鼓风曝气系统设计规程

鼓风曝气系统设计规程

中国建设标准化协会标准Design standard of aeration blowing system

CECS 97 : 97

主编单位:XX建筑工程学院

审查单位:XX建设标准化协会工业给水排水委员会批准日期:1997年12月30日

前言

现标准《鼓风曝气系统设计规程》CECS 97 :97为XX建设标准化协会标准,推荐给有关单位使用。在使用过程中,请将意见及有关资料寄交XX和平街北口中国XX工程公司XX建设标准化协会工业给水排水委员会(邮编:100029),以便修订时参考。

本规程主编单位:XX建筑工程学院

主要起草人:XX、XX

XX建设标准化协会

1997年12月30日

1 总则

1.0.1 为使生物处理曝气系统设计满足工程建设需要,特制定本规程。

1.0.2 本规程包括曝气器、供风管道、风机的选型及机房设计。

1.0.3 本规程适用于新建、扩建、改建的城市污水处理工程或工业污水处理工

程中的生物处理鼓风曝气系统的设计计算。

1.0.4 鼓风曝气系统设计除按本规程执行外,尚应符合现行有关的国家标准的规

定。

2 术语

2.0.1 曝气器aerator

用于水中充氧兼搅拌的基本器具或设备。

2.0.2 微孔曝气器fine bubble aerator

空气通过多孔介质,在水中产生气泡直径小于3mm的高效曝气器。

2.0.3 中大气泡曝气器middle and large air bubble aerator

空气通过曝气器在水中产生气泡直径大于3mm以上的曝气器。

2.0.4 可张中、微孔曝气器openable middle and fine bubble aerator

空气通过具有弹性材质的微孔曝气器或软管时,其上孔缝张开,停止供气时孔缝闭合的一种曝气器。

2.0.5 双环伞型曝气器double rings umbrella aerator

一种具有双环类似伞状的,在水中产生中大气泡的曝气器。

2.0.6 曝气器标准状态充氧性能oxygenc transfer performance

指单个曝气器在大气压力为0.1Mpa、水温为20℃时,对清水的充氧性能。

2.0.7 鼓风曝气系统aeration blowing system

指由风机、管路、曝气器、除尘器为主组成的系统。

3 鼓风曝气器

3.1 一般规定

3.1.1 根据污水性质、环境要求、管理水平、经济核算,工程设计中可选用鼓

风曝气、机械表面曝气、射流曝气等方式,一般宜选用鼓风曝气式。

3.1.2 选用鼓风曝气系统时曝气器应符合下列要求:

1、在某一特定曝气条件下,既能满足曝气池污水需氧要求,又能达到混

合搅拌,池内无沉淀的要求;

2、曝气器既要有较高充氧性能,又应有较强混合搅拌能力。同时还应有

不易堵塞、耐腐蚀、坚固、布气均匀、操作管理及维修简便,成本低、

阻力小和寿命长等性能;

3、选用曝气器所组成的鼓风曝气系统,从整体上应具有节约能量、组成

简单、安装及维修管理方便,易于排除故障等优点。

3.1.3 鼓风曝气器分为微孔曝气器及中大气泡曝气器。大、中型城市污水处理

厂宜选用微孔曝气器,接触曝气器氧化法宜选用中大气泡曝气器。

3.1.4 工程中选用的曝气器,应有该曝气器在不同服务面积、不同风量、不同

曝气水深时标准状态下的充氧性能曲线及底部流速曲线。

3.1.5 鼓风曝气器可满池布置,也可在池侧布置。推流式曝气池的曝气器宜沿

池长方向渐减布置。

3.2 微孔曝气器

3.2.1 工程中常用微孔曝气器有:

1、可张中、微孔曝气器;

2、平板式微孔曝气器;

3、钟罩式微孔曝气器;

4、聚乙烯棒状微孔曝气器。

3.2.2 可张中、微孔曝气器技术性能应符合《污水处理用可张中、微孔曝气器》

CJ/T3015.4-96的要求,其充氧性能见附录A.0.1。

3.2.3 钟罩式、平板式微孔曝气器的技术性能应符合《污水处理用微孔曝气器》

CJ/T3015.1-93 的要求,其充氧性能见附录A.0.2。

3.2.4 在不连续曝气的污水生物处理中,当使用微孔曝气器时,应采用可张中、

微孔曝气器。

3.3 中大气泡曝气器

3.3.1 工程中常用的中大气泡曝气器有:

1、双环伞型曝气器;

2、穿孔散流曝气器;

3、网状膜中微孔曝气器;

4、固定螺旋曝气器;

5、动态曝气器;

6、盆型曝气器;

7、穿孔管曝气器。

3.3.2 双环伞型曝气器技术性能应符合《双环伞型曝气器》CJ/T3015.3-95 的

要求,其充氧性能见附录A.0.3,选用中大气泡曝气器时,宜选用双伞型曝气器。

3.3.3 选用固定螺旋曝气器时,曝气池水深不宜小于

4.0m,曝气池底部流速不

宜小于0.5m/s。

3.3.4 选用盆型曝气器时,曝气器启动阻力约为0.01Mpa,运行阻力约为

0.005Mpa。

3.3.5 选用穿孔管曝气器时,应根据污水性能确定孔径。一般宜为3-10mm。

3.4 曝气器数量计算

3.4.1 曝气池容积计算

曝气池容积可按下列方法之一计算:

1、按室外排水设计规范公式计算

详见《室外排水设计规范》GBJ14-87 第6.6.2条及第6.6.3条。

2、按下述公式计算 1) 污泥负荷

F W =K · L e (3.4.1-1) 2) 曝气池容积

w

w e i N F L L Q V ??-??=

1000)

(24 (3.4.1-2)

式中 F W – 曝气池的五日生物需氧量污泥负荷(kgBOD 5/kgMLSS ·d ); K -- BOD 5降解常数由试验确定(l/d ); L e – 曝气池出水五日生物需氧量(mg/L );

Q -- 曝气池的设计流量(m 3

/h );

L i -- 曝气池进水五日生物需氧量(BOD5)(mg/L ); V -- 曝气池的容积(m 3);

N W – 曝气池内混合液悬浮固体平均浓度(g/l )。 3.4.2 曝气池面积按下式计算

H

V

F = (3.4.2-1)

式中 F – 曝气池面积(m 2); H – 曝气池水深(h );

V – 由3.4.1算得的曝气池容积(m 3)。 3.4.3 曝气池污水需氧量应按下列方法之一计算: 1、按室外排水设计规范公式计算

详见《室外排水设计规范》GBJ14-87 第6.7.2条。 2、按下述公式计算 O 2=24·Q ·(L i -L e )·a ’ + V ·N W ·b ’ (3.4.3-1) 式中 O 2 – 曝气池污水需氧量(kgO2/d );

a ’ -- BOD5降解需氧量(kgO2/kgBOD5);

b ’ -- 活性污泥内源呼吸耗氧量(kgO2/kgMLSS ·d ); a’、b’ 宜通过试验确定,也可参照附录B.0.1。 3.4.4 曝气池标准状态下污水需氧量按下式计算 )

(024.1)(20

20

2t T s T s c C C P C O O -??????=

-ρβα (3.4.4-1) 式中 O C – 标准状态下曝气池污水需氧量(kgO 2/d ); O 2 – 由3.4.3算得的曝气池污水需氧量(kgO 2/d ); C S20-- 20 C 蒸馏水饱和溶解氧值9.17〈mgO 2/L 〉; α – 曝气设备在污水与清水中氧总转移系数之比值; β – 污水与清水中饱和溶解氧浓度之比值;

α、β值通过试验确定,也可参照附录B.0.2选用; 1.024—温度修正系数;

T – 曝气池内水温,应按夏季温度考虑( C );

C S (T )-- 水温T C 时蒸馏水中饱和溶解氧值(mg O 2/L 〉; Ct – 曝气池正常运行中应维持的溶解氧浓度值(mg O 2/L 〉; ρ – 不同地区气压修正系数

Pa

Pa 510013.1)

?=

所在地区实际气压(ρ (3.4.4-2)

P – 压力修正系数,按下式计算

????42

206.0t b O

P P += (3.4.4-3)

式中 P b – 空气释放点处绝对压力,按下式计算

100

H

P P a b +=(Mpa ); (3.4.4-4)

式中 P a – 当地大气压力(Mpa );

H – 曝气池空气释放点距水面高度(m );

