,所以挡板默认为B靶所在位置,所有参数、位置设定好后即可开始镀膜; 11、每次镀膜完,要对其参数进行设定—应用—运行,待齿轮旋转不动时,用机械手推动挡 板至B靶所在位置(上中下三孔对齐),—确定—两个360°—样品放在E靶—挡板放在B靶—开始。 12、镀膜结束。先关闭电脑,然后关闭R.F,将功率调节至0,依次关闭三个电源(最后关 总溅射电源),关闭气瓶总阀,调节气体质量流量计至最大,待其示数变小为零;关闭分压阀,待流量计示数变为零,关闭质量流量计,依次关闭V2、V1阀,随后关闭高阀,按分子泵Stop键,待其示数降为零,再关闭分子泵电源; 13、依次关闭电磁阀、溅射室机械泵、设备总电源,关闭所有循环水。

薄膜太阳能电池发展背景

薄膜太陽能電池發展背景 薄膜太陽能電池,顧名思義,乃是在塑膠、玻璃或是金屬基板上形成可產生光電效應的薄膜,厚度僅需數μm,因此在同一受光面積之下比矽晶圓太陽能電池大幅減少矽原料的用量。薄膜太陽能電池並非是新概念的產品,實際上人造衛星就早已經普遍採用砷化鎵(GaAs)所製造的高轉換效率薄膜太陽能電池板(以單晶矽作為基板,轉換效能在30%以上)。 不過,一方面因為製造成本相當高昂,另一方面除了太空等特殊領域之外,應用市場並不多,因此直到近幾年因為太陽能發電市場快速興起後,發現矽晶圓太陽電池在材料成本上的侷限性,才再度成為產業研發中的顯學。目標則是發展出材料成本低廉,又有利於大量生產的薄膜型太陽能電池。 自2006下半年以來,因全球太陽能市場需求成長,造成矽原料供應不足、矽晶太陽能電池及模組生產成本水漲船高。而薄膜太陽能電池因具有輕薄、低成本、可撓曲、多種外觀設計等優點,成為繼矽晶太陽能電池之後,被認為是當前最具發展潛力的太陽能技術。 太陽能電池技術發展 第一代結晶矽 單晶、多晶、非晶 第二代薄膜太陽能電池 矽薄膜、化合物薄膜 第三代染料敏化太陽能電池(DSSC)、其他新技術、新材料薄膜太陽能電池發電原理 薄膜太陽能電池,是以pn半導體接面作為光吸收及能量轉換的主體結構。在基板上分別塗上二種具不同導電性質的p型半導體及n型半導體,當太陽光照射在pn接面,部份電子因而擁有足夠的能量,離開原子而變成自由電子,失去電子的原子因而產生電洞。透過p型半導體及n型半導體分別吸引電洞與電子,把正電和負電分開,在pn接面兩端因而產生電位差。在導電層接上電路,使電子得以通過,並與在pn 接面另一端的電洞再次結合,電路中便產生電流,再經由導線傳輸至負載。 從光產生電的過程當中可知,薄膜太陽能電池的能量轉換效率,與材料的能隙大

实验 磁控溅射法制备薄膜材料

实验4 磁控溅射法制备薄膜材料 一、实验目的 1. 掌握真空的获得 2. 掌握磁控溅射法的基本原理与使用方法 3. 掌握利用磁控溅射法制备薄膜材料的方法 二、实验原理 磁控溅射属于辉光放电范畴,利用阴极溅射原理进行镀膜。膜层粒子来源于辉光放电中,氩离子对阴极靶材产生的阴极溅射作用。氩离子将靶材原子溅射下来后,沉积到元件表面形成所需膜层。磁控原理就是采用正交电磁场的特殊分布控制电场中的电子运动轨迹,使得电子在正交电磁场中变成了摆线运动,因而大大增加了与气体分子碰撞的几率。用高能粒子(大多数是由电场加速的气体正离子)撞击固体表面(靶),使固体原子(分子)从表面射出的现象称为溅射。 1. 辉光放电: 辉光放电是在稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。溅射镀膜基于荷能离子轰击靶材时的溅射效应,而整个溅射过程都是建立在辉光放电的基础之上的,即溅射离子都来源于气体放电。不同的溅射技术所采用的辉光放电方式有所不同,直流二极溅射利用的是直流辉光放电,磁控溅射是利用环状磁场控制下的辉光放电。 如图1(a)所示为一个直流气 体放电体系,在阴阳两极之间由电 动势为的直流电源提供电压和电 流,并以电阻作为限流电阻。在电 路中,各参数之间应满足下述关系: V=E-IR 使真空容器中Ar气的压力保持 一定,并逐渐提高两个电极之间的 电压。在开始时,电极之间几乎没 有电流通过,因为这时气体原子大 多仍处于中性状态,只有极少量的 电离粒子在电场的作用下做定向运 动,形成极为微弱的电流,即图(b)中曲线的开始阶段所示的那样。

