flyback 实际设计案例

flyback 实际设计案例
flyback 实际设计案例

FLYBACK TX设计实例

设计目标:Array 4K 的SPS TX

设计原则:变压器在最恶劣了条件下也不饱和,变压器损耗(温升)在可接受范围内。

设定条件:

1.输入电压范围(电池电压)90~141Vdc

2.设计输出电压(+12V,+/-15V,HF.POWER),其中+12V为反馈电压,设计值为12.7V

3.最大输出功率为Pout=40W

4.效率约为Eff=0.8

5.变压器工作在不连续模式(功率较小,设计在不连续模式可以缩小体积)

6.IC选择UC3845,所以最大占空比Dmax=0.45

设计过程:

1.选用铁芯材质

选用铁氧体材质TDK PC40,该材质的饱和磁通约为3900Gauss@100℃,但线性较好的区域只到3000Gauss,而且需留一定的裕量,所以设计中最大磁通最好在2300Gauss以内(Bmax<2300Gauss)。2.决定铁芯尺寸

根据经验,EE25磁芯在fs=120KHz左右基本可以满足该功率要求。开关频率越高,传送相同的功率所需的体积越小,但损耗越大,同时,也要注意电路中其他元件(开关管、整流二极管、驱动元件等)是否可以承受该开关频率。

EE25参数:Ae=40mm2(0.4cm2)

3.计算输入功率及输入电流

Pin=Pout/Eff=40/0.8=50W

Iin=Pin/Vi=50/90=0.56A

4.计算原边电感值

在最小输入电压(90V)时,工作在不连续模式的临界状态(这样既可以保证电路在任何时候都工作在不连续模式,又能最大地利用占空比),此时D=0.45(最大duty)。

△I=Iin*2/D=0.56*2/0.45=2.48A

L=Vi*D/△I*fs=90*0.45/2.48*120*10e3=136uH

5.计算Rs(Rs:检流电阻)

在最小输入电压时,D=0.45

Rs=1V/2.48A=0.403 OHM(1V为3845电流比较PIN饱和电压)

6.决定Np

在最大输入电压141V时

D=L*fs/Vin*Rs=136*10e-6*120*10e3/141*0.403=0.287

由E=NBA/D => Np=D*Vi/(B*Ae*fs*10e-8)

Np=0.287*141/(2300*0.4*10e-8*120*10e3)=36.65Ts

7.决定Ns(Ns:反馈绕组圈数)

V out=12.7V+Vdiode=12.7+0.8=13.5V(实际计算的输出电压要将整流二极管的压降考虑在内)根据变压器原副边伏秒平衡规律

Vin*D=(Np/Ns)*Vout*(1-D) => Np/Ns=Vin*D/V out*(1-D)=90*0.45/13.5V*0.55=5.45

Ns=36.65/5.45=6.72Ts

因计算值不为整数,需重整,取Ns=7Ts,Np=5.45*7=38.15->38Ts

其他绕组圈数根据其与反馈绕组的电压比来确定

Ns1(+15V)=(19/13.5)*7=9.85->10Ts (+15V由7815产生,7815输入要>18V才能保证输出15V)Ns2(-15V)= Ns1(+15V)=10Ts

Ns3(HF.POWER)=(15/13.5)*7=7.78->8Ts

8.计算气隙

1/2Lipp2=(1/2BmaxHVg)10E8 Vg=lg*Ae =>

lg=0.4*pi*L*Ipp2/Ae*Bmax2=0.4*3.14*136*10e-6*2.48*2.48*10e8/0.4*2300*2300=0.5mm(合理)气隙长度为衡量设计是否有效的一个重要指标,一般而言,设计气隙以不超过1mm为宜,超过之会导致漏感太大,对开关管SPIKE和EMI都极为不利。气隙超过1mm,就可能意味着变压器尺寸不足以承受该功率要求。(FLAYBACK TX的气隙起着储能的作用,若气隙的体积越大,可存储的能量越多)9.选择线径

Aw=40mm^2,依经验设定导线电流密度J=6A/mm2

最小输入电压时,输入电流最大。

Irms_max=△I(D/3)^1/2=2.48*(3*0.45)^1/2=0.96A

有效导线面积S= Irms_max/J=0.96/6=0.16mm2

考虑趋肤效应趋肤深度d1=66.1/(fs)^1/2=0.19mm,所以导线直径Ф<2*d1=0.38mm

选择所有导线直径Ф=0.32mm S1=pi*0.16*0.16=0.08mm2

所以,输入绕组导线股数=S/S1=0.16/0.08=2

同理,计算出其余导线股数+12V绕组(30W):9 +/-15V绕组:2 HF.POWER绕组:2

计算铜窗绕线系数

A=38*0.08*2+7*0.08*9+2*10*0.08*2+8*0.08*2=15.6mm2

绕线系数K=A/Aw=15.6/40=0.39

K的数值大小也反应该变压器设计是否合理,一般而言,K=0.4就意味着绕线基本把铜窗面积占满了,利用比较合理。若K超过0.4太多很可能绕不下,这时可以将导线变细,但铜损必然增加,需仔细斟酌。若小于0.4太多,可能是磁芯选择得裕量太大,没有充分利用。

10.计算损耗(估算值,仅供参考)

Core loss=(360kW/m3)*1940*10e-9=0.7W

(@B=2300Gauss, fs=120KHz, Ve=1940mm3, T=80℃,查表得360kW/m3)

在最小输入电压时计算copper loss

初级电流有效值

Ip_rms=△I(D/3)^1/2=2.48*(3*0.45)^1/2=0.96A

次级电流有效值

Is_rms(+12V绕组)=△I(D/3)^1/2=3.93A

每圈电阻:(D=0.32的线,电阻率为230OHM/Km)

