数值分析第6章习题

数值分析第6章习题
数值分析第6章习题

数值分析第六章整合版(黑组) 一、填空题

1、已知

()01

P x =,()1P x x

=,

()

()

2

2312

x P x -=

,根据勒让德多项式的递推关系,则

求()3P x =(3532x x - )

解:勒让德多项式的递推关系为()()()()()11121n n n n P x n xP x nP x +-+=+-,n=1,2…….

将()1P x x =,()()

2

2312

x P

x -=

代入上式即可求出()3P x =3532

x x

- 2、若)(x P 是],[)(b a C x f ∈的最佳3次逼近多项式,则)(x P 在],[b a 上存在5 个交替为

正、负偏差点。(考点:切比雪夫定理)

3、切比雪夫正交多项式可表示为(x)cos(narcosx)n T =,(x)n T 是最高次幂系数为12n -

的n 次多项式。(考点:切比雪夫多项式性质)

4、最佳一致问题同时存在正偏差点和负偏差点 (考点:最佳一致逼近定理3) 二、选择题

1、求函数3)1()(+=x x f 在区间[0,1],],[,21b a x x ∈上的一次最佳一致逼近多项式(D )

A x +4358.0

B x 34358.0+

C x 54358.0+

D x 74358.0+

2、设

的2-其中 为定义在[a,b]上的(A )

A 权函数

B 反函数

C 幂函数

D 函数

3、x

e =)(x

f ,-1≤x ≤1,且设=

p(x)x a a 1

+,求a a 1

,

0使得)(x p 为)(x f 于[]

1,0上的最佳平方逼近多项式(A ) A:()

1021--=e e a ,311e a -= B:()

e a e a e 111

03

1,2---==

)

(x ρ],[)(b a C x f ∈()f x

C:()

2,311

110e a e a e --=-=

D:()

2

,211

11

0e a e a e --=-= 解: {}

(

)

()

()()e

e e e dx x

f e dx f x

x

1

1

1

2

1

1

1

1

1

1

-2221

1-11-,10

,02,,,32dx ,0xdx 22dx x 1span x ----==-======??? ??===????????????

?

?,,,,,,

设方程组为:???

?????-=????????????

???--e e a a e 1110232002 解得:()

3

,211

11

0e a e a e --=-=

三、计算题

1.计算下列函数)(x f 关于[]1,0C 的2

1,,f

f f ∞

(1)3

(x)(x 1)f =-;(2).2

1

)(-=x x f 解:(1)301()

max (1)1x f x x ∞

≤≤=-=,

1

310

1()(1)4

f x x dx =-=

?,

1

2

2

13

20()(1)f x x dx ????=-=??????

? (2)2

1

21max )

(1

0=-

=≤≤∞

x x f x ,

112110012111111

()222884

f x x dx xdx x dx =-=-+-=+=???

,

1

2

1

2201()()2f x x dx ??

=-=????

?。

2、假设 f (x )在[a ,b ]上连续 ,求 f (x )的零次最佳一致逼近多项式。

解 因 f ( x ) ∈ C [a ,b ] ,故f (x )在[a ,b ]上有最大 、最小值 ,分别记为 M 与m .取P (x ) = (M + m )/2 ,可验证P (x )就是 零次最佳一致逼近多项式。 这是因为

Max[f (x ) -(M + m)]/2=(M - m )/2, Min[f (x ) -(M + m)]/2= -(M - m)/2.

有二个交错点组 ,故 P ( x ) = (M + m )/2即为所求。

3、利用切比雪夫不等式,求()4331f x x x =+-在区间[0,1]上的三次最佳一致逼近多项式。

解:()f x 是四次多项式,利用式()111

2

n n n n P x T x --=-

,有 ()()()()42423441111

881288

f x P x T x x x x x --==?-+=-+

所以,()()42434232

3119313888

P x f x x x x x x x x x ?

???=--+=+---+=+-

? ?????

4、3()f x x =求[-1,1]上关于x ρ()=1的最佳平方逼近二次多项式

解:()k P x 勒让德多项式:2/)1

3()(,)(,1)(2210-===x x P x x P x P 13

011311213211,233255310

22

a x dx o a x x dx x a x dx *-*

-*

-=

===

-==??? 故23

()5S x *

=

出题人

电控14-2班 邢飞 油振伟 李泽 季淑洁 陈晓静

工商14-2班 李群峰 剧苗苗 张茗娇 于晓芳 孙佳 王晨 李阳

数值分析习题与答案

第一章绪论 习题一?1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。 解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1.2.4)有 已知x*的相对误差满足,而 ,故 即 2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。 解:直接根据定义和式(1.2.2)(1.2.3)则得?有5位有效数字,其误差限,相对误差限 有2位有效数字, 有5位有效数字, 3.下列公式如何才比较准确? (1)?(2) 解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。

(1)?(2) 4.近似数x*=0.0310,是 3 位有数数字。 5.计算取,利用 :式计算误差最小。 四个选项: 第二、三章插值与函数逼近 习题二、三 1. 给定的数值表 用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newto n插值,并应用误差估计(5.8)。线性插值时,用0.5及0.6两点,用Newton插值??误差限 ,因,

故? 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 ?误差限,故? 2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h应取多少? 解:用误差估计式(5.8), ?令 因?得 3. 若,求和.

