二聚酸-乙二醇二缩水甘油醚预聚物的制备

二聚酸-乙二醇二缩水甘油醚预聚物的制备
二聚酸-乙二醇二缩水甘油醚预聚物的制备

聚乙二醇合成操作规范

实验室合成聚乙二醇合成操作文件 1.引发剂的制备 方法一:醇与钾在四氢呋喃(THF)里直接反应 (一甲基二乙二醇醚+K,溶剂是精制的THF) (可以提前配好,需要时取用) 方法二:助引发剂二苯甲基钾(DPMK)+ 醇 (DPM+K=DPMK; DPMK+一甲基二乙二醇醚;溶剂是THF) (要求现配现用) 注意事项: a.THF必须经过精制才可使用。 精制方法为:在THF里加入二苯甲酮(指示剂)和金属钠,等THF变色后常压蒸出。 (注意:操作过程一定要避免与空气接触,不能有水,特别是不要让水进入蒸馏体系,否则会发生爆炸。) b.钾的切割必须全程浸泡在煤油里面。把表面氧化物切割完后放在 另一个干净的装有煤油的烧杯里称量。计量的表面干净的钾用 纸轻轻地吸一下煤油后放进装有四氢呋喃的制引发剂的烧瓶 中。 【注意:加钾的时候要通氮气保护。反应物加完后,停掉氮气,密闭反应(接液封)。】 c.制DPMK时需加热回流12小时。 【注意:DPM也需要精制(CaH2)。】 d.制好的引发剂通过双头针转移的方式,转移到安钵瓶中,用止血 钳封住,保持在干燥器中,置于暗处。 e.每次用时,用针筒(玻璃或一次性均可)抽取。 【注意:如果有剩余,还需保存,药用另一个止血钳封住针口一下,然后把原来的那个止血钳取下。】 f.一般单羟基的引发剂,是直接让它与钾反应(物质的量比为1: 1);

如果是两羟基或更多的羟基,一般用DPMK+多羟基引发剂的形式。 具体操作为:在一干燥的烧瓶(盐水瓶也可以)里,放入计量的多羟基引发剂,再加入计量的THF/DMSO(体积比3:2)混合溶剂(溶剂总量一般为总体积为环氧乙烷体积的1.5倍-2倍(根据合成的PEG的分子量定,分子量越大,溶剂越多。 DPMK/OH为1/2.5。 g.DMSO需精制除水。 (注意,DMSO极易吸水,一定要注意不要接触空气,保存一定要严格密封。) h.所有用于反应的玻璃仪器、乳胶管、针管均需烘干,并放置于真 空烘箱里,随时取用。 2. 环氧乙烷的聚合物 a.聚合之前先把反应釜清洗干净,清洗办法为:先用水洗,再用乙 醇洗,最后用丙酮清洗。注意要把一些死角洗干净,如冷凝盘 管、搅拌桨、及进料口和出料口。清洗完后,让溶剂挥发干。 b.密封反应釜,分别试正压和负压,看会不会漏气。另外要检查一 下反应釜的部件会不会松了,注意保养。最小的那两个反应釜 要记得在密封前加入合适大小的菱形搅拌子。 c.试压完后,干燥反应釜:加入到100o C,在油泵抽真空下,连续 干燥1小时。 d.冷却反应釜到-10 o C-0 o C之间,通过双头针,分别加入溶剂、引 发剂及单体环氧乙烷。 e.加料完毕后,关上所有阀门,确保密封后,撤掉冷凝装置,开动 搅拌。慢慢升高温度,先升到30o C,等温度稳定后,再每次升 高5度,最终温度为60度。注意,如果合成分子量较小的 PEG,如5000一下,要注意聚合时的放热情况,当釜内温度升 到70度时,开动冷凝装置,当温度下降到50度时,停止冷 凝。如温度又上升到70度,再次开动冷凝装置。循环几次,知 道温度不再明显上升后,使其温度稳定在60度。

间苯二酚二缩水甘油醚

间苯二酚二缩水甘油醚化学 品安全技术说明书 第一部分:化学品名称化学品中文名称:间苯二酚二缩水甘油醚 化学品英文名称:resorcinol diglycidyl ether 英文名称2:m-bis(2,3-epoxypropoxy)benzene 技术说明书编码:1698CAS No.: 101-90-6 分子式: C 12H 14O 4分子量:222.23第二部分:成分/组成信息 有害物成分含量CAS No.第三部分:危险性概述健康危害:人接触后,局部发生严重灼伤,少数病例有过敏的反应,血液中的白细胞总数可见下降,并有典型的单核细胞出现。对眼有严重刺激。本品蒸气压低,空气污染可能性不大。 燃爆危险:本品可燃,致严重灼伤,具致敏性。第四部分:急救措施皮肤接触:立即脱去污染的衣着,用大量流动清水冲洗至少15分钟。就医。眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。吸入:脱离现场至空气新鲜处。就医。食入:用水漱口,给饮牛奶或蛋清。就医。第五部分:消防措施危险特性:遇明火、高热可燃。受高热发生剧烈分解,甚至发生爆炸。有害燃烧产物:一氧化碳、二氧化碳。灭火方法:消防人员须戴好防毒面具,在安全距离以外,在上风向灭火。灭火剂:雾状水、泡沫、干粉、二氧化碳、砂土。第六部分:泄漏应急处理应急处理:隔离泄漏污染区,限制出入。切断火源。建议应急处理人员戴防尘面具(全面罩),穿防毒服。用洁净的铲子收集于干燥、洁净、有盖的容器中,转移至安全场所。若大量泄漏,收集回收或运至废物处理场所处置。第七部分:操作处置与储存 有害物成分 含量 CAS No.: 间苯二酚二缩水甘油醚 101-90-6