Rp=38*49.4*(230/2)*10e-6=0.216OHM (EE25 BOBBIN等效平均绕线长度49.4mm)

Rs1=7*49.4*(230/9)*10e-6=0.0089OHM

Pp=( Ip_rms)^2*Rp=0.96*0.96*0.216=0.2W

Ps1=(Is_rms)^2*Rs*10=3.93*3.93*0.089=0.14W

Ps2+Ps3=0.1W

Copper loss=Pp+Ps1+Ps2+Ps3=0.44W

Ptotal=Pcoreloss+Pcopperloss=1.14W

查表可知,在此损耗下,变压器中柱中心点的温升可达约40℃。

以上计算未考虑临近效应所引起的铜损,也未考虑由于空气气隙所带来漏感增加而导致的能量损失,实际损耗值应较计算值为大。

11.变压器绕线结构设计

由于FL YBACK变压器都存在一定气隙,其漏感较其他类型变压器为大,对原边开关管的Vds SPIKE 颇为不利,所以在绕制方法上,多选用三明治绕法以尽量减少漏感。具体方法为,将圈数较多的初级线圈分为两半,将副边的反馈线圈夹住。但三明治绕法会带来原副边耦合电容增大的副作用,对EMI不利,需折衷处理。设计良好的变压器,漏感约占设计感值2-3%,一般最大不超过5%,否则表明设计有缺陷。

若该变压器有安规隔离要求,一二次侧最好分布在BOBBIN引出线的两边,以便LAYOUT,并且一二次侧绕组之间必须至少有3层TYPE隔开,还需留4mm宽的MARGIN TYPE。

为便于生产作业,最好将一无用PIN剪掉,做防呆处理。

WINDING CONSTRUCTION

PIN 3 CUT OFF

CCM反激变压器设计

连续电流模式反激变压器的设计 Design of Flyback Transformer with Continuing Current Model 作者:深圳市核达中远通电源技术有限公司- 万必明 摘要:本文首先介绍了反激变换器(Flyback Converter)的工作原理,然后重点介绍一种连续电流模式反激变压器的设计方法以及多路输出各次级电流有效值的计算. 关键词:连续电流模式(不完全能量传递方式)、不连续电流模式(完全能量传递方式)、有效值、峰值. Keywords: Continuing Current Model、Discontinuing Current Model、virtual value 、peak value. 一.序言 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计.

二.反激式变换器(Flyback Converter)的工作原理 1).反激式变换器的电路结构如图一. 2).当开关管Q1导通时,其等效电路如图二(a)及在导通时初级电流连续时的波形,磁化曲线如图二(b). 图一 图二(a)

软件设计模式复习

创建型模式概述 创建型模式(Creational Pattern)对类的实例化过程进行了抽象,能够将软件模块中对象的创建和对象的使用分离。为了使软件的结构更加清晰,外界对于这些对象只需要知道它们共同的接口,而不清楚其具体的实现细节,使整个系统的设计更加符合单一职责原则。 模式动机 考虑一个简单的软件应用场景,一个软件系统可以提供多个外观不同的按钮(如圆形按钮、矩形按钮、菱形按钮等),这些按钮都源自同一个基类,不过在继承基类后不同的子类修改了部分属性从而使得它们可以呈现不同的外观,如果我们希望在使用这些按钮时,不需要知道这些具体按钮类的名字,只需要知道表示该按钮类的一个参数,并提供一个调用方便的方法,把该参数传入方法即可返回一个相应的按钮对象,此时,就可以使用简单工厂模式。模式定义 简单工厂模式(Simple Factory Pattern):又称为静态工厂方法(Static Factory Method)模式,它属于类创建型模式。在简单工厂模式中,可以根据参数的不同返回不同类的实例。简单工厂模式专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。 模式分析 将对象的创建和对象本身业务处理分离可以降低系统的耦合度,使得两者修改起来都相对容易。 在调用工厂类的工厂方法时,由于工厂方法是静态方法,使用起来很方便,可通过类名直接调用,而且只需要传入一个简单的参数即可,在实际开发中,还可以在调用时将所传入的参数保存在XML等格式的配置文件中,修改参数时无须修改任何Java源代码。 简单工厂模式最大的问题在于工厂类的职责相对过重,增加新的产品需要修改工厂类的判断逻辑,这一点与开闭原则是相违背的。 简单工厂模式的要点在于:当你需要什么,只需要传入一个正确的参数,就可以获取你所需要的对象,而无须知道其创建细节。 简单工厂模式的不足 在简单工厂模式中,只提供了一个工厂类,该工厂类处于对产品类进行实例化的中心位置,它知道每一个产品对象的创建细节,并决定何时实例化哪一个产品类。简单工厂模式最大的缺点是当有新产品要加入到系统中时,必须修改工厂类,加入必要的处理逻辑,这违背了“开闭原则”。在简单工厂模式中,所有的产品都是由同一个工厂创建,工厂类职责较重,业务逻辑较为复杂,具体产品与工厂类之间的耦合度高,严重影响了系统的灵活性和扩展性,而工厂方法模式则可以很好地解决这一问题。 模式动机 考虑这样一个系统,按钮工厂类可以返回一个具体的按钮实例,如圆形按钮、矩形按钮、菱形按钮等。在这个系统中,如果需要增加一种新类型的按钮,如椭圆形按钮,那么除了增加一个新的具体产品类之外,还需要修改工厂类的代码,这就使得整个设计在一定程度上违反了“开闭原则”。 模式定义 工厂方法模式(Factory Method Pattern)又称为工厂模式,也叫虚拟构造器(Virtual Constructor)模式或者多态工厂(Polymorphic Factory)模式,它属于类创建型模式。在工厂方法模式中,工厂父类负责定义创建产品对象的公共接口,而工厂子类则负责生成具体的产品对象,这样做的目的是将产品类的实例化操作延迟到工厂子类中完成,即通过工厂子类来确定究竟应该实例化哪一个具体产品类。 模式分析 工厂方法模式是简单工厂模式的进一步抽象和推广。由于使用了面向对象的多态性,工厂方