O t – 空气逸出池面时气体中氧的百分数,按下式计算。 )

1(2179100

)1(21εε-?+?-?=

t O (3.4.4-5)

式中 ε – 曝气池氧的利用率,以%计。

(由附录A.0.1,A.0.2,A.0.3中查得)。 3.4.5 风机总供风量按下式计算

ε

?=28.0c

O Q (3.4.5-1)

式中 Q – 风机总供风量(m 3/d );

0.28 – 标准状态(0.1Mpa ,20 C )下每立方米空气中含氧量 (kgO 2/m 3); O c 、ε—见3.4.4。 3.4.6 曝气器数量计算

曝气器所需数量,应从供氧、服务面积两方面计算。

1、 按供氧能力计算曝气器数量

c

c

c q O h ?=

24 (3.4.6-1) 式中 h 1 — 按供氧能力所需曝气器个数(个);

O c – 由式(3.4.4-1)所得曝气器污水标准状态下生物处理需氧量 (kgO 2/d );

q c – 曝气器标准状态下,与曝气器工作条件接近时的供氧能力 (kgO 2/h ·个 );

(见附录A.0.1,A.0.3,A.0.3)

2、 按服务面积计算曝气器数量

f

F

h =

2 (3.4.7-1) 式中 h 2 – 按服务面积所需曝气器个数(个); F – 由式(3.4.2-1)所得曝气器面积(m 2); f – 单个曝气器服务面积(m 2); (见附录A.0.1,A.0.3,A.0.3)

当算得h1与h2二者相差较大时,应经调整f或qc重复上述计算,直至二者接近时为止。

3.5 曝气搅拌能力验算

3.5.1 为满足曝气池混合搅拌需要,曝气还应符合下列条件之一:

1、污水生物处理供风量立方米污水还不应小于3m3;

2、曝气池底部水流速不应小于0.25m/s。

4 供风管道及计算

4.1 供风管道一般规定

4.1.1 供风管道系指风机出口至曝气器的管道。设计中应尽可能减小管道局部

阻力损失,并使各曝气器处压力相等或接近。

4.1.2 大中型处理厂曝气池供风总干管应从鼓风机房引出两条供气管或采用环

状布置、或总干管上设气体分配罐,一组池设置一供风干管。

4.1.3 供风管路宜采用钢管,并应考虑温度补偿措施和管道防腐处理。

4.1.4 供风干管上应设置适量的伸缩节和固定支架。

4.1.5 供风管道应在最低点设置排除水份或油份的放泄口。

4.1.6 供风管道应设置排入大气的放风口,并应采取消声措施。

4.1.7 供风支、干管上应装有真空破坏阀,立管管顶应高出水面0.5m以上,管

路上所装阀门应设在水面之上。

4.2 微孔曝气器供风管路

4.2.1 水面以上供风干、支管可采用UPVC-FRP复合管(加强聚氯乙烯+2mm

玻璃布)或FRP管、钢管。水下供风支管也可采用加强聚氯乙烯UPVC 管。

4.2.2 供风管道为钢管时,必须对管道内进行严格防腐处理,管道外也宜做防

腐处理。管内防腐可采用厚δ=150μ的铝合金热喷涂或其它方法。

4.2.3 布气支管允许水平高度误差值±10mm。

4.2.4 微孔曝气器底盘与布气支管连接后,底盘平面与管轴线水平误差不应大

于5mm。

4.2.5 微孔曝气器固定支架应可调。调整后同一曝气池内曝气器盘面标高最大

误差不应大于5mm,两曝气池之间的曝气器盘面标高,最大误差不应大于10mm或按设计要求。

4.2.6 供风支管的间距应通过计算确定,但不宜小于0.5m。

4.2.7 为便于检修和更换曝气头,也可采用可提式微孔曝气器装置。

4.2.8 曝气支管末端应有排除气、水混合物之立管,管端伸出水面,管径不宜

小于5mm,支管与立管连接处孔洞直径以3-5mm为宜,管上设有阀门。

4.2.9 微孔曝气器的固定支架,应有足够的锚固力,与池底板进行锚固应考虑

所受浮力。

4.2.10 微孔曝气器安装前,应将供风干管、支管等所有管道吹扫干净。

4.2.11 可张中、微孔曝气软管的安装,应按《污水处理用可张中、微孔曝气器》

CJ/T3415.4-96规定和产品技术要求进行。

4.3 中大气泡曝气器供风管路

4.3.1 每组曝气池的供风干管宜为环状布置。

4.3.2 池底供风支管应与池宽平行布置,曝气器可固定在支管上或悬吊于支管

下,或在供风支管两侧。固定螺旋曝气器应与池底固定。每根支管所带曝气器不宜太多,以不超过5个为宜。

4.3.3 供风立管应与池壁预埋件固定,供风支管应与池底预埋件固定。

4.4 供风管路计算

供风管路计算,可参照《给水排水设计手册》第五册。

5 风机与机房

5.1 风机

5.1.1 国内目前常用风机

1 罗茨鼓风机

1)TS系列低噪声罗茨鼓风机

2)R系列罗茨鼓风机

3)L系列罗茨鼓风机

2 离心鼓风机

1)高速单级污水处理离心鼓风机

2)C系列污水处理离心鼓风机

5.1.2 鼓风机应选用高效、节能、使用方便、运行安全,噪声低、易维护管理

的机型,可选用离心式单级鼓风机。小规模污水处理厂中,也可选用罗茨鼓风机。

5.1.3 罗茨风机宜选用TS系列低噪声风机和R系列罗茨鼓风机。

5.1.4 罗茨风机宜选用同一型号,当风量变化较大时,应考虑风机大小搭配,

但型号不宜过多。

5.1.5 鼓风机的进气温度应小于40 C。气体中固体微粒含量,罗茨风机不应大

于100mg/m3,离心式鼓风机不应大于10mg/m3。微粒最大尺寸不应大于鼓风机气缸内各相对运动部件的最小工作间隙之半。但超过上述规定时应对进入鼓风机的空气进行除尘。

5.1.6 选用离心式鼓风机时,应详细核算各种工况条件下风机的工作点,尤其

是在冬季,不得接近风机的喘振区和使电机超载,还应考虑送风压力和空气温度的变化。

5.1.7 选用罗茨风机时,应设置风量调节装置。

5.1.8 鼓风机的设置台数,应根据总供风量,所需风压,选用风机单机性能曲

线及气温、污水量和负荷变化等综合确定。

5.1.9 风机总供风量,应按第(3.4.5-1)式计算,配置的风机其总容量(不包

括备用风机),不得小于设计所需风量的95%。

5.1. 10 风机的风压应按下式计算

H = h1+h2+h3+h4+Δh (5.1.10-1)

式中H –风机所需风压(Mpa);

h1–供风管道沿程阻力(Mpa);

h2–供风管道局部阻力(Mpa);

h3–曝气器空气释放点以上水静压(Mpa);

h4–曝气器阻力(Mpa);

Δh –富余水头Δh = 0.003-0.005(Mpa)。

其中:微孔曝气器h4≤0.004-0.005 (Mpa)

可张中、微孔曝气器h4≤0.003-0.0035(Mpa)

盆型中大气泡曝气器h4≤0.005-0.01 (Mpa)

其它中大气泡曝气器阻力可忽略不计。

5.1.11 备用风机可用33%-100%的备用率计算。大型污水处理厂宜选用低备用

率,小型污水处理厂宜选用高备用率。或者按工作鼓风机台数设置,小

于等于3台是,应设1台备用鼓风机,大于等于4台时,应设2台备用鼓风机。

5.2 空气除尘

5.2.1 用作鼓风曝气系统空气除尘的设施,按其空气净化标准分为粗效(中效)、

高效两类。

5.2.2 应根据鼓风机产品本身和曝气器的要求,设置空气除尘设施。

5.2.3 对于钟罩、平板式等微孔曝气器,必须进行空气除尘。宜采用粗效—高

效顺序联合除尘,除尘后空气中固体微粒含量应小于15mg/1000m3。

5.2.4 选用静电除尘器时宜按下述数据进行设计:

1 压力损失小于0.001(Mpa);

2 通过设备的风速V< 2.0 (m/s);

