高中物理常见的物理模型

高中物理常见的物理模型
高中物理常见的物理模型

高中物理常见的物理模型

方法概述

高考命题以《考试大纲》为依据,考查学生对高中物理知识的掌握情况,体现了“知识与技能、过程与方法并重”的高中物理学习思想.每年各地的高考题为了避免雷同而千变万化、多姿多彩,但又总有一些共性,这些共性可粗略地总结如下:

(1)选择题中一般都包含3~4道关于振动与波、原子物理、光学、热学的试题.

(2)实验题以考查电路、电学测量为主,两道实验小题中出一道较新颖的设计性实验题的可能性较大.

(3)试卷中下列常见的物理模型出现的概率较大:斜面问题、叠加体模型(包含子弹射入)、带电粒子的加速与偏转、天体问题(圆周运动)、轻绳(轻杆)连接体模型、传送带问题、含弹簧的连接体模型.

高考中常出现的物理模型中,有些问题在高考中变化较大,或者在前面专题中已有较全面的论述,在这里就不再论述和例举.斜面问题、叠加体模型、含弹簧的连接体模型等在高考中的地位特别重要,本专题就这几类模型进行归纳总结和强化训练;传送带问题在高考中出现的概率也较大,而且解题思路独特,本专题也略加论述.

热点、重点、难点

一、斜面问题

在每年各地的高考卷中几乎都有关于斜面模型的试题.如2009年高考全国理综卷Ⅰ第25题、北京理综卷第18题、天津理综卷第1题、上海物理卷第22题等,2008年高考全国理综卷Ⅰ第14题、全国理综卷Ⅱ第16题、北京理综卷第20题、江苏物理卷第7题和第15题等.在前面的复习中,我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法.

1.自由释放的滑块能在斜面上(如图9-1 甲所示)匀速下滑时,m与M之间的动摩擦因数μ=g tan θ.

图9-1甲

2.自由释放的滑块在斜面上(如图9-1 甲所示):

(1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零;

(2)加速下滑时,斜面对水平地面的静摩擦力水平向右;

(3)减速下滑时,斜面对水平地面的静摩擦力水平向左.

3.自由释放的滑块在斜面上(如图9-1乙所示)匀速下滑时,M 对水平地面的静摩擦力为零,这一过程中再在m 上加上任何方向的作用力,(在m 停止前)M 对水平地面的静摩擦力依然为零(见一轮书中的方法概述).

图9-1乙

4.悬挂有物体的小车在斜面上滑行(如图9-2所示):

图9-2

(1)向下的加速度a =g sin θ时,悬绳稳定时将垂直于斜面;

(2)向下的加速度a >g sin θ时,悬绳稳定时将偏离垂直方向向上;

(3)向下的加速度a <g sin θ时,悬绳将偏离垂直方向向下.

5.在倾角为θ的斜面上以速度v 0平抛一小球(如图9-3所示):

图9-3

(1)落到斜面上的时间t =2v 0tan θg

; (2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tan θ,与初速度无关;

(3)经过t c =v 0tan θg 小球距斜面最远,最大距离d =(v 0sin θ)2

2g cos θ

. 6.如图9-4所示,当整体有向右的加速度a =g tan θ时,m 能在斜面上保持相对静止.

图9-4

7.在如图9-5所示的物理模型中,当回路的总电阻恒定、导轨光滑时,ab 棒所能达到的稳定速度v m =mgR sin θB 2L 2

图9-5

8.如图9-6所示,当各接触面均光滑时,在小球从斜面顶端滑下的过程中,斜面后退

的位移s =m m +M

L .

图9-6

●例1 有一些问题你可能不会求解,但是你仍有可能对这些问题的解是否合理进行分析和判断.例如从解的物理量单位,解随某些已知量变化的趋势,解在一些特殊条件下的结果等方面进行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性.

举例如下:如图9-7甲所示,质量为M 、倾角为θ的滑块A 放于水平地面上.把质量为m 的滑块B 放在A 的斜面上.忽略一切摩擦,有人求得B 相对地面的加速度a =

M +m M +m sin 2 θ

g sin θ,式中g 为重力加速度.

图9-7甲

对于上述解,某同学首先分析了等号右侧的量的单位,没发现问题.他进一步利用特殊条件对该解做了如下四项分析和判断,所得结论都是“解可能是对的”.但是,其中有一项是错误..

的,请你指出该项[2008年高考·北京理综卷]( ) A .当θ=0°时,该解给出a =0,这符合常识,说明该解可能是对的

B .当θ=90°时,该解给出a =g ,这符合实验结论,说明该解可能是对的

C .当M ?m 时,该解给出a ≈g sin θ,这符合预期的结果,说明该解可能是对的

D .当m ?M 时,该解给出a ≈g sin θ

,这符合预期的结果,说明该解可能是对的 【解析】当A 固定时,很容易得出a =g sin θ;当A 置于光滑的水平面时,B 加速下滑的同时A 向左加速运动,B 不会沿斜面方向下滑,难以求出运动的加速度.

图9-7乙

设滑块A 的底边长为L ,当B 滑下时A 向左移动的距离为x ,由动量守恒定律得:

M x t =m L -x t

解得:x =mL M +m

当m ?M 时,x ≈L ,即B 水平方向的位移趋于零,B 趋于自由落体运动且加速度a ≈g .

选项D 中,当m ?M 时,a ≈g sin θ

>g 显然不可能. [答案] D

【点评】本例中,若m 、M 、θ、L 有具体数值,可假设B 下滑至底端时速度v 1的水平、竖直分量分别为v 1x 、v 1y ,则有:

v 1y v 1x =h L -x =(M +m )h ML

12m v 1x 2+12m v 1y 2+12

M v 22=mgh m v 1x =M v 2

解方程组即可得v 1x 、v 1y 、v 1以及v 1的方向和m 下滑过程中相对地面的加速度.

●例2 在倾角为θ的光滑斜面上,存在着两个磁感应强度大小相同的匀强磁场,其方向一个垂直于斜面向上,一个垂直于斜面向下(如图9-8甲所示),它们的宽度均为L .一个质量为m 、边长也为L 的正方形线框以速度v 进入上部磁场时,恰好做匀速运动.

图9-8甲

(1)当ab 边刚越过边界ff ′时,线框的加速度为多大,方向如何?

(2)当ab 边到达gg ′与ff ′的正中间位置时,线框又恰好做匀速运动,则线框从开始进入上部磁场到ab 边到达gg ′与ff ′的正中间位置的过程中,线框中产生的焦耳热为多少?(线框的ab 边在运动过程中始终与磁场边界平行,不计摩擦阻力)

【解析】(1)当线框的ab 边从高处刚进入上部磁场(如图9-8 乙中的位置①所示)时,

线框恰好做匀速运动,则有:

mg sin θ=BI 1L

此时I 1=BL v R

当线框的ab 边刚好越过边界ff ′(如图9-8乙中的位置②所示)时,由于线框从位置①到位置②始终做匀速运动,此时将ab 边与cd 边切割磁感线所产生的感应电动势同向叠加,回路中电流的大小等于2I 1.故线框的加速度大小为:

图9-8乙

a =4BI 1L -mg sin θm

=3g sin θ,方向沿斜面向上. (2)而当线框的ab 边到达gg ′与ff ′的正中间位置(如图9-8 乙中的位置③所示)时,线框又恰好做匀速运动,说明mg sin θ=4BI 2L

故I 2=14

I 1 由I 1=BL v R 可知,此时v ′=14

v 从位置①到位置③,线框的重力势能减少了32

mgL sin θ 动能减少了12m v 2-12m (v 4)2=1532

m v 2 由于线框减少的机械能全部经电能转化为焦耳热,因此有:

Q =32mgL sin θ+1532

m v 2. [答案] (1)3g sin θ,方向沿斜面向上

(2)32mgL sin θ+1532

m v 2 【点评】导线在恒力作用下做切割磁感线运动是高中物理中一类常见题型,需要熟练掌握各种情况下求平衡速度的方法.

二、叠加体模型

叠加体模型在历年的高考中频繁出现,一般需求解它们之间的摩擦力、相对滑动路程、

摩擦生热、多次作用后的速度变化等,另外广义的叠加体模型可以有许多变化,涉及的问题更多.如2009年高考天津理综卷第10题、宁夏理综卷第20题、山东理综卷第24题,2008年高考全国理综卷Ⅰ的第15题、北京理综卷第24题、江苏物理卷第6题、四川延考区理综卷第25题等.

叠加体模型有较多的变化,解题时往往需要进行综合分析(前面相关例题、练习较多),下列两个典型的情境和结论需要熟记和灵活运用.

1.叠放的长方体物块A、B在光滑的水平面上匀速运动或在光滑的斜面上自由释放后变速运动的过程中(如图9-9所示),A、B之间无摩擦力作用.