解:由均差与导数关系 ?于是 4. 若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有?而当P=n +1时 ?于是得 5. 求证. 解:解:只要按差分定义直接展开得 ? 6. 已知的函数表

第五章习题解答_数值分析

第五章习题解答 1、给出数据点:0134 19156 i i x y =?? =? (1)用012,,x x x 构造二次Lagrange 插值多项式2()L x ,并计算15.x =的近似值215(.)L 。 (2)用123,,x x x 构造二次Newton 插值多项式2()N x ,并计算15.x =的近似值215(.)N 。 (3)用事后误差估计方法估计215(.)L 、215(.)N 的误差。 解: (1)利用012013,,x x x ===,0121915,,y y y ===作Lagrange 插值函数 2 20 2 1303011915 01031013303152933 ()()()()()() ()()()()()()()() i i i x x x x x x L x l x y x x =------== ?+?+?-------++= ∑ 代入可得2151175(.).L =。 (2)利用 134,,x x x ===,9156,,y y y ===构造如下差商表: 229314134196()()()()()N x x x x x x =+-+---=-+- 代入可得215135(.).N =。 (3)用事后误差估计的方法可得误差为 ()()()02222 03-x 150 x x x -=117513506563-04.()()()(..).x f L R L x N x x x --≈= -≈- ()()()3222203-154 x x -=1175135-1.0938-04 .()()()(..)x x f N R x L x N x x x --≈=-≈- 2、设Lagrange 插值基函数是 0012()(,,,,)n j i j i j j i x x l x i n x x =≠-==-∏ 试证明:①对x ?,有 1()n i i l x ==∑ ②00110001211()()(,,,)()()n k i i i n n k l x k n x x x k n =?=?==??-=+? ∑ 其中01,,,n x x x 为互异的插值节点。 证明: ①由Lagrange 插值多项式的误差表达式10 1()()()()()!n n i i f R x x x n ξ+==-+∏知,对于函数1()f x =进行

数值分析习题

习题1 1. 填空题 (1) 为便于算法在计算机上实现,必须将一个数学问题分解为 的 运算; (2) 在数值计算中为避免损失有效数字,尽量避免两个 数作减法运算;为避免 误差的扩大,也尽量避免分母的绝对值 分子的绝对值; (3) 误差有四大来源,数值分析主要处理其中的 和 ; (4) 有效数字越多,相对误差越 ; 2. 用例1.4的算法计算10,迭代3次,计算结果保留4位有效数字. 3. 推导开平方运算的误差限公式,并说明什么情况下结果误差不大于自变量误差. 4. 以下各数都是对准确值进行四舍五入得到的近似数,指出它们的有效数位、误差限和相对误差限. 95123450304051104000003346087510., ., , ., .x x x x x -==?===? 5. 证明1.2.3之定理1.1. 6. 若钢珠的的直径d 的相对误差为1.0%,则它的体积V 的相对误差将为多少。(假定钢珠为标准的球形) 7. 若跑道长的测量有0.1%的误差,对400m 成绩为60s 的运动员的成绩将会带来多大的误差和相对误差. 8. 为使20的近似数相对误差小于0.05%,试问该保留几位有效数字. 9. 一个园柱体的工件,直径d 为10.25±0.25mm,高h 为40.00±1.00mm,则它的体积V 的近似值、误差和相对误差为多少. 10 证明对一元函数运算有 r r xf x f x k x k f x εε'≈= () (())(),() 其中 并求出157f x x x ==()tan ,.时的k 值,从而说明f x x =()tan 在2 x π ≈时是病态问题. 11. 定义多元函数运算 1 1 1,,(),n n i i i i i i S c x c x εε====≤∑∑其中 求出S ε()的表达式,并说明i c 全为正数时,计算是稳定的,i c 有正有负时,误差难以控制. 12. 下列各式应如何改进,使计算更准确:

(完整版)数值分析第7章答案

第七章非线性方程求根 一、重点内容提要 (一)问题简介 求单变量函数方程 ()0f x = (7.1) 的根是指求*x (实数或复数),使得(*)0f x =.称*x 为方程(7.1)的根,也称*x 为 函数()f x 的零点.若()f x 可以分解为 ()(*)()m f x x x g x =- 其中m 为正整数,()g x 满足()0g x ≠,则*x 是方程(7.1)的根.当m=1时,称*x 为单根;当m>1时,称*x 为m 重根.若()g x 充分光滑,*x 是方程(7.1)的m 重根,则有 (1)() (*)'(*)...(*)0,(*)0m m f x f x f x f x -====≠ 若()f x 在[a,b]上连续且()()0f a f b <,则方程(7.1)在(a,b)内至少有一个实根,称[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得. (二)方程求根的几种常用方法 1.二分法 设()f x 在[a,b]上连续,()()0f a f b <,则()0f x =在(a,b)内有根*x .再设()0f x =在 (a,b)内仅有一个根.令00,a a b b ==,计算0001 ()2x a b =+和0()f x .若0()0f x =则*x x =,结束计算;若00()()0f a f x >,则令10,1a x b b ==,得新的有根区间11[,]a b ;若 00()()0 f a f x <,则令 10,10 a a b x ==,得新的有根区间 11[,]a b .0011[,][,]a b a b ?,11001()2b a b a -=-.再令1111 ()2x a b =+计算1()f x ,同上法得 出新的有根区间22[,] a b ,如此反复进行,可得一有根区间套 1100...[,][,]...[,] n n n n a b a b a b --????

数值分析习题

第一章 绪论 习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。 1 若误差限为5 105.0-?,那么近似数0.003400有几位有效数字?(有效数字的计算) 2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算) 3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ?有几位有效数字?(有效数字的计算) 4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算) 5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5* =,已知 cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v 2π=的绝对误差限与相对误差 限。(误差限的计算) 6 设x 的相对误差为%a ,求n x y =的相对误差。(函数误差的计算) 7计算球的体积,为了使体积的相对误差限为%1,问度量半径r 时允许的相对误差限为多大?(函数误差的计算) 8 设?-=1 1 dx e x e I x n n ,求证: (1))2,1,0(11 =-=-n nI I n n (2)利用(1)中的公式正向递推计算时误差逐步增大;反向递推计算时误差逐步减小。(计算方法的比较选择)

第二章 插值法 习题主要考察点:拉格朗日插值法的构造,均差的计算,牛顿插值和埃尔米特插值构造,插值余项的计算和应用。 1 已知1)2(,1)1(,2)1(===-f f f ,求)(x f 的拉氏插值多项式。(拉格朗日插值) 2 已知9,4,10=== x x x y ,用线性插值求7的近似值。(拉格朗日线性插值) 3 若),...1,0(n j x j =为互异节点,且有 ) ())(())(()())(())(()(11101110n j j j j j j j n j j j x x x x x x x x x x x x x x x x x x x x x l ----------= +-+- 试证明 ),...1,0()(0 n k x x l x n j k j k j =≡∑=。 (拉格朗日插值基函数的性质) 4 已知352274.036.0sin ,333487.034.0sin ,314567.032.0sin ===,用抛物线插值计算3367.0sin 的值并估计截断误差。(拉格朗日二次插值) 5 用余弦函数x cos 在00=x ,4 1π =x ,2 2π = x 三个节点处的值,写出二次拉格朗日插值 多项式, 并近似计算6 cos π 及其绝对误差与相对误差,且与误差余项估计值比较。(拉格朗 日二次插值) 6 已知函数值212)6(,82)4(,46)3(,10)1(,6)0(=====f f f f f ,求函数的四阶均差 ]6,4,3,1,0[f 和二阶均差]3,1,4[f 。(均差的计算) 7 设)())(()(10n x x x x x x x f ---= 求][1,0p x x x f 之值,其中1+≤n p ,而节点 )1,1,0(+=n i x i 互异。(均差的计算) 8 如下函数值表 建立不超过三次的牛顿插值多项式。(牛顿插值多项式的构造) 9求一个次数小于等于三次多项式)(x p ,满足如下插值条件:2)1(=p ,4)2(=p , 3)2(='p ,12)3(=p 。(插值多项式的构造)

