曝气生物滤池脱氮研究进展

曝气生物滤池脱氮研究进展
曝气生物滤池脱氮研究进展

曝气生物滤池脱氮技术的研究进展

引言

曝气生物滤池(Biological Aerated Filter,简称BAF)是20世纪80年代末90年代初在生物接触氧化理论的基础上引入过滤理论,借鉴给水滤池工艺而开发的污水处理新工艺。BAF作为污水生化处理单元时,不需要后续沉淀池,工艺更为简单。在有机物去除,尤其是在硝化、反硝化脱氮等方面有着良好的效果。此外,BAF还具有处理效率高、占地面积小、基建及运行费用低、管理方便和抗冲击负荷能力强等优点。

近年来,新型脱氮理论与BAF相结合成为研究的热点。本文详细阐述了传统脱氮与新型脱氮技术在BAF中的应用,并介绍其影响因素。

1 基于传统脱氮理论的BAF技术研究

1.1 BAF传统脱氮原理

BAF是一种新型污水处理反应装置,其特点在于将生物氧化这一生物反应过程与固液分离这一物理过程合二为一[1,2]。其作用机理是在一级强化基础上,以颗粒状填料为主要基体,利用填料本身以及其附着生长的生物膜,经过物理过滤和吸附作用、生物代谢作用以及反应器内食物链的分级捕食作用,达到去除污染物的目的[3]。

在传统的生物脱氮工艺中,脱氮过程往往在好氧区和缺氧区两部分进行。曝气生物滤池根据功能分为硝化曝气生物滤池和反硝化曝气生物滤池、去碳曝气生物滤池等。硝化曝气生物滤池内,硝化细菌在好氧环境下完成硝化反应;反硝化曝气生物滤池内,营造的缺氧环境使得反硝化细菌活跃并参与完成反硝化反应。这两种曝气生物滤池连用时往往具有较好的脱氮效果,即组成前置反硝化或者后置反硝化工艺[4]。

1.2 脱氮的影响因素

1.2.1 滤料

滤料是BAF的核心部分,对脱氮效率有直接的影响,同时也影响到BAF的结构形式和成本[5]。目前国内外对滤料研究的重点是开发天然无机滤料[6]。桑军强等[7]对BIOSTYRENE 轻质滤料滤池和陶粒滤池的运行效果进行对比,结果表明:运用轻质滤料可明显地改善原水水质,对NH4+-N的去除率达到80%~95%。田文华等[8]为研究滤料粒径对硝化性能的影响,分别采用粒径为2~3 mm和4~5 mm的沸石滤料进行了试验。结果表明:20℃时前者的硝化速率常数比后者高63.1%,硝化强度高39.7%。目前,BAF普遍采用的滤料粒径为3~6mm,

滤层厚度为3~4m。

1.2.2 有机物

近年来,有机物对硝化过程的影响已越来越受到人们的重视。R.Camiani等人[9]对带回流的两段式生物滤池的脱氮效果进行研究,发现当机负荷超过2.5gCOD/m2·d时,硝化率将减少50%。仇付国[10]等通过试验得出,随着COD负荷增加,出水NH4+-N浓度增大,氨氮去除率显著下降。他认为进水有机负荷应控制在1.5 kgCOD/m3·d以内较为合适。Pujol[11]研究认为,反硝化最好采用外加碳源的办法,在最佳滤速为10~15 m /h时,脱氮能力可达到100%。Songming Zhu[12]研究发现,相较于C/N=0,C/N=1或2时氨氮去除率降低了70%。这说明了有机物浓度的增加使得硝化率降低,但当有机物浓度很高时,其对硝化率的影响将不再明显。

1.2.3 水力停留时间(HRT)

HRT对氨氮的去除效果有着较大影响。仇付国等[10]的研究表明,HRT缩短会抑制BAF 的硝化性能。因为缩短HRT会增加COD负荷,造成异养菌大量繁殖,明显抑制硝化菌的增长,故硝化性能降低。再者,水力及气流剪切力的增大会加快生物膜更新速度,使硝化细菌在生物膜中很难富集到较大数量。申颖洁[13]等人的试验结果也表明,HRT越长则氨氮去除效果越好。综合考虑对氨氮的去除率和处理水量,可以将HRT控制在8 h左右(此时的流量为6L/h)。李菊等[14]研究表明,HRT对前置反硝化BAF的处理效果有较明显的影响,当HRT 由2h缩短至1h时,NH4+-N、TN平均去除率分别下降34%和20%。

1.2.4 气水比

气水比的大小直接影响BAF内溶解氧浓度,对脱氮效果有着重要影响。杨林等[15]考察气水比分别为0.5、1.0和1.5时对氨氮去除效果的影响,随着气水比的增大,氨氮平均去除率略有上升。当气水比为0.5、1.0和1.5时,氨氮平均去除率分别为81.8%、85.3%和86.7%。当气水比从0.5增大到1.0时,氨氮去除率增加显著;但当气水比从1.0升至1.5时,氨氮去除率增长缓慢。刘金香等[16]研究表明,气水比增加,有利于微污染水中污染物的去除。当气水比由0.5增为1时,氨氮的平均去除率由78.15%增为94.4%。当气水比增大到2时,氨氮的去除率增加很少。这是因为反应器内溶解氧浓度的提高对硝化反应的进行非常有利,但由于氧气的溶解度有限,超过一定范围后,过大的曝气量并不能再提高水体内溶解氧的质量浓度。另一方面,在曝气量增加的同时,反应器内生物膜所受到的冲刷作用也同步增大,抑制了反应器对污染物的拦截以及微生物的增长。所以当溶解氧提高到一定程度后,硝化作用不会有大幅度提高。

王岽[17]等人降低系统的气水比(2:1)后,系统的出水NH3-N浓度上升,说明较低的气水比不能使系统具有良好的好氧状态。崔康平等[18]研究表明,增大气水比,NH3 - N的去除率增加,但TN的去除率降低。

1.2.5 温度

硝化菌作用的适宜温度是20~30℃,桑军强等[19]发现温度降低时,生物活性也随温度的降低而下降,导致反应器去除氨氮效率降低;生物量同样也随温度的降低而减少,但是受影响的程度比活性的影响小得多。刘冰等[20]研究也表明生物活性随着温度的下降而降低,28℃时的生物活性是6℃时的三倍。

1.2.6 反冲洗

反冲洗强度也对氨氮的去除有着较大影响。杨艳玲[21]等试验发现生物膜在反冲洗1 ~ 2 h 后内能恢复到反冲洗前的水平。生物滤池反冲洗0.5 h后,氨氮的去除率达到63%,1h后可达到90%以上。刘建广等[22]试验发现,小强度反冲洗可使BAF对NH4+-N的去除率上升到60%,而利用正常强度进行反冲洗后对NH4+-N的去除率可上升到80%。若反冲洗强度较小,则反冲洗不完全,生物膜只能恢复部分活性。