图9-9

2.如图9-10所示,一对滑动摩擦力做的总功一定为负值,其绝对值等于摩擦力乘以相对滑动的总路程或等于摩擦产生的热量,与单个物体的位移无关,即Q摩=f·s相.

图9-10

●例3质量为M的均匀木块静止在光滑的水平面上,木块左右两侧各有一位拿着完全相同的步枪和子弹的射击手.首先左侧的射击手开枪,子弹水平射入木块的最大深度为d1,然后右侧的射击手开枪,子弹水平射入木块的最大深度为d2,如图9-11所示.设子弹均未射穿木块,且两子弹与木块之间的作用力大小均相同.当两颗子弹均相对木块静止时,下列说法正确的是(注:属于选修3-5模块)()

图9-11

A.最终木块静止,d1=d2

B.最终木块向右运动,d1

C.最终木块静止,d1

D.最终木块静止,d1>d2

【解析】木块和射出后的左右两子弹组成的系统水平方向不受外力作用,设子弹的质量为m,由动量守恒定律得:

m v0-m v0=(M+2m)v

解得:v=0,即最终木块静止

设左侧子弹射入木块后的共同速度为v1,有:

m v0=(m+M)v1

Q 1=f ·d 1=12m v 02-12

(m +M )v 12 解得:d 1=mM v 02

2(m +M )f

对右侧子弹射入的过程,由功能原理得:

Q 2=f ·d 2=12m v 02+12

(m +M )v 12-0 解得:d 2=(2m 2+mM )v 02

2(m +M )f

即d 1<d 2.

[答案] C

【点评】摩擦生热公式可称之为“功能关系”或“功能原理”的公式,但不能称之为“动能定理”的公式,它是由动能定理的关系式推导得出的二级结论.

三、含弹簧的物理模型

纵观历年的高考试题,和弹簧有关的物理试题占有相当大的比重.高考命题者常以弹簧为载体设计出各类试题,这类试题涉及静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能问题等,几乎贯穿了整个力学的知识体系.为了帮助同学们掌握这类试题的分析方法,现将有关弹簧问题分类进行剖析.

对于弹簧,从受力角度看,弹簧上的弹力是变力;从能量角度看,弹簧是个储能元件.因此,弹簧问题能很好地考查学生的综合分析能力,故备受高考命题老师的青睐.如2009年高考福建理综卷第21题、山东理综卷第22题、重庆理综卷第24题,2008年高考北京理综卷第22题、山东理综卷第16题和第22题、四川延考区理综卷第14题等.题目类型有:静力学中的弹簧问题,动力学中的弹簧问题,与动量和能量有关的弹簧问题.

1.静力学中的弹簧问题

(1)胡克定律:F =kx ,ΔF =k ·Δx .

(2)对弹簧秤的两端施加(沿轴线方向)大小不同的拉力,弹簧秤的示数一定等于挂钩上的拉力.

●例4 如图9-12甲所示,两木块A 、B 的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,两弹簧分别连接A 、B ,整个系统处于平衡状态.现缓慢向上提木块A ,直到下面的弹簧对地面的压力恰好为零,在此过程中A 和B 的重力势能共增加了( )

图9-12甲

A .(m 1+m 2)2g 2

k 1+k 2

B .(m 1+m 2)2g 2

2(k 1+k 2)

C .(m 1+m 2)2g 2(k 1+k 2k 1k 2

) D .(m 1+m 2)2g 2k 2+m 1(m 1+m 2)g 2

k 1

【解析】取A 、B 以及它们之间的弹簧组成的整体为研究对象,则当下面的弹簧对地面的压力为零时,向上提A 的力F 恰好为:

F =(m 1+m 2)g

设这一过程中上面和下面的弹簧分别伸长x 1、x 2,如图9-12乙所示,由胡克定律得:

图9-12乙

x 1=(m 1+m 2)g k 1,x 2=(m 1+m 2)g k 2

故A 、B 增加的重力势能共为:

ΔE p =m 1g (x 1+x 2)+m 2gx 2

=(m 1+m 2)2g 2k 2+m 1(m 1+m 2)g 2

k 1

. [答案] D

【点评】①计算上面弹簧的伸长量时,较多同学会先计算原来的压缩量,然后计算后来

的伸长量,再将两者相加,但不如上面解析中直接运用Δx =ΔF k

进行计算更快捷方便. ②通过比较可知,重力势能的增加并不等于向上提的力所做的功W =F ·x 总=(m 1+m 2)2g 22k 22+(m 1+m 2)2g 2

2k 1k 2

. 2.动力学中的弹簧问题

(1)瞬时加速度问题(与轻绳、轻杆不同):一端固定、另一端接有物体的弹簧,形变不会发生突变,弹力也不会发生突变.

(2)如图9-13所示,将A 、B 下压后撤去外力,弹簧在恢复原长时刻B 与A 开始分离.

图9-13

●例5 一弹簧秤秤盘的质量m 1=1.5 kg ,盘内放一质量m 2=10.5 kg 的物体P ,弹簧的质量不计,其劲度系数k =800 N/m ,整个系统处于静止状态,如图9-14 所示.

图9-14

现给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在最初0.2 s 内F 是变化的,在0.2 s 后是恒定的,求F 的最大值和最小值.(取g =10 m/s 2)

【解析】初始时刻弹簧的压缩量为:

x 0=(m 1+m 2)g k

=0.15 m 设秤盘上升高度x 时P 与秤盘分离,分离时刻有:

k (x 0-x )-m 1g m 1

=a 又由题意知,对于0~0.2 s 时间内P 的运动有:

12

at 2=x 解得:x =0.12 m ,a =6 m/s 2

故在平衡位置处,拉力有最小值F min =(m 1+m 2)a =72 N

分离时刻拉力达到最大值F max =m 2g +m 2a =168 N .

[答案] 72 N 168 N

【点评】对于本例所述的物理过程,要特别注意的是:分离时刻m 1与m 2之间的弹力恰好减为零,下一时刻弹簧的弹力与秤盘的重力使秤盘产生的加速度将小于a ,故秤盘与重物分离.

3.与动量、能量相关的弹簧问题

与动量、能量相关的弹簧问题在高考试题中出现频繁,而且常以计算题出现,在解析过程中以下两点结论的应用非常重要:

(1)弹簧压缩和伸长的形变相同时,弹簧的弹性势能相等;

(2)弹簧连接两个物体做变速运动时,弹簧处于原长时两物体的相对速度最大,弹簧的

形变最大时两物体的速度相等.

●例6 如图9-15所示,用轻弹簧将质量均为m =1 kg 的物块A 和B 连接起来,将它们固定在空中,弹簧处于原长状态,A 距地面的高度h 1=0.90 m .同时释放两物块,A 与地面碰撞后速度立即变为零,由于B 压缩弹簧后被反弹,使A 刚好能离开地面(但不继续上升).若将B 物块换为质量为2m 的物块C (图中未画出),仍将它与A 固定在空中且弹簧处于原长,从A 距地面的高度为h 2处同时释放,C 压缩弹簧被反弹后,A 也刚好能离开地面.已知弹簧的劲度系数k =100 N/m ,求h 2的大小.

图9-15

【解析】设A 物块落地时,B 物块的速度为v 1,则有:

12

m v 12=mgh 1 设A 刚好离地时,弹簧的形变量为x ,对A 物块有:

mg =kx

从A 落地后到A 刚好离开地面的过程中,对于A 、B 及弹簧组成的系统机械能守恒,则有:

12

m v 12=mgx +ΔE p 换成C 后,设A 落地时,C 的速度为v 2,则有:

12

·2m v 22=2mgh 2 从A 落地后到A 刚好离开地面的过程中,A 、C 及弹簧组成的系统机械能守恒,则有: 12

·2m v 22=2mgx +ΔE p 联立解得:h 2=0.5 m .

[答案] 0.5 m

【点评】由于高中物理对弹性势能的表达式不作要求,所以在高考中几次考查弹簧问题时都要用到上述结论“①”.如2005年高考全国理综卷Ⅰ第25题、1997年高考全国卷第25题等.

●例7 用轻弹簧相连的质量均为2 kg 的A 、B 两物块都以v =6 m/s 的速度在光滑的水平地面上运动,弹簧处于原长,质量为4 kg 的物块C 静止在前方,如图9-16 甲所示.B 与C 碰撞后二者粘在一起运动,则在以后的运动中:

图9-16甲

(1)当弹簧的弹性势能最大时,物体A 的速度为多大?

(2)弹簧弹性势能的最大值是多少?

(3)A 的速度方向有可能向左吗?为什么?