聚乙二醇硼酸酯的合成

学 生 毕 业 论 文 课题名称 聚乙二醇硼酸酯的合成 姓 名 李腊 学 号 1008102-20 院 系 化学与环境工程学院 专 业 化学工程与工艺 指导教师 周攀登讲师 2014年6月02日 ※※※※※※※※※ ※※ ※※ ※※ ※※※※※※※※※ 2014届学生 毕业设计(论文)材料 (四)

湖南城市学院本科毕业设计(论文)诚信声明 本人郑重声明:所呈交的本科毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 本科毕业设计(论文)作者签名: 二○一四年六月二日

目录 1. 绪论 (4) 1.1 有机硼酸酯的介绍 (4) 1.2 有机硼酸酯的合成方法 (5) 1.3铝电解电容器 (6) 1.3.1节能灯专用中高压铝电解电容器[4] (6) 1.3.2高压铝电解电容器的工作电解液 (7) 1.3.3高压铝电解电容器工作电解液的研究进展 (8) 1.3.4工作电解液耐高压添加剂的研究进展 (8) 1.4有机含硼化合物在导电介质中的应用研究进展 (9) 1.5 研究目的、主要工作及意义 (11) 1.5.1 研究目的 (11) 1.5.2 主要工作 (11) 1.5.3 研究意义 (11) 2. 聚乙二醇硼酸酯的合成 (13) 2.1 引言 (13) 2.2 实验部分 (13) 2.2.1 实验原料与器材 (13) 2.2.2合成原料的选择与合成条件筛选 (14) 2.2.3 聚合反应装置 (15) 2.2.4 操作方法 (15) 3. 结果与讨论 (16) 3.1 聚乙二醇硼酸酯的合成工艺 (16) 3.1.1 正交实验结果 (16) 3.2 产物红外光谱分析 (21) 4 结论 (21) 参考文献 (21)

硬脂酸聚烃氧(40)酯

硬脂酸聚烃氧(40)酯 Yingzhisuan Jütingyang (40) Zhi Polyoxyl (40) Stearate [9004-99-3] 《中国药典》2005年版二部第912页 [增订] 【性状】 凝点本品的凝点(附录Ⅵ D)为37~44℃。 【鉴别】本品的红外光吸收图谱应与对照品的图谱一致。 【检查】碱度取本品2.0g,加乙醇20ml使溶解,取溶液2ml,加酚磺酞指示液0.05ml,不得显红色。 脂肪酸组成取本品约0.1g,置25ml锥形瓶中,加0.5mol/L氢氧化钠的甲醇溶液2ml,振摇使溶解,加热回流30分钟,沿冷凝管加入14%三氟化硼的甲醇溶液2ml,加热回流30分钟,沿冷凝管加入正庚烷4ml,加热回流5分钟,放冷,加饱和氯化钠溶液10ml,振摇15秒,加入饱和氯化钠溶液至瓶颈部,混匀,静置分层,取上层液2ml,用水洗涤3次,每次2ml,上层液经无水硫酸钠干燥。照气相色谱法(附录ⅤE)测定,以聚乙二醇为固定液的毛细管柱为色谱柱,柱温按程序升温,初始温度170℃保持2分钟,再以每分钟10℃升温至240℃,维持数分钟;检测器为氢火焰离子化检测器(FID),检测器温度为260℃;进样口温度为250℃;载气为氮气,流速为2ml/min,分流比为10∶1。取上层液1μl,注入气相色谱仪,出峰顺序为棕榈酸甲酯、硬脂酸甲酯,棕榈酸甲酯与硬脂酸甲酯的分离度不小于5.0,记录色谱图至硬脂酸甲酯峰保留时间的3倍。按归一化法以峰面积计算,硬脂酸不少于40.0%,硬脂酸和棕榈酸的总和不少于90.0%。 水分取本品,照水分测定法(附录Ⅷ M第一法A)测定,含水分不得过3.0%。 游离聚乙二醇取本品6g,精密称定,置500ml分液漏斗中,加乙酸乙酯50ml使溶解,用氯化钠溶液(29→100)提取2次,每次50ml,合并下层水相,

聚乙二醇生产技术及市场行情研究报告

聚乙二醇生产技术及市场行情研究报告 出版日期:2013-9-5 目录 第一部分:有机化工行业概述 (1) 第一节:有机化工行业范围、基本原料和用途介绍 (1) 第二节:化工市场跌宕起伏,有机化工产品表现上佳 (2)

第三节:生物基有机化工产业正在兴起 (3) 第二部分:聚乙二醇生产技术及市场行情研究报告目录 (5) 第三部分:研究方法、数据来源和编写资质 (9) 第一部分:有机化工行业概述 第一节:有机化工行业范围、基本原料和用途介绍 有机化工是有机化学工业的简称,又称有机合成工业。是以石油、天然气、煤等为基础原料,主要生产各种有机原料的工业。 基本有机化工的直接原料包括氢气、一氧化碳、甲烷、乙烯、乙炔、丙烯、碳四以上脂肪烃、苯、聚乙二醇、聚乙二醇、乙苯等。从原油、石油馏分或低碳烷烃的裂解气、炼厂气以及煤气,经过分离处理,可以制成用于不同目的的脂肪烃原料;从催化重整的重整汽油、烃类裂解的裂解汽油以及煤干馏的煤焦油中,可以分离出芳烃原料;适当的石油馏分也可直接用作某些产品的原料;由湿性天然气可以分离出甲烷以外的其他低碳烷烃;从煤气化和天然气、炼厂气、石油馏分或原油的蒸气转化或部分氧化可以制成合成气;由焦炭制得的碳化钙,或由天然气、石脑油裂解均能制得乙炔。此外,还可从农林副产品获得原料。 基本有机化工产品的品种繁多,按化学组成可分类如表。这种划分具有一定的灵活性,因很多物质含有两种以上的特定元素或两种以上的基团,它们常又按其主要特点划入某一类。 基本有机化工产品也可按所用原料分类: ①合成气系产品(见合成气)。 ②甲烷系产品(见甲烷)。 ③乙烯系产品(见乙烯)。 ④丙烯系产品(见丙烯)。 ⑤C4以上脂肪烃系产品(见碳四馏分;碳五馏分)。 ⑥乙炔系产品(见乙炔)。