2基于新型脱氮理论的BAF技术研究

2.1 同步硝化反硝化

2.1.1同步硝化反硝化脱氮原理

在传统的生物脱氮工艺中,氮的去除过程往往将好氧区和缺氧区隔开,形成前置反硝化或者后置反硝化工艺[4]。硝化过程需要在好氧、低有机物浓度的条件下进行,而反硝化过程则需要在缺氧、高有机物浓度的条件下进行。因此,这两种相反条件下进行的反应,往往不会在同一反应器内同时发生。然而,国内外多种试验研究证明硝化和反硝化可以在同一操作环境、同一反应器内进行,实现同步硝化反硝化(Simultaneous nitrification and denitrificaition :SND)。通过控制曝气强度,可以在滤池内部同时形成好氧、厌氧和缺氧区域,就可实现同步完成硝化和反硝化脱氮的目的[23]。

BAF滤料表面的生物膜上存在基质和DO的浓度梯度,DO浓度在生物膜上由外向内呈递减趋势,因而生物膜上由外到内形成了好氧、缺氧、厌氧的微环境,为异养菌、自养菌和厌氧菌等提供生存条件,也为微生物进行SND提供了场所。

2.1.2 曝气生物滤池SND脱氮影响因素

(1)DO浓度

适宜的DO浓度是发生SND的保证。Puzava等[24]通过调整BAF的曝气量,将DO浓度控制在0.5~3 mg/L,成功地实现了SND。他们还发现,即使曝气量降低50%,采用实时曝气也有同样的效果。Munch[25]的研究表明,DO浓度在0.5mg/L左右时发生了完全的同步硝化反硝化,此时硝化速率等于反硝化速率。

吕鑑等[26]的试验表明,好氧段的气水比为20:1时SND最彻底,此时反硝化最完全,总氮去除率保持在80%以上。章胜红等[27]在4个不同DO浓度段(5.7~6.4 mg/L,2.8~3.4 mg/L,0.8~1.5 mg/L和0.4~0.7 mg/L)考察SND的表现。结果显示,DO浓度为5.7~6.4mg/L 时,NH4+-N去除效果很好,但TN去除效果较差。出水中的硝酸盐氮浓度甚至大于进水的,这说明NH4+-N大部分转化为硝酸盐氮;DO浓度为2.8~3.4 mg/L和0.8~1.5 mg/L时,NH4+-N去除率降低,TN去除效果有所改善,此时反硝化菌活性较好,不仅NH4+-N经硝化反硝化生成N2去除外,进水中的硝酸盐也部分反硝化转化为N2从水中去除。DO浓度为0.4~0.7mg/L时,NH4+-N硝化作用较差,这时TN去除率也没有DO浓度为0.8~1.5 mg/L时的高。因此,DO浓度为0.8~1.5 mg/L时,SND作用最好。

(2)C/N与回流比

C/N与回流比对SND现象有着重要影响。章胜红等人[27]在C/N比值为18.1~20、6.9~9.2和3.6~4.时考察C/N对SND的影响。结果发现,当C/N比为18.1~20时,硝化作用较弱,因为在高的C/N条件下,异养菌更占优势,因此自养型的硝化菌的活性受到抑制;C/N比在6.9~9.2时,SND作用最强;C/N比在3.6~4.3时,反硝化效果较差且出水硝酸盐氮略高于进水。也就是说,低C/N对硝化作用有利但是对反硝化作用不利,高C/N比对反硝化作用有利但对硝化作用不利。

吕鑑等[26]发现当回流比为0.5:1时,好氧池脱氮率高于缺氧池,虽然此时好氧池的脱氮效果较好,但缺氧池因有机物消耗小会造成好氧池负荷过大;当回流比为1:1时,此时两池的脱氮率接近,分担了好氧池的负荷,使得同步硝化作用稳定保持,脱氮效果显著;回流比为2:1时,此时缺氧池完成脱氮作用,为传统的前置反硝化脱氮工艺。根据脱氮效果与经济节约的综合分析,确定1:1为最佳回流比。

(3)填料

从滤料种类上看,对于粒状填料,粒径越小,比表面积越大,生物量就大,越易形成DO梯度。Rebecca Moore等[28]研究发现小颗粒(1.5~3.5)mm虽然有利于脱氮,但不适应高水力负荷:大颗粒(2.5~4.5)mm减小了反洗频率,但不利于脱氮和SS去除。

2.2 短程硝化反硝化

2.2.1 短程硝化反硝化原理

在硝化过程中,把反应控制在亚硝酸盐阶段,然后由亚硝酸盐直接进行反硝化,或是在厌氧及低氧条件下由亚硝酸盐作为电子受体,将氨转化为氮气,以达到缩短反应过程的目的,这两种方式均为短程脱氮。短程脱氮具有很多的优点:硝化段可减少约25%的能耗、在反硝化段可降低约40%对碳的需求、具有较高的硝化反硝化能力、以及产生较少的生物量等。

2.2.2 曝气生物滤池中短程硝化反硝化的影响因素

(1)DO浓度

合适的DO浓度对完成短程硝化反硝化作用至关重要。王春荣[29]等通过两段BAF试验,发现在DO为(0.3~0.5)mg/L时,亚硝酸盐直接进行反硝化。即气水比较低时,主要进行短程硝化反硝化,其反硝化速率要比正常反硝化快1.15倍。

(2)C/N比

C/N比孙迎雪等[30]试验表明,短程硝化反硝化生物滤池对NH4+-N有90%以上的去除率;当反硝化生物滤池进水的C/N为3. 0时,出水TN浓度可降低到8~9 mg/L,且去除率稳定在79%~81%。

(3)FA(游离氨)

孟繁丽等[31]研究发现,在低氨负荷情况下,NO2--N的积累主要受DO的影响;高氨负荷情况下,NO2--N的积累主要受FA的影响。当FA > 0.6 mg/L时,硝酸菌的活性受抑制,FA > 4 mg/L时亚硝酸菌的活性被抑制,FA > 50 mg/L时完全抑制了硝酸菌和亚硝酸菌的活性。Sutherson[32]在研究短程硝化反硝化技术时指出,由于硝酸菌对游离氨会产生不可逆转的适应性,所以NO2--N不可能在系统中长期稳定存在。QIAO S等人[33]发现,调整进水氨氮负荷、温度和pH值可调控FA的浓度,进而实现NO2--N的积累。

(4)pH

陶俊杰等[34]指出pH值是控制短程硝化的重要因素,其影响效果甚至要强于DO。在常温、进水氨氮负荷为0.5 kg/m3·d条件下控制pH值在8.0以上,发现BAF即使在DO浓度为4.5 mg/L时也能使NO2--N积累率达到80%以上。孟繁丽[31]也指出,pH在8~8.5 时,NO2--N 有70%积累率,同时NH4+-N的去除率也较高,可达70 %。

3 研究前景及现存问题

3.1 研究前景

BAF中新型脱氮理论的发现与研究,可进一步改进与完善生物滤池工艺,提高脱氮处

理效果,减少成本与能耗,对于开发新型低耗高效污水深度处理与回用技术提供了非常好的思路,具有非常广阔的发展前景。

3.2 现存问题

目前,有关新型脱氮工艺与BAF相结合的研究较少,很多试验结果仍存在差异,导致无法指导工程实践,而且BAF难以灵活控制较低的DO浓度、反应时间、pH等环境条件,增大了其运用新脱氮理论的难度。所以此方面的技术和工艺还需要进一步的研究和开发。