《数值分析》第五章答案

习题5 1.导出如下3个求积公式,并给出截断误差的表达式。 (1) 左矩形公式:?-≈b a a b a f dx x f ))(()( (2) 右矩形公式:))(()(a b b f dx x f b a -≈? (3) 中矩形公式:?-+≈b a a b b a f dx x f ))(2 ( )( 解:(1) )()(a f x f ≈, )()()()(a b a f dx a f dx x f b a b a -=≈?? (2) )()(b f x f ≈,??-=≈b a b a a b a f dx b f dx x f ))(()()( )()(2 1)()()()(2 ηηξf a b dx b x f dx b x f b a b a '--=-'=-'=??,),(,b a ∈ηξ (3) 法1 )2 ( )(b a f x f +≈ , 法2 可以验证所给公式具有1次代数精度。作一次多项式 )(x H 满足 )2()2( b a f b a H +=+,)2 ()2(b a f b a H +'=+',则有 2 )2 )((!21)()(b a x f x H x f +-''= -ξ, ),(b a ∈ξ 于是 2.考察下列求积公式具有几次代数精度: (1) ?'+ ≈1 )1(2 1 )0()(f f dx x f ; (2) )3 1()31()(1 1f f dx x f +- ≈?-。 解: (1)当1)(=x f 时,左=1,右=1+0=1,左=右; 当x x f =)(时,左21= ,右=2 1 210=+,左=右; 当2 )(x x f =时,左=3 1 ,右=1,左≠右,代数精度为1。

东南大学_数值分析_第七章_偏微分方程数值解法

第七章 偏微分方程数值解法 ——Crank-Nicolson 格式 ****(学号) *****(姓名) 上机题目要求见教材P346,10题。 一、算法原理 本文研究下列定解问题(抛物型方程) 22(,) (0,0)(,0)() (0) (0,)(), (1,)() (0)u u a f x t x l t T t x u x x x l u t t u t t t T ?αβ???-=<<≤≤???? =≤≤??==<≤?? (1) 的有限差分法,其中a 为正常数,,,,f ?αβ为已知函数,且满足边界条件和初始条件。关于式(1)的求解,采用离散化方法,剖分网格,构造差分格式。其中,网格剖分是将区域{}0,0D x l t T =≤≤≤≤用两簇平行直线 (0) (0)i k x x ih i M t t k k N τ==≤≤?? ==≤≤? 分割成矩形网格,其中,l T h M N τ==分别为空间步长和时间步长。将式(1)中的偏导数使用不同的差商代替,将得到不同的差分格式,如古典显格式、古典隐格式、Crank-Nicolson 格式等。其中,Crank-Nicolson 格式具有更高的收敛阶数,应用更广泛,故本文采用Crank-Nicolson 格式求解抛物型方程。 Crank-Nicolson 格式推导:在节点(,)2 i k x t τ +处考虑式(1),有 22(,)(,)(,)222 i k i k i k u u x t a x t f x t t x τττ??+-+=+?? (2) 对偏导数 (,)2 i k u x t t τ ?+?用中心差分展开 []2311+13 1(,)(,)(,)(,) ()224k k i k i k i k i i k i k u u x t u x t u x t x t t t t ττηητ++??+=--<

数值分析第七章非线性方程求根习题答案

第七章非线性方程求根 (一)问题简介 求单变量函数方程 ()0f x = (7.1) 的根是指求*x (实数或复数),使得(*)0f x =.称*x 为方程(7.1)的根,也称*x 为函数() f x 的零点.若()f x 可以分解为 ()(*)()m f x x x g x =- 其中m 为正整数,()g x 满足()0g x ≠,则*x 是方程(7.1)的根.当m=1时,称*x 为单根;当m>1时,称*x 为m 重根.若()g x 充分光滑,*x 是方程(7.1)的m 重根,则有 (1)() (*)'(*)...(*)0,(*)0m m f x f x f x f x -====≠ 若()f x 在[a,b]上连续且()()0f a f b <,则方程(7.1)在(a,b)内至少有一个实根,称[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得. (二)方程求根的几种常用方法 1.二分法 设()f x 在[a,b]上连续,()()0f a f b <,则()0f x =在(a,b)内有根*x .再设()0f x =在(a,b)内 仅有一个根.令00,a a b b ==,计算0001()2x a b =+和 0()f x .若0()0f x =则*x x =,结束计算;若 00()()0 f a f x >,则令 10,1a x b b ==,得新的有根区间 11[,] a b ;若 00()()0 f a f x <,则令 10,10a a b x ==,得新的有根区间11[,]a b .0011[,][,]a b a b ?,11001 () 2b a b a -=-.再令1111 ()2x a b =+计算1()f x ,同上法得出新的有根区间22[,]a b ,如此反复进行,可得一有根区 间套 1100...[,][,]...[,] n n n n a b a b a b --???? 且110011 *,0,1,2,...,()...() 22n n n n n n a x b n b a b a b a --<<=-=-==-. 故 1 lim()0,lim lim ()* 2n n n n n n n n b a x a b x →∞→∞→∞-==+=

