Modeling fat tails in stock returns a multivariate stable GARCH approach

Modeling fat tails in stock returns a multivariate stable GARCH approach
Modeling fat tails in stock returns a multivariate stable GARCH approach

Comput Stat

DOI10.1007/s00180-011-0270-4

ORIGINAL PAPER

Modeling fat tails in stock returns:a multivariate

stable-GARCH approach

Matteo Bonato

Received:20January2010/Accepted:17June2011

?Springer-Verlag2011

Abstract In this paper a new multivariate volatility model is proposed.It combines the appealing properties of the stable Paretian distribution to model the heavy tails with the GARCH model to capture the volatility clustering.Returns on assets are assumed to follow a sub-Gaussian distribution,which is a particular multivariate stable distribution.In this way the characteristic function of the?tted returns has a trac-table expression and the density function can be recovered by numerical methods.

A multivariate GARCH structure is then adopted to model the covariance matrix of the Gaussian vectors underlying the sub-Gaussian system.The model is applied to a bivariate series of daily U.S.stock returns.Value-at-risk for long and short positions is computed and compared with the one obtained using the multivariate normal and the multivariate Student’s t distribution.Finally,exploiting the recent developments in the vast dimensional time-varying covariances modeling,possible feasible extensions of our model to higher dimensions are suggested and an illustrative example using the Dow Jones index components is presented.

Keywords Stable Paretian distributions·Fourier transform·Value-at-risk·

High dimensional modeling

The views expressed herein are those of the authors and not necessarily those of UBS AG,which does not accept any responsibility for the contents and opinions expressed in this paper.

I would like to thank Marc Paolella,Loriano Mancini,Simon Broda,Massimiliano Caporin,Angelo Ranaldo,Mico Loretan and Paul Hughes for useful remarks and comments that helped to improve the paper.A special thanks goes to John Nolan for granting me a version of his software‘Stable’.Of course, the usual disclaimer applies.Part of this paper was written while I was PhD student at the Swiss Finance Institute and University of Zurich.

M.Bonato(B)

UBS AG,Stockerstrasse64,8002Zurich,Switzerland

e-mail:matteo.bonato@https://www.360docs.net/doc/804297637.html,

M.Bonato JEL Classi?cation C13·C51·G17

1Introduction

V olatility clustering,excess kurtosis and possible asymmetry are three universally recognized stylized fact typical of?nancial returns.Concerning the excess of kurtosis, building statistical models able to explain the presence of extreme observations is cru-cial,for example,in risk management.Extreme events are by definition rare and thus unexpected,and their impact in terms of?nancial loss is often underestimated.

In the?nance literature,the presence of fat tails has often been ignored and many models rely on the multivariate Gaussian distribution as a building block.This choice is motivated by two reasons.On one hand the central limit theorem provides a theoretical justi?cation whenever the phenomenon of interest can be thought as the aggregation of a large number of micro-contributions.In addition,the Gaussian distribution possesses a lot of useful properties that renders theoretical results easier to establish.However, the major shortcoming of using a Gaussian distribution is that it is incapable to model extreme events that in economic situations are re?ected in extreme gains and losses and that are typical of?nancial markets.The multivariate Student’s t and its skewed version(see Bauwens and Laurent2005,among others)represent valid alternatives but have the disadvantage of not being closed under summation.This implies a higher degree of dif?culty when theoretical results need to be derived.

To capture the phenomenon of heavy tails,Mandelbrot(1963)and Fama(1965a) considered the family of stable Paretian distributions to model the unconditional distribution of?nancial returns.Stable distributions in fact enjoy many of the proper-ties of the Gaussian,such as closeness under summation,and a number of theoretical results in asset allocation and option pricing are available.See for example Fama (1965a,b);Ortobelli et al.(2002);McCulloch(2003)and the survey by Bradley and Taqqu(2003).In addition,stable distribution are at the basis of the Generalized Central Limit Theorem,which states that the only possible non-trivial limit of normalized sum of independent and identically distributed(i.i.d.hereafter)terms is stable.In econo-metrics and?nance this class of distribution is particularly suited model time series of returns as is takes into consideration the presence of heavy tails and skewness.

One dif?culty when working with stable distributions is that,in general,an analytical expression for the density function is not available,and such a class of distributions is de?ned only by its characteristic function(ch.f.hereafter).In the uni-variate setting one can use the inversion formula to recover the probability density function(p.d.f.hereafter).In this context the fast Fourier transform-based method (FFT)has been shown to perform particularly well when computing the density for a large number of data points(see Mittnik et al.(1999a)).Unfortunately in the multivar-iate case,the computation of the p.d.f.is even more complicated.A general expression for the characteristic function involves computing an integral with respect to the so called spectral measure,i.e.a?nite measure on the unit bell S d∈R d with d being the dimension of the multivariate stable distributed vector.