图1 直流气体放电 随着电压逐渐地升高,电离粒子的运动速度也随之加快,即电流随电压上升而增加。当这部分电离粒子的速度达到饱和时,电流不再随电压升高而增加。此时,电流达到了一个饱和值(对应于图曲线的第一个垂直段)。 当电压继续升高时,离子与阴极之间以及电子与气体分子之间的碰撞变得重要起来。在碰撞趋于频繁的同时,外电路转移给电子与离子的能量也在逐渐增加。一方面,离子对于阴极的碰撞将使其产生二次电子的发射,而电子能量也增加到足够高的水平,它们与气体分子的碰撞开始导致后者发生电离,如图(a)所示。这些过程均产生新的离子和电子,即碰撞过程使得离子和电子的数目迅速增加。这时,随着放电电流的迅速增加,电压的变化却不大。这一放电阶段称为汤生放电。 在汤生放电阶段的后期,放电开始进入电晕放电阶段。这时,在电场强度较高的电极尖端部位开始出现一些跳跃的电晕光斑。因此,这一阶段称为电晕放电。 在汤生放电阶段之后,气体会突然发生放电击穿现象。这时,气体开始具备了相当的导电能力,我们将这种具备了一定的导电能力的气体称为等离子体。此时,电路中的电流大幅度增加,同时放电电压却有所下降。这是由于这时的气体被击穿,因而气体的电阻将随着气体电离度的增加而显着下降,放电区由原来只集中于阴极边缘和不规则处变成向整个电极表面扩展。在这一阶段,气体中导电粒子的数目大量增加,粒子碰撞过程伴随的能量转移也足够地大,因此放电气体会发出明显的辉光。 电流的继续增加将使得辉光区域扩展到整个放电长度上,同时,辉光的亮度不断提高。当辉光区域充满了两极之间的整个空间之后,在放电电流继续增加的同时,放电电压又开始上升。上述的两个不同的辉光放电阶段常被称为正常辉光放电和异常辉光放电阶段。异常辉光放电是一般薄膜溅射或其他薄膜制备方法经常采用的放电形式,因为它可以提供面积较大、分布较为均匀的等离子体,有利于实现大面积的均匀溅射和薄膜沉积。 2. 磁控溅射: 平面磁控溅射靶采用静止电磁场,磁场为曲线形。其工作原理如下图所示。电子在电场作用下,加速飞向基片的过程中与氩原子发生碰撞。若电子具有足够的能量(约为30eV)。时,则电离出Ar+并产生电子。电子飞向基片,Ar+在电场作用下加速

实验磁控溅射法制备薄膜材料

实验磁控溅射法制备薄膜 材料 The final edition was revised on December 14th, 2020.

实验4 磁控溅射法制备薄膜材料 一、实验目的 1. 掌握真空的获得 2. 掌握磁控溅射法的基本原理与使用方法 3. 掌握利用磁控溅射法制备薄膜材料的方法 二、实验原理 磁控溅射属于辉光放电范畴,利用阴极溅射原理进行镀膜。膜层粒子来源于辉光放电中,氩离子对阴极靶材产生的阴极溅射作用。氩离子将靶材原子溅射下来后,沉积到元件表面形成所需膜层。磁控原理就是采用正交电磁场的特殊分布控制电场中的电子运动轨迹,使得电子在正交电磁场中变成了摆线运动,因而大大增加了与气体分子碰撞的几率。用高能粒子(大多数是由电场加速的气体正离子)撞击固体表面(靶),使固体原子(分子)从表面射出的现象称为溅射。 1. 辉光放电: 辉光放电是在稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。溅射镀膜基于荷能离子轰击靶材时的溅射效应,而整个溅射过程都是建立在辉光放电的基础之上的,即溅射离子都来源于气体放电。不同的溅射技术所采用的辉光放电方式有所不同,直流二极溅射利用的是直流辉光放电,磁控溅射是利用环状磁场控制下的辉光放电。 如图1(a)所示为一个直流气 体放电体系,在阴阳两极之间由电 动势为的直流电源提供电压和电 流,并以电阻作为限流电阻。在电 路中,各参数之间应满足下述关 系: V=E-IR 使真空容器中Ar气的压力保 持一定,并逐渐提高两个电极之间 的电压。在开始时,电极之间几乎 没有电流通过,因为这时气体原子 大多仍处于中性状态,只有极少量 的电离粒子在电场的作用下做定向运动,形成极为微弱的电流,即图(b)中曲线的开始阶段所示的那样。 图1 直流气体放电 随着电压逐渐地升高,电离粒子的运动速度也随之加快,即电流随电压上升而增加。当这部分电离粒子的速度达到饱和时,电流不再随电压升高而增加。此时,电流达到了一个饱和值(对应于图曲线的第一个垂直段)。 当电压继续升高时,离子与阴极之间以及电子与气体分子之间的碰撞变得重要起来。在碰撞趋于频繁的同时,外电路转移给电子与离子的能量也在逐渐增加。一方面,离子对于阴极的碰撞将使其产生二次电子的发射,而电子能量也增加到足够高的水平,它们与气体分子的碰撞开始导致后者发生电离,如图(a)所示。这些过