新型生物脱氮工艺

新型生物脱氮工艺 摘要介绍六种新型生物脱氮工艺的基本原理和研究现状。随后介绍新型生物脱氮工艺 的原理和特征及工艺的发展前景。 关键词SHARON工艺;ANAMMOX工艺;SHARON-ANAMMOX组合工艺;OLAND 工艺;CANON工艺; 随着现代工业的不断发展、化肥的普遍应用及大量生活污水的排放,废水中的氮污染日益严重。各种水体富营养污染事件频繁爆发,破坏了水体原有的生态平衡,严重污染了周围环境。我国作为水资源十分短缺的国家,严格控制脱氮污水的超标排放是十分必要的。对于氮素污染的治理,国内外常见的工程技术有空气吹脱法、选择性离子交换法、折点氯化法、磷酸铵镁沉淀法、生物脱氮法等。其中,生物脱氮法使用范围广,投资及运转成本低,操作简单,无二次污染,处理后的废水易达标排放,已成为脱氮常用处理方法。 1 传统生物脱氮工艺 传统生物脱氮一般包括硝化和反硝化两个阶段,分别由硝化菌和反硝化菌完成。硝化反应是由一类化能自养好样的硝化细菌完成,主要包括两个步骤:第1步称为亚硝化过程,由亚硝酸菌将氨态氮转化为亚硝酸盐;第2步称为硝化过程,由硝酸菌将亚硝酸盐进一步氧化为硝酸盐。 反硝化作用是在厌氧或缺氧条件下反硝化菌把硝酸盐转化为氮气排除。该转化过程有许多中间产物,如HNO2、NO2和N2O。反硝化菌多数是兼性厌氧菌,在无分子态氮存在 的环境下,利用硝酸盐作为电子受体,有机物作为碳源和电子供体提供能量并被转化为CO2、H2O。 传统生物脱氮工艺在废水脱氮方面起到了一定的作用,但任存在以下问题[1]: (1)在低温冬季硝化菌群增殖速度慢且难以维持较高的生物浓度。造成系统总水力停留时间(HRT)长,有机负荷较低,增加了基建投资和运行费用。 (2)硝化过程是在有氧条件下完成的,需要大量的能耗; (3)反硝化过程需要一定的有机物,废水中的COD经过曝气有一大部分被去除,因此反硝化时往往要另外加入碳源; (4)系统为维持较高生物浓度及获得良好的脱氮效果,必须同时进行污泥回流和硝化液回流,增加了动力消耗及运行费用; (5)抗冲击能力弱,高浓度氨氮和亚硝酸盐进水会抑制硝化菌的生长;

污水处理生物脱氮除磷工艺

污水处理生物脱氮除磷工艺 在城市生活污水处理厂,传统活性污泥工艺能有效去除污水中的BOD5和SS,但不能有效地去除污水中的氮和磷。如果含氮、磷较多的污水排放到湖泊或海湾等相对封闭的水体,则会产生富营养化导致水体水质恶化或湖泊退化,影响其使用功能。因此,在对污水中的BOD5和SS进行有效去除的同时,还应根据需要,考虑污水的脱氮除磷。其中A-A-O(厌氧-缺氧-好氧)为同步生物脱氮除磷工艺的一种。 一、工艺原理及过程 A-A-O生物脱氮除磷工艺是活性污泥工艺,在进行去除BOD、COD、SS的同时可生物脱氮除磷。 在好氧段,硝化细菌将入流污水中的氨氮及由有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷去除。以上三类细菌均具有去除BOD5的作用,但BOD5的去除实际上以反硝化细菌为主。污水进入曝气池以后,随着聚磷菌的吸收、反硝化菌的利用及好氧段的好氧生物分解,BOD5浓度逐渐降低。在厌氧段,由于聚磷菌释放磷,TP浓度逐渐升高,至缺氧段升至最高。在缺氧段,一般认为聚磷菌既不吸收磷,也不释放磷,TP保持稳定。在好氧段,由于聚磷菌的吸收,TP迅速降低。在厌氧段和缺氧段,NH3-N浓度稳中有降,至好氧段,随着硝化的进行,NH3-N逐渐降低。在缺氧段,由于内回流带入大量NO3-N,NO3-N瞬间升高,但随着反硝化的进行,NO3-N浓度迅速降低。在好氧段,随着硝化的进行,NO3-N浓度逐渐升高。 二、A-A-O脱氮除磷系统的工艺参数及控制 A-A-O生物脱氮除磷的功能是有机物去除、脱氮、除磷三种功能的综合,因而其工艺参数应同时满足各种功能的要求。如能有效地脱氮或除磷,一般也能同时高效地去除BOD5。但除磷和脱氮往往是相互矛盾的,具体体现的某些参数上,使这些参数只能局限在某一狭窄的范围内,这也是A-A-O系统工艺系统控制较复杂的主要原因。 1.F/M和SRT。完全生物硝化,是高效生物脱氮的前提。因而,F/M(污泥负荷)越低,SRT(污泥龄)越高。脱氮效率越高,而生物除磷则要求高F/M低SRT。A-A-O生物脱氮除磷是运行较灵活的一种工艺,可以以脱氮为重点,也可以以除磷为重点,当然也可以二者兼顾。如果既要求一定的脱氮效果,也要求一定的除磷效果,F/M一般应控制在0.1-0.18㎏ BOD5/(kgMLVSS·d),SRT一般应控制在8-15d。

污水生物脱氮技术研究现状

污水生物脱氮技术研究现状 摘要:概述了传统生物脱氮技术原理及传统的生物脱氮技术,分析了传统生物脱氮工艺的不足,并介绍了同时硝化反硝化、短程硝化反硝化、厌氧氨氧化等几种生物脱氮新技术的机理、特点和研究现状。最后对生物脱氮技术的今后的发展趋势进行了展望及建议,指出高效、低能耗的可持续脱氮工艺是污水处理的发展方向。 关键词:生物处理;生物脱氮;短程硝化反硝化;同步硝化反硝化;厌氧氨氧化Research Status of Biological Removal of Nitrogen from Wastewater Abstract:Summarizes the conventional biodenitrification technology principle and conventional biological removal of nitrogen technology, analyzes the deficiencies of conventional biological removal of nitrogen, and introduces nitration denitrification, shortcut nitrification and denitrification anaerobic ammonium oxidation ,and the features, the mechanism and the current research status of the several biological new technologies,. Finally have a outlook and Suggestions of the new technologies , points out that high efficiency, low energy consumption is the development direction of removal of nitrogen in sewage treatment. Keywords:biological disposal;nitrogen removal;shortcut nitrification;Simultaneous nitrification and denitrifieation;anaerobic ammonium