In this paper a new multivariate volatility model is proposed.It combines the appealing properties of the stable Paretian distribution to model the heavy tails with

Modeling fat tails in stock returns:a multivariate stable-GARCH approach

the GARCH model to capture the volatility clustering.We assume that asset-returns follow a sub-Gaussian distribution,which is a particular multivariate stable distri-bution.This choice allows us to have a tractable expression for the(multivariate) characteristic function and to express the scale parameter of the portfolio returns as a linear combination of the variances and covariances of the underlying Gaussian vectors.Under the sub-Gaussian hypothesis we are able to model the conditional and unconditional joint distribution of the asset returns.A multivariate GARCH model is introduced to describe the dynamics of the covariance matrix of the Gaussian vectors underlying the process.Given the computational complexity arising,we restrict our ?rst analysis to two dimensions.The extension to a general d-dimensional case is theoretically straightforward,though computationally prohibitive.To circumvent this problem,we present some possible solutions that come from the vast dimensional covariances modeling literature.As done in Engle(2007)with the MacGyver esti-mator,a possible feasible way is to assume that the selected model(in this case the Dynamic Conditional Correlation of Engle2002)is correctly speci?ed between every pair i and j and the parameters are obtained using simple aggregation procedures (such as median or mean)of the parameters estimated from all the bivariate pairs.

A different approach is presented in Engle et al.(2008)where they construct a type of composite likelihood,which is then maximized to deliver the estimator.This com-posite likelihood is based on summing up the quasi-likelihood of subsets of assets.

This works is striclty related to the contributions on multivariate stable distribution proposed in literature.We brie?y present an overview of the recent literature on the topic.Nolan(2003)uses a multivariate stable elliptical distribution to model a mul-tivariate series of?nancial returns.Parameters of the multivariate model are explicit functions of the parameters of the univariate series and can be easily computed via ML https://www.360docs.net/doc/804297637.html,mantia et al.(2005)present an extension of the EWMA RiskMetrics model considering elliptically distributed returns and examine several new methods based on different stable distributional hypotheses of return portfolio.Doganoglu and Mittnik(2006)use a stable multi-index model to generate a multivariate stable system. In Doganoglu et al.(2007)the same factor model is used and factors are considered to be conditionally varying.In Garcia et al.(2006),the indirect inference method is adopted to estimate the parameters of anα-stable distribution.The skewed-t distri-bution is used as an auxiliary model.In Lombardi and Veredas(2009)the indirect inference method is extended to the multivariate case to estimate the parameters of elliptical stable distributions.This indirect estimation approach relies on the use of a multivariate Student’s t distribution as auxiliary model.

We must point out that,differently from these aforementioned papers,our approach to the multivariate model estimation is unique in the sense that direct inference is performed.We therefore do not rely on auxiliary univariate estimation(Nolan2003; Doganoglu and Mittnik2006)or on indirect inference(Lombardi and Veredas2009) but obtain the parameters maximizing directly the multivariate likelihood function.

The contribution of this paper is twofold.First,we propose a new multivariate stable model for distribution of asset returns.Stable distributions have tails fatter than the Gaussian distribution,thus in our formulation we take into account the phenomenon of excess kurtosis.Under the sub-Gaussian hypothesis,we impose a time varying struc-ture for covariance matrix of the underlying Gaussian vectors.Given that the scale

M.Bonato parameter of the distribution of the portfolio is a linear combination of the entries of this matrix,this originates a GARCH-type multivariate stable model:the multivariate stable GARCH model.The second,indirect contribution of this paper is the exten-sion,under the sub-Gaussian assumption,of the method in Mittnik et al.(1999a)to the bivariate case.This allows us to estimate the parameters of the model via maxi-mum likelihood(ML).Our paper is the?rst,to our knowledge,that directly estimates all the parameters of a multivariate stable distribution in one step,i.e.without using univariate estimations as?rst step(this is the case of the projection method in Nolan 2005,or the factor model of Doganoglu and Mittnik2006;Doganoglu et al.2007)or relying on indirect estimation(Lombardi and Veredas2009).In addition,exploiting the recent developments in the vast dimensional time-varying covariances modeling, possible feasible extensions of our model to higher dimensions are suggested and an illustrative example using the Dow Jones index components is presented.

The rest of the paper is organized as follows.In Sect.2,we present the family of stable distributions in the univariate and multivariate case.In Sect.3,the sub-Gaussian hypothesis is used to model the joint distribution of the asset returns.In Sect.4,we explain the estimation procedure for the multivariate stable model.Section5present an application of the model in a value-at-risk prediction framework.In Sect.6we introduce an extension of the stable-GARCH model to higher dimensions and show its feasibility using29stocks from the Dow Jones index.Section7concludes and proposes directions for future research.

2Sub-Gaussian random vectors and their properties

The theory of univariate stable distributions was essentially developed in the1920’s and1930’s by Paul Lévy and Aleksandr Yakovlevich Khinchin.More recently,it was object of a monograph by Zolotarev(1986).This class of distribution nests two special distributions:the normal and the Cauchy.