【解析】(1)当A 、B 、C 三者的速度相等(设为v A ′)时弹簧的弹性势能最大,由于A 、B 、C 三者组成的系统动量守恒,则有:

(m A +m B )v =(m A +m B +m C )v A ′

解得:v A ′=(2+2)×62+2+4

m/s =3 m/s . (2)B 、C 发生碰撞时,B 、C 组成的系统动量守恒,设碰后瞬间B 、C 两者的速度为v ′,则有:

m B v =(m B +m C )v ′

解得:v ′=2×62+4

=2 m/s A 的速度为v A ′时弹簧的弹性势能最大,设其值为E p ,根据能量守恒定律得:

E p =12(m B +m C )v ′2+12m A v 2-12

(m A +m B +m C )v A ′2 =12 J .

(3)方法一 A 不可能向左运动.

根据系统动量守恒有:(m A +m B )v =m A v A +(m B +m C )v B

设A 向左,则v A <0,v B >4 m/s

则B 、C 发生碰撞后,A 、B 、C 三者的动能之和为:

E ′=12m A v 2A +12(m B +m C )v 2B >12

(m B +m C )v 2B =48 J 实际上系统的机械能为:

E =E p +12

(m A +m B +m C )v A ′2=12 J +36 J =48 J 根据能量守恒定律可知,E ′>E 是不可能的,所以A 不可能向左运动.

方法二 B 、C 碰撞后系统的运动可以看做整体向右匀速运动与A 、B 和C 相对振动的合成(即相当于在匀速运动的车厢中两物块相对振动)

由(1)知整体匀速运动的速度v 0=v A ′=3 m/s

图9-16乙

取以v0=3 m/s匀速运动的物体为参考系,可知弹簧处于原长时,A、B和C相对振动的速率最大,分别为:

v AO=v-v0=3 m/s

v BO=|v′-v0|=1 m/s

由此可画出A、B、C的速度随时间变化的图象如图9-16乙所示,故A不可能有向左运动的时刻.

[答案] (1)3 m/s(2)12 J(3)不可能,理由略

【点评】①要清晰地想象、理解研究对象的运动过程:相当于在以3 m/s匀速行驶的车厢内,A、B和C做相对弹簧上某点的简谐振动,振动的最大速率分别为3 m/s、1 m/s.

②当弹簧由压缩恢复至原长时,A最有可能向左运动,但此时A的速度为零.

●例8探究某种笔的弹跳问题时,把笔分为轻质弹簧、内芯和外壳三部分,其中内芯

和外壳质量分别为m和4m.笔的弹跳过程分为三个阶段:

图9-17

①把笔竖直倒立于水平硬桌面,下压外壳使其下端接触桌面(如图9-17甲所示);

②由静止释放,外壳竖直上升到下端距桌面高度为h1时,与静止的内芯碰撞(如图9-

17乙所示);

③碰后,内芯与外壳以共同的速度一起上升到外壳下端距桌面最大高度为h2处(如图9

-17丙所示).

设内芯与外壳的撞击力远大于笔所受重力,不计摩擦与空气阻力,重力加速度为g.求:

(1)外壳与内芯碰撞后瞬间的共同速度大小.

(2)从外壳离开桌面到碰撞前瞬间,弹簧做的功.

(3)从外壳下端离开桌面到上升至h2处,笔损失的机械能.

[2009年高考·重庆理综卷]

【解析】设外壳上升到h1时速度的大小为v1,外壳与内芯碰撞后瞬间的共同速度大小

为v 2.

(1)对外壳和内芯,从撞后达到共同速度到上升至h 2处,由动能定理得:

(4m +m )g (h 2-h 1)=12

(4m +m )v 22-0 解得:v 2=2g (h 2-h 1).

(2)外壳与内芯在碰撞过程中动量守恒,即:

4m v 1=(4m +m )v 2

将v 2代入得:v 1=54

2g (h 2-h 1) 设弹簧做的功为W ,对外壳应用动能定理有:

W -4mgh 1=12

×4m v 21 将v 1代入得:W =14

mg (25h 2-9h 1). (3)由于外壳和内芯达到共同速度后上升至高度h 2的过程中机械能守恒,只有在外壳和

内芯的碰撞中有能量损失,损失的能量E 损=12×4m v 21-12

(4m +m )v 22 将v 1、v 2代入得:E 损=54

mg (h 2-h 1). [答案] (1)2g (h 2-h 1) (2)14

mg (25h 2-9h 1) (3)54

mg (h 2-h 1) 由以上例题可以看出,弹簧类试题的确是培养和训练学生的物理思维、反映和开发学生的学习潜能的优秀试题.弹簧与相连物体构成的系统所表现出来的运动状态的变化,为学生充分运用物理概念和规律(牛顿第二定律、动能定理、机械能守恒定律、动量定理、动量守恒定律)巧妙解决物理问题、施展自身才华提供了广阔空间,当然也是区分学生能力强弱、拉大差距、选拔人才的一种常规题型.因此,弹簧试题也就成为高考物理题中的一类重要的、独具特色的考题.

四、传送带问题

从1990年以后出版的各种版本的高中物理教科书中均有皮带传输机的插图.皮带传送类问题在现代生产生活中的应用非常广泛.这类问题中物体所受的摩擦力的大小和方向、运动性质都具有变化性,涉及力、相对运动、能量转化等各方面的知识,能较好地考查学生分析物理过程及应用物理规律解答物理问题的能力.如2003年高考全国理综卷第34题、2005年高考全国理综卷Ⅰ第24题等.

对于滑块静止放在匀速传动的传送带上的模型,以下结论要清楚地理解并熟记:

(1)滑块加速过程的位移等于滑块与传送带相对滑动的距离;

(2)对于水平传送带,滑块加速过程中传送带对其做的功等于这一过程由摩擦产生的热量,即传送装置在这一过程需额外(相对空载)做的功W =m v 2=2E k =2Q 摩.

●例9 如图9-18甲所示,物块从光滑曲面上的P 点自由滑下,通过粗糙的静止水平传送带后落到地面上的Q 点.若传送带的皮带轮沿逆时针方向匀速运动(使传送带随之运动),物块仍从P 点自由滑下,则( )

图9-18甲

A .物块有可能不落到地面上

B .物块仍将落在Q 点

C .物块将会落在Q 点的左边

D .物块将会落在Q 点的右边

【解析】如图9-18乙所示,设物块滑上水平传送带上的初速度为v 0,物块与皮带之间的动摩擦因数为μ,则:

图9-18乙

物块在皮带上做匀减速运动的加速度大小a =μmg m

=μg 物块滑至传送带右端的速度为:

v =v 02-2μgs

物块滑至传送带右端这一过程的时间可由方程s =v 0t -12

μgt 2解得. 当皮带向左匀速传送时,滑块在皮带上的摩擦力也为:

f =μmg

物块在皮带上做匀减速运动的加速度大小为:

a 1′=μmg m

=μg 则物块滑至传送带右端的速度v ′=v 02-2μgs =v

物块滑至传送带右端这一过程的时间同样可由方程s =v 0t -12

μgt 2 解得. 由以上分析可知物块仍将落在Q 点,选项B 正确.

[答案] B

【点评】对于本例应深刻理解好以下两点:

①滑动摩擦力f =μF N ,与相对滑动的速度或接触面积均无关;

②两次滑行的初速度(都以地面为参考系)相等,加速度相等,故运动过程完全相同. 我们延伸开来思考,物块在皮带上的运动可理解为初速度为v 0的物块受到反方向的大小为μmg 的力F 的作用,与该力的施力物体做什么运动没有关系.

●例10 如图9-19所示,足够长的水平传送带始终以v =3 m/s 的速度向左运动,传送带上有一质量M =2 kg 的小木盒A ,A 与传送带之间的动摩擦因数μ=0.3.开始时,A 与传送带之间保持相对静止.现有两个光滑的质量均为m =1 kg 的小球先后相隔Δt =3 s 自传送带的左端出发,以v 0=15 m/s 的速度在传送带上向右运动.第1个球与木盒相遇后立即进

入盒中并与盒保持相对静止;第2个球出发后历时Δt 1=13

s 才与木盒相遇.取g =10 m/s 2,问:

图9-19

(1)第1个球与木盒相遇后瞬间,两者共同运动的速度为多大?

(2)第1个球出发后经过多长时间与木盒相遇?

(3)在木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量是多少?

【解析】(1)设第1个球与木盒相遇后瞬间,两者共同运动的速度为v 1,根据动量守恒定律得:

m v 0-M v =(m +M )v 1

解得:v 1=3 m/s ,方向向右.

(2)设第1个球与木盒的相遇点离传送带左端的距离为s ,第1个球经过时间t 0与木盒相遇,则有:

t 0=s v 0

设第1个球进入木盒后两者共同运动的加速度大小为a ,根据牛顿第二定律得:

μ(m +M )g =(m +M )a

解得:a =μg =3 m/s 2,方向向左

设木盒减速运动的时间为t 1,加速到与传送带具有相同的速度的时间为t 2,则:

t 1=t 2=Δv a

=1 s 故木盒在2 s 内的位移为零

依题意可知:s =v 0Δt 1+v (Δt +Δt 1-t 1-t 2-t 0)

解得:s =7.5 m ,t 0=0.5 s .