废水生物处理基本原理—生物脱氮原理

废水生物处理基本原理 ——废水生物脱氮原理 1.1.1 废水中氮的存在形式 氮在废水中有以下几种形式 无机氮 N anorgan .: ? 氨氮 NH 4-N ? 亚硝氮 NO 2-N ? 硝氮 NO 3-N 有机氮 N organ . 总氮 N total = N anorgan . + N organ . 总凯氏氮 TKN = N organ . + NH 4-N 以氮的形式氮化合物的换算关系如下: NH NH N NH NO NO N NO NO NO N NO 4128541285 4 2328523285 2 3442834428 3 ++ -- -- ?→??-?→???→??-?→???→??-?→??/,*,/,*,/,*, 1.1.2 废水生物脱氮的基本过程 ①氨化(Ammonificaton ):废水中的含氮有机物,在生物处理过程中被好氧或厌氧异养型微生物氧化分解为氨氮的过程; ②硝化(Nitrification ):废水中的氨氮在好氧自养型微生物(统称为硝化菌)的作用下被转化为NO 2- 和NO 3-的过程; ③反硝化(Denitrification ):废水中的NO 2- 和/或NO 3-在缺氧条件下在反硝化菌(异养型细菌)的作用下被还原为N 2的过程。

1.1.3 氨化作用基本原理 在废水中部分氮以无机物的形式存在。蛋白质被生化降解为氨氮 的作用成为氨化作用。尿素在酶的催化下降解也属于该作用。 举例: COOH O ∣∣ R - C - H + H2O + 1/2 O2 ----> R - C + NH4+ + OH-∣∣ NH2COOH NH2 ∣ C=0 + 3 H2O 尿素酶> 2 NH4++ 2 OH-+ CO2 ∣ NH2

曝气生物滤池脱氮的研究进展

2017年第36卷第3期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·1077· 化 工 进 展 曝气生物滤池脱氮的研究进展 朱加乐,林燕,王欣泽,沈剑 (上海交通大学环境科学与工程学院,上海 200240) 摘要:介绍了曝气生物滤池的种类、脱氮的原理以及在工业废水和生活污水处理方面的实际应用,总结了曝气生物滤池脱氮影响因素方面的国内外研究成果,其中影响因素包括气水比、水力负荷、HRT 、C/N 、反冲洗、pH 和滤料等。本文还综合考虑了成本和处理效果等问题,给出了各个影响因素的适宜范围。此外,本文还指出了曝气生物滤池技术目前在脱氮方面所存在的两个关键性问题——反硝化碳源不足和缺氧区域形成受限等问题,并提出了能够解决这两个问题的3种改良工艺——释碳材料、异养硝化好氧反硝化脱氮和曝气生物滤池组合工艺等,同时还介绍了这3种工艺在曝气生物滤池脱氮方面的研究成果、具有的优势以及目前存在的主要问题。此外,还对曝气生物滤池技术在脱氮方面的前景进行了展望。 关键词:曝气生物滤池;脱氮;影响因素;改良工艺 中图分类号:X703 文献标志码:A 文章编号:1000–6613(2017)03–1077–07 DOI :10.16085/j.issn.1000-6613.2017.03.041 Research progress on nitrogen removal by biological aerated filter ZHU Jiale ,LIN Yan ,WANG Xinze ,SHEN Jian (School of Environmental Science and Engineering ,Shanghai Jiao Tong University ,Shanghai 200240,China ) Abstract :The types and principles of nitrogen removal and their practical applications in both industrial and municipal wastewater of BAF are discussed in this paper. The recent research progresses on the influencing factors of nitrogen removal ,such as air-water ratio ,hydraulic loading ,HRT ,C/N ,backwashing ,pH and filter media ,are summarized. And the optimum ranges of all those factors are given in terms of the cost and removal efficiency. The main problems including poor carbon source for denitrification and restricted anoxic zone are also presented. And the improved processes to solve those two main problems ,such as carbon releasing material ,heterotrophic nitrification-aerobic denitrification and integrated process ,are discussed. The applications ,strengths and problems of these three improved processes are compared. Furthermore ,the trend of nitrogen removal by biological aerated filter is also presented. Key words :biological aerated filter ;nitrogen removal ;influencing factors ;improved processes 曝气生物滤池(biological aerated filter ,BAF ) 污水处理工艺是20世纪80、90年代在生物滤池、 生物接触氧化工艺基础上,开发出的好氧生物膜 法污水处理工艺[1]。曝气生物滤池利用生物膜的过 滤、絮凝以及生物氧化作用,能够有效地去除水中引起水体富营养化的氮、磷元素;并且由于曝气生物滤池还具有占地面积小,投资少,抗冲击负荷能力强以及操作流程简单等优点,现已被广 泛运用于工业废水以及生活污水的处理中[2-3]。 近年来,国内外学者对曝气生物滤池在脱氮方面的应用进行了大量的研究,主要集中在影响 收稿日期:2016-08-05;修改稿日期:2016-09-19。 基金项目:国家水体污染控制与治理科技重大专项(2012ZX07105-003)。第一作者:朱加乐(1993—),男,硕士研究生。E-mail :zjlheros@https://www.360docs.net/doc/863038955.html, 。联系人:林燕,博士,副教授,研究方向为水体富营养化防治。 E-mail :linyansjtu@https://www.360docs.net/doc/863038955.html, 。 万方数据

生物脱氮新技术研究进展_周少奇

第1卷第6期2000年12月   环境污染治理技术与设备 T echniques and Equipment fo r Enviro nmental Pollutio n Co ntrol   V ol.1,N o.6 Dec.,2000生物脱氮新技术研究进展① 周少奇 周吉林 (华南理工大学环境科学与工程系,广州510640) 摘 要 本文对短程硝化反硝化、同时硝化反硝化及厌氧氨氧化等生物脱氮新技术的研究和开发 进展进行了简单的综述和讨论,并指出了这些新技术的特点和研究开发应用的前景。 关键词:生物脱氮 短程硝化反硝化 同时硝化反硝化 厌氧氨氧化 脱氮处理是废水处理中的重要环节之一。废水中氮的去除方法有物理法、化学法和生物法三种,而生物法脱氮又被公认为是一种经济、有效和最有发展前途的方法之一。目前,废水的脱氮处理大多采用生物法。废水生物脱氮技术经过几十年的发展,无论是在理论认识上还是在工程实践方面,都取得了很大的进步。 传统生物脱氮途径一般包括硝化和反硝化两个阶段,硝化和反硝化反应分别由硝化菌和反硝化菌作用完成,由于对环境条件的要求不同,这两个过程不能同时发生,而只能序列式进行,即硝化反应发生在好氧条件下,反硝化反应发生在缺氧或厌氧条件下。由此而发展起来的生物脱氮工艺大多将缺氧区与好氧区分开,形成分级硝化反硝化工艺,以便硝化与反硝化能够独立地进行。1932年,Wuhrmann利用内源反硝化建立了后置反硝化工艺(post-denitrification),Ludzack和Ettinger于1962年提出了前置反硝化工艺(pre-denitrificatio n),1973年Barnard结合前面两种工艺又提出了A/O工艺,以及后又出现了各种改进工艺如Bardenpho、Phoredox(A2/O)、UC T、JBH、AAA工艺等,这些都是典型的传统硝化反硝化工艺[1]。 然而,生物脱氮技术的新发展却突破了传统理论的认识。近年来的许多研究表明[2~12]:硝化反应不仅由自养菌完成,某些异养菌也可以进行硝化作用;反硝化不只在厌氧条件下进行,某些细菌也可在好氧条件下进行反硝化;而且,许多好氧反硝化菌同时也是异养硝化菌(如Thiosphaera pantotropha菌),并能把NH4+氧化成NO2-后直接进行反硝化反应。生物脱氮技术在概念和工艺上的新发展主要有:短程(或简捷)硝化反硝化(shortcut nitrification-denitrification)、同时硝化反硝化(simultaneous nitrification-denitrifi-cation-SND)和厌氧氨氧化(Anaerobic Ammonium Oxidation-ANAMMOX)。 ①广东省重点科技攻关项目、广东省自然科学基金项目(980598)、广州市重点科技攻关项目资助