开关电源设计不可不看--Flyback电路原理

Flyback转换器电路是由Buck-Boost电路,利用磁性元件耦合的功能衍生而来,所以要探讨Flyback电路,必须先从Buck-Boost电路开始。 一、Flyback电路简介 (一)Flyback电路架构 Flyback变换器,俗称单端反激式DC-DC变换器,又称为返驰式(Flyback)转换器,或"Buck-Boost"转换器,因其输出端在原边绕组断开电源时获得能量,因此得名. Flyback变换器是在主开关管导通期间,电路只储存而不传递能量;在主开关管关断期间,才向负载传递能量的一种电路架构。 (1)Flyback变换器理论模型如图。 (2)实际电路结构 根据Flyback变压器的同名端绕制方式,有下面两种形式,这两个电路实质上是一样的。当然,Flyback电路还有其他衍生形式(见附录I)。

(二)Flyback变换器优点 (1)电路简单,能高效提供多路直流输出,因此适合多组输出的要求。 (2)转换效率高,损失小。 (3)匝数比值较小。 (4)输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实现交流输入在 85~265V 间,无需切换而达到稳定输出的要求。 (三)Flyback变换器缺点 (1)输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W 以下。 (2)转换变压器在电流连续(C.C.M.)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大。 (3)变压器有直流电流成份,且同时会工作于C.C.M./D.C.M.两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂。

java设计模式选择题复习

工厂系列模式的优缺点: 1.让用户的代码和某个特定类的子类的代码解耦 用户不必知道它所使用的对象是怎样创建的,只需知道该对象有哪些方法 2.抽象工厂模式可以为用户创建一系列相关的对象,使用户和创建这些对象的类脱耦 MVC模式是不是一种设计模式?为什么 MVC不是设计模式,应该是框架/架构模式,因为它的定义是抽象的,没有足够的细节描述使你直接去实现,而只能根据MVC的概念和思想,用几个设计模式组合实现。 举出一个生活中使用装饰者模式的例子,用程序实现思路 举个生活中的例子,俗话说“人在衣着马在鞍”,把这就话用装饰者模式的语境翻译一下,“人通过漂亮的衣服装饰后,男人变帅了,女人变漂亮了;”。对应上面的类图,这里人对应于ConcreteComponent,而漂亮衣服则对应于ConcreteDecorator; 设计模式如何分类,每一个类别都有什么特征? 设计模式分为3类,分别是:创建型模式、行为型模式、结构型模式。 创建型特点:避免用户直接使用new运算符创建对象。 行为型特点:怎样合理的设计对象之间的交互通信,以及怎样合理的为对象分配职 结构型特点:主要用于处理类或对象的组合 Java jdk中使用了哪些设计模式 1.单例 2.静态工厂 3.工厂方法 4.抽象工厂 5.构造者 6.原型 7.适配器8桥接9.组合10.装饰器11.外观12.享元 页脚内容1

14.代理15.迭代器16.观察者17.协调者18.模板方法19.策略20.责任链21.命令22.空对象25.解释器 面向对象的设计原则有哪些? 开闭原则、面向抽象的原则(依赖倒转原则)、多用组合少用继承原则、高内聚-低耦合原则。 观察者模式的推拉有什么不同?使用场景 推,具体主题将变化后的数据全部交给具体观察者。场景:当具体主题认为具体观察者需要这些变换后的数据时,往往采用推数据方式; 拉,具体主题不将变化后的数据交给具体观察者,而是提供获得这些数据的方法。场景:当具体主题不知道具体观察者是否需要这些变换后的数据时,往往采用拉数据的方式。 策略模式和工厂模式有什么不同? 策略模式定义了一系列算法,将他们一个个封装,并且他们之间可以相互替换; 工厂模式定义一个创建对象的接口,让子类决定实例化哪一个类 5观察者模式的推拉有什么不同?适用场景 现在要说的分歧在这里: “推”的方式是指,Subject维护一份观察者的列表,每当有更新发生,Subject会把更新消息主动推送到各个Observer去。 “拉”的方式是指,各个Observer维护各自所关心的Subject列表,自行决定在合适的时间去Subject获取相应的更新数据。 “推”的好处包括: 页脚内容2

Flyback电路设计

目录 一、摘要 (2) 二、课程设计任务书 (2) 三、Flyback电路的分析与建模 ........................................................................................... 错误!未定义书签。 3.1 Flyback电路原理分析............................................................................................. 错误!未定义书签。 3.2 Flyback电路的建模及仿真 (10) 四、UC3844芯片的建模及仿真............................................................................................ 错误!未定义书签。 五、计算纹波系数 .................................................................................................................. 错误!未定义书签。 六、总结 .................................................................................................................................. 错误!未定义书签。