(3)在木盒与第1个球相遇至与第2个球相遇的这一过程中,设传送带的位移为s ′,木盒的位移为s 1,则:

s ′=v (Δt +Δt 1-t 0)=8.5 m

s 1=v (Δt +Δt 1-t 1-t 2-t 0)=2.5 m

故木盒相对于传送带的位移为:Δs =s ′-s 1=6 m

则木盒与传送带间因摩擦而产生的热量为:

Q =f Δs =54 J .

[答案] (1)3 m/s (2)0.5 s (3)54 J

【点评】本题解析的关键在于:①对物理过程理解清楚;②求相对路程的方法.

能力演练

一、选择题(10×4分)

1.图示是原子核的核子平均质量与原子序数Z 的关系图象,下列说法正确的是( )

A .若D 和E 结合成F ,结合过程中一定会吸收核能

B .若D 和E 结合成F ,结合过程中一定会释放核能

C .若A 分裂成B 和C ,分裂过程中一定会吸收核能

D .若A 分裂成B 和C ,分裂过程中一定会释放核能

【解析】D 、E 结合成F 粒子时总质量减小,核反应释放核能;A 分裂成B 、C 粒子时,总质量减小,核反应释放核能.

[答案] BD

2.单冷型空调器一般用来降低室内温度,其制冷系统与电冰箱的制冷系统结构基本相同.某单冷型空调器的制冷机从低温物体吸收热量Q 2,向高温物体放出热量Q 1,而外界(压

缩机)必须对工作物质做功W ,制冷系数ε=Q 2W

.设某一空调的制冷系数为4,若制冷机每天从房间内部吸收2.0×107 J 的热量,则下列说法正确的是( )

A .Q 1一定等于Q 2

B .空调的制冷系数越大越耗能

C .制冷机每天放出的热量Q 1=2.5×107 J

D .制冷机每天放出的热量Q 1=5.0×106 J

【解析】Q 1=Q 2+W >Q 2,选项A 错误;ε越大,从室内向外传递相同热量时压缩机所

需做的功(耗电)越小,越节省能量,选项B 错误;又Q 1=Q 2+Q 2ε

=2.5×107 J ,故选项C 正确.

[答案] C

3.图示为一列简谐横波的波形图象,其中实线是t 1=0时刻的波形,虚线是t 2=1.5 s 时的波形,且(t 2-t 1)小于一个周期.由此可判断( )

A .波长一定是60 cm

B .波一定向x 轴正方向传播

C .波的周期一定是6 s

D .波速可能是0.1 m/s ,也可能是0.3 m/s

【解析】由题图知λ=60 cm

若波向x 轴正方向传播,则可知:

波传播的时间t 1=T 4,传播的位移s 1=15 cm =λ4

故知T =6 s ,v =0.1 m/s

若波向x 轴负方向传播,可知:

波传播的时间t 2=34T ,传播的位移s 2=45 cm =3λ4

故知T =2 s ,v =0.3 m/s .

[答案] AD

4.如图所示,在水平桌面上叠放着质量均为M 的A 、B 两块木板,在木板A 的上面放着一个质量为m 的物块C ,木板和物块均处于静止状态.A 、B 、C 之间以及B 与地面之间的动摩擦因数都为μ.若用水平恒力F 向右拉动木板A ,使之从C 、B 之间抽出来,已知重力加速度为g ,则拉力F 的大小应该满足的条件是(已知最大静摩擦力的大小等于滑动摩擦力)( )

A .F >μ(2m +M )g

B .F >μ(m +2M )g

C .F >2μ(m +M )g

D .F >2μmg

【解析】无论F 多大,摩擦力都不能使B 向右滑动,而滑动摩擦力能使C 产生的最大

加速度为μg ,故F -μmg -μ(m +M )g M

>μg 时,即F >2μ(m +M )g 时A 可从B 、C 之间抽出. [答案] C

5.如图所示,一束单色光a 射向半球形玻璃砖的球心,在玻璃与空气的界面MN 上同时发生反射和折射,b 为反射光,c 为折射光,它们与法线间的夹角分别为β和θ.逐渐增大入射角α,下列说法中正确的是( )

A .β和θ两角同时增大,θ始终大于β

B .b 光束的能量逐渐减弱,c 光束的能量逐渐加强

C .b 光在玻璃中的波长小于b 光在空气中的波长

D .b 光光子的能量大于c 光光子的能量

【解析】三个角度之间的关系有:θ=α,sin βsin α

=n >1,故随着α的增大,β、θ都增大,但是θ<β,选项A 错误,且在全反射前,c 光束的能量逐渐减弱,b 光束的能量逐渐加强,选项B 错误;又由n =sin βsin α=c v =λλ′

,b 光在玻璃中的波长小于在空气中的波长,但光子的能量不变,选项C 正确、D 错误.

[答案] C

6.如图所示,水平传送带以v =2 m/s 的速度匀速前进,上方漏斗中以每秒50 kg 的速度把煤粉竖直抖落到传送带上,然后一起随传送带运动.如果要使传送带保持原来的速度匀速前进,则传送带的电动机应增加的功率为( )

A .100 W

B .200 W

C .500 W

D .无法确定

【解析】漏斗均匀持续将煤粉抖落在传送带上,每秒钟有50 kg 的煤粉被加速至2 m/s ,故每秒钟传送带的电动机应多做的功为:

ΔW =ΔE k +Q =12

m v 2+f ·Δs =m v 2=200 J 故传送带的电动机应增加的功率ΔP =ΔW t

=200 W . [答案] B

7.如图所示,一根用绝缘材料制成的轻弹簧,劲度系数为k ,一端固定,另一端与质量为m 、带电荷量为+q 的小球相连,静止在光滑绝缘水平面上.当施加水平向右的匀强电场E 后,小球开始做简谐运动,下列关于小球运动情况的说法中正确的是( )

A .小球的速度为零时,弹簧的伸长量为qE k

B .小球的速度为零时,弹簧的伸长量为2qE k

C .运动过程中,小球和弹簧系统的机械能守恒

D .运动过程中,小球动能变化量、弹性势能变化量以及电势能的变化量之和保持为零

【解析】由题意知,小球位于平衡位置时弹簧的伸长量x 0=

qE k

,小球速度为零时弹簧处于原长或伸长了2x 0=2qE k

,选项A 错误、B 正确. 小球做简谐运动的过程中弹簧弹力和电场力都做功,机械能不守恒,动能、弹性势能、电势能的总和保持不变,选项D 正确.

[答案] BD

8.如图所示,将质量为m 的滑块放在倾角为θ的固定斜面上.滑块与斜面之间的动摩擦因数为μ.若滑块与斜面之间的最大静摩擦力和滑动摩擦力大小相等,重力加速度为g ,则[2009年高考·北京理综卷]( )

A .将滑块由静止释放,如果μ>tan θ,滑块将下滑

B .给滑块沿斜面向下的初速度,如果μ<tan θ,滑块将减速下滑

C .用平行于斜面向上的力拉滑块向上匀速滑动,如果μ=tan θ,则拉力大小应是2mg sin θ

D .用平行于斜面向下的力拉滑块向下匀速滑动,如果μ=tan θ,则拉力大小应是mg sin θ

【解析】对于静止置于斜面上的滑块,可沿斜面下滑的条件为mg sin θ>μmg cos θ;同理,当mg sin θ<μmg cos θ时,具有初速度下滑的滑块将做减速运动,选项A 、B 错误;当μ=tan θ 时,滑块与斜面之间的动摩擦力f =mg sin θ,由平衡条件知,使滑块匀速上滑的拉力F =2mg sin θ,选项C 正确、D 错误.

[答案] C

9.国产“水刀”——超高压数控万能水切割机,以其神奇的切割性能在北京国际展览中心举行的第五届国际机床展览会上引起轰动,它能切割40 mm 厚的钢板、50 mm 厚的大

理石等材料.

将普通的水加压,使其从口径为0.2 mm 的喷嘴中以800 m/s ~1000 m/s 的速度射出,这种水射流就是“水刀”.我们知道,任何材料承受的压强都有一定限度,下表列出了一些材料所能承受的压强的限度.