数值分析第五章学习小结【计算方法】

第五章最小二乘法与曲线拟合小结 一、本章知识梳理 1、 从整体上考虑近似函数同所给数据点 (i=0,1,…,m)误差 (i=0,1,…,m) (i=0,1,…,m)绝对值的最大值,即误差向量 的∞—范数;二是误差绝对值的和,即误差向量r的1—范数;三是误差 平方和的算术平方根,即误差向量r的2—范数;前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合 中常采用误差平方和来度量误差 (i=0,1,…,m)的整体大小。 数据拟合的具体作法是:对给定数据 (i=0,1,…,m),在取定的函 数类中,求,使误差(i=0,1,…,m)的平方和最小,即 从几何意义上讲,就是寻求与给定点 (i=0,1,…,m)的距离平方和为最小 的曲线(图6-1)。函数称为拟合函数或最小二乘解,求拟合 函数的方法称为曲线拟合的最小二乘法。 2、多项式拟合 假设给定数据点 (i=0,1,…,m),为所有次数不超过的多项式构成的函数类,现求一,使得 (1) 当拟合函数为多项式时,称为多项式拟合,满足式(1)的称为最小二乘 拟合多项式。特别地,当n=1时,称为线性拟合或直线拟合。 显然 为的多元函数,因此上述问题即为求的极值问题。由多元函数求极值的必要条件,得 (2) 即

(3) (3)是关于的线性方程组,用矩阵表示为 (4) 式(3)或式(4)称为正规方程组或法方程组。 可以证明,方程组(4)的系数矩阵是一个对称正定矩阵,故存在唯一解。 从式(4)中解出 (k=0,1,…,n),从而可得多项式 (5) 可以证明,式(5)中的满足式(1),即为所求的拟合多项式。我 们把称为最小二乘拟合多项式的平方误差,记作 由式(2)可得 (6) 多项式拟合的一般方法可归纳为以下几步: (1) 由已知数据画出函数粗略的图形——散点图,确定拟合多项式的次数n; (2) 列表计算和; (3) 写出正规方程组,求出; (4) 写出拟合多项式。 在实际应用中,或;当时所得的拟合多项式就是拉格朗日或牛 顿插值多项式。 3、曲线拟合: 曲线拟合,即把一组数据拟合为曲线,需遵循最小二乘法。常用双曲线型和指数型函数。

数值计算方法第七章习题 2013

计算方法 第七章 习题 复习与思考题 1.设f ∈C [a , b ],写出三种常用范数2 1 f f 及∞ f 。 2.f , g ∈C [a , b ],它们的内积是什么?如何判断函数族{? 0, ? 1, …, ? n }∈C [a , b ]在[a ,b ]上线性无关? 3.什么是函数f ∈C [a , b ]在区[a , b ]上的n 次最佳一致逼近多项式? 4.什么是f 在[a , b ] 上的n 次最佳平方逼近多项式?什么是数据{}m i f 0的最小二乘曲 线拟合? 5.什么是[ a , b ]上带权ρ (x )的正交多项式?什么是[ -1, 1 ]上的勒让德多项式?它有什 么重要性质? 6.什么是切比雪夫多项式?它有什么重要性质? 7.用切比雪夫多项式零点做插值得到的插值多项式与拉格朗日插值有何不同? 8.什么是最小二乘拟合的法方程?用多项式做拟合曲线时,当次数n 较大时为什么不直接求解法方程? 9.哪种类型函数用三角插值比用多项式插值或分段多项式插值更合适? 10.判断下列命题是否正确? (1)任何f (x ) ∈C [a , b ]都能找到n 次多项式P n (x ) ∈ H n ,使| f (x ) - P n (x ) | ≤ ε ( ε 为任给的误差限)。 (2)n n H x P ∈)(* 是f (x )在[ a , b ]上的最佳一致逼近多项式,则)()(lim * x f x P n n =∞ →对 ],[b a x ∈?成立。 (3)f (x ) ∈C [a , b ]在[a , b ]上的最佳平方逼近多项式P n (x ) ∈ H n 则)()(lim x f x P n n =∞ →。 (4))(P ~ x n 是首项系数为1的勒让德多项式,Q n (x ) ∈ H n 是任一首项系数为1的多项式,则 ? ? --1 1 21 1 2d )(d )](P ~ [x x Q x x n n 。 (5))(T ~ x n 是[-1 , 1]上首项系数为1的切比雪夫多项式。Q n (x ) ∈ H n 是任一首项系数为1的多项式,则 .)(max )(~ max 1 11 1x Q x T n x n x ≤≤-≤≤-≤ (6)当数据量很大时用最小二乘拟合比用插值好。