3 去除固体微粒粒径d≥1μm气溶胶的去除率宜达90%-95%以上。

5.2.5 选用静电除尘器时,设计中还应设置上、下水管路及冲洗水预热和加压

设施,同时还应设置隔离网与具有联锁功能的安全门等防范措施。

5.2.6 对于其它曝气器的鼓风曝气系统,可采用粗效除尘器。

5.3 鼓风机房

5.3.1 污水处理厂采用鼓风曝气系统时,宜设置单独的风机房。也可根据情况

设置敞开式风机站,或采用密闭隔音结构风机房。机房宜布置在曝气池附近。

5.3.2 风机房内外的噪声,应符合《工业企业噪声控制设计规范》GBJ87-85的

规定。

5.3.3 机房内可设有值班室、配电室、工具室,对单级离心鼓风机房应设有冷

却或风冷却系统。

5.3.4 机房内值班室宜有单独出入口,宜用双层玻璃,并应有良好的隔声措施。

机房顶板及内墙应采用吸声效果较好的材料贴面。

5.3.5 机房内值班室应有必要的通讯手段和机房内主要设备工况的指示或报警

装置。当机房内不设值班室时,机房主要设备工况的指示或报警装置均应引进总值班室。

5.3.6 机房内应有排除积水的设施和承接风管最低点油、水排泄物的设施。

5.3.7 风机房内主要机组的布置和通道宽度应符合《室外排水设计规范》

GBJ14-87第4.3.4条要求。

5.3.8 风机房内起重设备,应根据风机最重部件或电动机的重量,按下列规定

选用:

1 起重量小于0.5 t的可采用固定吊钩或移动吊架;

2 起重量在0.5-1.0 t时,可采用手动单梁起重设备;

3 起重量在1.0-3.0 t时,可采用手动或电动单梁起重设备;

4 起重量在3.0 t以上时,可采用手动或电动单梁起重设备;

5 起吊高度大,吊运距离长或起吊次数多的风机房可适当提高起吊的机械

化水平。

5.3.9 需要在机房内检修设备时,应留有维修场所,起面积应根据最大设备或

部件的外形尺寸确定,并在周围设宽度不小于0.7m的通道和必要的隔音设施。

5.3.10 机房高度应遵守下列规定:

1 无吊车起重设备时,室内地面以上有效高度应不小于3.0m;

2 有吊车起重设备时,应保证吊起物体底部与所越过的物体的顶部有不

小于0.5m的净空。

3 有高压配电设备的房屋高度应根据电气设备外形尺寸及电器要求确

定。

5.3.11 设计机房进、出风管道时,应尽量平直,减少各种局部阻力损失。

5.3.12 风机房进风系统宜采用吸风塔和风道组合形式,进风塔顶部端宜设置耐

用的铝合金百叶窗。风道中中设置空气除尘器。在进风塔和风道折点处应设置空气整流板。

5.3.13 进风管道宜带有能自动启闭的安全门。除尘后的空气所经过的风道应进

行防尘处理。在地下水位较高或高温高湿地区,风道内壁应做防潮处理。

5.3.14 风机应有独立基础,并按最大荷载设计。风机与基础间应设隔振垫。5.3.15 机房内风机进、出风管宜敷设在地沟内,若在地面敷设时,应根据需要

设置跨越设施;若架空敷设时,不应跨越电器设备和阻碍通道,通行处架空管管底距地面不宜小于2.0m,且管道应做托架。

5.3.16 机房规模较大时,宜将风机和管道分上、下两层设置。上层安装机组,

下层安装进、出风管及旁通回流管。此时可取消进、出风管上的消音器。

5.3.17 风机与进、出风管间应装置避震喉,机房内进、出风管路与风机进、出

风管连接出,应设置弹性接头和必要的管支架。

5.3.18 离心式风机进风管路上,应设手动阀门,正常运行时处于常开状态。5.3.19 罗茨风机应按产品设置供机组启闭使用的旁通回流管路,其管径比出风

管管径小一号。

5.3.20 每台风机出风管道和旁通回流管道上宜设电动阀门及逆止阀,电动阀门

宜选用V型球阀或对夹式电动碟阀,逆止阀宜选用蝶式止回阀。

5.3.21 机房外供风管道宜埋地敷设,若在地面上宜包扎隔音材料。

5.3.22 机房内或外应设有风量、风压、风温等一次、二次仪表,供风管路上风

量仪宜用涡街式流量计。

5.3.23 鼓风机房空气管路设计应满足试车及允许范围内的风量、风压调节要

求。

5.3.24 应按机房操作人员配置必要的个人防护用具。

附录A 几种曝气器充氧性能

A.0.1 可张中、微孔曝气器

A.0.2 钟罩式微孔曝气器

Klas

图A.0.2-1 q c–q - f关系曲线

图A.0.2-2 ε- q - f 关系曲线

图A.0.2-3 E - q - f 关系曲线A.0.3 双环伞型曝气器

图A.0.3-1 q c – q - f 关系曲线

图A.0.3-2 ε – q - f 关系曲线

图A.0.3-3 E –q - f关系曲线

图A.0.3 - 4 q c–q - f关系曲线

图A.0.3 - 5 ε–q - f关系曲线

图A.0.3 - 6 E –q - f关系曲线

附录B 几种污水生物处理的a’、b’、α、β

B.0.1

B.0.2

附录C 用词和用词说明

C.0.1 为便于在执行本规范条文时区别对待,对要求严格程度不同的用词说明

如下:

1 表示很严格,非这样做不可的用词

正面词采用“必须”,反面词采用“严禁”。

2 表示严格,在正常情况下均应这样做的用词

正面词采用“应”,反面词采用“不应”或“不得”。

3 表示允许稍有选择,有条件许可时首先应这样做的用词

正面词采用“宜”,反面词采用“不宜”。

4 表示有选择,在一定条件下可以这样做的,采用“可”。

C.0.2 条文中指定应按其他有关标准执行的写法为:“应符合·的规定”或“应

按·执行”。

(完整版)电焊气割安全操作规程

电焊气割安全操作规程 工作环境要求 工作环境通风良好,附近无易燃易爆物品。 工作前 1.易燃易炸区域或附近进行作业,必须办理动火证。注意清理现场,专人监护,保持距离,防止火星飞溅。 2.风季作业,应有挡风装置等措施,防止火星飞溅引起火灾,风力大于6级以上,应停止作业。 3.油脂的手套、棉纱和工具等同气瓶、瓶阀、减压器及回火管路等严禁接触。 气瓶漏气时应用肥皂水检漏,严禁使用明火。 4.用前认真检查瓶阀、减压器、回火防止器、安全阀或安全装置是否完好,灵敏。 5.检查焊、割矩射、吸能力时,应防止因熔化金属飞溅物或其他杂质堵塞喷咀而导致回火,焊、割矩及连接部位,胶管、气阀不能沾有油脂。 6.点火时,喷咀不能对人,燃烧的割矩不能放在工件和地面上。 7.作业时,应先清理工件表面漆皮,铁锈,油垢,在贮存烧碱、硫磺、油、甲苯等物质的容器中作业时,必须清洗容器,并在毒气检测合格后方可作业。 工作中 1.装减压阀前,慢慢打开气瓶阀门吹掉接口内外的灰尘;装好减压

阀,然后打开阀门检查有无漏气,是否畅通;操作时,人应站在接口侧面,不准面对接口。 检查皮管接头无灰尘和金属屑,才能连接,皮管取下后,不能仰天放,也不能放在地上,以免杂质进入。 2.经常检查回火防止器,压膜是否完好,各进出口是否畅通,逆止阀是否灵敏。 3.气瓶内氧气禁止全部用完,必须保留1~1.5个大气压,以便冲气检查和防止进入杂质。 4.冬季使用时,解冻瓶阀只能用40℃热水或蒸汽,严禁用火焰加热或铁器锤击。 5.与电焊工在同一处作业时,为防止气瓶带电,应在瓶底加绝缘垫,与气瓶接触的金属管道及设备均应安装接地线防止产生静电而引发火灾爆炸。 乙炔的安全使用: 1.乙炔最高工作压力禁止超过0.174MPa. 2.禁止使用紫铜或含铜量超过70%的铜合金制造与乙炔接触的仪表、管子等零件。 3.焊接与切割中使用的氧气胶管为黑色,乙炔气管为红色。胶管不能互换,工作前应检查胶管有无磨损、老化、扎孔、裂纹等情况并及时修理或更换。 4.气焊与气割作业过程中应预防触电、中毒、砸伤和眼病,夏季应防中暑。