,水射流与材料接触后,速度为零,且不附着在材料上,水的密度ρ=1×103 kg/m 3,则此水刀不能切割上述材料中的( )

【解析】以射到材料上的水量Δm 为研究对象,以其运动方向为正方向,由动量定理得: -pS ·Δt =-ρS v ·Δt ·v

得:p =ρv 2=6.4×108 Pa

由表中数据可知:此“水刀”不能切割材料C 和D . [答案] CD 10.如图甲所示,质量为2m 的长木板静止地放在光滑的水平面上,另一质量为m 的小铅块(可视为质点)以水平速度v 0滑上木板的左端,恰能滑至木板的右端且与木板保持相对静止,铅块在运动过程中所受到的摩擦力始终不变.若将木板分成长度与质量均相等(即m 1=m 2=m )的两段1、2后,将它们紧挨着放在同一水平面上,让小铅块以相同的初速度v 0由木板1的左端开始运动,如图乙所示,则下列说法正确的是( )

A .小铅块滑到木板2的右端前就与之保持相对静止

B .小铅块滑到木板2的右端后与之保持相对静止

C .甲、乙两图所示的过程中产生的热量相等

D .图甲所示的过程产生的热量大于图乙所示的过程产生的热量

【解析】长木板分两段前,铅块和木板的最终速度为:

v t =m v 03m =13v 0

且有Q =fL =12m v 02-12×3m (v 03)2=13

m v 02

(完整word版)高中物理传送带模型总结

“传送带模型” 1.模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图(a)、(b)、(c)所示. 2.建模指导 水平传送带问题:求解的关键在于对物体所受的摩擦力进行正确的分析判断.判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x(对地)的过程中速度是否和传送带速度相等.物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻. 水平传送带模型: 1.传送带是一种常用的运输工具,被广泛应用于矿山、码头、货场、车站、机场等.如图所示为火车站使用的传送带示意图.绷紧的传送带水平部分长度L=5 m,并以v0=2 m/s的速度匀速向右运动.现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,g取10 m/s2 .(1)求旅行包经过多长时间到达传送带的右端; (2)若要旅行包从左端运动到右端所用时间最短,则传送带速度的大小应满足什么条件?最短时间是多少? 2.如图所示,一质量为m=0.5kg的小物体从足够高的光滑曲面上自由滑下,然后滑上一水平传送带。已知物体与传送带之间的动摩擦因数为μ=0.2,传送带水平部分的长度L=5m,两端的传动轮半径为R=0.2m,在电动机的带动下始终以ω=15/rads的角速度沿顺时针匀速转运, 传送带下表面离地面的高度h不变。如果物体开始沿曲面下滑时距传送带表面 的高度为H,初速度为零,g取10m/s2.求: (1)当H=0.2m时,物体通过传送带过程中,电动机多消耗的电能。 (2)当H=1.25m时,物体通过传送带后,在传送带上留下的划痕的长度。 (3) H在什么范围内时,物体离开传送带后的落地点在同一位置。

高中物理解题模型详解(2)

高考物理解题模型11[1][1].11高中物理解题模型详解69高考物理解题模型目录第一章运动和力1一、追及、相遇模型1二、先加速后减速模型4三、斜面模型6四、挂件模型11五、弹簧模型(动力学)18第二章圆周运动20一、水平方向的圆盘模型20二、行星模型23第三章功和能1一、水平狄犀翁梆睁裙奥握剃抨仔蔑饥评呸群特恰恫哺 萄馏舒微栈稼牧蕾柄墟俞蓟祭派翔酪袒程弛墩涸抗浸蚊俘执揪荆腐评防共与拥胡蒙瞎昧互战票红铣肚 目录11[1][1].11高中物理解题模型详解69高考物理解题模型目录第一章运动和力1一、追及、相遇模型1二、先加速后减速模型4三、斜面模型6四、挂件模型11五、弹簧模型(动力学)18第二章圆周运动20一、水平方向的圆盘模型20二、行星模型23第三章功和能1一、水平狄犀翁梆睁裙奥握剃抨仔蔑饥评呸群特恰恫哺萄馏舒微栈稼牧蕾柄墟俞蓟祭派翔酪袒程弛 墩涸抗浸蚊俘执揪荆腐评防共与拥胡蒙瞎昧互战票红铣肚 11[1][1].11高中物理解题模型详解69高考物理解题模型目录第一章运动和力1一、追及、相遇模型1二、先加速后减速模型4三、斜面模型6四、挂件模型11五、弹簧模型(动力学)18第二章圆周运动20一、水平方向的圆盘模型20二、行星模型23第三章功和能1一、水平狄犀翁梆睁裙奥握剃抨仔蔑饥评呸群特恰恫哺萄馏舒微栈稼牧蕾柄墟俞蓟祭派翔酪袒程弛墩涸抗浸蚊俘执 揪荆腐评防共与拥胡蒙瞎昧互战票红铣肚 第一章运动和力111[1][1].11高中物理解题模型详解69高考物理解题模型目录第一章运动和力1一、追及、相遇模型1二、先加速后减速模型4三、斜面模型6四、挂件模型11五、弹簧模型(动力学)18第二章圆周运动20一、水平方向的圆盘模型20二、行星模型23第三章功和能1一、水平狄犀翁梆睁裙奥握剃抨仔蔑饥评呸群特恰恫哺萄馏舒微栈稼牧蕾柄墟俞蓟祭派翔酪袒程弛墩涸抗浸蚊俘执揪荆腐评防共与拥胡蒙瞎昧互战票红铣肚 一、追及、相遇模型111[1][1].11高中物理解题模型详解69高考物理解题模型目录第一章运动和力1一、 追及、相遇模型1二、先加速后减速模型4三、斜面模型6四、挂件模型11五、弹簧模型(动力学)18第二章圆周 运动20一、水平方向的圆盘模型20二、行星模型23第三章功和能1一、水平狄犀翁梆睁裙奥握剃抨仔蔑饥评呸群 特恰恫哺萄馏舒微栈稼牧蕾柄墟俞蓟祭派翔酪袒程弛墩涸抗浸蚊俘执揪荆腐评防共与拥胡蒙瞎昧互战票红铣肚 二、先加速后减速模型711[1][1].11高中物理解题模型详解69高考物理解题模型目录第一章运动和力1 一、追及、相遇模型1二、先加速后减速模型4三、斜面模型6四、挂件模型11五、弹簧模型(动力学)18第二章圆 周运动20一、水平方向的圆盘模型20二、行星模型23第三章功和能1一、水平狄犀翁梆睁裙奥握剃抨仔蔑饥评呸 群特恰恫哺萄馏舒微栈稼牧蕾柄墟俞蓟祭派翔酪袒程弛墩涸抗浸蚊俘执揪荆腐评防共与拥胡蒙瞎昧互战票红铣肚 三、斜面模型1111[1][1].11高中物理解题模型详解69高考物理解题模型目录第一章运动和力1一、追及、 相遇模型1二、先加速后减速模型4三、斜面模型6四、挂件模型11五、弹簧模型(动力学)18第二章圆周运动 20一、水平方向的圆盘模型20二、行星模型23第三章功和能1一、水平狄犀翁梆睁裙奥握剃抨仔蔑饥评呸群特恰 恫哺萄馏舒微栈稼牧蕾柄墟俞蓟祭派翔酪袒程弛墩涸抗浸蚊俘执揪荆腐评防共与拥胡蒙瞎昧互战票红铣肚 四、挂件模型1911[1][1].11高中物理解题模型详解69高考物理解题模型目录第一章运动和力1一、追及、 相遇模型1二、先加速后减速模型4三、斜面模型6四、挂件模型11五、弹簧模型(动力学)18第二章圆周运动 20一、水平方向的圆盘模型20二、行星模型23第三章功和能1一、水平狄犀翁梆睁裙奥握剃抨仔蔑饥评呸群特恰 恫哺萄馏舒微栈稼牧蕾柄墟俞蓟祭派翔酪袒程弛墩涸抗浸蚊俘执揪荆腐评防共与拥胡蒙瞎昧互战票红铣肚 五、弹簧模型(动力学)3111[1][1].11高中物理解题模型详解69高考物理解题模型目录第一章运动和 力1一、追及、相遇模型1二、先加速后减速模型4三、斜面模型6四、挂件模型11五、弹簧模型(动力学)18第 二章圆周运动20一、水平方向的圆盘模型20二、行星模型23第三章功和能1一、水平狄犀翁梆睁裙奥握剃抨仔 蔑饥评呸群特恰恫哺萄馏舒微栈稼牧蕾柄墟俞蓟祭派翔酪袒程弛墩涸抗浸蚊俘执揪荆腐评防共与拥胡蒙瞎昧互战票 红铣肚 第二章圆周运动3511[1][1].11高中物理解题模型详解69高考物理解题模型目录第一章运动和力1一、追及、相遇模型1二、先加速后减速模型4三、斜面模型6四、挂件模型11五、弹簧模型(动力学)18第二章圆周运动20一、水平方向的圆盘模型20二、行星模型23第三章功和能1一、水平狄犀翁梆睁裙奥握剃抨仔蔑饥评呸群特恰恫哺萄馏舒微栈稼牧蕾柄墟俞蓟祭派翔酪袒程弛墩涸抗浸蚊俘执揪荆腐评防共与拥胡蒙瞎昧互战票红铣肚