数值分析 第五章习题

第五章 习 题 1. 用高斯消去法解方程组 123234011921261x x x ????????????=??????????????????? 2. 用LU 分解,将第1题中的系数矩阵分解为L 和U 的乘积,L 是对角线元素为1的下三角矩阵,U 是上三角矩阵. 3. 用平方根法和T LDL 分解为求解方程组 123121332522334x x x x x x x ++=??+=??+=? 4. 证明 (1)两个下三角矩阵的乘积仍为下三角矩阵. (2)下三角矩阵之逆仍为下三角矩阵. 5. 用列主元素消去法解方程组 1231231 233472212320x x x x x x x x x ?+=???+?=?????=? 取4位数字计算. 6. 对四阶Hilbert 矩阵为系数的方程组 12341234 1234 12341111 234111102345111103456111104 567x x x x x x x x x x x x x x x x ?+++=???+++=???+++=???+++=? 试求其系数方程组A 的条件数()cond A ∞并分析方程组的性态。 7. 如果A 是一个对称正定矩阵,且带宽为21m +,证明在A 的三角分解T A LL =中出现的矩阵L 也是带状矩阵. 8. 设有三对角方程组

11121 2122232 b x c x d a x b x c x d +=+++= (121111) 1n n n n n n n n n n n n a x b x c x d a x b x d ???????++=+= 其系数矩阵有严格对角优势. 试写出用LU 分解求其解的计算公式. 9. 画出2R 中满足下列不等式的集合. (1)11x ≤ (2)21x ≤ (3)1x ∞≤ 10. 求证1I ≥,11A A ?≥. 11. 试证明2 21A A A ∞≤ 12. 对矩阵 2100121001210012A ????????=???????? 求A ∞,2A ,1A 和2()Cond A . 13. 比较下面两个方程组的解. 123123123111 2311102341110345x x x x x x x x x ?++=???++=???++=?? ,1231231231.000.500.3310.500.330.2500.330.250.200x x x x x x x x x ++=??++=??++=?

数值分析第七章上机题

数值分析第七章计算机实习题 写一程序实现下面问题的牛顿算法——求解方程组: ?? ???=--=-+.0)1sin(,18)7)(3(12321x e x x x 源程序如下: function [x,it,hist] = newton2(x0,f,g,maxit,tol) % Newton method for eqation systerm % INPUTS: % x0 initial point % f function % g gradient % maxit maximum iteration % tol tolerance for convergence % OUTPUTS: % x solution % it iteration % hist history of iteration format long ; if nargin<5, tol = 1e-7; if nargin<4, maxit = 100; if nargin<3, error('too few input!!'); end end end flag = 1; x0 = [0;0]; x = x0; hist = x; it = 0; for k = 1:maxit, x = x0 - feval(g,x0(1),x0(2))\feval(f,x0(1),x0(2)); if norm(x0-x)>=tol, x0 = x; else fprintf('\nNewton Iteration successes!!\n') return end it = it + 1;

hist = [hist x]; end flag = 0; fprintf('\nNewton Iteration fails!!\n'); 在命令窗口输入: >>f = inline('[(x1+3)*(x2^3-7)+18;sin(x2*exp(x1)-1)]','x1','x2'); >>g = inline ('[x2^3-7,3*x2^2*(x1+3);x2*exp(x1)*cos(x2*exp(x1)-1),exp(x1)*cos(x2*exp(x1)-1)]','x1','x2'); >> [x,it,hist] = newton2([0;0],f,g) 得到如下运行结果: >> [x,it,hist] = newton2([0;0],f,g) Newton Iteration successes!! x = -0.000000000000000 1.000000000000000 it = 5 hist = 0 -0.428571428571429 -0.141348392468100 -0.002875590925150 0.000000056935424 -0.000000000000101 0 1.557407724654902 1.087738055836075 1.001269946612821 1.000000431005363 1.000000000000127 由以上运行结果可知: 该方程组采用牛顿迭代法迭代5步可到足够精度,解为??? ? ??=10x .

数值分析第五章答案

数值分析第五章答案 【篇一:数值分析第五版计算实习题】 第二章 2-1 程序: clear;clc; x1=[0.2 0.4 0.6 0.8 1.0]; y1=[0.98 0.92 0.81 0.64 0.38]; n=length(y1); c=y1(:); or j=2:n %求差商 for i=n:-1:j c(i)=(c(i)-c(i-1))/(x1(i)-x1(i-j+1)); end end syms x df d; df(1)=1;d(1)=y1(1); for i=2:n %求牛顿差值多项式 df(i)=df(i-1)*(x-x1(i-1)); d(i)=c(i)*df(i); end disp(4次牛顿插值多项式); p4=vpa(collect((sum(d))),5) %p4即为4次牛顿插值多项式,并保留小数点后5位数 pp=csape(x1,y1, variational);%调用三次样条函数 q=pp.coefs; disp(三次样条函数); for i=1:4 s=q(i,:)*[(x-x1(i))^3;(x-x1(i))^2;(x-x1(i));1]; s=vpa(collect(s),5) end x2=0.2:0.08:1.08; dot=[1 2 11 12]; figure ezplot(p4,[0.2,1.08]); hold on y2=fnval(pp,x2); x=x2(dot);