AO工艺设计计算公式

A/O工艺设计参数 ①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 ②污泥回流比:50~100% ③混合液回流比:300~400% ④反硝化段碳/氮比:BOD 5 /TN>4,理论BOD消耗量为1.72gBOD/gNOx--N ⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d ⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD 5 /KgMLSS·d ⑦混合液浓度x=3000~4000mg/L(MLSS) ⑧溶解氧:A段DO<0.2~0.5mg/L O段DO>2~4mg/L ⑨pH值:A段pH =6.5~7.5 O段pH =7.0~8.0 ⑩水温:硝化20~30℃ 反硝化20~30℃ ⑾ 碱度:硝化反应氧化1gNH 4+-N需氧4.57g,消耗碱度7.1g(以CaCO 3 计)。 反硝化反应还原1gNO 3 --N将放出2.6g氧, 生成3.75g碱度(以CaCO 3 计) ⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量 (KgO 2 /h)。微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。 Ro=a’QSr+b’VX+4.6Nr a’─平均转化 1Kg的BOD的需氧量KgO 2 /KgBOD b’─微生物(以VSS 计)自身氧化(代谢)所需氧量KgO 2 /Kg VSS·d。

上式也可变换为: Ro/VX=a’·QSr/VX+b’ 或 Ro/QSr=a’+b’·VX/QSr Sr─所去除BOD的量(Kg) Ro/VX─氧的比耗速度,即每公斤活性污泥(VSS)平均每天的耗氧量KgO 2 /KgVSS·d Ro/QSr─比需氧量,即去除1KgBOD 的需氧量KgO 2 /KgBOD 由此可用以上两方程运用图解法求得a’ b’ Nr—被硝化的氨量kd/d 4.6—1kgNH 3-N转化成NO 3 -所需的氧 量(KgO 2 ) 几种类型污水的a’ b’值 ⒀供氧量─单位时间内供给曝气池的氧量,因为充氧与水温、气压、水深等因素有关,所以氧转移系数应作修正。 ⅰ.理论供氧量 1.温度的影响 KLa(θ)=K L(20)×1.024Q-20 θ─实际温度 2.分压力对Cs的影响(ρ压力修正系数) ρ=所在地区实际压力(Pa)/101325(Pa) =实际Cs值/标准大气压下Cs值

容器内焊割安全操作规程正式版

Guide operators to deal with the process of things, and require them to be familiar with the details of safety technology and be able to complete things after special training.容器内焊割安全操作规程 正式版

容器内焊割安全操作规程正式版 下载提示:此操作规程资料适用于指导操作人员处理某件事情的流程和主要的行动方向,并要求参加施工的人员,熟知本工种的安全技术细节和经过专门训练,合格的情况下完成列表中的每个操作事项。文档可以直接使用,也可根据实际需要修订后使用。 1 在容器内进行焊接作业时,除遵守一般焊割作业技术要求外,还必须遵守其特殊的相关规定。 2 作业前,必须检查电焊机上及其电源接头处的漏电保护器是否灵敏、可靠,气割设备是否正常无漏气,如有问题及时修复并通知电工进行修理。 3 加强防护措施,避免触电事故:不允许使用简单而无绝缘外壳的焊钳及翻新旧焊机,金属容器中临时照明必须用12V 以下低压灯,灯泡要有金属网防护;同时要配戴好绝缘手套(应能经得起5KV电

4容器出口处要有专人监护,随时注意作业现场及其周围情况,发现危险征兆,立即切断电源并进行抢救。 5进行气焊、气割必须随时注意防火防爆,作业前要认真检查各处的气体管路是否漏气。 6 焊割炬的引燃及熄火均应在容器外部进行; 7在焊接、切割作业间隙,必须及时切断气源并将焊、割炬放在空气流通的地点,严禁放在容器内、舱口处或焊接切割工作台座的孔洞上,以免焊炬泄漏出的乙炔形成易燃易爆混合气滞留其间,引发燃烧或爆炸事故。 8焊接施工前后,均应对作业现场及周

曝气系统设计计算

曝气系统设计计算 方法一 (1)设计需氧量AOR AOR二去除BOD5需氧量-剩余污泥中BODu氧当量+NHi -N消化需氧量-反消化产氧量 碳化需氧量: 9 =役二亠)-1.42幷=440000.003)_j 42x4399 = 9607(畑Q/〃) ^=YQ(S0-S c)-K d xVxX N1LVSS =X44000X () X4X15=4399kg/d 消化需氧量: D2 = 4.57(?(N()- NJ-4.57 x 12.4%x P A = 4.57x44OOOx(56-2)x—1—-4.57x12.4% x 4399 ' 7 1000 =8365畑Q / d Di 碳化霊氧量(kgO2 /d) D:--- 消化霊氧量(kgQ / d) P x---- 剩余污泥产量kg/d Y一一污泥增值系数,取。 k d一一污泥自身氧化率,。 S“ - 总进水BOD5 (kg/m3) 0.68

S c ——二沉出水 BOD 5 (kg/m 3 ) X MLVSS 一一挥发性悬浮固体(kg/m 3) --- 总进水氨氮 M ——二沉出水氨氮 Q---- 总进水水量m 3/d 每氧化lmgNHQN 需消耗碱度;每还原lmgNO 3 -N 产生碱度;去除 lmgBODs 产生碱度。 剩余碱度S ALK F 进水碱度-消化消耗碱度+反消化产生碱度+去除BOD5产 生碱度 假设生物污泥中含氮量以%计,则: 每日用于合成的总氮二*4399二545 即,进水总氮中有 545*1000/44000二L 被用于合成被氧化的NH1N 。 用于合成被氧化的NH 「-N :=(进水氨氮量一出水氨氮量)-用于合成的总氮量 =L 所需脱硝量二(进水总氮-出水总氮)-28二二L 需还原的硝酸盐氮量: 因此,反消化脱氮产生的氧量: D 5 = 2.86弘=2.86x545.6 = \560kgOJd 总需氧量: 44000x12.4 1000 = 545.6〃//乙

曝气生物滤池设计

曝气生物滤池设计 1曝气生物滤池滤料体积 BOD 容积负荷选3Kg BOD5「m3d,采用陶粒滤料,粒径5mm 2滤料面积 滤料高度取h3=3m 滤池采用圆形,则滤池直径d! . 4A . 4 5 2.52m,取2.5m \ V 3.14 取滤池超高h1=0.5m,布水布气区高度h2=1.0m,滤料层上部最低水位h4=1.0m,承托层高h5=0.3m 滤池总高度H=5.8m 3水力停留时间 2 空床水力停留时间t1 V英3 24 1.2h Q 4 300 实际水力停留时间t2 t1 0.5 1.2 0.6h 4校核污水水力负荷

5 需氧量

OR = 0.82 (△ BOD5)0.32 (-^) BOD BOD 设So) 0.3 , MLVSS MLSS 0.8,进水溶解性BO D5进水总BOD5 07 出水SS中BOD含 量: S ss MLVSS X e 1.42(1 e 5KLa(28) e04 5) 19.5mg L 出水溶MLSS 0.8 20 1.42 (1 解性BOD含量 Se=50-19.5=30.5mg/L 去除溶解性BOD5的量: 单位BOD需氧量: 实际需氧量: 6标准需氧量换算 设曝气装置氧利用率为吕=12%混合液剩余溶解氧C0=2mg/L,曝气装置安装 在水面下 4.2m,取a =0.8 =0.9 , Cs=7.92mg/L,p =1 标准需氧量: SOR —AOR C s(20) (T20)3—刊 2.4KgO2/h [ C sb(T)C]1.024( 0)0.8 [0.9 9.2 2] 1.024(2 )

供气量: 曝气负荷校核: 7反冲洗系统 采用气水联合反冲洗 (1) 空气反冲洗计算,选用空气反冲洗强度 q 气54m 3 m 2 h (2) 水反冲洗计算,选用水反冲洗强度 q 水25m 3.m 2 h 冲洗水量占进水量比为: 2.0 15 10% 300 工作周期以24h 计,水冲洗每次15min 曝气装置与反冲进气管合用选用穿孔曝气管,穿孔管孔眼直径为3mm 孔距70mm, 设支管管径为20mm 支管间距取80mm 经计算共需支管48根,枝状布置。孔 口向下倾斜45°,曝气管布置在滤板上 100mm 处。 设曝气管干管内空气流速为 V 1=12m/s 曝气干管管径: d 2 打爲恼00 需 12 ,取? 57X 3'5m G s 66.7 N 气 s A -2 2.5 4 1 3.6m m 2 h 满足要 求。