高中物理模型总结汇总

l v 0 v S v 0 A B v 0 A B v 0 l 滑块、子弹打木块模型之一 子弹打木块模型:包括一物块在木板上滑动等。μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。 例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。 解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ① 由动能定理,对子弹 -f(s+l )=2 022 121 mv mv - ② 对木块 fs=02 12-MV ③ 由①式得 v= )(0v v M m - 代入③式有 fs=2022 )(21v v M m M -? ④ ②+④得 f l =})]([2121{212 12 1 2 120220222 v v M m M mv mv MV mv mv -+-=-- 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。即Q=f l ,l 为子弹现木块的相对位移。 结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。即 Q=ΔE 系统=μNS 相 其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统 1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量 与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属 块与木板间动摩擦因数为μ=0.1,g 取10m/s 2 。求两木板的最后速度。 2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度 (如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离 B 板。以地面为参照系。 ⑴若已知A 和B 的初速度大小为v 0,求它们最后速度的大小和方向; ⑵若初速度的大小未知,求小木块A 向左运动到最远处(从地面上看)到出发点的距离。 3.一平直木板C 静止在光滑水平面上,今有两小物块A 和B 分别以2v 0和v 0的初速度沿同一直线从长木板

(完整版)高中物理模型解题

高中物理模型解题 模型解题归类 一、刹车类问题 匀减速到速度为零即停止运动,加速度a突然消失,求解时要注意确定其实际运动时间。如果问题涉及到最后阶段(到速度为零)的运动,可把这个阶段看成反向、初速度为零、加速度不变的匀加速直线运动。 【题1】汽车刹车后,停止转动的轮胎在地面上发生滑动,可以明显地看出滑动的痕迹,即常说的刹车线。由刹车线长短可以得知汽车刹车前的速度的大小,因此刹车线的长度是分析交通事故的一个重要依据。若汽车轮胎跟地面的动摩擦因数是0.7,刹车线长是14m,汽车在紧急刹车前的速度是否超过事故路段的最高限速50km/h? 【题2】一辆汽车以72km/h速率行驶,现因故紧急刹车并最终终止运动,已知汽车刹车过程加速度的大小为5m/s2,则从开始刹车经过5秒汽车通过的位移是多大 二、类竖直上抛运动问题 物体先做匀加速运动,到速度为零后,反向做匀加速运动,加速过程的加速度与减速运动过程的加速度相同。此类问题要注意到过程的对称性,解题时可以分为上升过程和下落过程,也可以取整个过程求解。 【题1】一滑块以20m/s滑上一足够长的斜面,已知滑块加速度的大小为5m/s2,则经过5秒滑块通过的位移是多大? 【题2】物体沿光滑斜面匀减速上滑,加速度大小为4m/s2,6s后又返回原点。那么下述结论正确的是() A物体开始沿斜面上滑时的速度为12m/s B物体开始沿斜面上滑时的速度为10m/s C物体沿斜面上滑的最大位移是18m D物体沿斜面上滑的最大位移是15m 三、追及相遇问题 两物体在同一直线上同向运动时,由于二者速度关系的变化,会导致二者之间的距离的变化,出现追及相撞的现象。两物体在同一直线上相向运动时,会出现相遇的现象。解决此类问题的关键是两者的位移关系,即抓住:“两物体同时出现在空间上的同一点。分析方法有:物理分析法、极值法、图像法。常见追及模型有两个:速度大者(减速)追速度小者(匀速)、速度小者(初速度为零的匀加速直线运动)追速度大者(匀速)、 1、速度大者(减速)追速度小者(匀速):(有三种情况)

高中物理模型总结整理

l v 0 v S v 0 A B v 0 A B v 0 l 滑块、子弹打木块模型之一 子弹打木块模型:包括一物块在木板上滑动等。μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。 例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。 解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ① 由动能定理,对子弹 -f(s+l )=2022121 mv mv - ② 对木块 fs=0212-MV ③ 由①式得 v= )(0v v M m - 代入③式有 fs=2022)(21v v M m M -? ④ ②+④得 f l =})]([2121{21212121 202202220 v v M m M mv mv MV mv mv -+-=-- 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。即Q=f l ,l 为子弹现木块的相对位移。 结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。即 Q=ΔE 系统=μNS 相 其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统 1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量 与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属 块与木板间动摩擦因数为μ=0.1,g 取10m/s 2。求两木板的最后速度。 2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度 (如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离 B 板。以地面为参照系。 ⑴若已知A 和B 的初速度大小为v 0,求它们最后速度的大小和方向; ⑵若初速度的大小未知,求小木块A 向左运动到最远处(从地面上看)到出发点的距离。 3.一平直木板C 静止在光滑水平面上,今有两小物块A 和B 分别以2v 0和v 0的初速度沿同一直线从长木板

关于高级高中物理模型总结归纳

1、追及、相遇模型 火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火车乙正以较小速度v 2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。为了使两车不相撞,加速度a 应满足什么条件? 故不相撞的条件为d v v a 2)(2 21-≥ 2、传送带问题 1.(14分)如图所示,水平传送带水平段长L =6米,两皮带轮直径均为D=0.2米,距地面高度H=5米,与传送带等高的光滑平台上有一个小物体以v 0=5m/s 的初速度滑上传送带,物块与传送带间的动摩擦因数为,g=10m/s 2,求: (1)若传送带静止,物块滑到B 端作平抛 运动 的水平距离S 0。 (2)当皮带轮匀速转动,角速度为ω,物 体平抛运动水平位移s ;以不同的角速度ω值重复 上述过程,得到一组对应的ω,s 值,设皮带轮顺时针转动时ω>0,逆时针转动时ω<0,并画出s —ω关系图象。 解:(1))(12110m g h v t v s === (2)综上s —ω关系为:?? ? ??≥≤≤≤s rad s rad s rad s /707/70101.0/101ωωω ω 2.(10分)如图所示,在工厂的流水线上安装有水平传送带,用水平传送带传送工件,可以大大提高工作效率,水平传送带以的 工 恒定的速率s m v /2=运送质量为kg m 5.0=

件,工件都是以s m v /10=的初速度从A 位置滑上传送带,工件与传送带之间的动摩擦因数2.0=μ,每当前一个工件在传送带上停止相对滑动时,后一个工件立即滑上传送带,取2/10s m g =,求: (1)工件滑上传送带后多长时间停止相对滑动 (2)在正常运行状态下传送带上相邻工件间的距离 (3)在传送带上摩擦力对每个工件做的功 (4)每个工件与传送带之间由于摩擦产生的内能 解:(1)工作停止相对滑动前的加速度2/2s m g a ==μ ① 由at v v t +=0可知:s s a v v t t 5.02 1 20=-=-= ② (2)正常运行状态下传送带上相邻工件间的距离m m vt s 15.02=?==? ③ (3)J J mv mv W 75.0)12(5.02 12121 222 02=-??=-= ④ (4)工件停止相对滑动前相对于传送带滑行的距离 )21(20at t v vt s +-=m )5.022 1 5.01(5.022??+?-?=m m 25.0)75.01(=-=⑤ J mgs fs E 25.0===μ内 ⑥ 3、汽车启动问题 匀加速启动 恒定功率启动 4、行星运动问题 [例题1] 如图6-1所示,在与一质量为M ,半径为R ,密度均匀的球体距离为R 处有一质量为m 的质点,此时M 对m 的万有引力为F 1.当从球M 中挖去一个半径为R/2的小球体时,剩下部分对m 的万有引力为F 2,则F 1与F 2的比是多少?

高考物理复习高中物理解题方法归类总结高中物理例题解析,原来还有这么巧妙的方法!