聚乙二醇脂肪酸酯

zhui2006@https://www.360docs.net/doc/8e3165221.html, 聚乙二醇脂肪酸酯合成 —非离子型表面活性剂 【其中设计的合成路线的有关问题,比如催化剂的使用,合成条件的具体控制(温度、PH等),不同底物及浓度对反映的影响,合成之后的检测(可应用薄层色谱),分析其酯化率等问题】 下面是某药厂生产的该化合物的说明书: 【类型】非离子 【规格】品种规格代号聚乙二醇硬脂酸酯乙二醇单硬脂酸酯EGMS 乙二醇双硬脂酸酯EGDS 二乙二醇单硬脂酸酯DEGMS 二乙二醇双硬脂酸酯DEGDS 聚乙二醇400 单硬脂酸酯PEG400MS 聚乙二醇400 双硬脂酸酯PEG400DS 聚乙二醇月桂酸酯聚乙二醇200 单月桂酸酯PEG200ML 聚乙二醇200 双月桂酸酯PEG200DL 聚乙二醇400 单月桂酸酯PEG400ML 聚乙二醇400 双月桂酸酯PEG400DL 聚乙二醇油酸酯聚乙二醇400 单油酸酯PEG400MO 聚乙二醇400 双油酸酯PEG400DO 聚乙二醇600 单油酸酯PEG600MO 聚乙二醇600 双油酸酯PEG600DO 聚乙二醇4000 单油酸酯PEG4000MO 聚乙二醇6000 单油酸酯PEG6000MO PEG-264油酸酯PEG-264油酸酯【技术指标】规格外观(25℃)酸值mgKOH/g 皂化值mgKOH/g 含量(%)pH值(1%水溶液) HLB 值EGMS 微黄至乳白色固体≤ 5 170~190 ≥99% 5.0~7.0 2~4 EGDS 微黄至乳白色固体≤10 185~200 ≥99% 5.0~7.0 1.5 DEGMS 微黄至乳白色固体≤ 5 160~170 ≥99% 5.0~7.0 3.5 DEGDS 微黄至乳白色固体≤10 184~194 ≥99% 5.0~7.0 3 PEG400MS 微黄至乳白色固体≤ 5 75~95 ≥99% 5.0~7.0 10.7~11.7 PEG400DS 微黄至乳白色固体≤10 110~130 ≥99% 5.0~7.0 7.2~8.2 PEG200ML 无色至淡黄色液体≤ 5 140~155 ≥99% 5.0~7.0 9.5 PEG200DL 无色至淡黄色液体≤10 195~210 ≥99% 5.0~7.0 8 PEG400ML 无色至淡黄色液体≤ 5 90~110 ≥99% 5.0~7.0 13 PEG400DL 无色至淡黄色液体≤10 130~155 ≥99% 5.0~7.0 10.5 PEG400MO 琥珀色液体≤ 5 75~95 ≥99% 5.0~7.0 11~12 PEG400DO 琥珀色液体≤10 100~130 ≥99% 5.0~7.0 7~8 PEG600MO 琥珀色液体≤ 5 60~75 ≥99% 5.0~7.0 13~14 PEG600DO 琥珀色液体≤10 85~105 ≥99% 5.0~7.0 10~11 PEG4000MO 黄色固体≤ 5 10~15 ≥99% 5.0~7.0 18~18.5 PEG6000MO 黄色固体≤ 5 5~10 ≥99% 5.0~7.0 19 PEG-264油酸酯淡黄色或黄色液体≤ 2 117~123 ≥99% 5.0~7.0 【性能与应用】规格性能与应用EGMSEGDS 1、溶于异丙醇、甲苯、豆油、矿物油中,具有乳化、增溶、柔软、抗静电等性能。2、纺织、纤维加工、金属加工、化妆品中作乳化剂、分散剂、增溶剂、润滑剂、柔软剂、消泡剂、抗静电剂、珠光剂、制药业中作药物中间体。DEGMSDEGDS 1、不溶于水、乙醇、乙醚中,可分散于热水中。2、制药业中作增溶剂、乳化剂、分散剂、透皮促进剂;纺织业中作乳化剂、遮光剂、珠光剂;食品业中作乳化剂、香料、色素增溶剂、稳定剂、泡沫调节剂。PEG400MS 1、溶于多种有机溶剂,水中呈分散状,具有乳化、增溶、润湿、柔软性能。2、纺织业中作乳化剂、柔软剂、润滑剂;化妆品、金属加工业中作清洁剂、润滑剂、增亮剂;造纸业中,作纸用淀粉涂层增稠剂、稳定剂;水分散纸浸润剂、柔软剂;制药业中作液体药、乳液药乳化剂;亦可作油脂类乳化;