一、摘要 本课程设计的目的是对直流—直流变流电路中常用的带隔离的直流—直流电流电路Flybackd电路(反激电路)进行电路分析,建模并利用simetric软件进行仿真。首先是理解分析电路原理和各元件的参数,以元件初值为起点,用simetric软件画出电路的模型、并且对电路进行仿真,得出仿真波形。在仿真过程中逐步修正参数值,使得仿真波形合乎要求,最后再通过理论计算加以验证结果的合理性。此外还对基于UC3844芯片控制的反激电路进行系统建模,用Matlab软件仿真,进行静态和动态分析。 关键字:Flyback MATLAB 仿真 二、课程设计任务书 1.题目 Flyback电路建模、仿真 2.任务 1.分析反激电路的工作原理,用simetric软件画出电路的模型、并且对电路进行仿真,得出仿真波形 2.对基于UC3844芯片控制的反激电路进行系统建模 3.要求 内容包括原理分析、模型仿真、仿真结果分析、生成曲线、数据分析

高频FLYBACK 变压器之最佳设计

高频FLYBACK 变压器(偶合电感器)最佳之设计 一.前言: 由于市场日益竞争,如何将产品的价格降低,体积缩小,质量提高变成现今大家所共同努力的目标.而在Switch Power Supply 的领域里,变压器是非常重要的一部份,而Flyback 变压器更在其中占了举足轻重的地位.如何将变压器最佳化,就显得额外的重要. 我们可以从很多SPS书籍中获得Flyback 变压器的设计方法,虽然不尽相同,却是大同小异.就一个设计者的角度来说,设计一个Flyback变压器并不难,只要将设计的参数订定,依照书上所写的设计步骤,一个变压器就诞生了,在这变压器诞生的同时,你难道不会怀疑,这变压器是否为最佳的变压器呢?因为在这设计的参数里还隐藏了不确定的因子.例如Flyback 变压器初级测电感值参数的订定,你如何能确定你刚开始设计所选定的感值对这颗变压器是最佳感值呢?本文将针对设计参数做进一步的探讨,以达到变压器的最佳化. 二.变压器设计: 在实际设计变压器时,有两个原则是必须注意到的: (1)温升:这是设计变压器最主要的项目和目的,安 规里有规定变压器的最高温升,变压器的温升需在安规的限制范围内.例如: class A 的绝对温度不能超过90°C ; class B 不能超过110°C 等等,这都是我们设计必须遵循的准则. (2)经济:想在这市场上与人竞争,经济考虑是不可 或缺的,尤其是变压器往往是机器COST中的主要部分之一,所以如何将变压器的价格,体积,质量掌握到最佳,就是我们所努力的方向. 1.设计步骤: 要将变压器最佳化,需将不同的参数重复代入计算,如果利用Excel 的方程式或利用程序语言将公式写下来,这样将变得很简单,只要改变参数就 可得到结果. (1).参数的订定: 在设计变压器之前,需先预定一些参数,很多书籍上这些参数都不同,不同的设计参数,设计流程亦不同,现在针对Flyback变压器最常用的设计参数: 输入电压:Vin,输入的频率:fs,最大Duty cycle : Dmax,初级与次级圈数比: N,初级电感值: Lp,输出电压:V o,输出最大:Wo.线圈的电流密度:J, 最大磁通密度: Bmax, 最大绕线因子:Kw (2)由这些设计参数算出: ◆Duty on (初级测导通的比例) ◆Duty off (次级测导通的比例) ◆初级交流电流值(ΔI pp) ◆初级电流Peak 值(I p(peak)) ◆初级电流RMS值(Irms) ◆初级线圈的线径(Φp) ◆次级电流Peak 值(I p(peak)) ◆次级电流RMS值(Irms) ◆初级线圈的线径(Φs) ◆有效磁路面积与铁心可绕面积的乘积(Ac*Aw) 在由Aw*Ac 选择适当的铁心. 设计参数里有些是定死的,例如:Vin,fs(IC操作频率) , Dmax(IC max duty cycle),V o ,Wo. 有些是依经验所定的,例如:电流密度:J(classA 自然散热< 500 A/cm, class B < 700 A/cm); 最大磁通密度Bmax (100°C 饱和磁通密度的80% ); 最大绕线因子Kw(若将漆包线的绝缘厚度算入与减掉安规间距, EE 与EI core< 0.4). 有些是可变的,也是最不确定设计参数,例如: 初级与次级圈数比N,初级电感值Lp; N 的决定条件为:即使再最低压时,亦能提供稳定的输出电压和能量.因N直接影响到Duty cycle 的大小,N愈大,Duty on 愈大, Ip(rms)愈小,铜损愈小,

(完整版)2017年下半年系统架构设计师案例分析

全国计算机技术与软件专业技术资格(水平)考试2017年下半年系统架构设计师下午试卷I (考试时间14:00~16:30 共150 分钟) 1.在答题纸的指定位置填写你所在的省、自治区、直辖市、计划单列市的名称。 2.在答题纸的指定位置填写准考证号、出生年月日和姓名。 3.答题纸上除填写上述内容外只能写解答。 4.本试卷共5道题,试题一是必答题,试题二至试题五选答1 道。每题25 分,满分75 分。 5.解答时字迹务必清楚,字迹不清时,将不评分。 6.仿照下面例题,将解答写在答题纸的对应栏内。 例题 2017 年下半年全国计算机技术与软件专业技术资格(水平)考试日期是(1)月(2)日。 因为正确的解答是“11 月 4 日”,故在答题纸的对应栏内写上“11”和“4”(参看下表)。