高考物理复习高中物理解题方法归类总结 (高中物理例题解析) 方法一:图像法解题 一、方法简介 图像法是根据题意把抽像复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形像、简明的特点,来分析解决物理问题,由此达到化难为易、化繁为简的目的. 高中物理学习中涉及大量的图像问题,运用图像解题是一种重要的解题方法.在运用图像解题的过程中,如果能分析有关图像所表达的物理意义,抓住图像的斜率、截距、交点、面积、临界点等几个要点,常常就可以方便、简明、快捷地解题. 二、典型应用 1.把握图像斜率的物理意义

在v-t图像中斜率表示物体运动的加速度,在s-t图像中斜率表示物体运动的速度,在U-I图像中斜率表示电学元件的电阻,不同的物理图像斜率的物理意义不同. 2.抓住截距的隐含条件 图像中图线与纵、横轴的截距是另一个值得关注的地方,常常是题目中的隐含条件. 例1、在测电池的电动势和内电阻的实验中,根据得出的一组数据作出U-I图像,如图所示,由图像得出电池的电动势E=______ V,内电阻r=_______ Ω. 【解析】电源的U-I图像是经常碰到的,由图线与纵轴的截距容易得出电动势E=1.5 V,图线与横轴的截距0.6 A是路端电压为0.80伏特时的电流,(学生在这里常犯的错误是把图线与横轴的截距0.6 A当作短路电流,而得出r=E/I 短=2.5Ω的错误结论.)故电源的内阻为:r=△U/△I=1.2Ω 3.挖掘交点的潜在含意

一般物理图像的交点都有潜在的物理含意,解题中往往又是一个重要的条件,需要我们多加关注.如:两个物体的位移图像的交点表示两个物体“相遇”. 例2、A、B两汽车站相距60 km,从A站每隔10 min向B站开出一辆汽车,行驶速度为60 km/h.(1)如果在A站第一辆汽车开出时,B站也有一辆汽车以同样大小的速度开往A站,问B站汽车在行驶途中能遇到几辆从A站开出的汽车?(2)如果B站汽车与A站另一辆汽车同时开出,要使B站汽车在途中遇到从A站开出的车数最多,那么B站汽车至少应在A站第一辆车开出多长时间后出发(即应与A站第几辆车同时开出)?最多在途中能遇到几辆车?(3)如果B站汽车与A站汽车不同时开出,那么B站汽车在行驶途中又最多能遇到几辆车? 【解析】依题意在同一坐标系中作出分别从A、B站由不同时刻开出的汽车做匀速运动的s一t图像,如图所示. 从图中可一目了然地看出:(1)当B站汽车与A站第一辆汽车同时相向开出时,B站汽车的s一t图线CD与A站汽车的s-t图线有6个交点(不包括在t轴上的交点),这表明B站汽车在途中(不包括在站上)能遇到6辆从A站开出的汽车.(2)要使B站汽车在途中遇到的车最多,它至少应在A站第一辆车开出50 min后出发,即应与A站第6辆车同时开出此时对应B站汽车的s—t图线MN与A 站汽车的s一t图线共有11个交点(不包括t轴上的交点),所以B站汽车在途中(不包括在站上)最多能遇到1l辆从A站开出的车.(3)如果B站汽车与A站汽

高中常用物理模型及解题思路

高中常用物理模型及解题思路 ◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起的物体组。解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 连接体的圆周运动:两球有相同的角速度;两球构成的系统机械能守恒(单个球机械能不守恒) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。 平面、斜面、竖直都一样。只要两物体保持相对静止 记住:N= 211212 m F m F m m ++ (N 为两物体间相互作用力), 一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用?F 2 12m m m N += 讨论:①F 1≠0;F 2=0 122F=(m +m )a N=m a N= 2 12 m F m m + ② F 1≠0;F 2≠0 N= 211212 m F m m m F ++ (20F =就是上面的情 况) F=211221m m g)(m m g)(m m ++ F=122112 m (m )m (m gsin )m m g θ++ F=A B B 12 m (m )m F m m g ++ F 1>F 2 m 1>m 2 N 1

高中物理解题模型详解总结

高考物理解题模型 目录 第一章运动和力................................................. 一、追及、相遇模型............................................ 二、先加速后减速模型.......................................... 三、斜面模型................................................. 四、挂件模型................................................. 五、弹簧模型(动力学)........................................ 第二章圆周运动................................................. 一、水平方向的圆盘模型........................................ 二、行星模型................................................. 第三章功和能 ................................................... 一、水平方向的弹性碰撞........................................ 二、水平方向的非弹性碰撞...................................... 三、人船模型................................................. 四、爆炸反冲模型 ............................................. 第四章力学综合................................................. 一、解题模型: ............................................... 二、滑轮模型................................................. 三、渡河模型................................................. 第五章电路...................................................... 一、电路的动态变化............................................ 二、交变电流................................................. 第六章电磁场 ................................................... 一、电磁场中的单杆模型........................................ 二、电磁流量计模型............................................ 三、回旋加速模型 ............................................. 四、磁偏转模型 ...............................................

高中物理连体模型总结

精讲3 牛顿运动定律连体问题 ?在实际问题中,常常会碰到几个物体(连接)在一起在外力作用下运动,求解它们的运动规律及所受外力和相互作用力,这类问题被称为连接体问 题。 常见的连体模型:①用轻绳连接②直接接触 ③靠摩擦接触 a

连接体常会处于某种相同的运动状态,如处于平衡态或以相同的加速度运动。处理方法:整体法与隔离法相结合 整体法:就是把整个系统作为一个研究对象来分析的方法。不必考虑系统内力的影响,只考虑系统受到的外力,根据牛顿第二定律列方程求解. 例1:如图所示,U形框B放在粗糙斜面上刚好静止。若将物体A放入放入U形框B内,问B是否静止。 隔离法:是把系统中的各个部分(或某一部分)隔离,作为一个单独的研究对象来分析的方法。 此时系统内部各物体间的作用力(内力)就可能成为研究对象的外力,在分析时要加以注意。需要求内力时,一般要用隔离法。

例2 如图所示,为研究a与F、m关系的实验装置,已知A、B质量分别为m、M,当一切摩擦力不计时,求绳子拉力。原来说F约为mg,为什么? 拓展:质量分别为m=2kg和M=3kg的物体A和B,挂在弹簧秤下方的定滑轮上,如图所示,当B加速下落时,弹簧秤的示数是。(g取10m/s2) 例3:用力F推,质量为M的物块A和质量为m的物块B,使两物体一起在光滑水平面上前进时,求物体M对m的作用力F N。

若两物体与地面摩擦因数均为μ时,相互作用力F N是否改变?为什么? 例4.如图所示,质量为M的木箱放在水平面上,木箱中的立杆上套着一个质量为m的小球。开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的一半,则小球在下滑过程中,木箱对地面的压力是多少? 拓展:如图所示,A、B的质量分别为m1和m2,叠放于光滑的水平面上,现用水平力拉A时,A、B一起运动的最大加速度为a1,若用水平力改拉B物体时,A,B一起运动的最大为a2,则a1:a2等于() A.1:1 B.m1:m2 C.m2:m1D.m12:m22

高中物理模型24 活塞封闭气缸模型(解析版)

高中物理模型24 活塞封闭气缸(原卷版) 1.常见类型 (1)气体系统处于平衡状态,需综合应用气体实验定律和物体的平衡条件解题。 (2)气体系统处于力学非平衡状态,需要综合应用气体实验定律和牛顿运动定律解题。 (3)封闭气体的容器(如汽缸、活塞)与气体发生相互作用的过程中,如果满足守恒定律的适用条件,可根据相应的守恒定律解题。 (4)两个或多个汽缸封闭着几部分气体,并且汽缸之间相互关联的问题,解答时应分别研究各部分气体,找出它们各自遵循的规律,并写出相应的方程,还要写出各部分气体之间压强或体积的关系式,最后联立求解。 2.解题思路 (1)弄清题意,确定研究对象,一般地说,研究对象分两类:一类是热学研究对象(一定质量的理想气体);另一类是力学研究对象(汽缸、活塞或某系统)。 (2)分析清楚题目所述的物理过程,对热学研究对象分析清楚初、末状态及状态变化过程,依据气体实验定律列出方程;对力学研究对象要正确地进行受力分析,依据力学规律列出方程。 (3)注意挖掘题目的隐含条件,如几何关系等,列出辅助方程。 (4)多个方程联立求解。对求解的结果应注意检验它们的合理性。 多个系统相互联系的一定质量气体问题,往往以压强建立起系统间的关系,各系统独立进行状态分析,要确定每个研究对象的变化性质,分别应用相应的实验定律,并充分应用各研究对象之间的压强、体积、温度等量的有效关联,若活塞可自由移动,一般要根据活塞平衡确定两部分气体的压强关系。 【典例1】如图所示,足够长的圆柱形汽缸竖直放置,其横截面积为1×10-3m2,汽缸内有质量m=2 kg的活塞,活塞与汽缸壁封闭良好,不计摩擦。开始时活塞被销子K销于如图所示位置,离缸底12 cm,此时汽缸内被封闭气体的压强为1.5×105 Pa,温度为300 K。外界大气压强p0=1.0×105 Pa,g=10 m/s2。 (1)现对密闭气体加热,当温度升到400 K时,其压强为多大? (2)若在(1)的条件下拔去销子K,活塞开始向上运动,当它最后静止在某一位置时,汽缸内气体的温度为360 K,则这时活塞离缸底的距离为多少? 【变式训练1】如图,柱形容器内用不漏气的轻质绝热活塞封闭一定量的理想气体,容器外包裹保温材料。开始时活塞至容器底部的高度为H1,容器内气体温度与外界温度相等。在活塞上逐步加上多个砝码后,活塞下降到距容器底部H2处,气体温度升高了△T;然后取走容器外的保温材料,活塞位置继续下降,最后静止于距容器底部H3处:已知大气压强为p0。求:气体最后的压强与温度。 【典例2】如图,在水平放置的刚性气缸内用活塞封闭两部分气体A和B,质量一定的两活塞用杆连接。气缸内两活塞之间保持真空,活塞与气缸璧之间无摩擦,左侧活塞面积较大,A、B的初始温度相同。略抬高气缸左端使之倾斜,再使A、B升高相同温度,气体最终达到稳定状态。若始末状态A、B的压强变化量△p A、△p B均大于零,对活塞压力的变化量为△F A、△F B,则 (A)A体积增大(B)A体积减小(C) △F A △F B(D)△p A<△p B 【变式训练2】如图,绝热气缸A与导热气缸B均固定于地面,由刚性杆连接的绝热活塞与两气缸间均无摩擦。两气 缸内装有处于平衡状态的理想气体,开始时体积均为 V、温度均为 T。缓慢加热A中气体,停止加热达到稳定后, A中气体压强为原来的1.2倍。设环境温度始终保持不变,求气缸A中气体的体积 A V和温度 A T。 【典例3】(2019南昌二中1月质检)如图所示,两个截面积均为S的圆柱形容器,左右两边容器的高均为H,右边容器上端封闭,左边容器上端是一个可以在容器内无摩擦滑动的轻活塞(重力不计),两容器由装有阀门的极细管道(体积忽略不计)相连通。开始时阀门关闭,左边容器中装有热力学温度为T0的理想气体,平衡时活塞到容器底的距离为H,右边容器内为真空。现将阀门缓慢打开,活塞便缓慢下降,直至系统达到平衡,此时被封闭气体的热力学温度为T,且T>T0。求此过程中外界对气体所做的功。已知大气压强为p0。 【变式训练3】汽缸由两个横截面不同的圆筒连接而成,活塞A、B被轻质刚性细杆连接在一起,活塞可无摩擦移动,活塞A、B的质量分别为m1=24 kg、m2=16 kg,横截面积分别为S1=6.0×10-2 m2,S2=4.0×10-2 m2,一定质量的理想气体被封