电(气)焊割作业安全操作规程

编号:SM-ZD-89496 电(气)焊割作业安全操作 规程 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

电(气)焊割作业安全操作规程 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1、电焊(气割、气焊)从业人员,必须经过体检、专业培训、持证上岗。工作前应穿戴好规定的防护用品,认真检查电气焊设备、机具的安全可靠性。 2、对受压容器,密闭容器、管道进行操作时要事先检查,对有毒、有害、易燃、易爆物要冲洗干净。在容器内焊割要二人作业,一人操作一人在外监护,容器内照明电压应低于36伏。 3、严格执行“三级动火审批制度”,焊割场地禁止存放易燃易爆物品,按规定备有消防器材,保证足够的照明和良好的通风条件。 4、电焊机外壳应有效接地或接零,工作回线不准搭在易燃易爆物品上,也不准接在管道和机床设备上。工作回线、电源开关应绝缘良好,把手、焊钳的绝缘要牢固,电焊机要专人保管、维修,不用时切断电源,将导线盘放整齐,安放

曝气设计规范

XX建设标准化协会标准 鼓风曝气系统设计规程 Design standard of aeration blowing system CECS 97 : 97 主编单位:XX建筑工程学院 审查单位:XX建设标准化协会工业给水排水委员会 批准日期:1997年12月30日 前言 现标准《鼓风曝气系统设计规程》CECS 97 :97为XX建设标准化协会标准,推荐给有关单位使用。在使用过程中,请将意见及有关资料寄交XX和平街北口中国X X工程公司XX建设标准化协会工业给水排水委员会(邮编:100029),以便修订时参 考。 本规程主编单位:XX建筑工程学院 主要起草人:XX、XX XX建设标准化协会 1997年12月30日 1 总则 1.0.1 为使生物处理曝气系统设计满足工程建设需要,特制定本规程。 1.0.2 本规程包括曝气器、供风管道、风机的选型及机房设计。 1.0.3 本规程适用于新建、扩建、改建的城市污水处理工程或工业污水处理工 程中的生物处理鼓风曝气系统的设计计算。 1.0.4鼓风曝气系统设计除按本规程执行外,尚应符合现行有关的国家标准的规定。

2 术语 2.0.1 曝气器 aerator 用于水中充氧兼搅拌的基本器具或设备。 2.0.2 微孔曝气器 fine bubble aerator 空气通过多孔介质,在水中产生气泡直径小于3mm的高效曝气器。 2.0.3 中大气泡曝气器 middle and large air bubble aerator 空气通过曝气器在水中产生气泡直径大于3mm以上的曝气器。 2.0.4 可张中、微孔曝气器 openable middle and fine bubble aerator 空气通过具有弹性材质的微孔曝气器或软管时,其上孔缝张开,停止供气 时孔缝闭合的一种曝气器。 2.0.5 双环伞型曝气器 double rings umbrella aerator 一种具有双环类似伞状的,在水中产生中大气泡的曝气器。 2.0.6 曝气器标准状态充氧性能 oxygenc transfer performance 指单个曝气器在大气压力为、水温为20℃时,对清水的充氧性能。 2.0.7 鼓风曝气系统 aeration blowing system 指由风机、管路、曝气器、除尘器为主组成的系统。 3鼓风曝气器 一般规定 3.1.1 根据污水性质、环境要求、管理水平、经济核算,工程设计中可选用鼓 风曝气、机械表面曝气、射流曝气等方式,一般宜选用鼓风曝气式。 3.1.2 选用鼓风曝气系统时曝气器应符合下列要求: 1、在某一特定曝气条件下,既能满足曝气池污水需氧要求,又能达到混 合搅拌,池内无沉淀的要求;

焊割气安全操作规程示范文本

焊割气安全操作规程示范 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

焊割气安全操作规程示范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 概述 当进行火焰切割时,燃气与氧气混合,所生成的火焰 的温度能够使金属表面熔合,或者切割时能够使金属熔 化。燃气和氧气供应的气瓶和软管应使用相对应的颜色。 在操作过程中要严格按照工业燃气操作守则进行作业。 一.切割作业前的准备 1.进行切割作业前,必须检查各种设备和安全装置经已 安装正确,并且各种设备运行正常。 2.确定气瓶已装有正确类型的压力调节器,并已正确的 和割据连接. 3.检查气喉是否有缺陷或被损坏,例如:气喉破口、裂 缝及磨损等,如果有需要,应由符合资格的工作人员更

换,并且检查所有气道接口是否有漏气迹象。确保气管摆放的方法不会使气管严重扭曲,或被其它重型设备碾压,以避免气流被堵塞或气管受到损坏。 4.点火前必须把管路内的空气完全排放干净。 5.在切割过程中气管必须远离切割工件或割嘴火焰。 二.作业期间的准备 1.配戴个人防护设备及依循安全作业程序行事。 2.小心处理已点着的割据,不得把它悬挂于气瓶上,甚或短暂地无人看管下摆放。 3.将与工作无关的可燃物质搬离操作现场,避免引起火灾。 4.严禁在生产区内使用明火,严禁与本单位无关的人员进入生产区。 三.切割安全操作注意事项 (一)火焰切割是利用可燃气体(CH4 ,C3H8)在纯

曝气系统设计计算

曝气系统设计计算 方 法 一 (1)设计需氧量AOR AOR=去除BOD 5需氧量-剩余污泥中BOD u 氧当量+NH 4+-N 消化需氧量-反消化产氧量 碳化需氧量: ()0e d MLVSS =YQ S S -K V X x P -?? =0.6×44000×(0.248-0.003)-4434.1×4×1.75/15=4399kg/d 消化需氧量: D 1——碳化需氧量()2/kgO d D 2——消化需氧量()2/kgO d x P ——剩余污泥产量kg/d Y ——污泥增值系数,取0.6。 k d ——污泥自身氧化率,0.05。 0S ——总进水BOD 5(kg/m 3) e S ——二沉出水BOD 5(kg/m 3) MLVSS X ——挥发性悬浮固体(kg/m 3) 0N ——总进水氨氮 ( )()() 0e 12 440000.2480.0031.42 1.4243999607/0.68 0.68 x Q S S D P kgO d -?-=-=-?=()()002024.57 4.5712.41 4.5744000562 4.5712.4%43991000 8365/e x D Q N N P kgO d =--??=??-?-??=

e N ——二沉出水氨氮 Q ——总进水水量m 3 /d 每氧化 1mgNH 4+-N 需消耗碱度7.14mg ;每还原1mgNO 3—-N 产生碱度3.57mg ;去除1mgBOD 5产生碱度0.1mg 。 剩余碱度S ALK1=进水碱度-消化消耗碱度+反消化产生碱度+去除BOD 5产生碱度 假设生物污泥中含氮量以12.4%计,则: 每日用于合成的总氮=0.124*4399=545 即,进水总氮中有 545*1000/44000=12.4mg/L 被用于合成被氧化的NH 4+-N 。 用于合成被氧化的NH 4+-N : =56-2-12.4 =41.6mg/L 所需脱硝量 =(进水总氮-出水总氮)-28=68-12-12.4 =43.6mg/L 需还原的硝酸盐氮量: 因此,反消化脱氮产生的氧量 : 总需氧量: AOR =9607+8365-1560=164122/kgO d 最大需氧量与平均需氧量之比为1.4,则 去除每1kgBOD 5的需氧量 322.86 2.86545.61560/T D N kgO d ==?=123D D D =+-max 221.4 1.41641222977/957/AOR R kgO d kgO h ==?==() () 016412 440000.2480.003e AOR Q S S = -= -4400012.4 545.6/1000T N mg L ?===-(进水氨氮量—出水氨氮量)用于合成的总氮量