环氧乙烷合成聚乙二醇

环氧乙烷合成聚乙二醇.txt没有不疼的伤口,只有流着血却微笑的人有时候给别人最简单的建议却是自己最难做到的。环氧乙烷催化水合法合成乙二醇 -------------------------------------------------------------------------------- 2007-03-14 08:33:46 佚名已点击700次 针对环氧乙烷直接水合法生产乙二醇工艺中存在的不足,为了提高选择性,降低用水量,降低反应温度和能耗,世界上许多公司进行了环氧乙烷催化水合生产乙二醇技术的研究和开发工作。其技术的关键是催化剂的生产,生产方法可分为均相催化水合法和非均相催化水合法两种,其中最有代表性的生产方法是Shell公司的非均相催化水合法和UCC公司的均相催化水合法。 Shell公司早期曾采用氟磺酸离子交换树脂为催化剂,在反应温度为75-115℃、水与环氧乙烷的重量比为3:1-15:1时,乙二醇的选择性为94%,缺点是水比仍然很高,而且环氧乙烷的转化率仅有70%左右。Shell公司自1994年报道了季铵型酸式碳酸盐阴离子交换树脂作为催化剂进行环氧乙烷催化水合工艺的开发,获得环氧乙烷转化率为96%-98%,乙二醇选择性为97%-98%的试验结果后,增加了环氧乙烷催化水合制乙二醇工艺的研究和开发力度。1997年又开发了类似二氧化硅骨架的聚有机硅烷铵盐负载型催化剂及其催化下的环氧化物水合工艺。在水/环氧化物摩尔比为1-15:1,反应温度80-200℃,反应压力 0.2-2MPa条件下,环氧乙烷的转化率为72%,乙二醇选择性为95%。2001年Shell公司又开发出负载于离子交换树脂上的多羧酸衍生物催化剂。在水/环氧化物摩尔比为1-6,反应温度90-150℃,反应压力 0.2-2MPa条件下,环氧乙烷的转化率大于97%,乙二醇选择性高于94%。采用该工艺既可进行间歇操作,也可进行连续生产。与现行环氧乙烷高温高压水解工艺相比,该技术约可节省环氧乙烷/乙二醇装置总投资费用的15%。最近该公司又成功地开发出第一代水合催化剂S100,并完成了催化剂筛选和40.0万吨/年环氧乙烷水合装置的工艺设计。近期催化剂水合已经完成了单管和中试,经过工程放大试验就有可能在日本装置上实现工业化生产,然后意向将此技术引入我国广东惠州环氧乙烷/乙二醇项目上。 UCC公司开展了用含Mo、W或V等多价态过渡金属含氧酸盐(如含(HV2O7)3-、(VO3)-、(V2O7)4-、(VO4)3-、钼酸根、偏钼酸根或钨酸根等的盐类)催化剂进行催化水合的技术研究。阳离子为碱金属、铵盐、季铵盐或季磷盐等。该类催化剂可以单独使用,也可以负载在氧化铝、氧化硅或分子筛等惰性载体材料上。这些催化剂对于提高转化率、降低水比及提高选择性均有利,但部分催化剂会流失到产物乙二醇中,从而增加了不必要的分离提纯步骤,同时也对产品的质量造成不利影响。针对水溶性V、Mo、W催化剂流失的问题,UCC公司又开发出具有水滑石结构、水热稳定的混合金属框架催化剂。在水/环氧乙烷的摩尔比为5-7:1,反应温度为150℃,压力2.0MPa条件下,环氧乙烷的转化率达到96%,乙二醇的选择性为97%。 俄罗斯国力“索维吉赫”科技生产企业也对环氧乙烷催化水合合成乙二醇技术进行了研究。其催化体系为离子交换树脂,这些树脂是由苯乙烯和二乙烯基苯交联的带有季胺基的碳酸氢盐型离子交换树脂。在反应温度为80-130℃,压力0.8-1.6MPa条件下,采用特殊的串联-并联活塞流反应器,环氧乙烷的转化率大于99%,乙二醇的选择性为93%-96%。俄罗斯门捷列夫化工大学采用一种改进过的离子交换树脂催化剂,在反应温度80-130℃、压力0.8-1.6MPa、水/环氧乙烷(摩尔比)为3-7:1、LHSV1.0-3.0h-1条件下,环氧乙烷转化率

各种酯类的作用

聚乙二醇 400 单油酸酯(代号PEG400MO) 溶于苯、异丙醇中,水中呈分散状,作工业专用润滑剂、工业去油垢剂、乙烯基塑料溶胶粘度稳定剂、纺织柔软剂、润滑剂,配制干洗剂、油基切削液平衡乳化剂。塑料抗静电剂和分散剂。可生物降解。 聚乙二醇 400 双油酸酯(代号PEG400DO) 溶于矿、植物油,水中呈分散状,作W/O型乳化剂、增溶剂、煤油乳化剂、工业润滑剂。 聚乙二醇 600 单油酸酯(代号PEG600MO) 聚乙二醇 600 双油酸酯(代号PEG600DO) 聚乙二醇 4000 单油酸酯(代号PEG4000MO) 聚乙二醇 6000 单油酸酯(代号PEG6000MO) 1、溶于水,具有良好的洗涤、乳化、润滑性能。 2、化妆品中作O/W乳化剂,纺织业中作匀染剂、分散剂、柔软剂,金属加工中作润滑剂。农药中作杀虫剂的乳化剂,亦可用于水溶性涂料、印刷电路板的酸洗。 PEG-264油酸酯 1、易溶于油及有机溶剂,具有良好的平滑、乳化作用; 2、广泛用于制造合成纤维的乳化剂,具有凝固点低,粘温性好,挥发性小,抗氧性好的特点。 乙二醇单硬脂酸酯(代号EGMS) 乙二醇双硬脂酸酯(代号EGDS) 1、溶于异丙醇、甲苯、豆油、矿物油中,具有乳化、增溶、柔软、抗静电等性能。 2、纺织、纤维加工、金属加工、化妆品中作乳化剂、分散剂、增溶剂、润滑剂、柔软剂、消泡剂、抗静电剂、珠光剂、制药业中作药物中间体。 二乙二醇单硬脂酸酯(DEGMS) 二乙二醇双硬脂酸酯(DEGDS) 1、不溶于水、乙醇、乙醚中,可分散于热水中。 2、制药业中作增溶剂、乳化剂、分散剂、透皮促进剂;纺织业中作乳化剂、遮光剂、珠光剂;食品业中作乳化剂、香料、色素增溶剂、稳定剂、泡沫调节剂。 聚乙二醇 400 单硬脂酸酯(PEG400MS) 1、溶于多种有机溶剂,水中呈分散状,具有乳化、增溶、润湿、柔软性能。 2、纺织业中作乳化剂、柔软剂、润滑剂;化妆品、金属加工业中作清洁剂、润滑剂、增亮剂;造纸业中,作纸用淀粉涂层增稠剂、稳定剂;水分散纸浸润剂、柔软剂;制药业中作液体药、乳液药乳化剂;亦可作油脂类乳化;涂料、印刷油墨的研磨助剂。

