方程与曲线论

方程与曲线论
方程与曲线论

方程与曲线论

【摘要】本文从等分曲线中,转换的一类特殊的二元14次代数方程组,应用公式求解和验证。

【关键词】数字几何分角模型数字方程曲线模型二元14次方程组配套求解公式配套检验公式

引言:

在新提出的演变公理体系的基础上,用两个分式恒等式,转换为两类几何数字分角模型。与数字相关的分角演变图形,其轨迹点通过抽象的自动演化而产生的等分方程曲线,当取数字n=3,m=-2时可转换为二元14次方程组,且具有配套求解公式和检验公式。在前面已发表的文章中,有相关的下列公式:

(1)B型数字几何分角模型:(n,m∈Z,且n≠0,-1 )

分式恒等式:n+m2nα=α-[n-m2(n+1)α+n-m2n(n+1)α] (α称为被分角,α=α1+360°i )①

设其中:分角θ=n+m2nα ,比例角β=n-m2(n+1)α ,基础角ω=n-m2n(n+1)α

(2)型:方程曲线模型及求解、检验的配套公式:

【其中:φi+1=αi+1-βi+1=α1+360°i-n-m2(n+1)(α1+360°i)=n+m+22(n+1)(α1+360°i),将n、m 代入,得:φi+1=38(α1+360°i),i=0,1,2,…,n-1 】

【其中,h=|n|-12 (n为奇数);h=|n|2 (n为偶数),当n为正整数时,取式前的负号,当n为负整数时,取式前的正号。】

(3)B型方程曲线的周期公式:

曲线被分角的周期Tα=|n(n+1)n-m|(2π)该式为整数时成立,其分角为Tθ=n+m2nTα;若该式为分数时,则用公式:Tα′=|n(n+1)|b(2π);分角周期为Tθ′=n+m2nTa′,(为分数的最简公约数)⑤

(4)综合坐标系:是直角坐标系与极坐标系相组合的坐标系,极点重合于原点,极轴重合于x的正半轴,使用统一的单位长度,逆时针旋转为角的正方向。该坐标系又称为分角坐标系。

1.当取数字n=3,m=-2 时的分角演变起点图形:

曲线与方程练习题

曲线与方程 命题人:褚晓清 审核人:王焕功 一、选择题 1、方程(x 2+y 2-4) x +y +1=0的曲线形状是( ) 2、已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( ) A .2x +y +1=0 B .2x -y -5=0 C .2x -y -1=0 D .2x -y +5=0 3、已知命题“曲线C 上的点的坐标是方程(,)0f x y =的解”是正确的,则下列命题中正确的是 A .满足方程(,)0f x y =的点都在曲线C 上 B .方程(,)0f x y =是曲线 C 的方程 C .方程(,)0f x y =所表示的曲线不一定是C D .以上说法都正确 4、方程2(326)[log (2)3]0x y x y --+-=表示的图形经过点(0,1)A -,(2,3)B ,(2,0)C ,57(,)34 D -中的 A .0个 B .1个 C .2个 D .3个 52(2)0y +=表示的图形是 A .圆 B .两条直线 C .一个点 D .两个点 6、方程y =- A B C D

7、一条线段的长等于10,两端点,A B 分别在x 轴和y 轴上滑动,M 在线段AB 上 且4AM MB =,则点M 的轨迹方程是 A .221664x y += B . 221664x y += C .22168x y += D .22168x y += 8、“点M 在曲线||y x =上”是“点M 到两坐标轴距离相等”的 A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 9、已知(2,0)M -,(2,0)N ,则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是 A . 222x y += B .224x y += C .222(2)x y x +=≠± D .224(2)x y x +=≠± 10、一动点C 在曲线221x y +=上移动时,它和定点B (3,0)连线的中点P 的轨迹方程是 A .22(3)4x y ++= B .22(3)1x y -+= C .22(23)41x y -+= D .223()12 x y ++= 11、已知F 1,F 2分别为椭圆C :x 24+y 23 =1的左、右焦点,点P 为椭圆C 上的动点,则△PF 1F 2的重心G 的轨迹方程为( ) A.x 236+y 227=1(y ≠0) B.4x 29 +y 2=1(y ≠0) C.9x 24+3y 2=1(y ≠0) D .x 2+4y 23=1(y ≠0) 12、设圆C 与圆x 2+(y -3)2 =1外切,与直线y =0相切,则C 的圆心轨迹为( ) A .抛物线 B .双曲线 C .椭圆 D .圆 二、填空题 13、已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为__________. 14、曲线y =||0()y ax a +=∈R 的交点有______个. 15、已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的 轨迹所包围的图形的面积为__________.