焊割气安全操作规程

焊割气安全操作规程 概述 当进行火焰切割时,燃气与氧气混合,所生成的火焰的温度能够使金属表面熔合,或者切割时能够使金属熔化。燃气和氧气供应的气瓶和软管应使用相对应的颜色。在操作过程中要严格按照工业燃气操作守则进行作业。 一.切割作业前的准备 1.进行切割作业前,必须检查各种设备和安全装置经已安装正确,并且各种设备运行正常。 2.确定气瓶已装有正确类型的压力调节器,并已正确的和割据连接. 3.检查气喉是否有缺陷或被损坏,例如:气喉破口、裂缝及磨损等,如果有需要,应由符合资格的工作人员更换,并且检查所有气道接口是否有漏气迹象。确保气管摆放的方法不会使气管严重扭曲,或被其它重型设备碾压,以避免气流被堵塞或气管受到损坏。 4.点火前必须把管路内的空气完全排放干净。 5.在切割过程中气管必须远离切割工件或割嘴火焰。 二.作业期间的准备 1.配戴个人防护设备及依循安全作业程序行事。 2.小心处理已点着的割据,不得把它悬挂于气瓶上,甚或短暂地无人看管下摆放。

3.将与工作无关的可燃物质搬离操作现场,避免引起火灾。 4.严禁在生产区内使用明火,严禁与本单位无关的人员进入生产区。 三.切割安全操作注意事项 (一)火焰切割是利用可燃气体(CH4,C3H8)在纯氧气中燃烧,使金属在高温作用下达到燃点,然后借助氧气剧烈燃烧,并在气流作用下吹出熔渣,从而将金属分离开的一种加工方法。 (二)火焰切割使用的气体有:天然气,C3H8,氧气 1.天然气最主要的成分是甲烷,基本不含硫,无色、无臭、无毒、无腐蚀性,具有安全、热值高、洁净和应用广泛等优点,目前已成为众多发达国家的工业企业必选燃气气源。 2.C3H8 是无色无臭的易燃气体,熔点-189.7 ℃,沸点-42.1℃,相对密度 0.5853(-45/4℃)。气体根据使用效果、成本、气源情况等综合分析,C3H8是乙炔的比较理想的代用燃料,目前C3H8的使用量在所有乙炔代用燃气中用量最大。工业发达国家早已经使用丙烷(C3H8)这种质优价廉的气体进行火焰切割。 3.氧气在标准状态下是无色无味无毒的气体,分子式为O2,密度为1.43千克/立方米,比空气稍重(空气密度是1.29千克/立方米);在-183时,氧气变成淡蓝色的液体;在-219时,就凝成淡蓝色雪状的固体。氧气本身不能燃烧,是一种活泼的助燃气体,是强氧化剂,与可燃气体混合燃烧可以得到高温火焰。有机物与氧的反应,会放出大量

曝气生物滤池设计

曝气生物滤池设计 1 曝气生物滤池滤料体积 3 0153 10001503001000m N QS V v =??== BOD 容积负荷选3Kg d m BOD ?35,采用陶粒滤料,粒径5mm 。 2 滤料面积 滤料高度取h 3=3m 2 3 5315m h V A === 滤池采用圆形,则滤池直径m A d 52.214.35 4 4 1=?==π,取2.5m 取滤池超高h1=0.5m ,布水布气区高度h2=1.0m ,滤料层上部最低水位h4=1.0m ,承托层高h5=0.3m 滤池总高度H=5.8m 3 水力停留时间 空床水力停留时间h Q V t 2.12430043 5.221=????==π 实际水力停留时间h t t 6.02.15.012=?==ε 4 校核污水水力负荷 h m m d m m A Q N q ?=?=?==23232 55.215.615.24 300 π 5 需氧量

OR =)(32.0)( 82.05BOD X BOD BOD O ?+?△ 设3.0)20(La =K ,8.0=MLSS MLVSS ,7.0BOD BOD 5 5=进水总进水溶解性 )20T ()La(20La(T)024.1K K -?= 4.0024.10.3K )2028(La(28)=?=- 出水SS 中BOD 含量: L mg e e X MLSS MLVSS S La K e ss 5.19)1(42.1208.01(42.154.05)28(=-???=-??=?-出水溶解性BOD 5含量 Se=50-19.5=30.5mg/L 去除溶解性BOD5的量: L mg BOD 5.745.301507.05=-?=? 单位BOD 需氧量: 52/60.015 .009.032.015.00745.082.0KgBOD KgO OR =?+?= 实际需氧量: h KgO d KgO Q S OR AOR /6.1/8.3730015.06.04.14.1220==???=???= 6 标准需氧量换算 设曝气装置氧利用率为E A =12%,混合液剩余溶解氧C 0=2mg/L,曝气装置安装在水面下4.2m ,取α=0.8,β=0.9,Cs=7.92mg/L ,ρ=1 Pa H P P b 53531042.12.4108.910013.1108.9?=??+?=?+= %3.19%100) 1(2179)1(21=?-+-=A A t E E Q L mg Q P C C t b s sb /2.9)423.1910026.21042.1(92.7)4210026.2(5 55=+???=+?=

电焊工安全操作规程

电焊工安全操作规程 1、必须遵守焊、割设备一般安全规定及电焊机安全操作规程。 2、电焊机外壳,必须接地良好,其电源的装拆应由电工进行。 3、电焊机要设单独的开关,开关应放在防雨的闸箱内,拉合时应戴手套侧向操作。 4、焊钳与把线必须绝缘良好,连接牢固,更换焊条应戴手套,在潮湿地点工作,应站在绝缘胶板或木板上。 5、严禁在带电和带压力的容器上或管道上施焊,焊接带电的设备必须先切断电源。 6、焊接贮存过易燃、易爆、有毒物品的容器或管道,必须清除干净,并将所有孔口打开。 7、在密闭金属容器内施焊时,容器必须可靠接地,通风良好,并应有人监护,严禁向容器内输入氧气。 8、焊接预热工件时,应有石棉布或档板等隔热措施。 9、把线、地线禁止与钢丝绳接触,更不得用钢丝绳索或机电设备代替零线,所有地线接头,必须连接牢固。 10、更换场地移动把线时,应切断电源并不得手持把线爬梯登高。 11、清除焊渣或采用电弧气刨清根时,应戴好防护眼镜或面罩,防止铁渣飞溅伤人。 12、多台焊机在一起集中施焊时,焊接平台或焊件必须接地,并应有隔光板。 13、钍钨板要放置要密闭铅盒内,磨削钍钨板时,必须戴手套,口罩,并将粉尘及时排除。 14、二氧化碳气体预热器的外壳应绝缘,端电压不应大于36V。 15、雷雨时,应停止露天焊接作业。 16、施焊场地周围应清除易燃易爆物品,或进行覆盖、隔离。 17、必须在易燃易爆气体或液体扩散区施焊时,应经有关部门检试许可后,方可施焊。 18、工作结束应切断焊机电源,并检查工作地点,确认无起火危险后,方可离开。

气焊工安全操作规程 1、必须遵守焊、割设备一般安全规定及气焊设备安全操作规程。 2、施焊场地周围应清除易燃易爆物品,或进行覆盖、隔离,必须在易燃易爆气体或液体扩散区施焊时,应经有关部门检试许可后,方可进行。 3、乙炔发生器必须设有回火防止安全装置。氧气瓶、乙炔瓶、氧气、乙炔表及焊割工具上,严禁沾染油脂。 4、乙炔发生器的零件和管路接头,不得采用紫铜制作。 5、高、中压乙炔发生器应可靠接地,压力表、安全阀应定期校验。 6、乙炔发生器不得放在民线的正下方,与氧气瓶不得放一处,距易燃易爆物品和明火的距离,不得少于10米。检验是否漏气,要用肥皂水,严禁用明火。 7、氧气瓶、乙炔瓶应有防震胶圈,旋紧安全帽,避免碰撞和剧烈震动,并防止曝晒。 8、乙炔气管用后需清除管内积水,胶管防止回火的安全装置冻结时,应用热水加热解冻,不准用火烤。 9、点火时,焊枪口不准对人,正在燃烧的焊枪不得放在工件或地面上。带有乙炔和氧气时,不准放在金属容器内,以防气体逸出,发生燃烧事故。 10、不得手持连接胶管的焊枪爬梯、登高。 11、严禁在带压的容器或管道上焊、割,带电设备应先切断电源。 12、在贮存过易燃易爆及有毒物品的容器或管道上焊、割时,应先清除干净,并将所有孔、口打开。 13、铅焊时,场地应通风良好,皮肤外露部分应涂护肤油脂。工作完毕应洗漱。 14、工作完毕,应将氧气瓶、乙炔气瓶阀关好,拧上安全罩。检查操作场地,确认无着火危险,方准离开。