生物脱氮的基本原理

摘要:进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。 关键词:生物脱氮基本原理氨化硝化反硝化同化 生物脱氮是在微生物的作用下,将有机氮和NH3-N转化为N2和N x O气体的过程[1]。 废水中存在着有机氮、NH3-N、NO x--N等形式的氮,而其中以NH3-N和有机氮为主要形式。在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成NH3-N,而后经硝化过程转化变为NO x--N,最后通过反硝化作用使NO x--N转化成N2,而逸入大气。 由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。 1. 氨化作用 氨化作用是指将有机氮化合物转化为NH3-N的过程,也称为矿化作用。参与氨化作用的细菌称为氨化细菌。在自然界中,它们的种类很多,主要有好氧性的荧光假单胞菌和灵杆菌、兼性的变形杆菌和厌氧的腐败梭菌等。在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨[2]。例如氨基酸生成酮酸和氨: (2-1) 丙氨酸亚氨基丙酸法丙酮酸 另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。例如尿素能被许多细菌水解产生氨,分解尿素的细菌有尿八联球菌和尿素芽孢杆菌等,它们是好氧菌,其反应式如下: (2-2) 在厌氧或缺氧的条件下,厌氧微生物和兼性厌氧微生物对有机氮化合物进行还原脱氨、水解脱氨和脱水脱氨三种途径的氨化反应。 (2-3) (2-4)

(2-5) 2. 硝化作用 硝化作用是指将NH3-N氧化为NO x--N的生物化学反应,这个过程由亚硝酸菌和硝酸菌共同完成,包括亚硝化反应和硝化反应两个步骤。该反应历程为: 亚硝化反应 (2-6) 硝化反应 (2-7) 总反应式(2-8) 亚硝酸菌有亚硝酸单胞菌属、亚硝酸螺杆菌属和亚硝酸球菌属。硝酸菌有硝酸杆菌属、硝酸球菌属。亚硝酸菌和硝酸菌统称为硝化菌[22]。发生硝化反应时细菌分别从氧化NH3-N 和NO2--N的过程中获得能量,碳源来自无机碳化合物,如CO32-、HCO-、CO2等。假定细胞的组成为C5H7NO2,则硝化菌合成的化学计量关系可表示为: 亚硝化反应 (2-9) 硝化反应 (2-10) 在综合考虑了氧化合成后,实际应用中的硝化反应总方程式为: (2-11) 由上式可以看出硝化过程的三个重要特征: ⑴NH3的生物氧化需要大量的氧,大约每去除1g的NH3-N需要4.2gO2; ⑵硝化过程细胞产率非常低,难以维持较高物质浓度,特别是在低温的冬季; ⑶硝化过程中产生大量的质子(H+),为了使反应能顺利进行,需要大量的碱中和,理论上大约为每氧化1g的NH3-N需要碱度5.57g(以NaCO3计)。

污水生物脱氮工艺研究

污水生物脱氮工艺研究 短程硝化是将传统的硝化反应控制在亚硝化阶段,与传统工艺相比,短程硝化反硝化需氧量减少25% ,碳源需求减少40% ,具有节省曝气能耗、缩短反应时间、减少污泥生成量、减少反应器有效容积和节约基建费用等优点 ,因此如何实现与维持稳定的短程硝化成为目前污水生物脱氮领域的研究热点。 硝化菌是一种自养菌,生长缓慢,对环境因子变化十分敏感,采用微生物固定化技术可解决硝化菌流失问题,提高系统中硝化菌浓度,已得到广泛的研究和应用。但是大部分实验还都停留在传统的以包埋材料为载体的“滴下造粒法”和“成型切断法”阶断,由于载体材料自身(微球和包埋块)的限制,活性填料在机械强度、传质、稳定性和处理效率等方面都存在一定的问题,更为主要的缺陷是这些填料不具有较好的水力学特征,无法充分发挥填料的硝化活性。因此,开发出稳定性好、处理效率高、传质效果好的固定化生物活性填料对氨氮废水的处理具有十分重要意义。 本研究从污水处理厂获取的剩余污泥经筛选富集培养得到的硝化菌群(混合菌)为菌源,采用包埋法制备的固定化填料为载体,重点研究了溶解氧(dissolved oxygen,DO) 对活性填料发生短程硝化的影响,利用高游离氨(free ammonia,FA)对亚硝酸盐氧化菌(nitrite oxidizing bacteria,NOB)产生抑制作用使氨氧化细菌(ammonia oxidizing bacteria,AOB)成为优势菌群(混合菌),实现了在高氨氮负荷下序批次反应器(SBR)短程硝化的快速启动及稳定运行,填料中的实验还考察该新型活性填料的抗冲击负荷能力。 1 材料与方法 1. 1实验用水 实验用水采用人工模拟配水,按氨氮浓度为100 mg·L - 1 时各基质组分质量浓度为:NH4 Cl 382. 81mg·L - 1 ,NaHCO3 1 272. 02 mg·L - 1 ,KH2 PO4 112 mg·L - 1 ,CaCl2 ·2H2 O 111 mg·L - 1 ,MgSO4 15 mg·L - 1 ,FeSO4 ·7H2 O 11. 1 mg·L - 1 ,NaCl 500 mg·L - 1 ,进水投加的微量元素:H3 BO3 14 mg·L - 1 ,MnCl2 ·4H2 O 990 mg·L - 1 ,CuSO4 ·5H2 O 250 mg·L - 1 ,CoCl2 ·6H2 O 240 mg·L - 1 ,ZnSO4 ·7H2 O 430 mg·L - 1 ,NiCl2 ·6H2 O 190 mg·L - 1 ,NaMoO4 ·2H2 O 220 mg·L - 1 (每1 L 进水投加1 mL 微量元素溶液,以满足微生物生长需求),进水氨氮浓度发生变动时,其他组分按比例增减。 1. 2 分析项目及测试方法 NH 4+ -N:纳氏试剂分光光度法;NO2- -N:N-(1-萘基)-乙二胺分光光度法;NO3- -N:紫外分光光度法;pH值:PHS-2C 实验室pH 计;DO:德国WTW inoLab Oxi 7310 实验室台式溶氧仪; 1. 3 菌种的来源及活性填料的制备 本实验包埋所用菌源来自于北京市某污水处理厂二沉池剩余污泥,经筛选富集培养后的硝化菌群。具体做法如下:首先将剩余污泥过度曝气,利用气体扰动作用和异氧菌的内源呼吸代谢使污泥絮体解体;然后将解体污泥用纱布进行过滤去除无机颗粒杂质,保留滤液;最后对