曲线和方程的概念说课

《曲线和方程的概念》说课稿 临朐二中谢文利 各位评委、老师,大家好! 我说课的内容是“曲线和方程的概念”。下面我从教材分析、教学方法、学法指导、教学程序设计、板书设计以及教后评价六个方面来汇报对教材的钻研情况和本节课的教学设想。恳请在座的领导、专家、同仁批评指正。 一、关于教材分析 1、教材的地位和作用 “曲线和方程”是高中数学人教B版选修2-1第二章第一节的重点内容之一,对一般曲线(也包括直线)与二元方程的关系作进一步的研究。这部分内容从理论上揭示了几何中的“形”与代数中的“数”相统一的关系,为“形”与“数”的相互转化开辟了途径,同时也体现了解析几何的基本思想,为解析几何 https://www.360docs.net/doc/843037309.html,/view/900761eae009581b6bd9eb45.html 的教学奠定了一个理论基础。 2、教学内容的选择和处理 本节教材主要讲解曲线的方程和方程的曲线 https://www.360docs.net/doc/843037309.html,/view/9d02094fc850ad02de8041ad.html) 坐标法、解析几何等概念,讨论怎样求曲线的方程以及曲线的交点等问题。共分两课时,这是第一课时。此课时的主要内容是建立“曲线的方程”和“方程的曲线”这两个概念,并对概念进行初步运用。我在处理教材时,不拘泥于教材,敢于大胆进行调整。主要体现在对曲线的方程和方程的曲线的定义进行归纳上,通过构造反例,引导学生进行观察、讨论、分析、正反对比,逐步揭示其内涵,加深学生对概念的认识然后在此基础上归纳定义。 3、教学目标的确定 根据新课程标准的要求以及本节教材的地位和作用,结合高二学生的认知特点,我认为,通过本节课的教学,应使学生理解曲线和方程的概念;会用定义来判断点是否在方程的曲线上、证明曲线的方程;培养学生分析、判断、归纳的逻辑思维能力,渗透数形结合的数学思想;并借用曲线与方程的关系进行辩证唯物主义观点的教育;通过对问题的不断探讨,培养学生勇于探索的精神。 4、关于教学重点、难点和关键 由于曲线和方程的概念体现了解析几何的基本思想,学生只有透彻理解了这个概念,才能用解析法去研究几何图形,才算是踏上学好解析几何的入门之径。因此,我把曲线和方程的概念确定为本节课的教学重点。另外,由于曲线和方程的概念比较抽象,加之刚刚进入高二的学

圆锥曲线与方程测试题及答案

2013-2014学年度第二学期3月月考 高二数学试卷 满分:150分,时间:120分钟 一、选择题:(本大题共12小题,每小题5分,共60分) 1、抛物线y2=-2px (p >0)的焦点为F ,准线为l ,则p表示 ( ) A 、F 到准线l 的距离 B、F到y 轴的距离 C 、F点的横坐标 D 、F到准线l 的距离的一半 2.抛物线 2 2x y =的焦点坐标是 ( ) A .)0,1( B.)0,4 1(?C.)8 1,0( D .)4 1,0( 3.离心率为 3 2,长轴长为6的椭圆的标准方程是 ( )A.22195x y + = B .22195x y +=或22 159 x y += C.2213620x y += D.2213620x y +=或22 12036 x y += 4、焦点在x 轴上,且6,8==b a 的双曲线的渐近线方程是 ( ) A.043=+y x B .043=-y x C .043=±y x D . 034=±y x 5、以椭圆15 82 2=+y x 的焦点为顶点,椭圆的顶点为焦点的双曲线的方程为 ( ) A.15322=-y x B.13522=-y x C.181322=-y x D .15 132 2=-y x 6.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 ( ) A .y x 292-=或x y 342= B .x y 2 9 2-=或y x 3 42= C .y x 3 4 2 = D.x y 2 92 - = 7.抛物线2 2y px =的焦点与椭圆22 162 x y + =的右焦点重合,则p = ( ) A.4 B.4-?C .2 D. 2-

曲线和方程练习题

曲线和方程练习题 一、选择题 1、(2014·安徽高考文科·T3)抛物线2 14 y x = 的准线方程是( ) A. 1-=y B. 2-=y C. 1-=x D. 2-=x 【解题提示】 将抛物线化为标准形式即可得出。 【解析】选A 。22 144 y x x y = ?,所以抛物线的准线方程是y=-1. 2. (2014·新课标全国卷Ⅱ高考文科数学·T10) (2014·新课标全国卷Ⅱ高考文科数学·T10)设F 为抛物线C:y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,则 AB = ( ) A. B.6 C.12 D. 【解题提示】画出图形,利用抛物线的定义求解. 【解析】选C.设AF=2m,BF=2n,F 3,04?? ??? .则由抛物线的定义和直角三角形知识可得, 2m=2· 34·34n,解得m=32 ),n=3 2 所以m+n=6. AB=AF+BF=2m+2n=12.故选C. 3. (2014·新课标全国卷Ⅱ高考理科数学·T10)设F 为抛物线C:y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( ) A. 4 B. 8 C. 6332 D. 9 4 【解题提示】将三角形OAB 的面积通过焦点“一分为二”,设出AF,BF,利用抛物线的定义求得面积. 【解析】选D.设点A,B 分别在第一和第四象限,AF=2m,BF=2n,则由抛物线的定义和直角三角形知识可 得,2m=2· 34+m,2n=2·34-n,解得m=32 (2+),n=3 2 (2-),所以m+n=6.所以S △OAB =1324?·(m+n)=94 .故选D. 4. (2014·四川高考理科·T10)已知F 为抛物线x y =2 的焦点,点A ,B 在该抛物线上且位于x 轴的两 侧,2OA OB ?=u u u r u u u r (其中O 为坐标原点),则ABO ?与AFO ?面积之和的最小值是( ) A. 2 B.3 C. 8 【解题提示】

曲线与方程(轨迹方程)