磁控溅射

磁控反应溅射。就是用金属靶,加入氩气和反应气体如氮气或氧气。当金属靶材撞向零件时由于能量转化,与反应气体化合生成氮化物或氧化物。若磁铁静止,其磁场特性决定一般靶材利用率小于30%。为增大靶材利用率,可采用旋转磁场。但旋转磁场需要旋转机构,同时溅射速率要减小。冷却水管。 旋转磁场多用于大型或贵重靶。如半导体膜溅射。用磁控靶源溅射金属和合金很容易,点火和溅射很方便。这是因为靶(阴极),等离子体,和被溅零件/真空腔体可形成回路。但若溅射绝缘体如陶瓷则回路断了。于是人们采用高频电源,回路中加入很强的电容。这样在绝缘回路中靶材成了一个电容。但高频磁控溅射电源昂贵,溅射速率很小,同时接地技术很复杂,因而难大规模采用。为解决此问题,发明了 磁控溅射 磁控溅射是为了在低气压下进行高速溅射,必须有效地提高气体的离化率。通过在靶阴极表面引入磁场,利用磁场对带电粒子的约束来提高等离子体密度以增加溅射率的方法。 磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar 和新的电子;新电子飞向基片,Ar在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于 一条摆线。若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区域内,并且在该区域中电离出大量的Ar 来轰击靶材,从而实现了高的沉积速率。随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场E的作用下最终沉积在基片上。由于该电子的能量很低,传递给基片的能量很小,致使基片温升较低。磁控溅射是入射粒子和靶的碰撞过程。入射粒子在靶中经历复杂的散射过程,和靶原子碰撞,把部分动量传给靶原子,此靶原子又和其他靶原子碰撞,形成级联过程。在这种级联过程中某些表面附近的靶原子获得向外运动的足够动量,离开靶被溅射出来。

ORACLE数据库管理初始化参数

管理初始化参数 管理初始化参数(调优的一个重要知识点,凭什么可以对数据库进行调优呢?是因为它可以对数据库的一些参数进行修改修正) 初始化参数用于设置实例或是数据库的特征。oracle9i提供了200多个初始化参数,并且每个初始化参数都有默认值。 显示初始化参数(1) show parameter命令 如何修改参数需要说明的如果你希望修改这些初始化的参数,可以到文件D:\oracle\admin\myoral\pfile\init.ora文件中去修改比如要修改实例的名字数据库(表)的逻辑备份与恢复 逻辑备份是指使用工具export将数据对象的结构和数据导出到文件的过程,逻辑恢复是指当数据库对象被误操作而损坏后使用工具import利用备份的文件把数据对象导入到数据库的过程。 物理备份即可在数据库open的状态下进行也可在关闭数据库后进行,但是逻辑备份和恢复只能在open的状态下进行。 导出导出具体的分为:导出表,导出方案,导出数据库三种方式。 导出使用exp命令来完成的,该命令常用的选项有: userid:用于指定执行导出操作的用户名,口令,连接字符串 tables:用于指定执行导出操作的表 owner:用于指定执行导出操作的方案 full=y:用于指定执行导出操作的数据库 inctype:用于指定执行导出操作的增量类型 rows:用于指定执行导出操作是否要导出表中的数据 file:用于指定导出文件名 导出表 1.导出自己的表exp userid=scott/tiger@myoral tables=(emp,dept) file=d:\e1.dmp 2.导出其它方案的表如果用户要导出其它方案的表,则需要dba的权限或是exp_full_database的权限,比如system就可以导出scott的表E:\oracle\ora92\bin>exp userid=system/manager@myoral tables=(scott.emp) file=d:\e2.emp 特别说明:在导入和导出的时候,要到oracle目录的bin目录下。 3. 导出表的结构exp userid=scott/tiger@accp tables=(emp) file=d:\e3.dmp rows=n 4. 使用直接导出方式exp userid=scott/tiger@accp tables=(emp) file=d:\e4.dmp direct=y 这种方式比默认的常规方式速度要快,当数据量大时,可以考虑使用这样的方法。 这时需要数据库的字符集要与客户端字符集完全一致,否则会报错... 导出数据库导出数据库是指利用export导出所有数据库中的对象及数据,要求该用户具有dba的权限或者是exp_full_database权限 增量备份(好处是第一次备份后,第二次备份就快很多了) exp userid=system/manager@myorcl full=y inctype=complete file=d:\all.dmp