雨水生物滤池中同步脱氮除磷机制和效率的提升

雨水生物滤池中同步脱氮除磷机制和效率的提升 摘要:通过添加富铁土和植物碎屑和富营养化湖泊沉积物,生物滤池技术有很大提高。,在处理中运用含有富含铁的土壤造成铵和磷酸盐的显著的去除效率(超过95%)。将这一结果归因于强大的吸附能力导致磷(P)在介质中的高效,维持了硝化细菌和反硝化细菌的丰度和活性以及促进氮(N)的去除。水生和陆生植物碎屑更有利于硝化和反硝化作用,它们是通过分别刺激硝化细菌和反硝化细菌的丰度和活性,从而增加总氮(TN)去除率,去除率从17.6%增加到22.5%。此外,富营养化水体沉积物的硝化细菌和反硝化细菌生物强化技术有利于营养物质的去除。最重要的是,这些材料的联合应用可以同时达到最大的效果(磷,氨和总氮的去除效率分别为97-99%,95-97%和60-63%)。证明了材料的合理选择在雨水滤池及应用前景上具有重要的贡献。 关键词:硝化细菌;反硝化细菌;富铁土;植物碎屑;生物强化技术 1引言 水体富营养化受到重视,已成为一个重要的问题,主要是因为过量输入的氮和磷。雨水已被确定为一个主要的氮和磷污染源(Odell, 1994)。由于城市化的广泛性,城市流域的污染物滞留功能大大降低(Grimm et al., 2008),导致雨水直接排放到水生生态系统。生物过滤系统是利用植物的净化能力来减轻雨水污染物中氮和磷的影响。微生物和过滤介质,具有占地面积小、能耗低的优点。净化包括沉淀,吸附,植物吸收和一些微生物作用(Hatt et al., 2009)。在这些过程中,植物吸收总是被认为是最重要的作用。例如,在富含铁的生物过滤器中,通过植物的组合可以有很好去除营养物质的效果(TP 90%,指的是总磷、89% TN)(Glaister et al., 2014)。尽管如此,基于植物的生物滤池的营养物去除效果并不总是理想的(Read et al., 2008)。而且,季节性的植物衰老会影响其处理效率,甚至释放营养物质(Payne et al., 2014)。所以要提高非植被生物过滤器去除营养物的方法是备受关注的。 在非植物的生物过滤器去除效率也并不总是那么理想(Blecken et al., 2010; Hunt et al., 2006),更重要的是考虑同步脱氮除磷。在生物过滤器中不同物种的死亡对N和P的量是变化的。具体而言,磷和氨的去除主要由介质吸附,然后利用微生物,因此,滤料的吸附能力和微生物的亲和性是决定其去除效率的重要因素(Henderson et al., 2007)。由于脱氮的硝化和反硝化作用主要是由硝化细菌和反硝化细菌介导的耦合作用(Wang et al.,2016)。如氨氧化古菌(AOA),氨氧化细菌(AOB)和S型反硝化细菌,有机碳都可以促进物强化技术中的反硝化细菌(Collins et al., 2010)和微生物群落对废水的处理(Pei et al., 2015),还可在控制去除效率中起重要作用。显然,在许多栖息地磷有利于硝化和反硝化的协同

废水生物脱氮基本原理

废水生物脱氮基本原理 关于氨氮消耗碱度的理论计算问题书上写的理论上降解1克氨氮要消耗7.14克碱度(以碳酸钙计算),这里是不是说就是消耗7.14克碳酸钙啊? 果换算成纯碱又如何计算?换算成小苏打又怎么计算呢?

消耗的是碳酸氢根。碳酸钙分子量100,纯碱106。以碳酸钙计算的量乘以1.06就是需要的纯碱量。 在不考虑细菌增值硝化消耗的碱度为1g氨氮7.14g碱度(碳酸钙),在考虑细菌增值的情况下是8.62g碱度(碳酸钙)。 碱度与硝化的比例系数为7.1 即每氧化1mg氨氮为硝酸根需消耗7.1mg碱度而发生反硝化反应时每反应掉1mg硝酸根可以产生3.57mg碱度所以,脱氮反应时为了取得好的效果必须不断补充碱度积磷菌、反硝化菌和硝化细菌生长的最佳pH值在中性或弱碱性范围,当 pH 值偏离最佳值时,反应速度逐渐下降,碱度起着缓冲作用。污水厂生产实践表明,为使好氧池的pH值维持在中性附近,池中剩余总碱度宜大于 70mg/L。每克氨氮氧化成硝态氮需消耗 7.14g 碱度,大大消耗了混合液的碱度。反硝化时,还原 1g 硝态氮成氮气,理论上可回收 3.57g 碱度,此外,去除1g五日生化需氧量可以产生0.3g 碱度。出水剩余总碱度可按下式计算,剩余总碱度=进水总碱度+0.3×五日生化需氧量去除量+3×反硝化脱氮量一7.14×硝化氮量,式中 3 为美国 EPA(美国环境保护署)推荐的还原1g硝态氮可回收3g碱度。 由硝化方程式可知,随着NH3-N被转化成NO3—-N,会产生部分矿化酸度H+,这部分酸度将消耗部分碱度,每克NH3-N转化成NO3—-N 约消耗7.14g碱度(以CaC03计)。因而当污水中的碱度不足而TKN负荷又较高时,便会耗尽污水中的碱度,使混合液中的pH值降低至7.0

生物滤池

四、生物滤池系统的设计计算 1、一、二级生物滤池 ⑴滤池滤料体积及其几何尺寸的确定 设计参数; Q=20000 m3/d 回流比r=200% F W范围800~1200 gBOD5/ m3·d 初沉池出水BOD=132mg/L 滤池出水BOD=30mg/L 按有机负荷法计算: ①滤料的体积 V =(L1-L2)Q / u= L1Q / F W 式中:V—滤料体积,m3 L1—滤池进水有机物浓度,mg/l L2—滤池出水有机物浓度,30mg/l Q—流入滤池的污水设计流量,m3/d u—以有机物去除量为基础的有机负荷率,gBOD5/ m3滤料·d F W—以进水有机物为基础的有机负荷率,gBOD5/ m3滤料·d 采用碎石滤料,设F W=1125gBOD5/ m3·d ,出水BOD5=30 mg/L L1=(L+rL2)/(1+r)=(132+2×30)/(1+2)=64(mg/L) V = 20000(1+2)×64 / 1125 =3200m3 ②滤池的平面面积 A = V / H 式中:A—生物滤池的平面面积,㎡ V—生物滤池的滤料体积,m3