高考物理解题模型总结(完整资料).doc

【最新整理,下载后即可编辑】 高考物理模型

目录 第一章运动和力 (1) 一、追及、相遇模型 (1) 二、先加速后减速模型 (3) 三、斜面模型 (6) 四、挂件模型 (10) 五、弹簧模型(动力学) (17) 第二章圆周运动 (19) 一、水平方向的圆盘模型 (19) 二、行星模型 (21) 第三章功和能 (1) 一、水平方向的弹性碰撞 (1) 二、水平方向的非弹性碰撞 (5) 三、人船模型 (8) 四、爆炸反冲模型 (11) 第四章力学综合 (13) 一、解题模型: (13) 二、滑轮模型 (18) 三、渡河模型 (21) 第五章电路 (1) 一、电路的动态变化 (1) 二、交变电流 (6) 第六章电磁场 (1) 一、电磁场中的单杆模型 (1) 二、电磁流量计模型 (7) 三、回旋加速模型 (9)

四、磁偏转模型 .......................................................................................

一、追及、相遇模型 模型讲解: 1. 火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火 车乙正以较小速度v 2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。为了使两车不相撞,加速度a 应满足什么条件? 解析:设以火车乙为参照物,则甲相对乙做初速为)(21v v -、加速度为a 的匀减速运动。若甲相对乙的速度为零时两车不相撞,则此后就不会相撞。因此,不相撞的临界条件是:甲车减速到与乙车车速相同时,甲相对乙的位移为d 。 即:d v v a ad v v 2)(2)(02 212 21-= -=--,, 故不相撞的条件为d v v a 2)(2 21-≥ 2.甲、乙两物体相距s ,在同一直线上同方向做匀减速运动,速度减为零后就保持静止不动。甲物体在前,初速度为v 1,加速度大小为a 1。乙物体在后,初速度为v 2,加速度大小为a 2且知v 1

高中物理解题常用经典模型

1、"皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题. 2、"斜面"模型:运动规律.三大定律.数理问题. 3、"运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系. 4、"人船"模型:动量守恒定律.能量守恒定律.数理问题. 5、"子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题. 6、"爆炸"模型:动量守恒定律.能量守恒定律. 7、"单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法. 8.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律. 9.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题. 10、"平抛"模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动). 11、"行星"模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题). 12、"全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法. 13、"质心"模型:质心(多种体育运动).集中典型运动规律.力能角度. 14、"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题. 15、"挂件"模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法. 16、"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守 恒法)等. 17."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题. 18.远距离输电升压降压的变压器模型. 19、"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用.

高考物理知识归纳力学模型及方法

╰ α 高中物理知识归纳(二) ----------------------------力学模型及方法 1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 2斜面模型(搞清物体对斜面压力为零的临界条件) 斜面固定:物体在斜面上情况由倾角和摩擦因素决定 μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面 μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ) 3.轻绳、杆模型 绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。 杆对球的作用力由运动情况决定 只有θ=arctg(g a)时才沿杆方向 最高点时杆对球的作用力;最低点时的速度?,杆的拉力? 若小球带电呢? 假设单B下摆,最低点的速度V B=R 2g?mgR=2 2 1 B mv E m L · m2 m1 F B A F1 F2 B A F

F m 整体下摆2mgR=mg 2R +'2 B '2A mv 21mv 2 1+ 'A 'B V 2V = ? ' A V = gR 53 ; 'A 'B V 2V ==gR 25 6> V B =R 2g 所以AB 杆对B 做正功,AB 杆对A 做负功 若 V 0< gR ,运动情况为先平抛,绳拉直沿绳方向的速度消失 即是有能量损失,绳拉紧后沿圆周下落机械能守恒。而不能够整个过程用机械能守恒。 求水平初速及最低点时绳的拉力? 换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v 1突然消失),再v 2下摆机械能守恒 例:摆球的质量为m ,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A 时绳子受到的拉力是多少? 4.超重失重模型 系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y ) 向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a) 难点:一个物体的运动导致系统重心的运动 1到2到3过程中 (1、3除外)超重状态 绳剪断后台称示数 系统重心向下加速 斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动? 铁木球的运动 用同体积的水去补充 5.碰撞模型:特点,①动量守恒;②碰后的动能不可能比碰前大; ③对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。 ◆弹性碰撞:m 1v 1+m 2v 2=' 22' 11v m v m +(1) '222'12221mv 2 1mv 21mv 21mv 21+=+ (2 ) ◆一动一静且二球质量相等的弹性正碰:速度交换 大碰小一起向前;质量相等,速度交换;小碰大,向后返。 ◆一动一静的完全非弹性碰撞(子弹打击木块模型) mv 0+0=(m+M)' v 20mv 21='2M)v m (2 1++E 损 E 损=20mv 21一'2 M)v (m 2 1+= 0202 0E m M M m 21m)(M M M)2(m mM k v v +=+=+ a 图9 θ

高中物理知识点总结和常用解题方法(带例题)

一、静力学: 1.几个力平衡,则一个力是与其它力合力平衡的力。 2.两个力的合力:F(max)-F(min)≤F合≤F(max)+F(min)。三个大小相等的共面共点力平衡,力之间的夹角为120°。 3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。 4.三力共点且平衡,则:F1/sinα1=F2/sinα2=F3/sinα3(拉密定理,对比一下正弦定理) 文字表述:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比5.物体沿斜面匀速下滑,则u=tanα6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。此时速度、加速度相等,此后不等。 7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。因其形变被忽略,其拉力可以发生突变,“没有记忆力”。 8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。 9.轻杆能承受纵向拉力、压力,还能承受横向力。力可以发生突变,“没有记忆力”。 10、轻杆一端连绞链,另一端受合力方向:沿杆方向。 11、“二力杆”(轻质硬杆)平衡时二力必沿杆方向。 12、绳上的张力一定沿着绳子指向绳子收缩的方向。13、支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N不一定等于重力G。14、两个分力F1和F2的合力为F,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。 15、已知合力不变,其中一分力F1大小不变,分析其大小,以及另一分力F2。

高中物理基础知识 总结18 几种典型的运动模型

高考物理知识点总结18 几种典型的运动模型:追及和碰撞、平抛、竖直上抛、匀速圆周运动等及类似的运动 两个基本公式(规律):V t = V 0 + a t S = v o t + 12 a t 2 及几个重要推论: (1)推论:V t 2 -V 02 = 2as (匀加速直线运动:a 为正值匀减速直线运动:a 为正值) (2) A B 段中间时刻的即时速度: V t/ 2 = V V t 02+=s t (若为匀变速运动)等于这段的平均速度 (3) AB 段位移中点的即时速度:V s/2 = v v o t 2 2 2 + V t/ 2 =V =V V t 02+=s t =T S S N N 21++= V N ≤V s/2 = v v o t 222+ 匀速:V t/2 =V s/2 ; 匀加速或匀减速直线运动:V t/2

相关文档
最新文档