磁控溅射法制备薄膜材料实验报告

实验一磁控溅射法制备薄膜材料 一、实验目的 1、详细掌握磁控溅射制备薄膜的原理和实验程序; 2、制备出一种金属膜,如金属铜膜; 3、测量制备金属膜的电学性能和光学性能; 4、掌握实验数据处理和分析方法,并能利用 Origin 绘图软件对实验数据进行处理和分析。 二、实验仪器 磁控溅射镀膜机一套、万用电表一架、紫外可见分光光度计一台;玻璃基片、金属铜靶、氩气等实验耗材。 三、实验原理 1、磁控溅射镀膜原理 (1)辉光放电 溅射是建立在气体辉光放电的基础上,辉光放电是只在真空度约为几帕的稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。辉光放电时,两个电极间的电压和电流关系关系不能用简单的欧姆定律来描述,以气压为1.33Pa 的 Ne 为例,其关系如图 5 -1 所示。 图 5-1 气体直流辉光放电的形成 当两个电极加上一个直流电压后,由于宇宙射线产生的游离离子和电子有限,开始时只有很小的溅射电流。随着电压的升高,带电离子和电子获得足够能量,与中性气体分子碰撞产生电离,使电流逐步提高,但是电压受到电源的高输

出阻抗限制而为一常数,该区域称为“汤姆森放电”区。一旦产生了足够多的离子和电子后,放电达到自持,气体开始起辉,出现电压降低。进一步增加电源功率,电压维持不变,电流平稳增加,该区称为“正常辉光放电”区。当离子轰击覆盖了整个阴极表面后,继续增加电源功率,可同时提高放电区内的电压和电流密度,形成均匀稳定的“异常辉光放电”,这个放电区就是通常使用的溅射区域。随后继续增加电压,当电流密度增加到~0.1A/cm 2时,电压开始急剧降低,出现低电压大电流的弧光放电,这在溅射中应力求避免。 (2)溅射 通常溅射所用的工作气体是纯氩,辉光放电时,电子在电场的作用下加速飞向基片的过程中与氩原子发生碰撞,电离出大量的氩离子和电子,电子飞向基片。氩离子在电场的作用下加速轰击靶材,溅射出大量的靶材原子,这些被溅射出来的原子具有一定的动能,并会沿着一定的方向射向衬底,从而被吸附在衬底上沉积成膜。这就是简单的“二级直流溅射”。 (3)磁控溅射 通常的溅射方法,溅射沉积效率不高。为了提高溅射效率,经常采用磁控溅射的方法。磁控溅射的目的是增加气体的离化效率,其基本原理是在靶面上建立垂直与电场的一个环形封闭磁场,将电子约束在靶材表面附近,延长其在等离子体中的运动轨迹,提高它参与气体分子碰撞和电离过程的几率,从而显著提高溅射效率和沉积速率,同时也大大提高靶材的利用率。其基本原理示意见图 5-2。 图 5-2 磁控溅射镀膜原理 磁控溅射能极大地提高薄膜的沉积速度,改善薄膜的性能。这是由于在磁控