试题一 阅读以下关于软件架构评估的叙述,在答题纸上回答问题1和问题2. 【说明】 某单位为了建设健全的公路桥梁养护管理档案,拟开发一套公路桥梁在线管理系统。在系统的需求分析与架构设计阶段,用户提出的需求、质量属性描述和架构特性如下: (a) 系统用户分为高级管理员、数据管理员和数据维护员等三类; (b) 系统应该具备完善的安全防护措施,能够对黑客的攻击行为进行检测与防御; (c) 正常负载情况下,系统必须在0.5 秒内对用户的查询请求进行响应; (d) 对查询请求处理时间的要求将影响系统的数据传输协议和处理过程的设计; (e) 系统的用户名不能为中文,要求必须以字母开头,长度不少于5个字符; (f) 更改系统加密的级别将对安全性和性能产生影响; (g) 网络失效后,系统需要在10 秒内发现错误并启用备用系统; (h) 查询过程中涉及到的桥梁与公路的实时状态视频传输必须保证画面具有1024*768的分辨率,40帧/秒的速率; (i) 在系统升级时,必须保证在10 人月内可添加一个新的消息处理中间件; (j) 系统主站点断电后,必须在3 秒内将请求重定向到备用站点; (k) 如果每秒钟用户查询请求的数量是10 个,处理单个请求的时间为30 毫秒,则系统应保证在1秒内完成用户的查询请求; (l) 对桥梁信息数据库的所有操作都必须进行完整记录; (m) 更改系统的Web 界面接口必须在4 人周内完成; (n) 如果"养护报告生成"业务逻辑的描述尚未达成共识,可能导致部分业务功能模块规则的矛盾,影响系统的可修改性 (O) 系统必须提供远程调试接口,并支持系统的远程调试。 在对系统需求,质量属性描述和架构特性进行分析的基础上,系统的架构师给出了三个候选的架构设计方案,公司目前正在组织系统开发的相关人员对系统架构进行评估。 【问题1】(12 分) 在架构评估过程中,质量属性效用树(utility tree) 是对系统质量属性进行识别和优先级

JUnit设计模式分析

JUnit设计模式分析 JUnit是一个优秀的Java单元测试框架,由两位世界级软件大师Erich Gamma 和Kent Beck共同开发完成。本文将向读者介绍在开发JUnit的过程中是怎样应用设计模式的。 关键词:单元测试JUnit 设计模式 1 JUnit概述 1.1 JUnit概述 JUnit是一个开源的java测试框架,它是Xuint测试体系架构的一种实现。在JUnit单元测试框架的设计时,设定了三个总体目标,第一个是简化测试的编写,这种简化包括测试框架的学习和实际测试单元的编写;第二个是使测试单元保持持久性;第三个则是可以利用既有的测试来编写相关的测试。所以这些目的也为什么使用模式的根本原因。 1.2 JUnit开发者 JUnit最初由Erich Gamma 和Kent Beck所开发。Erich Gamma博士是瑞士苏伊士国际面向对象技术软件中心的技术主管,也是巨著《设计模式》的四作者之一。Kent Beck先生是XP(Extreme Programmin g)的创始人,他倡导软件开发的模式定义,CRC卡片在软件开发过程中的使用,HotDraw软件的体系结构,基于xUnit的测试框架,重新评估了在软件开发过程中测试优先的编程模式。是《The Smalltalk Best Practice Patterns》、《Extreme Programming Explained》和《Planning Extreme Programming(与Martin Fowler合著)》的作者。 由于JUnit是两位世界级大师的作品,所以值得大家细细品味,现在就把JUnit中使用的设计模式总结出来与大家分享。我按照问题的提出,模式的选择,具体实现,使用效果这种过程展示如何将模式应用于JUnit。 2 JUnit体系架构 JUnit的设计使用以Patterns Generate Architectures(请参见Patterns Generate Architectures, Kent Beck and Ralph Johnson, ECOOP 94)的方式来架构系统。其设计思想是通过从零开始来应用设计模式,然后一个接一个,直至你获得最终合适的系统架构。 3 JUnit设计模式 3.1 JUnit框架组成 l 对测试目标进行测试的方法与过程集合,可将其称为测试用例。(TestCase)

开关变压器设计

开关电源变压器设计 (草稿) 开关变压器是将DC 电压﹐通过自激励震荡或者IC 它激励间歇震荡形成高频方波﹐通过变 压器耦合到次级,整流后达到各种所需DC 电压﹒ 变压器在电路中电磁感应的耦合作用﹐达到初﹒次级绝缘隔离﹐输出实现各种高频电压﹒ 目的﹕减小变压器体积﹐降低成本﹐使设备小形化﹐节约能源﹐提高稳压精度﹒ N 工频变压器与高频变压器的比较﹕ 工频 高频 E =4.4f N Ae Bm f=50HZ E =4.0f N Ae Bm f=50KHZ N Ae Bm 效率﹕ η=60-80 % (P2/P2+Pm+ P C ) η>90% ((P2/P2+Pm ) 功率因素﹕ Cosψ=0.6-0.7 (系统100W 供电142W) Cosψ>0.90 (系统100W 供电111W) 稳压精度﹕ ΔU%=1% (U20-U2/U20*100) ΔU<0.2% 适配.控制性能﹕ 差 好 体积.重量 大 小

开关变压器主要工作方式 一.隔离方式: 有隔离; 非隔离 (TV&TVM11) 二.激励方式: 自激励; 它激励 (F + & IC) 三.回馈方式: 自回馈; 它回馈 (F- & IC) 四.控制方式: PWM: PFM (T & T ON ) 五.常用电路形式: FLYBACK & FORWARD 一.隔离方式: 二.