高二数学第二章曲线与方程学案 学习目标: 1、理解平面直角坐标中“曲线的方程”和“方程的曲线”的含义; 2、掌握求曲线的方程的方法及一般步骤; 学习重点:理解曲线和方程的概念,掌握求曲线的方程的方法及一般步骤; 学习难点:曲线和方程概念的理解; 学习过程: 完成教学目标1:理解平面直角坐标中“曲线的方程”和“方程的曲线”的含义; 新授知识:曲线的方程与方程的曲线的概念 一般地,在直角坐标系中,如果其曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点; 那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 例1、判断下列结论的正误并说明理由 (1)过点A (3,0)且垂直于x 轴的直线为x=3 ; (2)到x 轴距离为2的点的轨迹方程为y=2 ; (3)到两坐标轴距离乘积等于1的点的轨迹方程为xy=1 ; 练习:1、到两坐标轴距离相等的点组成的直线方程是0=-y x 吗? 2、已知等腰三角形三个顶点的坐标是)3,0(A ,)0,2(-B ,)0,2(C ,中线O AO (为原点)的 方程是0=x 吗?为什么? 3、若曲线C 上的点的坐标满足方程(,)0f x y =,则下列说法正确的是( ) A.曲线C 的方程是(,)0f x y = B.方程(,)0f x y =的曲线是C C.坐标不满足方程(,)0f x y =的点都不在曲线C 上 D.坐标满足方程(,)0f x y =的点都在曲线C 上 例2、已知方程252 2=+by ax 的曲线经过点)3 5,0(A 和点)1,1(B ,求a 、b 的值。 练习:已知方程 2 2 25x y +=表示的曲线C 经过点)A m ,求m 的值。 完成教学目标2:掌握求曲线的方程的方法及一般步骤; 类型一:待定系数法求轨迹方程(设出标准方程,根据题意求出a ,b ,p ) 例1:已知A,B,C 是长轴长为4的椭圆上的三点,点A 是长轴的一个顶点,BC 过椭圆的中心O , 且0=?,||2||=,求椭圆的方程。 练习:已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.求椭圆C 的标准方程; 类型二:直接法求轨迹方程(根据题目条件,直译为关于动点的几何关系,即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程了。注意:是否应该建立适当的坐标系) 例2:已知点F(1,0),直线l:x =-1,P为平面上的动点,过点P作直线l的垂线,垂 足为点Q,且FQ FP QF QP ?=?,求动点P的轨迹C的方程; **练习:已知动点M 到定点A (1,0)与到定直线l :x=3的距离之和等于4,求动点M 的轨迹方程,并说明轨迹是什么曲线?

曲线和方程教案

《课堂教学设计》 课题:曲线和方程(1) 一:教学目标 ?知识与技能目标 (1)了解曲线上的点与方程的解之间的一一对应关系; (2)初步领会“曲线的方程”与“方程的曲线”的概念; (3)学会根据已有的情景资料找规律,培养学生分析、判断、归纳的逻辑思维能力与抽象思维能力,同时强化“形”与“数”一致并相互转化的思想方法。 ?过程与方法目标 (1)通过直线方程的复习引入,加强学生对方程的解和曲线上的点的一一对应关系的直观认识; (2)在形成曲线和方程概念的过程中,学生经历观察,分析,讨论等数学活动过程,探索出结论并能有条理的阐述自己的观点; (3)能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识。 ?情感与态度目标 (1)通过概念的复习引入,从特殊到一般,让学生感受事物的发展规律; (2)通过本节课的学习,学生能够体验几何问题可以转化成代数问题来研究,真正认识到数学是解决实际问题的重要工具; (3)学生通过观察、分析、推断可以获得数学猜想,体验到数学活动充满着探索性和创造性。 二:教材分析 1、教学分析:因为学生已有了用方程(有时用函数式的形式出现)表示曲线的感性认识(特别是二元一次方程表示直线),现在要进一步研究平面内的曲线和含有两个变数的方程之间的关系,是由直观表象上升到抽象概念的过程。所以本节课采用了复习引入课题,从特殊到一般的方法让学生易于接受。在概念的探索过程中采用了举反例的方法来揭示概念的内涵。在概念的应用即例题的设计方面,着重巩固对概念的两个条件的认识。 2、教学重点 “曲线的方程”与“方程的曲线”的概念。

圆锥曲线与方程测试和答案

圆锥曲线与方程 测试(1) 第Ⅰ卷(选择题 共60分) 一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.) 1.椭圆12 2 =+my x 的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A. 41 B.2 1 C.2 D.4 2.双曲线 22 1412 x y -=的焦点到渐近线的距离为( ) A 3. 已知双曲线12222=-b y a x 的一条渐近线方程为x y 34 =,则双曲线的离心率为( ) A. 35 B. 34 C. 45 D. 2 3 4.已知椭圆 116 252 2=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为( ) A.9 B.7 C.5 D.3 5.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是( ) A.双曲线 B.双曲线的一支 C.两条射线 D.一条射线 6.中心在原点,焦点在x 轴上,焦距等于6,离心率等于 5 3 ,则椭圆的方程是( ) A. 13610022=+y x B.16410022=+y x C.1162522=+y x D.19252 2=+y x 7.焦点为(06), 且与双曲线2 212 x y -=有相同的渐近线的双曲线方程是( ) A. 22 11224 y x -= B. 2212412y x -= C.22 12412 x y -= D. 22 11224 x y -=