年产4600吨乙二醇二缩水甘油醚工艺设计

年产 4600 吨乙二醇二缩水甘油醚 工艺设计
学院: 班级: 学号: 姓名:
化学化工学院
指导老师: 时间:2012 年
05 月
-1-



设计任务说明 ............................................................................................................................. - 3 第一章 绪言 ............................................................................................................................. - 3 1.1 乙二醇二缩水甘油醚的现状 ....................................................................................... - 3 1.1.1 用途及性质 ....................................................................................................... - 3 1.1.2 生产方法及其特点 ........................................................................................... - 4 1.2 产品质量标准................................................................................................................ - 5 1.3 国内主要生产厂商 ........................................................................................................ - 6 1.4 生产方法的选择............................................................................................................ - 6 1.4.1 相转移催化法合成乙二醇二缩水甘油醚 ....................................................... - 6 1.4.2 二步法合成乙二醇二缩水甘油醚 .................................................................. - 7 第二章 工艺过程分析 ............................................................................................................... - 7 2.1 反应原理........................................................................................................................ - 7 2.2 工艺流程示意图............................................................................................................ - 8 1.原料、辅助原料规格 ............................................................................................... - 8 2.预计原料及辅助原料的消耗定额 ........................................................................... - 9 3.公用工程规格........................................................................................................... - 9 4.预计公用工程消耗定额 ........................................................................................... - 9 第三章 物料衡算 ..................................................................................................................... - 10 3.1 生产任务...................................................................................................................... - 10 3.2 计算依据...................................................................................................................... - 10 3.3 物料衡算...................................................................................................................... - 10 3.4 物料衡算平衡表.......................................................................................................... - 12 第四章 热量衡算 ..................................................................................................................... - 14 第五章 主要设备工艺计算...................................................................................................... - 15 5.1 缩合反应釜.................................................................................................................. - 15 5.2 环化反应釜.................................................................................................................. - 15 第六章 主要设备 ..................................................................................................................... - 16 第七章 设备布置图 ................................................................................................................. - 17 第八章 结论 ............................................................................................................................. - 17 -
-2-

新型高分子表面活性剂-聚乙二醇6000双硬脂酸酯

新型高分子表面活性剂-聚乙二醇6000双硬脂酸酯 聚乙二醇6000双硬脂酸脂(以下简称PEG6000DS),化学结构为:R-CO-(OCH2CH2)。-O-OC-R.其中R=C17H15,n =140~150。它是近几年发展起来的新型高分子非离子表面 活性剂,因其用于香波,裕剂等配方,能提高粘度,降低盐量,具有较强的乳化、分散作用及对乳液的稳定作用,同时对头发有一定的调理作用,故在国外普遍受到人们的重视,在国内也巳逐渐被接受。 PEG6000DS的分子由疏水-亲水-疏水部分组成,它在稀表面 活性剂水溶液中形成三元水合网,将表面活性剂胶束围在其中,胶束由球状转变成捧状,从而使粘度增加。 PEG6000DS的合成主要有两条途径.其-是直接酯化法,即用PEG 6000与硬脂酸直接进行酯化反应. 其二是酯交换法,即硬脂酸甲脂与PEG 6000通过酯交换脱去甲醇. PEG 6000DS 外观为黄白色薄片固体。活性物含量98%~100%。一般理化性能见表1。 PEG 6000DS是酯类非离子表面活性剂,因为酯键的化学特性,故不宜在强酸或强碱条件下使用.一般在pH5~8 范围内比较稳定,在高温下也容易破坏酯键,故也不宜长期在较高温度下使用。 室温下PEG 6000DS在水和醇中的溶解性较差,但可溶于热的水和醇中.故使用时一般先用15~20倍的大于80℃的水或2倍40℃~50℃的甲醇溶解,然后用水稀释至所需浓度.因 为它作为添加剂加入香波或其它配方,一般不超过百分之几,故它的溶解性不是很大的问题. PEG 6000DS水溶液的粘度随温度不同而不同,温度高时粘度降低. 在香波的基本配方中(AES,10%;6501;3%,NaCl:1.0%),加入不同浓度的PEG6000DS ,香波的粘度变化情况见图1.图中AES,6501为日本LION公司产品,PEG6000DS为广州道明化学公司产品DM-638,粘度用上海天平仪器厂NDJ-1型旋转粘度计.以下同. 由图可以看出,随着PEG6000DS的浓度增加,香波的粘度增加开始较平缓,后急剧增加。当NaCl添加量为1.0%时,PED6000DS加入量在0.8%~1.0%时即可获得满意的香波粘度.PEG6000DS在香波中的增稠效果十分明显,一般使用量在0%~2%之间.如果香波的基本配方中含有两性表面活性剂,PEG6000DS同样是非常出色的增粘剂. 图1 在基本香波配方AES,10%,6501,3%中,PEG6000DS 的添加量分别为0.4%,1.0%和2.0%时,NaCl的加入量与粘度的关系见图2。