开关变压器主要设计参数 静态测试参数: R DC. L. L K. L DC. TR. IR. HI-POT. IV O-P.Cp. Z. Q.……… 动态测试参数: Vi. Io. V o. Ta. U. F D max…………. 材料选择参数 CORE: P. Pc. u i. A L. Ae. Bs……. WIRE: Φ℃. ΦI max. HI-POT…….. BOBBIN: UL94 V--O.( PBT. PHENOLIC. NYLON)………. TAPE: ℃. δh. HI-POT…….. 制程设置要求 P N…(SOL.SPC).PN//PN.PN-PN. S N(SOL.SPC).Φn. M tape:δ&w TAPE:δ&w. V℃……..

高频FLYBACK 变压器巧合电感器最佳之设计

Orlando 文檔 高頻FLYBACK 變壓器(偶合電感器)最佳之設計 莊榮源 飛瑞股份有限公司 △.前言: 由於市場日益競爭,如何將產品的價格降低,體積縮小,品質提高變成現今大家所共同努力的目標.而在Switch Power Supply 的領域裡,變壓器是非常重要的一部份,而Flyback 變壓器更在其中佔了舉足輕重的地位.如何將變壓器最佳化,就顯得額外的重要. 我們可以從很多SPS 書籍中獲得Flyback 變壓器的設計方法,雖然不盡相同,卻是大同小異.就一個設計者的角度來說,設計一個Flyback 變壓器並不難,只要將設計的參數訂定,依照書上所寫的設計步驟,一個變壓器就誕生了,在這變壓器誕生的同時,你難道不會懷疑,這變壓器是否為最佳的變壓器呢?因為在這設計的參數裡還隱藏了不確定的因數.例如Flyback 變壓器初級測電感值參數的訂定,你如何能確定你剛開始設計所選定的感值對這顆變壓器是最佳感值呢?本文將針對設計參數做進一步的探討,以達到變壓器的最佳化. △.變壓器設計: 在實際設計變壓器時,有兩個原則是必須注意到的: (1)溫升:這是設計變壓器最主要的項目和目的,安規裡有規定變壓器的最高溫升,變壓器的溫升需在安規的限制範圍內.例如: class A 的絕對溫度不能超過90°C ; class B 不能超過110°C 等等,這都是我們設計必須遵循的準則. (2)經濟:想在這市場上與人競爭,經濟考量是不可或缺的,尤其是變壓器往往是機器COST 中的主要部分之一,所以如何將變壓器的價格,體積,品質掌握到最佳,就是我們所努力的方向. 1.設計步驟: 要將變壓器最佳化,需將不同的參數重複代入計算,如果利用Excel 的方程式或利用程式語言將公式 寫下來,這樣將變得很簡單,只要改變參數就可得到結果.(1).參數的訂定: 在設計變壓器之前,需先預定一些參數,很多書籍上這些參數都不同,不同的設計參數,設計流程亦不同,現在針對Flyback 變壓器最常用的設計參數: 輸入電壓:Vin,輸入的頻率:fs,最大Duty cycle : Dmax,初級與次級圈數比: N,初級電感值: Lp,輸出電壓:Vo,輸出最大:Wo.線圈的電流密度:J, 最大磁通密度: Bmax, 最大繞線因數 :Kw (2)由這些設計參數算出: △Duty on (初級測導通的比例)△Duty off (次級測導通的比例)△初級交流電流值 (ΔIpp) △初級電流 Peak 值(Ip(peak))△初級電流RMS 值 (Irms) 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况 ,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

TI 反激变压器设计

26.5W AC/DC Isolated Flyback Converter Design

TASK : 26.5W 9-Outputs AC/DC Isolated Flyback Converter Design SPECIFICATION: Technical Specification on Sept 10, 2008 DATE: 15 Sept. 2008

Customer Specification f L 100Hz :=Line frequency fs 100kHz :=Switching frequency Vo 1 5.0V :=Main output voltage Io 1_max 2A :=Main Nominal load current Vo 215.0V :=Io 2_max 30mA :=Vo 315.0V :=Io 3_max 30mA :=Vo 415.0V :=Io 4_max 0.3A :=Vo 524.0V :=Io 5_max 0.1A :=Vo 618.0V :=Io 6_max 0.12A :=Vo 718.0V :=Io 7_max 0.12A :=Vo 818.0V :=Io 8_max 0.12A :=Vo 918.0V :=Io 9_max 0.12A :=+5V Output ripple voltage Vr 100mV :=+5VStep load output ripple voltage ΔVo step 150mV :=ΔIo 5V Io 1_max 80?% :=+5V Step load current amplitude η0.70 :=

设计模式实验报告

太原师范学院 实验报告 Experimentation Report of Taiyuan teachers College 系部计算机系年级课程设计模式实训教程 姓名学号日期2018.03.03 项目 Factory Method设计模式 一、实验目的 定义一个用于创建对象的接口,让子类决定实例化哪一个类。Factory Method使一个类的实例化延迟到其子类。 框架使用抽象类定义和维护对象之间的关系。这些对象的创建通常也由框架负责。考虑这样一个应用框架,它可以向用户显示多个文档。在这个框架中,两个主要的抽象是类Application和Document。这两个类都是抽象的,客户必须通过它们的子类来做与具体应用相关的实现。 二、实验原理 试验要求包含典型的 Factory Method结构。 程序能够明确表达设计思想。 三、实验仪器及材料 操作系统: Windows,linux; 开发工具: VC; Java,C# 四、实验方法 设计一个Factory Method案例并实现,并撰写设计报告。