8.若椭圆的短轴为AB ,它的一个焦点为1F ,则满足1ABF △为等边三角形的椭圆的离心率是( ) A. 14 B. 2 C. 2 D. 12 9.以双曲线2 2 312x y -+=的焦点为顶点,顶点为焦点的椭圆的方程是( ) A. 22 11612 x y += B. 221164x y += C.22 11216x y += D. 22 1416 x y += 10.双曲线的虚轴长为4,离心率2 6 = e ,1F .2F 分别是它的左.右焦点,若过1F 的直线与双曲线的左支交于A .B 两点,且||AB 是||2AF 与||2BF 的等差中项,则||AB 等于( ) A.28 B.24 C.22 D.8. 11.已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于N M ,两点, MN 中点横坐标为3 2 - ,则此双曲线的方程是( ) A 14322=-y x B 13422=-y x C 12522=-y x D 15 22 2=-y x 12.若直线4=+ny mx 和⊙O ∶42 2 =+y x 没有交点,则过),(n m 的直线与椭圆 14 922=+y x 的交点个数( ) A.至多一个 B.2个 C.1个 D.0个

圆锥曲线与方程单元测试卷答案

圆锥曲线与方程单元测试 卷答案 Newly compiled on November 23, 2020

《圆锥曲线与方程》单元测试卷 一、选择题:(本大题共10小题,每小题4分,共40分.) 1.方程132-=y x 所表示的曲线是 ( ) (A )双曲线 (B )椭圆 (C )双曲线的一部分 (D )椭圆的一部分 2.平面内两定点A 、B 及动点P ,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P 的 轨迹是以A .B 为焦点的椭圆”,那么 ( ) (A )甲是乙成立的充分不必要条件 (B )甲是乙成立的必要不充分条件 (C )甲是乙成立的充要条件 (D )甲是乙成立的非充分非必要条件 3.椭圆14222=+a y x 与双曲线12 2 2=-y a x 有相同的焦点,则a 的值是 ( ) (A )12 (B )1或–2 (C )1或12 (D )1 4.若抛物线的准线方程为x =–7, 则抛物线的标准方程为 ( ) (A )x 2=–28y (B )y 2=28x (C )y 2=–28x (D )x 2=28y 5.已知椭圆19 252 2=+y x 上的一点M 到焦点F 1的距离为2,N 是MF 1的中点,O 为原点,则|ON|等于 (A )2 (B ) 4 (C ) 8 (D ) 23 ( ) 6.顶点在原点,以x 轴为对称轴的抛物线上一点的横坐标为6,此点到焦点的距离等于10,则抛物线焦点到准线的距离等于 ( ) (A ) 4 (B )8 (C )16 (D )32 7.21F F 为双曲线2214 x y -=-的两个焦点,点P 在双曲线上,且1290F PF ∠=,则21PF F ?的面积是 (A ) 2 (B )4 (C )8 (D )16 ( )

曲线与方程,圆的方程

曲线与方程、圆的方程 江苏 郑邦锁 1.曲线C 的方程为:f(x,y)=0?曲线C 上任意一点P (x 0,y 0)的坐标满足方程f(x,y)=0,即f (x 0,y 0)=0;且以f(x,y)=0的任意一组解(x 0,y 0)为坐标的点P (x 0,y 0)在曲线C 上。 依据该定义:已知点在曲线上即知点的坐标满足曲线方程;求证点在曲线上也只需证点的坐标满足曲线方程。求动点P(x,y)的轨迹方程即求点P 的坐标(x,y)满足的方程(等式)。求动点轨迹方程的步骤:①建系,写(设)出相关点的坐标、线的方程,动点坐标一般设为(x,y),②分析动点满足的条件,并用等式描述这些条件,③化简,④验证:满足条件的点的坐标都是方程的解,且以方程的解为坐标的点都满足条件。 [举例1] 方程04)1(22=-+-+y x y x 所表示的曲线是: ( ) A B C D 解析:原方程等价于:???≥+=--4 0122y x y x ,或422=+y x ; 其中当01=--y x 需422-+y x 有意义,等式才成立,即422≥+y x ,此时它表示直 线01=--y x 上不在圆422=+y x 内的部分,这是极易出错的一个环节。选D 。 [举例2] 已知点A (-1,0),B (2,0),动点M 满足2∠MAB=∠MBA ,求点M 的轨迹方程。 解析:如何体现动点M 满足的条件2∠MAB=∠MBA 是解决本题的关键。用动点M 的坐标体现2∠MAB=∠MBA 的最佳载体是直线MA 、MB 的斜率。 设M (x ,y ),∠MAB=α,则∠MBA=2α,它们是直线 MA 、MB 的倾角还是倾角的补角,与点M 在x 轴的上方 还是下方有关;以下讨论: ① 若点M 在x 轴的上方, ,0),90,0(00>∈y α 此时,直线MA 的倾角为α,MB 的倾角为π-2α, ,2 )2tan(,1tan -=-+==∴x y x y k MA απα (2090≠α) ,2tan )2tan(ααπ-=- ,)1(11222 2+-+?=--∴x y x y x y 得: 132 2 =-y x ,∵1,>∴>x MB MA .