用友NC数据库服务器参数配置说明

数据库服务器参数配置说明目录 DB2的参数配置说明 数据库环境变量配置 2CPU,2G内存配置建议 4CPU,4G内存配置建议 8CPU,8G内存配置建议 ORACLE的参数配置说明 公共参数(适用于所有硬件配置) 2CPU,2G内存配置建议 4CPU,4G内存,32位数据库配置建议 4CPU,4G内存,64位数据库配置建议 8CPU,8G内存配置建议 SQL Server数据库配置建议 DB2的参数配置说明 下面参数是针对NC应用建议性调整,具体需要根据应用规模和特点再调整 数据库环境变量设置 db2set DB2_SKIPINSERTED=YES db2set DB2_INLIST_TO_NLJN=YES db2set DB2_MINIMIZE_LISTPREFETCH=YES db2set DB2_ANTIJOIN=EXTEND 2CPU,2G内存配置建议 系统大约支持用户并发数:30左右

数据库管理器配置参数 --1.应用程序支持层堆大小(aslheapsz) (4K) update dbm cfg using aslheapsz 256; --2.排序堆阈值(sheapthres) (4K) update dbm cfg using sheapthres 20000 ; --3.代理程序的最大数目(maxagents) update dbm cfg using maxagents 100; --4.代理程序池大小(NUM_POOLAGENTS) update dbm cfg using NUM_POOLAGENTS 30; 数据库配置参数 假设NC数据库名称为“ncdata00” --1.数据库堆(DBHEAP)(4K) update database configuration for ncdata00 using DBHEAP 4096 automatic; --2.日志缓冲区大小(logbufsz) (4K) update database configuration for ncdata00 using logbufsz 512 automatic; --3.编目高速缓存大小(CATALOGCACHE_SZ) (4K) update database configuration for ncdata00 using CATALOGCACHE_SZ 1024 automatic; --4.用于锁定列表的最大内存(locklist) (4K) update database configuration for ncdata00 using locklist 4096 automatic; --5.最大应用程序控制堆大小(app_ctl_heap_sz) (4K) -- update database configuration for ncdata00 using app_ctl_heap_sz 2048; update database configuration for ncdata00 using appl_memory automatic; --6.排序堆大小(sortheap)(4K) update database configuration for ncdata00 using sortheap 2048 automatic; --7.语句堆大小(stmtheap) (4K) update database configuration for ncdata00 using stmtheap 2048 automatic; --8.应用程序堆大小(applheapsz)(4K) update database configuration for ncdata00 using applheapsz 1024 automatic;

磁控溅射金属薄膜的制备

磁控溅射薄膜金属的制备 黎明 烟台大学环境与材料工程学院山东烟台111 E-mail:1111111@https://www.360docs.net/doc/812404376.html, 摘要: 金属与金属氧化物在气敏、光催化与太阳能电池等方面有着极为重要的应用,通过磁控溅射法制备的金属氧化物薄膜,具有纯度高、致密性好、可控性强、与基底附着性好等优点,因此磁控溅射技术被广泛应用于工业化生产制备大面积、高质量的薄膜。我们通过磁控溅射法制备了氧化铜纳米线阵列薄膜,并研究了其气敏性质;除此之外,我们还通过磁控溅射法制备了TiO2/WO3复合薄膜,研究了两者之间的电荷传输性质 关键词:磁控溅射;气敏性质;光电性质 Magnetron sputtering metal film preparation LiMing Environmental and Materials Engineering, Yantai UniversityShandong Yantai111 E-mail:1111111@https://www.360docs.net/doc/812404376.html, Abstract:GAasMetal and metal oxide have important applications in gas-sensing, photocatalyst and photovoltaics, etc. The metal oxide film prepared by magnetron sputtering technique possesses good qualities, such as high purity, good compactness, controllability and excellent adhesion. Therefore magnetron sputtering technique is widely used to prepare large area and high quality films in industrial production. In our work, CuOnanowires (NWs) array films were synthesized by magnetron sputtering. Their gas-sensing properties were also investigated. Except this, WO3/ TiO2nanocomposite films were synthesized by magnetron sputtering and their dynamic charge transport properties were investigated by the transient photovoltage technique. KeyWords :Gmagnetron Sputtering, Photo-electric Properties, Gas-sensing Properties 1绪论 磁控溅射由于其显著的优点应用日趋广泛,成为工业镀膜生产中最主要的技术之一,相应的溅射技术与也取得了进一步的发展!非平衡磁控溅射改善了沉积室内等离子体的分布,提高了膜层质量;中频和脉冲磁控溅射可有效避免反应溅射时的迟滞现象,消除靶中毒和打弧问题,提高制备化合物薄膜的稳定性和沉积速率;改进的磁控溅射靶的设计可获得较高的靶材利用率;高速溅射和自溅射为溅射镀膜技术开辟了新的应用领域。

相关文档
最新文档