H—生物滤池的滤料厚度。 取滤料厚度4m A = 3200 / 4= 800㎡ 采用2格,单格有效过滤面积20.0×20.0=400m2。 ③用水力负荷率校核 q = Q / A 式中q—生物滤池水力负荷率, m3/(㎡·d) q一般为10~30 m3/(㎡·d) q = 20000/800= 25 [m3/(㎡·d)]符合要求 ④过滤速度 V=Q/A=2000/800=1.04 m3/(m2?h) (2)滤池高度 承托层厚380mm,由卵石级配,粒径8~32mm。滤料层采用双层滤料,厚h=400mm,滤板厚12mm,超高60mm。配水室高100mm,清水区高100mm。滤池高度H为 H=380+400+12+60+100+100=1052mm (3)每个滤池的配水系统 滤池配水系统的设计为选用长柄滤头配水方式,并兼气反冲洗布气用。滤头布置按58.7个/m2设计,采用污水专用大缝隙长柄滤头,缝隙宽2.5mm。滤池反冲洗:采用气反冲洗方式、进水漂洗进行。空气反冲洗强度43.2m3/(m2?h),一次反冲洗历时15min。 反冲洗空气量计算: Q气冲= S ×q1 式中Q气冲——反冲洗用气量;

污水生物脱氮技术原理

污水生物脱氮技术原理、影响因素和3大关键菌种 本篇主要讲解污水生物脱氮原理,包括污水脱氮方法简介、生物脱氮技术原理、污水生物脱氮影响因素、生物脱氮作用中的三类关键菌种。 01、污水脱氮方法简介 目前含氮污水脱氮,常用的方法有生物法、物理法、化学法、电化学法等四种方法,其中物理法大多采用加碱吹脱,化学法最常用的是折点加氯法,电化学法通过外加直流电,在阳极产生强氧化剂,在阴极产生强还原环境和碱性环境,相互作用脱氮。不过物理法和化学法、电化学法都不是咱们注册考试考察重点内容,《排水工程》考察重点脱氮方法为生物脱氮方法。 02、生物脱氮技术原理 说到生物脱氮,就离不开缺氧的概念,一定要注意缺氧和厌氧的区别,其中缺氧是没有分子氧但是有硝酸根、亚硝酸根,而厌氧则是既没有分子氧也没有氮的氧化物,要求要比缺氧更加严格。 水体中的总氮=硝酸盐氮+亚硝酸盐氮+有机氮+氨氮,其中有机氮+氨氮=凯氏氮,硝酸盐氮+亚硝酸盐氮=硝态氮,所以总氮=凯氏氮+硝态氮。这是一个知识常考点,需要大家弄清楚这几个氮的相互包含关系。 生物脱氮的原理,大致可以分为以下4步骤描述: 1.有机氮在氨化细菌的作用下,发生氨化作用生成氨氮,注意氨化作用在厌氧环境、好氧环境均能进行,且氨化作用能够产生碱度。 2.水中氨氮再亚硝酸菌的亚硝化作用下,生成亚硝酸根,亚硝化过程消耗碱度,且在好氧条件下进行。 3.亚硝酸菌在硝酸菌的作用下,发生硝化作用,继续生成硝酸根,这个过程也是在好氧条件下进行的,这个过程也消耗碱度,但是消耗量要比亚硝化过程少。 4.生成的硝酸根在缺氧条件下,由反硝化细菌发生反硝化作用,生成氮气排入大气,这个过程能够大大增加碱度,可以适当弥补前面阶段消耗的碱度。 对于最常规的生物脱氮,就是以上4步骤,但是目前研究最多的还有短程反硝化脱氮,也就是进行到第2步,生成亚硝酸根时,就在缺氧条件下由反硝化细菌把亚硝酸根转变为氮气排除进入大气中,省略了第3步骤,从而提高了脱氮

曝气生物滤池工程技术规范

曝气生物滤池工程技术规 范 篇一:曝气生物滤池陶粒技术标准说明 曝气生物滤池陶粒技术标准说明 名称:球型轻质多孔生物陶粒 孔隙率:E=42%左右 滤料直径:3-5mm 技术性能要求 曝气生物滤池工艺的核心在于滤料。滤料的质量直接决定了曝气生物滤池的处理效果和处理效率,同时间接的影响着曝气生物滤池的日常运行费用和维护工作量。本工程采用污水处理专用陶粒滤料作为曝气生物滤池的滤料,并对陶粒滤料的有关技术性能作出如下要求: ①陶粒滤料必须是污水处理专用陶粒滤料。鉴于目前陶粒被广泛应用于建筑、市政、水处理等行业,不同行业对陶粒性能的要求完全不同,污水处理陶粒滤材不考虑从事建筑陶粒或其他行业陶粒,不能以建筑陶粒或其它行业陶粒替代污水处理专用陶粒。

②表面性能要求。陶粒滤料表面粗糙多微孔,适于各类微生物(特别是硝化菌)的生长繁殖;易挂膜,在其表面可形成活性高、稳定性强的生物膜。③形状要求。陶粒滤料的形状应为规则球形。 ④粒径范围与级配要求。针对工程的有关情况和有关设计参数,提供恰当的滤料粒径范围与级配,并说明理由。提供陶粒滤料的粒径范围、级配范围、筛分曲线及K60值。 ⑤化学成分要求。陶粒滤料应具有合理的化学组成,同时要保证其水浸出液不含有任何有毒有害物质。投标人须提供陶粒滤料的化学成分组成及比例。⑥比重与容重要求。陶粒滤料,应根据工程的有关情况,具有适当的比重与容重,同时保证整体陶粒滤料的比重与容重一致。 ⑦耐摩擦要求。陶粒滤料应具有较高的抗摩擦能力,厂家须提供陶粒滤料的摩擦损失率。 ⑧使用寿命要求。陶粒滤料的使用寿命保证至少10年以上(含10年),期间如有除合理损耗之外的损耗,必须在寿命保证时间内填补。 陶粒滤料主要技术指标 1、陶粒滤料的粒径范围、级配范围、筛分曲线及K60值。(1)曝气生物滤池陶粒滤料:粒经3-5mm; (2)陶粒滤料级配控制范围 3)筛分曲线:

三种生物脱氮工艺研究现状

2016 年春季学期研究生课程考核 (读书报告、研究报告)考核科目:专业新技术 学生所在院 :市政环境工程学院 (系) 学生所在学科: 学生姓名:左左 学号: 学生类别:工学硕士 考核结果阅卷人 三种生物脱氮工艺研究现状 一、前沿