高中数学选修1-1《圆锥曲线与方程》知识点讲义

高中数学选修1-1《圆锥曲线与方程》知识点讲义

第二章 圆锥曲线与方程 一、曲线与方程的定义: (),C F x y 设曲线,方程=0,满足以下两个条件: ()(),,C x y F x y ?①曲线上一点的坐标满足=0; ()(),,. F x y x y C ?②方程=0解都在曲线上 ()(),,. C F x y F x y C 则曲线称是方程=0的曲线,方程=0是曲线的方程 二、求曲线方程的两种类型: () 1、已知曲线求方程;用待定系数法 ()()() 2,;,x y x y 、未知曲线求方程①设动点②建立等量关系; ③用含的式子代替等量关系;④化简;别出现不等价情况⑤证明;高中不要求

椭圆 一、椭圆及其标准方程 1、画法 {} 121222,2P PF PF a F F a +=<、定义: 3、方程 ()()22 22 22221010x y y x a b a b a b a b +=>>+=>>①或 ② () 22 22+10x y a b a b =>>二、几何性质: 1,. x a y b ≤≤、范围: 2x y O 、对称性:关于、、原点对称. ()()()()12123,0,,0,0,,0,. A a A a B b B b --、顶点 222 4,,a b c a b c =+、之间的关系: () 2 25101c b e e a a ==-<<、离心率: 0, 1e e →→越圆越扁

扩展: ()2222 22222x y x y m b a b a m b m <--①与椭圆+=1有相同焦点的椭圆方程为+=1 ()() 2222 22221010x y y x k k ka kb ka kb +=>+=>②有相同离心率的椭圆为或 . a c a c -+③椭圆上的点到焦点的最小距离是,最大距离是 12P P F PF ∠④为椭圆上一动点,当点为短轴端点时,最大. 24. AB F ABF a V ⑤为过焦点的弦,则的周长为 ()()1122,,,y kx b A x y B x y l =+⑥直线与圆锥曲线相交于两点,则当直线的斜率存在时,弦长为: ()( )2 22 121 2 12114l k x k x x x x ?? =+-= ++-?? ()2 12121222110114k l y y y y y k k ??=+ -=++-??或当存在且不为时,()2210,0. Ax By A B +=>>⑥当椭圆的焦点位置不确定时,可设椭圆的方程为

曲线和方程知识要点

曲线和方程的概念 【知识要点】 定义 一般地,如果曲线C 与方程0),(=y x F 之间有以下两个关系:(1)曲线C 上的点的坐标都是方程0),(=y x F 的解;(2)以方程0),(=y x F 的解为坐标的点都在曲线C 上. 我们就把0),(=y x F 叫做曲线C 的方程,曲线C 叫做方程0),(=y x F 的曲线. 注意:要建立曲线与方程间的对应关系,仅有条件“曲线C 上的点的坐标都是方程0),(=y x F 的解”是不够的,因为可能有满足方程0),(=y x F 的点不在曲线C 上;仅有条件“以方程0),(=y x F 的解为坐标的点都在曲线C 上”也是不够的,因为曲线C 上可能有不满足方程0),(=y x F 的点.只有同时具备这两个条件时,才能说方程0),(=y x F 是曲线C 的方程,曲线C 是方程0),(=y x F 的曲线. 求曲线的方程 【知识要点】 1 求曲线的方程的步骤: ①建立适当的直角坐标系(如果已给出,本步骤省略). ②设曲线上任意一点的坐标为),(y x ,写出已知点的坐标,设出相关点的坐标. ③根据曲线上点所适合的条件,写出等式. ④用坐标表示这个等式(方程),并化简. ⑤证明以化简后的方程的解为坐标的点都是曲线上的点(在本教材不作要求). (6)检验,该说明的要说明. 2 求曲线方程的常用方法:定义法、直接法、代入法、参数法等. (1)定义法:根据题意可以得出或推出动点的轨迹是直线或圆或椭圆或双曲线或抛物线.根据所学知识可以写出或求出轨迹方程.若方程形式知道,往往用待定系数法求. (2)直接法:根据题设条件直接写出动点的坐标),(y x 所满足的关系式,即方程0),(=y x F . (3)相关点法(代入法):是所求轨迹上的动点),(y x P 随着另一个已知曲线上的动点),(11y x M 的运动而运动时,一般用代入法求动点P 的轨迹方程.其方法是根据题设条件求得两动点坐标),(y x 与),(11y x 之间的关系式,从中解出),(),,(11y x g y y x f x ==,由于),(11y x M 在已知曲线上,故),(11y x M 满足已知曲线方程,将11,y x 的表达式代入已知曲线方程,从而求得动点P 的轨迹方程. (4)参数法:根据题意得出动点P 的坐标y x ,用其他点的坐标或长度、角、斜率、时间等参

圆锥曲线与方程测试和答案.doc

C.2 De 4 2. 双曲线— 4 12 2 -=1的焦点到渐近线的距离为() A 2A/3C V3 3. 2 已知双曲线二 cr 9 r h2 4 1的一条渐近线方程为y = -x,则双曲线的离心率为() 4. () A.9 B. 锥曲线与方程测试(1) 第I卷(选择题共60分) 一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中, 只有一项是最符合题目要求的.) 1.椭圆x2 +/ny2=l的焦点在),轴上,长轴长是短轴长的两倍,则m的值为() 1 B.- 2 4 r 5 — c.— 3 4 1 已知椭圆* = 1上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为

A. ----- F -— = 1 B. ------- 1 ---- = 1 100 36 100 64 9 9 八尸c. - 1— 25 16 =1 D. —+ = 1 25 哇一24 5.动点P到点M(1,0)及点》(3,0)的距离之差为2,则点P的轨迹是() A.双曲线 B.双曲线的一支 C.两条射线 D.一条射线 3 6.中心在原点,焦点在x轴上,焦距等于6,离心率等于己,则椭圆的方程是() 7.焦点为(0,6)且与双曲线—-/=1有相同的渐近线的双曲线方程是() 12 24 1 24 12 24 12