一种水性环氧树脂固化剂的合成及应用性能

2015年 第11期 化学工程与装备 2015年11月 Chemical Engineering & Equipment 25 一种水性环氧树脂固化剂的合成及应用性能 黄尊行  (闽江学院化学 化工系,福建 福州 350002) 摘 要:本文采用十六胺、乙二醇二缩水甘油醚、二乙烯三胺(DETA)等为原料合成一种具有表面活性剂结构的非离子型自乳化水性环氧固化剂,同时具有固化和乳化环氧树脂的功能,它制备成本低、工艺简单而且自乳化效果好。根据涂料的配制方法,用自制水性环氧固化剂和市售的固化剂进行对比,该固化剂与环氧树脂所制备的双组分室温固化涂膜性能优良,具有更好的柔韧性、亲水性等特点。 关键词:环氧树脂;水性固化剂;自乳化;水性涂料 引 言 环氧涂料作为常见的水性涂料之一,其具有优异的物理性能,包括良好的柔韧性和附着力,优异的耐化学性能和耐腐蚀性,硬度高,施工方便等特点。在建筑涂料、装饰涂料、汽车涂料、金属防锈涂料、船舶和集装箱涂料、工业地坪涂料等领域将会逐渐替代溶剂型涂料,其应用前景将十分的广阔。现在环保型的水性涂料还有待进一步的突破,所以研究和开发性能优异的水性环氧涂料具有重大的现实意义。 水性环氧树脂涂料是由双组份组成:水性环氧树脂和水性环氧固化剂。其中固化剂对水性环氧涂料的性能起着重要的作用。如今,水性环氧固化剂大多是经过对传统的胺类固化剂改性而得,它克服了未改性胺类固化剂的缺点。改性后 的胺类固化剂具有如下的优点:机物挥发物低、毒害性小、 与环氧树脂相溶性好、固化后涂膜性能良好[1] 。本文采用十 六胺与乙二醇二缩水甘油醚反应,制得一种两端为环氧基,中间氮原子上接有长疏水烷基链的环氧-多胺加成物,再用 脂肪胺对该加成物进行封端,制得水性环氧固化剂[2] 。 1 实验部分 1.1 合成路线 第一步是用乙二醇二缩水甘油醚与十六胺反应,制得一种两端为环氧基,中间为氮原子上接有长烷基链的加成物;第二步是用脂肪胺(如二乙烯三胺)对加成物进行封端,制得一种新型的自乳化水性环氧固化剂。 1.2 合成步骤 在装有搅拌器、电热套、恒压漏斗和温度计的250mI四口烧瓶中加入一定量的乙二醇二缩水甘油醚,升温至60℃左右,搅拌速度为150r/min左右。将十六胺用无水乙醇在 50℃~60℃下溶解,将溶解后的十六胺倒入恒压漏斗中,将十六胺缓慢滴加入四口烧瓶中。滴加结束后,再保温反应2~3h,可制得加成物。将加成物置于恒压漏斗中,取一定量的脂肪胺(如二乙烯三胺或三乙烯四胺)溶于少量的助溶剂