五、实验记录及数据处理 interface Log{ public void writeLog(); } //文件日志记录器:具体产品 class FileLog implements Log{ @Override public void writeLog() { System.out.println("文件日志记录。"); } } //数据库日志记录器:具体产品 class DatebaseLog implements Log{ @Override public void writeLog() { System.out.println("数据库日志记录。"); } } //日志记录器工厂接口:抽象工厂 interface LogFactory{ public Log createLog(); } //文件日志记录器工厂类:具体工厂 class FileLogFactory implements LogFactory{ @Override public Log createLog() { return new FileLog(); } } //数据库日志记录器工厂类:具体工厂 class DatabaseLogFactory implements LogFactory{ @Override public Log createLog() {

【初学版】flyback的分析和设计

【初学版】flyback的分析和设计 大家最早可能接触,也是可能接触最多的电路拓扑应该是flyback.至少我刚刚接触电源的时候,最先就是flyback.不会设计,连分析也不懂,唯一能做的是模仿(额,难听点就是抄袭了:( ).这样子的状态持续了一段时间后,才开始慢慢的有一些了解.为了让初学者能更快的上手,少走弯路,于是有了这一章. 为了分析flyback电路,我们从flyback的源头开始说吧.Flyback是从最基本的三种电路中的buck-boost演变而来的.所以对buck-boost的分析,一定有助于对flyback的分析,而且 buck-boost看起来似乎要比flyback简单,至少它没有变压器吧. 为了证明我没有骗你,下面将要开始来对buck-boost进行演变,最终会演变成flyback. 图一 图一是buck-boost的原型电路. 把电感L绕一个并联线圈出来,如图二: 图二 把L的2个并联线圈断开连接,并且改变圈数比,改为:1:n,如图三:

图三 把图三中的二极管沿着所在回路移动,变成阴极朝外的样子,并且,改变输出电压V和接地的位置如图四: 图四 把图四中的Q顺着回路移动到变压器下方,如图五: 图五

把图五的电路,重新整理一下成图六.^_^,这样子和你见到的flyback有点像了吧. 图六 以上说明,我们研究buck-boost的行为特性,对研究flyback的行为特性有很大的帮助. 1. 电路工作在连续状态(CCM),也就是说电感电流L是连续的,任何时候电感中总存在电流.(电 路的另一种工作状态DCM将在以后的章节中分析) 2. 在一的假设下,电路工作就可以分成2个状态,状态1,Q开通,二极管D关断,这个状态时间长度为t1, ,Ts为周期,这个状态记为d,状态2,Q关断,二极管D开通,这个状态记为 ,d' =1-d. 3. 电感L中的电流纹波和电容C上的电压纹波相对其直流分流来说都很小.一个好的设计,要 求输出的电压纹波总是很小,所以,C的纹波小,总是成立的. 4. 所有的损耗都不讨论先.即,电路所有原件是理想的. 5. 电路工作在一个稳定的状态下. 第一个工作状态:mosfet Q开通,二极管D关断.如图八所示:

两种软件设计模式案例分析

摘要 本学期我学习了“设计模式-可复用面向对象软件的基础”这门课程,这次我采用的是命令模式+策略模式两种设计模式结合的案例。 分析的案例为:遥控器控制天花板上的吊扇,它有多种转动速度,当然也允许被关闭。假设吊扇速度:高、中、低、关闭。采用安全模式+策略设计模式。 报告整体结构为:两种设计模式的分析、理解,类图,实例分析、代码分析,总结。

目录 第一章命令模式+策略模式 (1) 1.1 命令模式 (1) 1.1.1 定义 (1) 1.1.2 命令模式的结构 (1) 1.1.3 角色 (1) 1.1.4 优点 (2) 1.1.5 缺点 (2) 1.5.6 适用情况 (2) 1.2 策略模式 (2) 2.1.1意图 (2) 2.2.2 主要解决问题 (2) 2.2.4 如何解决 (3) 2.2.5 关键代码 (3) 2.2.6优点 (3) 2.2.7 缺点 (3) 2.2.8 使用场景 (3) 2.2.9 注意事项 (3) 第二章案例分析 (4) 2.1 类图 (4) 2.2 测试分析 (4) 2.3 代码分析 (5) 2.2.1 命令模式模块代码 (5) 2.2.2 策略模式模块代码 (10) 第三章总结 (13)

第一章命令模式+策略模式 本案例用到的两种案例为安全模式+策略模式,因此在分析案例之前我先对两种设计模式进行分析。命令模式具体实现命令调控,策略模式定义一系列的算法,把它们一个个封装起来。 1.1 命令模式 1.1.1 定义 将来自客户端的请求传入一个对象,从而使你可用不同的请求对客户进行参 数化。用于“行为请求者”与“行为实现者”解耦,可实现二者之间的松耦合,以便 适应变化。分离变化与不变的因素。 1.1.2 命令模式的结构 命令模式是对命令的封装。命令模式把发出命令的责任和执行命令的责任 分割开,委派给不同的对象。 每一个命令都是一个操作:请求的一方发出请求要求执行一个操作;接收 的一方收到请求,并执行操作。命令模式允许请求的一方和接收的一方独立开来, 使得请求的一方不必知道接收请求的一方的接口,更不必知道请求是怎么被接 收,以及操作是否被执行、何时被执行,以及是怎么被执行的。 1.1.3 角色 Command 定义命令的接口,声明执行的方法。 ConcreteCommand 命令接口实现对象,是“虚”的实现;通常会持有接收者,并调用接收者的功 能来完成命令要执行的操作。 Receiver 接收者,真正执行命令的对象。任何类都可能成为一个接收者,只要它能够 实现命令要求实现的相应功能。 Invoker 要求命令对象执行请求,通常会持有命令对象,可以持有很多的命令对象。 这个是客户端真正触发命令并要求命令执行相应操作的地方,也就是说相当于使