A.8V2 B.4V2 C.2V2 D.8. X 2 D — A .至多一个 B .2个 C.1个 D.0个 8. 若椭圆的短轴为AB ,它的一个焦点为Fi ,则满足△A8R 为等边三角形的椭圆的离心 率 是() A 1 R 右 「扼 n 1 4 2 2 2 9. 以双曲线-3炉+ V = ]2的焦点为顶点,顶点为焦点的椭圆的方程是() A ^+£-I B E+U — 1 C —+^-I D ^+^-1 16 12 16 4 12 16 4 16 一 V6 1().双曲线的虚轴长为4,离心率e = %-, 4.%分别是它的左?右焦点,若过4的直线与双曲 线的左支交于A.B 两点,且I A 引是\AF 2\^\BF 2 I 的等差中项,则I AB\等于() 11 .己知双曲线中心在原点且一个焦点为F (V7,0),直线>' =x-1与其相交于M,N 两点, 2 MN 中点横坐标为-一,则此双曲线的方程是( ) 3 A 3 4 - B 4 3 - C 5 2 12. 若直线mx + ny = 4和: x 1 +)户=4没有交点,则过(m,〃)的直线与椭圆 2 2 三+二=1的交点个数( ) 9 4

2.4 曲线与方程

2.4曲线与方程 基础过关练 题组一曲线与方程的关系及其应用 1.若等腰三角形ABC底边的两端点分别是A(-4,0),B(2,0),则顶点C的轨迹是( ) A.一条直线 B.一条直线去掉一点 C.一个点 D.两个点 2.若点(2,-3)在曲线2x2-ay2=5上,则实数a的值等于( ) A.1 3B.1 C.3 D.±1 3 3.已知曲线y=x2-x+2与直线y=x-m有两个交点,则实数m的取值范围是( ) A.(-1,+∞) B.(-∞,-1] C.(-∞,-1) D.(-∞,1) 4.在平面直角坐标系中,方程|x| 3+|y| 2 =1所表示的曲线是( ) A.两条平行线 B.一个矩形 C.一个菱形 D.一个圆 5.方程x+|y-1|=0表示的曲线是( ) 6.(2020山东日照高二月考)方程4x2-y2-4x+2y=0表示的图形是( ) A.直线2x-y=0 B.直线2x+y-2=0 C.点(1 2 ,1) D.直线2x-y=0和直线2x+y-2=0

题组二 求曲线的方程 7.在平面直角坐标系中,到两坐标轴的距离之和等于3的点M 的轨迹方程为( ) A.x+y=3 B.x+y=-3 C.|x+y|=3 D.|x|+|y|=3 8.(2020浙江湖州高二期中)在平面直角坐标系xOy 中,若定点A(-1,2)与动点P(x,y)满足OP ????? ·AO ????? =8,则点P 的轨迹方程为( ) A.x-2y-8=0 B.x-2y+8=0 C.x+2y-8=0 D.x+2y+8=0 9.已知动点A 在圆x 2+y 2=1上,则点A 与定点B(4,0)连线的中点的轨迹方程是( ) A.(x-2)2+y 2=1 4 B.(x-2)2+y 2=1 C.(x-4)2+y 2=14 D.(x+2)2+y 2=1 4 10.已知动点P(x,y)与两定点M(-1,0),N(1,0)连线的斜率之积等于常数λ(λ≠0),则动点P 的轨迹方程为 . 11.已知A(-1,0),B(2,4),△ABC 的面积为10,则顶点C 的轨迹方程是 . 12.(2020吉林省实验中学高二月考)已知线段AB 的长等于10,两端点A,B 分别在x 轴,y 轴上移动,若点M 在线段AB 上,且AM ?????? +4BM ?????? =0,则点M 的轨迹方程是 . 13.已知圆C 的方程为x 2+y 2=4,过圆C 上的一动点M 作平行于x 轴的直线m,设m 与y 轴的交点为N,若向量OQ ?????? =OM ?????? +ON ?????? (O 为坐标原点),求动点Q 的轨迹方程.

圆锥曲线与方程测试题(带答案)

圆锥曲线与方程 单元测试 时间:90分钟 分数:120分 一、选择题(每小题5分,共60分) 1.椭圆12 2=+my x 的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A . 4 1 B .2 1 C . 2 D .4 2.过抛物线x y 42=的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则||AB 等于( ) A .10 B .8 C .6 D .4 3.若直线y =kx +2与双曲线622=-y x 的右支交于不同的两点,则k 的取值范围是( ) A .3 15(-,)3 15 B .0(,)3 15 C .3 15(-,)0 D .3 15(-,)1- 4.(理)已知抛物线x y 42=上两个动点B 、C 和点A (1,2)且∠BAC =90°,则动直线BC 必过定点( ) A .(2,5) B .(-2,5) C .(5,-2) D .(5,2) (文)过抛物线)0(22>=p px y 的焦点作直线交抛物线于1(x P ,)1y 、2(x Q ,)2y 两点,若p x x 321=+,则||PQ 等于( ) A .4p B .5p C .6p D .8p 5.已知两点)4 5,4(),45 ,1(- -N M ,给出下列曲线方程:①0124=-+y x ;②32 2 =+y x ; ③ 12 2 2 =+y x ;④ 12 2 2 =-y x .在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( ) (A )①③ (B )②④ (C )①②③ (D )②③④ 6.已知双曲线 12 22 2=- b y a x (a >0,b >0)的两个焦点为1F 、2F ,点A 在双曲线第一象限 的图象上,若△21F AF 的面积为1,且2 1tan 21=∠F AF ,2tan 12-=∠F AF ,则双曲线方 程为( ) A . 135 122 2 =-y x B . 13 12 52 2 =- y x C .15 1232 2 =- y x D . 112 53 2 2 =- y x 7.圆心在抛物线)0(22 >=y x y 上,并且与抛物线的准线及x 轴都相切的圆的方程是( )