曝气生物滤池

曝气生物滤池工艺 班级:给排水XXX 姓名:XXXX 学号:XXXXXXXXXX 摘要:作为污水生物处理的新工艺之一——曝气生物滤池工艺,有着活性污泥法的优点,但又与普通生物滤池有所不同。本文主要介绍曝气生 物滤池的发展、处理系统及结构、原理、工艺类型、组合形式介绍、工艺特点及问题与前景。 关键词:曝气生物滤池工艺类型工艺特点 曝气生物滤池(Biological Aerated Filter)简称BAF,是八十年代末九十年代初在普通生物滤池的基础上,并借鉴给水滤池工艺而开发的污水生物处理新工艺。自从首座曝气生物滤池被发明,在科研人员和工程技术人员的共同努力下,BAF技术取得了长足的发展,工艺趋于更加成熟,功能更加完善。该技术不仅可用于污水处理厂的三级精处理和水体富营养化处理,而且广泛地适用于城市污水、小区生活污水、以及各类的工业废水处理。随着研究的深入,曝气生物滤池从单一的工艺逐渐发展成系列综合工艺,具有去除SS、COD、BOD5、硝化、脱氮除磷、去除AOX(有害物质)的作用。 世界上首座曝气生物滤池于1981年在法国投产,随后在欧洲各国得到广泛应用。美国和加拿大等美洲国家在20世纪80年代末引进此工艺,日本、韩国和中国台湾也先后引进了此项技术。目前世界上较大的环保公司如法国得利满公司、德国菲力普穆勒公司、法国VEOLIA公司均把它作为拳头产品在全世界推广。在国内,曝气生物滤池正处于推广阶段。 曝气生物滤池处理系统及结构如下:(1)池体滤料层高度2.5~4.5m,(2) 承托层高度0.3~0.4m,配水区高度1.2~1.5m,清水区高度1.0~1.3m,超高0.3~0.5m。(3)滤料为球型多孔生物滤料。(4)承托层、布水系统、布气系统、反冲洗系统、出水系统等。 曝气生物滤池处理污水的原理是反应器内填料上生长的生物膜中微生物氧化分解作用、填料及生物膜的吸附截留作用和沿水流方向形成的食物链分级捕食作用以及生物膜内部微环境和厌氧段的反硝化作用。首先是微生物附着在填料表面上,污水在流经载体表面过程中 ,通过有机营养物的吸附,氧向生物膜内部的扩散以及膜中所发生的生物氧化作用,对污染物进行分解。在生物滤池中,污染物、溶解氧及各种必需的营养物质首先要经过液相扩散到生物膜表面,进而到生物膜内部,不但维持了膜上生物群的生长,而且扩散到生物膜表面或内部的污染物也有机会被生物膜生物所分解与转化,最终形成各种代谢产物(CO2、水等)。曝气生物滤池的过滤作用表现为填料本身就具有机械的截留作用和吸附作用,进水中的颗粒粒径较大的悬浮状物质被截留,经过培菌后滤料上生长有大量微生物,微生物新陈代谢作用产生的粘性物质如多糖类、酯类等起吸附架桥作用,与悬浮颗粒及胶体粒子粘结在一起,形成细小絮体,通过接触絮凝作用而被去除。

(完整版)电焊 气割安全操作规程

XXXX实业股份有限公司 电焊安全操作规程 WB/ZJ-01-066一、工作前应认真检查工具、设备是否完好。焊机的外壳是否有可靠的接地;焊机必须有良好的绝缘;电源接线柱必须有可靠的护罩。二、焊机一次电源线不能过长,不允许有接头。二次线(龙头线),必须有足够的导电截面和良好的绝缘,接头一般不允许超过3个,并采取压接法,破损处应及时修补包扎好。焊接地线要有足够的截面并连接牢固。 三、电流闸刀应有防护罩,不许裸露,操作时应戴手套,人头偏斜,防止电弧灼伤。 四、焊接时应离易燃易爆物品5~10米。 五、在狭小舱室和容器内焊接时,应加强通风,必须有人监护,发现问题要及时采取措施。 六、对做了油漆和绝缘的舱室和容器,必须进行通风,待溶剂挥发,表面固化,经测爆检查无可燃气体后,方可进行焊接。 七、禁止在有压力的或封闭的管道和容器上焊接,不得在带电物体上进行焊接。 八、高空作业时应系戴好安全带和安全帽,并将电焊龙头线妥善固定,不准缠在身上。 九、焊机不能淋雨曝晒,焊机的接地线和搭铁线不准搭在各种气瓶、管道、脚手架、钢丝绳、轨道、屋架、贮罐等上面。 十、工作完毕或即时工作结束应将电焊龙头线拿出舱外并盘挂好,切断、关闭电源、气源,检查作业区域及周边环境,消除火源。 十一、工作前和工作结束后认真检查和清理现场,消除隐患。

浙江乍浦实业股份有限公司 气割(焊)安全操作规程 WB/ZJ-01-114一、进行气焊(气割)作业人员必须持“特种作业操作证”方可上岗操作。 二、氧气瓶、乙炔瓶的阀、表均应齐全有效,紧固牢靠,不得松动、破损和漏气。氧气瓶及其附件、胶管和开闭阀门的搬手上均不得沾染油污。 三、氧气瓶应与其他易燃气瓶、油脂和其他易燃物品分开保存,也不宜同车运输。氧气瓶应有防震胶圈和安全帽,不得在强烈阳光下暴晒。严禁用塔吊或其他吊车直接吊运氧气或乙炔瓶。 四、乙炔胶管,氧气胶管不得错装。乙炔胶管为黑色,氧气胶管为红色。 五、氧气瓶与乙炔瓶储存和使用时的距离不得小于10米,氧气瓶、乙炔瓶与明火或割炬(焊炬)间距离不得小10米。 六、点燃焊(割)炬时,应先开乙炔阀点火,然后开氧气阀调整火焰,并闭时先关闭乙炔阀,再关闭氧气阀。 七、工作中如发现氧气瓶阀门失灵或损坏,不能关闭时,应让瓶内的氧气自动跑尽后再行拆卸修理。 八、、氧气和乙炔胶管不能混用,氧气用红色胶管(耐压15kgf/cm,1.47兆帕),乙炔用黑色胶管(耐压3kgf/cm,0.294兆帕);胶管头要用铅丝扎紧固牢。新胶管使用前应吹除内部的灰粉,严禁一付胶管接用二把割具。。

电气焊割工安全操作规程 - 制度大全

电气焊割工安全操作规程-制度大全 电气焊割工安全操作规程之相关制度和职责,一、焊工操作时,必须穿戴好必要的劳保,电焊工焊接时须使用焊妆面罩,清渣时应戴防护眼镜,气焊(割)工应带防护眼镜。二、严禁在有压力的容器管路上焊接,在距焊接场所5m以内严禁存放易燃易爆物... 一、焊工操作时,必须穿戴好必要的劳保,电焊工焊接时须使用焊妆面罩,清渣时应戴防护眼镜,气焊(割)工应带防护眼镜。 二、严禁在有压力的容器管路上焊接,在距焊接场所5m以内严禁存放易燃易爆物品,装过易燃介质器焊接时,须用碱水或蒸气彻底清洗指残介质,扣开刀孔或手孔确实无误后,方可旋焊。 三、在焊修乙炔气发生器前,必须用清水冲洗干净并用明火试爆,确实无误后,方可旋焊。 四、移动式乙炔气发生器附近,严禁接触火源距焊接现场保持10米以上。 五、乙炔气发生器应设防爆及防止回火的安全装置,经常检查发生器及回火防止器水注,不宜过高或过低,仪表和安全应定期检验,确保灵敏可靠。 六、乙炔气发生器应设防爆及防止回火的安全装置,经常检查发生器及回火防止器水注,不宜过高或过低,仪表和安全应定期检验,确保灵敏可靠。 七、回火防止器冻结时,可用热水或蒸气加热,禁止用火烤乙炔气发生器上的零件及其附属工具不能用绝铜制作,以防产生铜而引起爆炸。 八、氧气瓶及减压器严禁接触油脂。 九、在接装减压器前,应先开起一下氧气瓶阀将瓶口污物染质吹掉,氧气乙炔气瓶高低压表要灵敏可靠。 十、氧乙炔气瓶应妥善搬运存放,避免碰撞和震动不得在阳光下爆晒并应避开热源。 十一、减压器装上后,应先开起气瓶,再开起减压器,工作结束后应先关闭气瓶,再关减压器,操作时焊工应在减压器侧面。 十二、氧气瓶中的氧气不允许全部放完,应保留0.1-0.2mpa的压力。 十三、氧气胶管与乙炔气胶管不得换用或代用,管路连接处严防漏气。 十四、焊炬使用中应防止过分受热,当发生回火时应迅速关闭氧气阀门,然后再关闭乙炔气阀门。 十五、乙炔管破裂着火时,应迅速折起前一段胶管将火熄灭。氧气管着火时,应迅速关闭氧气瓶阀门。禁止用折管办法灭火焰。 十六、电焊机必须有可靠接地。 十七、电焊把线应有良好绝缘,破皮漏电处应及时修好。 编辑部职责网吧职责网点职责 欢迎下载使用,分享让人快乐