端基硅氧烷化聚己二酸一缩二乙二醇酯的制备及其固化反应

第34卷第1期 2007年北京化工大学学报 JOURNAL OF BEI J IN G UN IV ERSIT Y OF CHEMICAL TECHNOLO GY Vol.34,No.1 2007 端基硅氧烷化聚己二酸一缩二乙二醇酯的 制备及其固化反应 董晶泊 江盛玲 赵京波3 (北京化工大学材料科学与工程学院,北京 100029) 摘 要:以一缩二乙二醇和过量的己二酸为原料合成端羧基聚己二酸一缩二乙二醇酯(PDA ),在己二酸和一缩二乙二醇的摩尔比为1和SnCl 2的质量分数为013%等优化条件下,PDA 的分子量为3715。将端羧基PDA 与γ2缩水甘油醚氧丙基三甲氧基硅烷(KH560)反应,合成了一种端基为硅氧烷基团的聚合物(PDA 2Si ),这种端基硅氧烷化聚合物能够在二丁基月桂酸锡(质量分数为5%)的催化作用和40℃下,吸收空气中的微量水而固化交联,固化时间是5h ,固化的交联产物中含分子或纳米级的聚酯/SiO 2杂化物。关键词:聚己二酸一缩二乙二醇酯;端基硅氧烷化聚酯;聚酯中图分类号:O631 收稿日期:2006204227 第一作者:男,1980年生,硕士生3通讯联系人 E 2mail :zhaojb @https://www.360docs.net/doc/8e3165221.html, 引言 有机2无机杂化材料与相应的纯有机和无机材料相比,具有独特的机械、热、生物、磁、光和光电性能,因而成为材料学领域研究的一个热点[125]。有机2无机杂化材料的制备方法多种多样,但最常用的方法主要有溶胶2凝胶法[6]、共混法[7]、原位聚合法[8]等。 本文研究了聚合物(脂肪族聚酯)的硅氧烷基化,并对其在催化剂存在下的湿气水解交联固化进行了研究,以期建立一种简便的制备有机2无机杂化材料的新方法。该方法的特点是无溶剂,杂化反应条件温和,前驱体可较长时间储存。 1 实验部分 111 试剂 一缩二乙二醇,化学纯,中国医药公司,减压蒸馏提纯;己二酸,化学纯,天津红岩试剂厂,重结晶; γ2缩水甘油醚氧丙基三甲氧基硅烷(KH560),工业级,上海耀华化工厂,蒸馏提纯;二丁基月桂酸锡(DB TL ),北京化工三厂;氯化亚锡,分析纯,北京双 环化学试剂厂;亚磷酸,化学纯,中国医药公司;三乙胺,分析纯,北京益利精细化学品有限公司;N ,N -二甲基苯胺(N ,N 2DMA ),分析纯,天津市化学试剂二厂。 112 端羧基聚己二酸一缩二乙二醇酯(P DA )的合成 在250mL 三口瓶中,加入质量分数为013%的SnCl 2催化剂、0105g 亚磷酸(作为抗氧化剂)、一定 量的己二酸和一缩二乙二醇。在常压下反应5h ,温度从150℃逐步升到200℃,然后减压反应8h ,压强逐级降至0101MPa 。 在反应过程中每隔一段时间取样,用氢氧化钠 溶液滴定体系酸值(Av )。用苯酐2吡啶法测定最终产物的羟值[9],并计算其分子量。 113 端羧基PDA 聚酯的硅氧烷基化及固化 将端羧基PDA 聚酯与一定配比的KH560和催化剂在80℃氮气保护下反应,每隔一段时间取样滴定酸值,最终获得硅氧烷基化的PDA 。 在一定量硅氧烷基化的PDA 中加入适量的二丁基月桂酸锡催化剂,混合均匀后在玻璃片上涂膜,在一定温度下暴露于空气中,使其吸湿固化,得到固体膜。114 表征方法 通过冷冻和切片制样,采用日本日立公司的Hitachi 2800型透射电子显微镜(TEM )观察固化膜的微观结构。将样品和K Br 粉末混合,压片,采用美国的Nicolet 605X B F T 2IR 仪(205型)测样品的

化妆品常用乳化剂

HLB值 HLB值:表面活性剂为具有亲水基团和亲油基团的两亲分子, 表面活性剂分子中亲水基和亲油基之间的大小和力量平衡程度的量,定义为表面活性剂的亲水亲油平衡值。 1949年由率先提出HLB值论点,说明表面活性剂分子中的亲水基团与亲油基团的平衡关系。油性,B是在HLB中H"Hydrophile"表示亲水性,L为"Lipophylic"表示亲 表面活性剂的亲油或亲水程度可以用HLB值的大小判别,HLB值越大代表亲水性越强,HLB值越小代表一般而言HLB值从1~40之间。HLB在实际应用中有重要 HLB值(Hydrophile-LipophileBalanceNumber)称亲水疏水平衡值,也称水油度。它既与表面活性剂的亲水又与表面活性剂的表面(界面)张力、界面上的吸附性、乳化性及乳状液稳定性、分散性、溶解性、去污性还与表面活性剂的应用性能有关。 亲水亲油平衡值(HLB值)是用来表示表面活性剂亲水或亲油能力大小的值。1949年Griffin提将非离子表面活性剂的HLB值的范围定为0~20,将疏水性最大的完全由饱和烷烃基组成的石蜡将亲水性最大的完全由亲水性的氧乙烯基组成的聚氧乙烯的HLB值定为20,其他的表面活性剂HLB值越大,其亲水性越强,HLB值越小,其亲油性越强。随着新型表面活性剂的不断问世,已如月桂醇硫酸钠的HLB值为40。 图2-3胶束的结构 表面活性剂由于在油-水界面上的定向排列而具有降低界面张力的作用,所以其亲水与亲油能力应适当平衡。 表2-1常用表面活性剂的HLB值 表面活性剂的HLB值不同,其用途也不同,见图2-4 图2-4不同HLB值的表面活性剂的用途 非离子表面活性剂的HLB值还可利用一些经验公式计算得出,例如:

乙二醇二缩水甘油醚封端的PS遥爪低聚物的合成与表征

乙二醇二缩水甘油醚封端的PS遥爪低聚物的合成与表征 肖苗苗张健危大福黄辉郑安呐胡福增* (华东理工大学材料科学与工程学院上海200237) 遥爪低聚物是指链末端带有反应性官能团的低聚物,分子量在5000至15000之间。利用遥爪低聚物的活性官能团与其它聚合物反应,可对聚合物进行改性。因为遥爪低聚物结构的不同,改性高聚物的结构可以呈现多样性,从而进行高聚物的分子设计,满足对材料的要求。 本文采用常压惰性气氛阴离子聚合法,用正丁基锂为引发剂(自制[1]),乙二醇二缩水甘油醚为封端剂,合成了末端带有环氧基团的聚苯乙烯遥爪低聚物,并对其结构和性能进行了表征和研究。所得端环氧基聚苯乙烯可进一步与带有某些功能基团的聚合物进行反应,从而可得到具有特殊性能的聚合物。 1 带端环氧基团的聚苯乙烯低聚物的合成 在聚合瓶中装入定量环己烷、苯乙烯及四氢呋喃(THF:n-BuLi=6:1 摩尔比),于常温搅拌下反应0.5小时,在氩气氛围下加入所需封端剂,反应0.5小时后,加入少量无水乙醇终止,沉淀分离,去除分离液。对所得试样进行抽提,在真空烘箱中干燥至恒重。对样品进行GPC、IR和1H-NMR测试,环氧末端基用银量法[2]测定。 2 结果与讨论 2.1聚苯乙烯遥爪低聚物的表征 低聚物的GPC谱如图1所示,图中可以看到有两个峰,峰1的分子量为7691,峰2的分子量为4170,峰2所对应的分子量大约是峰1的两倍,由此推测有偶联反应发生,即双环氧基团均出现开环,导致将近二倍于聚苯乙烯遥爪低聚物的分子量。用Origin软件分析结果如图2,经计算,峰1面积占峰2面积的10%左右,可见偶合的量较少。通过对低聚物进行红外谱图(IR)分析,在1680~1600 cm-1、3100~3000 cm-1处没见到吸收峰,表明聚合物中无C=C双键,即聚合反应完全。在1253 cm-1和915 cm-1处出现较微弱的吸收峰,表明环氧基团的存在。通过对低聚物进行核磁共振氢谱(1H-NMR)分析,可确定δ2.6和δ2.8峰为环氧基上亚甲基氢,δ3.3峰为环氧基上次甲基氢,δ3.6和δ3.8峰为与环氧基相邻的亚甲基氢。环氧基团可以比较明显的表征出来。 图1 样品PA-A-1#GPC谱图图2经Origin软件处理后PA-A-1#GPC谱图2.2 影响环氧端基含量的因素