2015高考理科数学《曲线与方程》练习题

2015高考理科数学《曲线与方程》练习题 [A组基础演练·能力提升] 一、选择题 1.方程x2-y2=0对应的图象是( ) 解析:由x2-y2=0得,y=x或y=-x,故选C. 答案:C 2.已知点P是直线2x-y+3=0上的一个动点,定点M(-1,2),Q是线段PM延长线上的一点,且|PM|=|MQ|,则Q点的轨迹方程是( ) A.2x+y+1=0 B.2x-y-5=0 C.2x-y-1=0 D.2x-y+5=0 解析:设Q(x,y),则P为(-2-x,4-y),代入2x-y+3=0得2x-y+5=0. 答案:D 3.已知A(0,7),B(0,-7),C(12,2),以C为一个焦点的椭圆经过A,B两点,则椭圆的另一个焦点F的轨迹方程是( ) A.y2-x2 48 =1(y≤-1) B.y2- x2 48 =1(y≥1) C.x2-y2 48 =1(x≤-1) D.x2- y2 48 =1(x≥1) 解析:由题意知|AC|=13,|BC|=15,|AB|=14, 又∵|AF|+|AC|=|BF|+|BC|, ∴|AF|-|BF|=|BC|-|AC|=2,故点F的轨迹是以A,B为焦点,实轴长为2的双曲线的下支.又 c=7,a=1,b2=48,∴点F的轨迹方程为y2-x2 48 =1(y≤-1). 答案:A 4.有一动圆P恒过定点F(a,0)(a>0)且与y轴相交于点A、B,若△ABP为正三角形,则点P的轨迹为( )

A .直线 B .圆 C .椭圆 D .双曲线 解析:设P (x ,y ),动圆P 的半径为R ,由于△ABP 为正三角形, ∴P 到y 轴的距离d =32R ,即|x |=32 R . 而R =|PF |=x -a 2 +y 2, ∴|x |= 32 ·x -a 2 +y 2. 整理得(x +3a )2-3y 2=12a 2, 即 x +3a 2 12a 2 -y 2 4a 2=1. ∴点P 的轨迹为双曲线. 答案:D 5.已知点A (1,0)和圆C :x 2 +y 2 =4上一点R ,动点P 满足RA →=2AP → ,则点P 的轨迹方程为( ) A.? ? ???x -322+y 2=1 B.? ? ???x +322+y 2=1 C .x 2 +? ? ???y -322=1 D .x 2 +? ? ???y +322=1 解析:设P (x ,y ),R (x 0,y 0), 则有RA → =(1-x 0,-y 0),AP → =(x -1,y ). 又RA →=2AP → , ∴?? ? 1-x 0=2x -1, -y 0=2y . ∴?? ? x 0=-2x +3,y 0=-2y . 又R (x 0,y 0)在圆x 2+y 2=4上, ∴(-2x +3)2+(-2y )2=4,即? ? ???x -322+y 2=1. 答案:A 6.设A 1,A 2是椭圆x 29+y 2 4 =1的长轴两个端点,P 1,P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与 A 2P 2交点的轨迹方程为( ) A.x 29+y 24=1 B.y 29+x 24=1 C.x 29-y 2 4 =1 D.y 29-x 2 4 =1

高中数学《曲线与方程》自测试题

2015年高中数学《曲线与方程》自测试题 【梳理自测】 一、曲线与方程 1.f(x0,y0)=0是点P(x0,y0)在曲线f(x,y)=0上的( ) A.充分不必要条件B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 2.方程(x-y)2+(xy-1)2=0表示的是( ) A.一条直线和一条双曲线 B.两条双曲线 C.两个点 D.以上答案都不对 答案:1.C 2.C ◆以上题目主要考查了以下内容: 一般地,在平面直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下关系: (1)曲线上点的坐标都是方程f(x,y)=0的解. (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线. 二、直接法求轨迹方程 1.若M,N为两个定点,且|MN|=6,动点P满足PM→·PN→=0,则P点的轨迹是( ) A.圆 B.椭圆 C.双曲线 D.抛物线 2.已知点A(-2,0),B(3,0),动点P(x,y)满足AP→·BP→=x2-6,则P点的轨迹方程是________.3.过圆x2+y2=4上任一点P作x轴的垂线PN,N为垂足,则线段PN中点M的轨迹方程为________. 答案:1.A 2.y2=x 3.x2 4 +y2=1 ◆以上题目主要考查了以下内容: (1)直接法求动点的轨迹方程的一般步骤 ①建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标. ②写出适合条件p的点M的集合P={M|p(M)}. ③用坐标表示条件p(M),列出方程f(x,y)=0. ④化方程f(x,y)=0为最简形式. ⑤说明以化简后的方程的解为坐标的点都在曲线上. (2)两曲线的交点 由曲线方程的定义可知,两条曲线交点的坐标应该是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;反过来,方程组有几组解,两条曲线就有几个交点,方程组无解,两条曲线就没有交点. 【指点迷津】 1.一个核心问题 通过坐标法,由已知条件求轨迹方程,通过对方程的研究,明确曲线的位置、形状以及性质是解析几何需要完成的两大任务,是解析几何的核心问题. 2.二个检验方向 求出轨迹方程后,从两个方面检验 ①曲线上所有点的坐标都适合方程; ②方程的解表示的点都是曲线上的点. 3.五种方法 求轨迹方程的常用方法 (1)直接法:直接利用条件建立x,y之间的关系F(x,y)=0; (2)待定系数法:已知所求曲线的类型,求曲线方程——先根据条件设出所求曲线的方程,再由