污水处理设计常用设计规范

污水处理设计常用设计规范 (1)业主提供的水量、水质等基础资料 (2)《室外给给水设计规范》(GB 50013-2006) (3)《室外给排水设计规范》(GB 50014-2006) (4)《建筑给水排水设计规范》(GB 50015-2003) (5)《污水综合排放标准》(GB 8978-1996) (6)《民用建筑设计通则》(GB 50352-2005) (7)《工业与企业总平面设计规范》(GB 50187-93) (8)《给水排水工程构筑物结构设计规范》(GB 50069-2002) (9)《给水排水工程钢筋混凝土水池结构设计规范》(CECS 138-2002)(10)《混凝土结构设计规范》(GB 50010-2002) (11)《砌体结构设计规范》(GB 50003-2001) (12)《钢结构设计规范》(GB 50017-2003) (13)《建筑结构荷载设计规范》(GB 50009-2001)(2006年版)(14)《建筑地基基础设计规范》(GB 50007-2002) (15)《建筑地基处理技术规范》(JGJ 79-2002) (16)《建筑结构可靠可靠设计统一标准》(GB 50068-2001) (17)《建筑抗震设计规范》(GB 50011-2001) (18)《建筑抗震设计规程》(DGJ 08-9-2003) (19)《构筑物抗震设计规范》(GB/J 50191-93) (20)《室外给水排水和燃气助力工程抗震设计规范》(GB 50032-2003)(21)《建筑设计防火规范》(GB 50016-2006) (22)《建筑内部装修设计防火规范》(GB 50222-95)(2001年版)(23)《采暖通风与空调调节设计规范》(GB 50019-2003) (24)《工业企业设计卫生标准》(GB/Z 1-2002) (25)《工业企业噪声控制设计规范》(GB/J 140-90) (26)《民用建筑电气设计规范》(JGJ 16-2008) (27)《供配电系统设计规范》(GB 50052-95)

曝气生物滤池设计要点说明

曝气生物滤池设计要点 1、曝气生物滤池的发展及其分类 曝气生物滤池( BAF) 是20 世纪80 年代末在欧美发展起来的一种新型污水处理技术, 凭借良好的工作性能在污水处理领域受到了广泛重视。从上世纪90 年代起在中国也得到了广泛的应用。 BAF 污水处理工艺属于生物膜法的畴,集生化反应和固液分离与一体,已被广泛的应用于城镇污水和可生化的工业废水等行业的二级处理和三级处理中。 BAF 的基本构造主要包含:生物滤料层(用于承载活性污泥) ;用于布水布气的专用滤头;防堵塞专用单孔膜空气扩散器及曝气系统;反冲洗系统,维持滤池的正常运转。根据使用围,BAF 可以分别应用于深度处理和二级处理。而根据处理目的:又可划分为除碳池(C池)、硝化池(N池)和反硝化池(DN池)。 2、负荷与滤速 负荷与滤速是滤池设计当中的两个重要参数。 2.1 负荷 BAF 工艺通常采用容积负荷, 计算需要滤料的体积后确定滤池的过滤面积。BAF 可划分为C 池、N 池和DN 池,相应设计负荷分为:BOD 负荷、硝化负荷和反硝化负荷。根据室外排水设计规( GB50014-2006) , 以上三种负荷的取值围分别为: 3 ~ 6 kgBOD5 / ( m3?d)、0.3 ~ 0.8kgNH3-N /( m3?d) 和0.8~ 4.0 kgNO3--N /( m3?d) , 由于围较宽不好把握,给设计取值带来困难。得利满收集了较多BAF 的运行情况, 其汇总的数据具有较大参考意义。 工艺进水COD 负荷同出水COD 浓度成正比, 当负荷达10 kgCOD/( m3?d) 时,出水CODCr超过100 mg/L,如果要达到一级B标准,COD负荷宜取低值。维持出水CODCr在60 mg/ L左右时,进水负荷应控制在4~ 5 kgCOD/( m3?d),出水CODCr在50 mg / L以下时,进水负荷应当小于3 kgCODCr /( m3?d)。 BAF 可以实现很高的硝化效率, 硝化负荷达到1.4 kgNH3-N/ ( m3?d) 时,硝化效率仍可稳定在80%,但硝化能力同进水中的BOD5 浓度成反比,当进水BOD5 大于60 mg / L时,硝化负荷仅为0.3 kgNH3-N / ( m3?d),当进水BOD5在20 ~ 50 mg/ L 时,硝化负荷小于0. 7,当进水BOD5在20 mg/ L以下时,硝化负荷才能达到 1 以

曝气生物滤池

1.1.1 曝气生物滤池的设计与计算 1 曝气生物滤池体积V 曝气生物滤池选用陶料滤料,容积负荷Nv 选用3 34067.65363 100065.2741014.71000m N QS V v =???== 设两组,每组3' 34.32682 67 .65362m V V === 2曝气生物滤池面积A ,滤料层高度m h 43= 23'085.8174 34 .3268m h V A === 分12个格,则2' 10.6812 085 .817m A ≈= 3滤池尺寸,滤池每格采用长方形,单个滤池边长为:2 89.683.83.8m =?。取滤池超高度1h 为 m 5.0,清水层高度2h 为m 8.0,滤料高度3h 为m 4,承托层高度4h 为m 3.0,配水室5h 高度为 m 2.1。 则滤池高:m h h h h h H 8.62.13.048.05.054321=++++=++++= 4水力停留时间t 空床水力停留时间:h Q V t 10.1241014.734.3268244 ' =??=?= 实际停留时间:h t t 55.010.15.0'=?==ε 式中:ε——滤料层孔隙率,5.0=ε 5校核污水水力负荷q N [][] h m m d m m A Q N q 23234 /64.3/38.87085 .8171014.7==?== 符合过滤(水力负荷)满足一般要求h m m 2 3/8~2 6需氧量 DC 型曝气生物滤池设计需氧量可用下列公式计算: ?? ? ??+??? ????=BOD X BOD BOD OR S 032.082.0

式中:OR ——单位质量的BOD 需氧量,52/KgBOD KgO ; S BOD ?——滤池单位时间内去除可溶性BOD ,L mg /; BOD ——滤池单位时间内进入的BOD ,L mg /; 0X ——滤池单位时间内进入的悬浮物,L mg /; (1) 可溶性BOD 计算 在C ?20下,一般有机物完全分解需d 100左右,实际应用较为困难,d 20得20BOD 已完成了%90的u BOD ,5BOD 又完成了%80~%70的20BOD ,因此可以说5BOD 完成氧化分解有机物的大部分,而且BOD 的污染考核指标也是5BOD ,所以可以用5BOD 值代入上式,近似计算OR 值,然后可乘上4.1系数。 设3.020=K ,0355.1=θ,7.0=SS VSS , 5.055=BOD BOD 进水总进水溶解性 冬季C ?7时生化反应常数: () 20.0035.13.020 7202010=?==--T K K θ 出水SS 中5BOD 量: ()() L mg e e X SS VSS S k e SS /6.12142.1207.0142.152.05=-???=-???= ?-?- 出水溶解性5BOD 量: L mg S e /4.76.1220=-= 去除溶解性5BOD : L mg BOD /93.1294.765.2745.05=-?=? 夏季C ?25时生化反应常数: () 36.0035.13.020 25202010=?==--T K K θ 出水SS 中5BOD 量: ()() L mg e e X SS VSS S k e SS /6.16142.1207.0142.1536.05=-???=-???= ?-?- 出水溶解性5BOD 量: L mg S e /4.36.1620=-= 去除溶解性5BOD : L mg BOD /93.1334.365.2745.05=-?=?

相关文档
最新文档