y3=eval(p4); y4=fnval(pp,x2(dot)); plot(x2,y2,r,x2(dot),y3,b*,x2(dot),y4,co); title(4次牛顿插值及三次样条); 结果如下: 4次牛顿插值多项式 p4 = - 0.52083*x^4 + 0.83333*x^3 - 1.1042*x^2 + 0.19167*x + 0.98 三次样条函数 x∈[0.2,0.4]时, s = - 1.3393*x^3 + 0.80357*x^2 - 0.40714*x + 1.04 x∈[0.4,0.6]时,s = 0.44643*x^3 - 1.3393*x^2 + 0.45*x + 0.92571 x∈[0.6,0.8]时,s = - 1.6964*x^3 + 2.5179*x^2 - 1.8643*x + 1.3886 x∈[0.8,1.0]时,s =2.5893*x^3 - 7.7679*x^2 + 6.3643*x - 0.80571 输出图如下 2-3(1) 程序: clear; clc; x1=[0 1 4 9 16 25 36 49 64]; y1=[0 1 2 3 4 5 6 7 8];%插值点 n=length(y1); a=ones(n,2); a(:,2)=-x1; c=1; for i=1:n c=conv(c,a(i,:)); end q=zeros(n,n); r=zeros(n,n+1); for i=1:n [q(i,:),r(i,:)]=deconv(c,a(i,:));%wn+1/(x-xk) end dw=zeros(1,n); for i=1:n dw(i)=y1(i)/polyval(q(i,:),x1(i));%系数 end p=dw*q; syms x l8; for i=1:n

数值分析习题集及答案

数值分析习题集 (适合课程《数值方法A》和《数值方法B》) 长沙理工大学 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少? 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差? 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求? 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到的结果最好? 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 .

2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3. 4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少? 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误

数值分析第五章学习小结

第五章学习小结 姓名:张亚杰班级:机械1505班学号:S2******* 一、本章学习体会 本章的内容与实际关联很大,可以解决很多工程实际问题。1、主要有两方面内容:插值与逼近。插值即是由已知数据通过某种多项式求出在特定区间的函数值。逼近即是用简单函数近似代替复杂函数,如何在给定的精度下,求出计算量最小最佳的多项式,是函数逼近要解决的问题。2、插值中样条插值比较难,需要花一定的时间。逼近主要是必须使选择的多项式计算出的误差最小。 3、我个人觉得本章的难点是样条插值与最佳平方逼近。 二、知识构图: 因为本章内容较多,故本次知识架构图分为三部分:插值、正交多项式和逼近。 1、插值:

2、正交多项式和逼近的知识总结采取以下方式: 一、正交多项式 1、正交多项式的概念与性质 若在区间上非负的函数满足 (1)对一切整数存在; (2)对区间上非负连续函数,若 则在上,那么,就称为区间上的权函数。 常见的权函数有 2、两个函数的内积 定义:给定[](),(),,()f x g x C a b x ρ∈是上的权函数,称 为函数()f x 与()g x 在[a,b]上的内积。 内积的性质: (1)对称性:()(),,f g g f =; (2)数乘性:(),(,)(,)kf g f kg k f g ==; (3)可加性:()()()1212,,,f f g f g f g +=+; (4)非负性:若在[a,b]上()0f x ≠,则。 3、函数的正交 (1)两个函数的正交与正交函数系 若内积 (,)a b ()x ρ0,()b n a n x x dx ρ≥?(,)a b ()f x ()0b n a x x dx ρ=? (,)a b ()0f x ≡()x ρ(,)a b 2 ()1,()11 ()11(),0(),x x x a x b x x x x x e x x e x ρρρρρ--≡≤≤= -<<=-≤≤=≤<∞=-∞<<+∞ (,)a b (,)()()()b a f g x f x g x dx ρ=?(,)0f f >

数值分析简明教程课后习题答案

比较详细的数值分析课后习题答案

0.1算法 1、 (p.11,题1)用二分法求方程013 =--x x 在[1,2]内的近似根,要求误差不 超过10-3. 【解】 由二分法的误差估计式31 1*102 1 2||-++=≤=-≤ -εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10 ln 3≈-≥ k ,因此取9=k ,即至少需 2、(p.11,题2) 证明方程210)(-+=x e x f x 在区间[0,1]内有唯一个实根;使用 二分法求这一实根,要求误差不超过2102 1 -?。 【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且 012010)0(0<-=-?+=e f ,082110)1(1>+=-?+=e e f ,即0)1()0(+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根. 由二分法的误差估计式211*1021 2 12||-++?=≤=-≤-εk k k a b x x ,得到1002≥k . 两端取自然对数得6438.63219.322 ln 10 ln 2=?≈≥ k ,因此取7=k ,即至少需二分