曲线与方程(基础+复习+习题+练习)

课题:曲线与方程 考纲要求:了解方程的曲线与曲线的方程的对应关系. 教材复习 1.曲线的方程与方程的曲线 在直角坐标系中,如果某曲线C (看作适合某种条件的点的集合或轨迹)上的点与一个二元方程(,)0f x y =的实数解建立了如下关系: ()1曲线上的点的坐标都是这个方程的 ;()2以这个方程的解为坐标的点都是 那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线(图形). 2.两曲线的交点 设曲线1C 的方程为()1,0F x y =,曲线2C 的方程为()2,0F x y =,则曲线12,C C 的交点坐标 即为方程组 的实数解,若此方程组无解,则两曲线12,C C . 3.求动点轨迹方程的一般步骤 ①建系:建立适当的坐标系;②设点:设轨迹上的任一点(),P x y ;③列式:列出动点P 所满足的关系式;④代换:依条件的特点,选用距离公式、斜率公式等将其转化为,x y 的方程式,并化简;⑤证明:证明所求方程即为符合条件的动点轨迹方程. 4.求轨迹方程常用方法 ()1直接法:直接利用条件建立,x y 之间的关系(),0F x y =; ()2定义法:先根据定义得出动点的轨迹的类别,再由待定系数法求出动点的轨迹方程. ()3待定系数法:已知所求曲线的类型,求曲线的方程.先根据所求曲线类型设出相应曲线的 方程,再由条件确定其待定系数; ()4代入法(相关点法) :动点(),P x y 依赖于另一动点()00,Q x y 的变化而变化,并且()00,Q x y 又在某已知曲线上,则可先用,x y 的代数式表示00,x y ,再将00,x y 带入已知曲线得要求的轨迹方程. ()5参数法:当动点(),P x y 的坐标,x y 之间的关系不易直接找到,也没有相关动点可用时, 可考虑将,x y 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程. 5.对于中点弦问题,常用“点差法” :其步骤为:设点,代入,作差,整理. 基本知识方法 1.掌握“方程与曲线”的充要关系; 2.求轨迹方程的常用方法:轨迹法、定义法、代入法、参数法、待定系数法、直接法和交轨法、向量法. 要注意“查漏补缺,剔除多余”. 典例分析: 考点一 曲线与方程 问题1.()1(06调研)如果命题“坐标满足方程(,)0f x y =的点都在曲线C 上” 是不正确的,那么下列命题正确的是 .A 坐标满足方程(,)0f x y =的点都不在曲线C 上; .B 曲线C 上的点不都满足方程(,)0f x y =;

圆锥曲线与方程测试题(精.选)

圆锥曲线与方程测试题 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟. 第Ⅰ卷(选择题 共60分) 一、选择题 (本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.椭圆2255x ky +=的一个焦点是(0,-2), 则k 的值为( ) A . 1 B . -1 C . D . 2.双曲线 822 2=-y x 的实轴长是( ) A .2 B . 22 C . 4 D .42 3.抛物线28y x =的焦点到准线的距离为( ) A . 1 B . 2 C . 4 D . 8 4.与椭圆+y 2 =1共焦点且过点P(2,1)的双曲线方程是( ) A .-y 2 =1 B .-y 2 =1 C .-=1 D .x 2 -=1 5.已知点P 是抛物线x y 22=上的动点,点P 在y 轴上的射影是M ,点A 的坐标是?? ? ??4,27A ,则PM PA +的最小值是( ) A .2 7 B . 4 C . 2 9 D . 5 6.已知双曲线22 19x y m -=的一个焦点在圆22450x y x +--=上,则双曲线 的渐近线方程为( ) A .34 y x =± B .43 y x =± C .3y x =± D .4 y x =± 7.设抛物线28y x =的焦点为F ,准线为l ,P 为抛物线上一点,,PA l A ⊥为垂足.如果直线AF 的斜率为||PF =( ) A .B .8 C .D .16 8.双曲线14 2 22=-y a x 的左、右焦点分别为21F F 、,P 是双曲线上一点, 1PF 的中点在y 轴上,线段2PF 的长为3 4 ,则该双曲线的离心率为 ( ) A .2 3 B .2 13 C .3 13 D . 3 13 9.如果椭圆19 362 2=+y x 的弦被点(4,2)平分,则这条弦所在的直线 方程是( ) A .02=-y x B .042=-+y x C .01232=-+y x D .082=-+y x

相关文档
最新文档