精选-设计模式复习题

三、题目预测 填空题: 1.请从外观、组合、工厂方法、模板方法、观察者、单件、抽象工厂、命令、迭代器、代理、适配器模式中选择7种填入下列的空缺中。P610 1) 工厂方法模式中,父类负责定义创建对象的公共接口,子类决定要创建的具体类是哪一个。 2) 抽象工厂模式提供一系列相关或相互依赖对象的接口而无需指定它们具体的类。 3) 单件模式确保某一个类仅有一个实例,并自行实例化并向整个系统提供这个实例。 4) 组合模式将对象组合成树形结构以表示“部分-整体”的层次结构。使得用户对单个对象和组合对象的使用具有一致性。 5) 外观模式定义了一个高层接口,这个接口使得这一子系统更加容易使用,为子系统中的一组接口提供一个一致的界面,简化了一群类的接口。 6) 观察者模式定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时, 所有依赖于它的对象都得到通知并被自动更新,也就是让对象能在状态改变时被通知。 7) 模板模MVC模型式定义一个操作中的算法的骨架,而将一些步骤延迟到子类中。 8) 迭代器模式在对象的集合之中游走,而不暴露集合的实现。 9) 代理模式包装对象,以控制对比对象的访问。 10) 适配器模式封装对象,并提供不同的接口。 2.工厂模式分为(简单工厂),(工厂方法),(抽象工厂)三种类型。 3.适配器模式,分为类的适配器和对象的适配器两种实现。其中类的适配器采用的是(继承)关系,而对象适配器采用的是(组合聚合)关系。 4.设计模式的基本要素有(名字),(意图),(问题),(解决方案),(参与者与协作者),(实现),(一般性结构)。 5.MVC模型的基本工作原理是基于(观察者)模式,实现是基于(命令)模式 6.面向对象的六条基本原则包括:开闭原则,里式代换原则,合成聚合原则以及(依赖倒转),(迪米特法则)(接口隔离)。 7.当我们想用不同的请求对客户进行参数化时,可以使用(命令)模式。

反激变换器(Flyback)的设计和计算步骤

反激变换器(Flyback)的设计和计算步骤 齐纳管吸收漏感能量的反激变换器: 0. 设计前需要确定的参数 A开关管Q的耐压值:Vmq B 输入电压范围:Vinmin ~Vinmax C 输出电压V o D 电源额定输出功率:Po(或负载电流Io) E 电源效率:X F 电流/磁通密度纹波率:r(取0.5,见注释C) G 工作频率:f H 最大输出电压纹波:V opp 1. 齐纳管DZ的稳压值Vz Vz <= Vmq × 95% - Vinmax,开关管Q承受的电压是Vin + Vz,在Vinmax处还应为Vmq 保留5%裕量,因此有V inmax + Vz < Vmq × 95% 。 2. 一次侧等效输出电压Vor V or = Vz / 1.4(见注释A) 3. 匝比n(Np/Ns) n = V or / (V o + Vd),其中Vd是输出二极管D的正向压降,一般取0.5~1V 。 4. 最大占空比的理论值Dmax Dmax = V or / (V or + Vinmin),此值是转换器效率为100%时的理论值,用于粗略估计占空比是否合适,后面用更精确的算法计算。 一般控制器的占空比限制Dlim的典型值为70%。

----------------------------------------------------------------------------- 上面是先试着确定Vz,也可以先试着确定n,原则是n = Vin / Vo,Vin可以取希望的工作输入电压,然后计算出Vor,Vz,Dmax等,总之这是计算的“起步”过程,根据后面计算考虑实际情况对n进行调整,反复计算,可以得到比较合理的选择。 ----------------------------------------------------------------------------- 5. 负载电流Io Io = Po / V o,如果有多个二次绕组,可以用单一输出等效。 6. 一次侧有效负载电流Ior Ior = Io / n ,由Ior × Np = Io × Ns得来。 7. 占空比D D = Iin / (Iin + Ior),其中Iin = Pin / V in,而Pin = Po / X。这里V in取Vinmin。(见注释B) 8. 二次电流斜坡中心值Il Il = Io / (1 - D) 9. 一次电流斜坡中心值Ilr Ilr = Il / n 10. 峰值开关电流Ip k Ipk = (1 + 0.5 × r) × Ilr 11. 伏秒数Et Et = V inmin × D / f ,(Et = V on × Ton = V inmin × D/f) 12. 一次电感Lp Lp = Et / (Ilr × r) 13. 磁芯选择 (1)V e = 0.7 × (((2 + r)^2) / r) × (Pin / f),V e单位cm^3;f单位KHz,根据此式确定磁芯有效体积V e,寻找符合此要求的磁芯。(见注释D) (2)最适合反激变压器的磁芯是“E Cores”和“U Cores”,“ETD"、”ER"、“RM"这三种用于反激性能一般,而“Planar E”、“EFD"、”EP"、“P"、”Ring"型不适合反激变压器。 (3)材质选锰锌铁氧体,PC40比较常用且经济。 14. 一次匝数Np Np = (1 + 2/r) × (V on × D)/(2 × Bpk × Ae × f),其中V on = V inmin - Vq,Vq是开关管Q的导通压降;Bpk不能超过0.3T,一般反激变压器取0.3T;Ae是磁芯的有效截面积,从所选磁芯的参数中查的。(公式推导见注释E,说明见注释F) 15. 二次匝数Ns

相关文档
最新文档