氮是造成水体富营养化的一种主要污染物质,尤其是当水体有机性污染物降低到一定标准之后。为了维护生态环境,保障人体健康,国家的污水排放标准逐步严格,对氮的去除也有了更高的要求。因此,研究具有高效脱氮功能的工艺越来越重要。 传统的生物脱氮理论[1]包括硝化和反硝化两个过程,分别由自养型硝化菌和异氧型反硝化菌完成。其生物脱氮原理为: 氨化反应是在氨化菌作用下,有机氮被分解转化为氨态氮,这一过程称为氨化过程,氨化过程很容易进行;硝化反应由好氧自养型微生物完成,在有氧状态下,亚硝化菌利用无机碳为碳源将NH4+氧化成NO2-,然后硝化菌再将NO2-氧化成NO3-的过程。反硝化反应是在缺氧状态下,反硝化菌将亚硝酸盐氮、硝酸盐氮还原成气态氮 (N2 )的过程。反硝化菌为异养型微生物,多属于兼性细菌,在缺氧状态时,利用硝酸盐中的氧作为电子受体,以有机物 (污水中的 BOD 成分)作为电子供体,提供能量并被氧化稳定。具体流程图如下: 传统生物脱氮途径 近十多年来,许多国家加强了对生物脱氮的研究,并在理论和技术上都取得了重大突破。其中主要包括短程硝化反硝化,厌氧氨氧化和同步硝化反硝化等,以及它们的组合工艺[2]。这些新的理论研究表明: ①硝化反应不仅由自养菌完成,某些异养菌也可以进行硝化作用; ②反硝化不只在厌氧条件下进行,某些细菌可在好氧或缺氧条件下完成反硝化; ③许多好氧反硝化菌同时也是异养硝化菌,并能把NH4+氧化成NO2-后,直接进行反硝化反应。 二、研究现状 1、短程硝化反硝化 短程硝化反硝化[3]是将氨氮氧化控制在亚硝化阶段,然后进行反硝化,省去了传统生物脱氮中将亚硝酸盐氧化成硝酸盐,再还原成亚硝酸盐两个环节。因此,该技术具有很多优点: 可节省约25%氧供应量,降低能耗; 可节省反硝化所需的碳源,在C/N 一定的情况下,提高TN的去

水处理生物脱氮除磷工艺

生物脱氮除磷工艺 第一节 概述 一、营养元素的危害 氮素物质对水体环境和人类都具有很大的危害,主要表现在以下几个方面: 氨氮会消耗水体中的溶解氧; 氨氮会与氯反应生成氯胺或氮气,增加氯的用量; 含氮化合物对人和其它生物有毒害作用:① 氨氮对鱼类有毒害作用;② NO 3- 和NO 2-可被转化为亚硝胺——一种“三致”物质;③ 水中NO 3-高,可导致婴儿患变性血色蛋白症——“Bluebaby ”; 加速水体的“富营养化”过程;所谓“富营养化”就是指水中的藻类大量繁殖而引起水质恶化,其主要因子是N 和P (尤其是P );解决的办法主要就是要严格控制污染源,降低排入水环境的废水中的N 、P 含量;对于城市废水来说,利用传统的活性污泥法进行处理,对N 的去除率一般只有40%左右,对磷的去除率一般只有20~30%。 二、脱氮的物化法 1、氨氮的吹脱法: -++?+OH NH O H NH 423 2 2每 3 采用斜发沸石作为除氨的离子交换体。 出水 折点加氯法脱氯工艺流程

1、铝盐除磷 4343AlPO PO Al →++ + 一般用Al 2(SO 4)3,聚氯化铝(PAC )和铝酸钠(NaAlO 2) 2、铁盐除磷:FePO 4 Fe(OH)3 一般用FeCl 2、FeSO 4 或 FeCl 3 Fe 2(SO 4)3 3、石灰混凝除磷 O H PO OH Ca HPO OH Ca 23452423))((345+→++--+ 向含磷的废水中投加石灰,由于形成OH -,污水的pH 值上升,磷与Ca 2+反应,生成羟磷灰石。 第二节 生物脱氮工艺与技术 一、活性污泥法脱氮传统工艺 1、Barth 提出的三级活性污泥法流程: 第一级曝气池的功能:① 碳化——去除BOD 5、COD ;② 氨化——使有机氮转化为氨氮; 第二级是硝化曝气池,投碱以维持pH 值; 第三级为反硝化反应器,可投加甲醇作为外加碳源或引入原废水。 该工艺流程的优点是氨化、硝化、反硝化分别在各自的反应器中进行,反应速率较快且较彻底;但七缺点是处理设备多,造价高,运行管理较为复杂。 2、两级活性污泥法脱氮工艺 与前一工艺相比,该工艺是将其中的前两级曝气池合并成一个曝气池,使废水在其中同时实现碳化、氨化和硝化反应,因此只是在形式上减少了一个曝气池,并无本质上的改变。 二、缺氧——好氧活性污泥法脱氮系统(A —O 工艺)

城市污水厌氧氨氧化生物脱氮研究进展

城市污水城市污水厌氧氨氧化厌氧氨氧化厌氧氨氧化生物脱氮研究进展生物脱氮研究进展 唐崇俭,郑 平 (浙江大学 环境工程系,浙江 杭州 310029) 摘 要:厌氧氨氧化菌可在厌氧条件下以亚硝酸盐为电子受体将氨氧化为氮气,是目前废水生物脱氮的研究热 点之一。小试的研究表明,该工艺的容积负荷可高达125kg N/(m 3 ·d)。城市污水处理厂污泥厌氧消化液以及城市 生活垃圾填埋场渗滤液都含有高氨氮浓度以及低有机物浓度,十分适合采用厌氧氨氧化工艺进行处理。目前,生 产性厌氧氨氧化工艺已在荷兰、丹麦和日本等国成功应用于这两类废水的脱氮处理,最大容积氮去除速率高达 9.5kg N/(m 3·d),显示了该工艺诱人的工程应用前景。本文分析了世界上第一个生产性厌氧氨氧化工艺处理城市 污水厂污泥厌氧消化液的运行情况,论述了厌氧氨氧化工艺在城市污水处理中面临的问题。结合课题组内的研究 结果,提出了一种新型的菌种流加式厌氧氨氧化工艺,并探讨了其在城市污水处理中的作用。 关键关键词词:厌氧氨氧化;城市污水;生物脱氮;工程应用 Application of Anammox Process in Municipal Wastewater Treatment Tang Chongjian, Zheng Ping (Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China ) Abstract : Under anoxic condition, anaerobic ammonium-oxidizing (Anammox) bacteria can oxidize ammonium to nitrogen gas using nitrite as electron acceptor. It becomes a topic issue on biological nitrogen removal from ammonium-rich wastewater due to some promising advantages such as low operational cost and super high volumetric loading rate. As reported, the nitrogen loading rate reached up to 125 kg N/(m 3·d). Characterized by high ammonium concentration and relatively low biodegradable organic content, the sludge digester liquor from the municipal wastewater treatment plant and the landfill leachate are demonstrated to be very suitable for application of Anammox process to realize high-rate nitrogen removal. The full-scale application of Anammox process has already been applied for nitrogen removal from sludge digester liquor and landfill leachate in The Netherlands, Japan and Denmark with the maximum nitrogen removal rate as high as 9.5 kg N/(m 3·d). Thus, the operation of the first full-scale Anammox reactor treating municipal sludge digester liquor was introduced, and the problems during the application of Anammox process in municipal wastewater treatment were discussed. An innovative Anammox process with sequential biocatalyst addition (SBA-Anammox process) was proposed to overcome the drawbacks and accelerate the application of Anammox process in municipal wastewater nitrogen removal.

相关文档
最新文档