刍议1,4-丁二醇二缩水甘油醚的合成

刍议1,4-丁二醇二缩水甘油醚的合成 李相元 陕西陕化化工集团有限公司(陕西华县 714100)摘要:1,4-丁二醇二缩水甘油醚的合成过程需要用到1,4-丁二醇和环氧氯丙烷作为反应的原材料。反应的过程中还需要使用相应的催化剂,在这个有机合成的反应中选择三氯化硼络合物作为整个反应的催化剂。同时,在反应的过程中还要考虑原料的摩尔比的具体数值、催化剂的用量以及所需要的反应时间。通过具体的实验研究来考察反应中的实际产率,下面就1,4-丁二醇二缩水甘油醚的合成过程展开详细的探讨。 关键词:1,4-丁二醇;二缩水甘油醚;合成 1,4-丁二醇二缩水甘油醚的合成反应属于一种脂肪族缩水甘油醚的反应,这种类型的反应通常涉及到脂肪族的单环和多环的氧化物。脂肪族的单环和多环氧化合物因为具有较低的粘度和柔性性能好的特点被充分的用做树脂试剂。通过这种特殊的运用来有效的改进一些环氧固化物的特性,从而实现特殊物质的化合反应。对于1,4-丁二醇二缩水甘油醚的合成反应来说,在合成缩水甘油的方法中存在着主要的两种方式,一种可以通过一步到位的方式来合成,还有一种比较传统的两步合成法。因为考虑到生产工艺的具体过程和原材料的获取途径,将两步合成法作为主要的合成方法,生产的产率也达到固定的水平,下面主要针对这种合成方式来展开研究。 一、实验合成的内容 (一)实验药品和设备 本次的合成反应中需要选择的仪器和药品有:1,4-丁二醇、三氯化硼乙醚、环氧氯丙烷、氢氯化纳、乙酸乙酯、傅立叶变换红外光谱仪、RE - 52 型旋转蒸发器、SHB -ⅢA 型循环水式多用真空泵、DFD - 101D 型集热式恒温加热磁

力搅拌器。在合成的反应中主要是将1,4-丁二醇和环氧氯丙烷反应在三氯化硼乙醚做催化剂的作用下合成1,4-丁二醇二缩水甘油醚。 (二)实验步骤 首先,选择一个带有滴液漏斗、搅拌子、回流装置以及带有温度计的烧瓶,将合成的所需要的原材料和反应的催化剂一起倒入这个烧瓶中,当温度升到60摄氏度的时候,向反应中加入环氧氯丙烷,大概这个逐渐滴加的过程要持续一个小时。其次,保持恒定的加热温度来维持反应的过程。最后,向其中加入氢氧化钠溶液,保持温度恒定在45摄氏度持续加热5个小时,加入水来处理底层的溶液,经过三次的萃取来获得与上层液的合并,用减压萃取液来去除乙酸乙酯和其他过量的物质,以得到较为纯净的1,4-丁二醇二缩水甘油醚。 二、反应中生产率的影响因素 (一)温宿和时间对反应的影响因素 在化学有机合成反应中,温度对反应的效率有着非常大的影响,它从不同的方向来制约反应的整个过程,第一步的温度控制是根据反应中环氧氯丙烷的开环而设定的,有利于反应的高效进行。通过一些实验的研究发现当温度控制在50摄氏度的时候,温度的逐渐增加会使产率提高,但同时在产率达到一定的水平过后又会随着温度的增大,产率则逐渐降低。因此必须将温度设定在一个产率最高的位置并保持温度的恒定。结合产物的粘度特性来综合考虑将温度选择在45摄氏度。反应的时间需要根据反应的具体原理来设置和限定,过长的时间不会对产率的提高有所帮助,因此将反应的时间选择在5个小时为最佳的时间。 (二)氢氧化钠用量对产量影响因素 反应的整个过程中需要亲氧化钠来参与到反应中来,主要的作用机理是使醚脱去羟基以便成为较好的亲核试剂,亲核试剂能够有效的攻击隔壁的碳原子。因此对于整个反应中氢氧化钠的使用量与产量有着直接的关系,需要做好科学的试剂用量工作。通过科学的实验研究碱用量控制在16.0-25.0之间会出现各种不同产量,以表的形式将影响的数据展现出来可以发现,碱用量的逐渐增大会使得

相关文档
最新文档