0.2误差 1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。 【解】有效数字: 因为111021 05.001828.0||-?= <=-K x e ,所以7.21=x 有两位有效数字; 因为1 2102105.000828.0||-?=<=-K x e ,所以71.22=x 亦有两位有效数字; 因为3 3102 10005.000028.0||-?=<=-K x e ,所以718.23=x 有四位有效数字; %85.17.205 .0||111=<-= x x e r ε; %85.171.205 .0||222=<-= x x e r ε; %0184.0718 .20005 .0||333=<-= x x e r ε。 评 (1)经四舍五入得到的近似数,其所有数字均为有效数字; (2)近似数的所有数字并非都是有效数字. 2.(p.12,题9)设72.21=x ,71828.22=x ,0718.03=x 均为经过四舍五入得出的近似值,试指明它们的绝对误差(限)与相对误差(限)。 【解】 005.01=ε,31 1 11084.172.2005 .0-?≈< = x r εε; 000005.02=ε,622 21084.171828 .2000005 .0-?≈< =x r εε; 00005.03=ε,43 3 31096.60718 .000005 .0-?≈< = x r εε; 评 经四舍五入得到的近似数,其绝对误差限为其末位数字所在位的半个单位. 3.(p.12,题10)已知42.11=x ,0184.02-=x ,4 310184-?=x 的绝对误差限均为 2105.0-?,问它们各有几位有效数字?

数值分析(第五版)计算实习题第五章作业

数值分析第五章 第一题: LU分解法: 建立m文件 function h1=zhijieLU(A,b)%h1各阶主子式的行列式值 [n n]=size(A);RA=rank(A); if RA~=n disp('请注意:因为A的n阶行列式h1等于零,所以A不能进行LU分解。A的秩RA如下:') RA,h1=det(A); return end if RA==n for p=1:n h(p)=det(A(1:p,1:p)); end h1=h(1:n); for i=1:n if h(1,i)==0 disp('请注意:因为A的r阶主子式等于零,所以A不能进行LU分解。A的秩RA和各阶顺序主子式h1依次如下:') h1;RA return end end if h(1,i)~=0 disp('请注意:因为A的r阶主子式都不等于零,所以A能进行LU分解。A的秩RA和各阶顺序主子式h1依次如下:') for j=1:n U(1,j)=A(1,j); end for k=2:n for i=2:n for j=2:n L(1,1)=1;L(i,i)=1; if i>j L(1,1)=1;L(2,1)=A(2,1)/U(1,1);L(i,1)=A(i,1)/U(1,1); L(i,k)=(A(i,k)-L(i,1:k-1)*U(1:k-1,k))/U(k,k); else U(k,j)=A(k,j)-L(k,1:k-1)*U(1:k-1,j); end end end end h1;RA,U,L,X=inv(U)*inv(L)*b

end end 输入: >> A=[10 -7 0 1;-3 2.099999 6 2;5 -1 5 -1;2 1 0 2]; >> b=[8;5.900001;5;1]; >> h1=zhijieLU(A,b) 输出: 请注意:因为A的r阶主子式都不等于零,所以A能进行LU分解。A的秩RA和各阶顺序主子式h1依次如下: RA = 4 U = 10.0000 -7.0000 0 1.0000 0 2.1000 6.0000 2.3000 0 0 -2.1429 -4.2381 0 -0.0000 0 12.7333 L = 1.0000 0 0 0 -0.3000 1.0000 0 0 0.5000 1.1905 1.0000 -0.0000 0.2000 1.1429 3.2000 1.0000 X = -0.2749 -1.3298 1.2969 1.4398 h1 = 10.0000 -0.0000 -150.0001 -762.0001 列主元高斯消去法: 建立m文件 function [RA,RB,n,X]=liezhu(A,b) B=[A b];n=length(b);RA=rank(A);RB=rank(B);zhicha=RB-RA; if zhicha>0 disp('请注意:因为RA~=RB,所以方程组无解') return warning offMATLAB:return_outside_of_loop end if RA==RB if RA==n disp('请注意:因为RA=RB,所以方程组有唯一解') X=zeros(n,1);C=zeros(1,n+1); for p=1:n-1 [Y,j]=max(abs(B(p:n,p)));C=B(p,:); B(p,:)=B(j+p-1,:);B(j+p-1,:)=C;

相关文档
最新文档