Stable random variables do not possess a closed form for the p.d.f.and the distribu-tion is de?ned via its ch.f.The random variable X is said to have a stable distribution if there are parameters0<α≤2,c>0,?1<β<1andμreal such that its ch.f. has the form

?X(θ)=

exp{?cα|θ|α(1?iβ(sgnθ)tanπα2)+iμθ}ifα=1,

exp{?c|θ|(1+iβ2π(sgnθ)ln|θ|)+iμθ}ifα=1.(1)

Since(1)is characterized by these four parameters,we will denote,as in Samorodnitsky and Taqqu(1994),stable distributions by Sα(c,β,μ)and write X~Sα(c,β,μ).We also write X~SαS when X is symmetricα-stable,i.e.whenβ=μ=0.It is easy to see that in(1)whenα=2andα=1,the ch.f.coincides with that of the normal and Cauchy distribution,respectively.

The indexαdetermines the thickness of the tails.Whenα=2,we have a Gaussian distribution.The smallerα,the fatter the tails become.For0<α<2the(fractional absolute)moments of X~SαS of orderαdo not exist whereas forα=2all positive

Modeling fat tails in stock returns:a multivariate stable-GARCH approach

moment exist.This indeed coincides with the special cases of the Cauchy (α=1)and the normal (α=2)distributions.Clearly the variance is not de?ned for any α<2.In a multivariate setting the concept of stable random variable is replaced by stable random vectors.Stable random vectors possess (as the Gaussian random vectors)the appealing property that any linear combination of its components is indeed α-stable distributed.This can be a very useful property in portfolio theory as,under the assump-tion of a joint stable distribution for the asset returns,the returns of any portfolio of these assets is also α-stable distributed.

A special case of symmetric α-stable random vectors is represented by the sub-Gaussian random vectors.This class of vectors admits a tractable expression for the characteristic function.This is not the case as in a general speci?cation the expression for the multivariate stable ch.f.involves an integration over S d ={s :||s ||=1},the unit sphere in R d rendering its tractability challenging.

Let G =(G 1,...,G d )be a zero mean Gaussian vector in R d independent of A ,an α/2-stable random variable totally skewed to the right.Then the random vector

X =

A

1/2

G 1,...,A

1/2

G d

(2)

has a S αS distribution in R d because,for any real numbers b 1,...,b d the linear com-bination d k =1A 1/2G k =A 1/2 d k =1G k is a S αS random variable and hence X is S αS and we write X ~S α( ,0,0).(see Theorem 2.1.5in Samorodnitsky and Taqqu 1994).Any vector X distributed as in (2)is called a sub-Gaussian S αS random vector in R d with underlying Gaussian vector G .It is also said to be subordinated to G .The sub-Gaussian symmetric α-stable random vector X de?ned in (2)has charac-teristic function

E

exp

i

d k =1

θk X k

=exp ?????? d i =1d j =1

θi θj σi j α/2?

??

??,(3)

where σi j =E [G i G j ]and σ2i =E [G 2i

],i ,j =1,...,d ,are the covariances and variances of the underlying Gaussian random vectors (G 1,...,G d ).

When working in a multivariate setting,the ability to de?ne (and thus to model)the dependency structure among assets is of fundamental importance.The covariance function is an extremely powerful tool in the study of Gaussian random elements,but it is not de?ned when α<2.The covariation is designed to replace the covari-ance when 1<α<2.Unfortunately,it lacks in some of the desirable properties of the covariance.For (X 1,X 2)jointly S αS ,α>1and the spectral measure ,the covariation of X 1on X 2is the real number

[X 1,X 2]α=

S 2

s 1|s 2|α?1sgn (s 2) (d s )

(4)

M.Bonato When X i and X j are sub-Gaussian random vectors,then entries of the covariation matrix posses the closed-form expression:1

[X i,X j]α=σi jσ(α?2).

(5)

j

Notice that[X i,X j]α=[X j,X i]αifσ2i=σ2j,i.e.the covariation between two α-stable random variables is generally not symmetric in its arguments.

3The model

Of primary importance when working with multiple assets,it is to consider the depen-dence structure among them.After Engle’s(1982)seminal paper,ARCH and GARCH models have been extended to the multivariate case in many different ways,so that the covariance structure among assets be time-varying.Stable random vectors,how-ever,do not possess a covariance matrix and it would seem reasonable to replace the covariance matrix with the covariation matrix and model it with a GARCH structure. Unfortunately,the entries of the covariation matrix are non-linear functions of the covariances of the underlying Gaussian vectors generating the sub-Gaussian vectors and thus do not have a direct interpretation.An other disadvantage is the non-symmetry of the matrix,which leads to an even less clear understanding of its meaning.Fortu-nately,under the sub-Gaussian hypothesis,the scale parameter of the distribution of the portfolio returns is a linear function of the covariance matrix of the underlying Gaussian vectors.Thus,heteroskedasticity can be introduced by assuming a GARCH speci?cation of this covariance matrix.

Let A be the totally skewedα/2-stable random variable as before,0<α<2.Let G t=(G1t,...,G Nt)be a conditionally zero mean Gaussian vector independent of A for every t=1,...,T,i.e.

G t|I t?1~N N(0, t), i j,t=σi j,t,i,j=1,...,N,t=1,...,T, whereσi j,t=E[G it G jt]and I t?1is the information available at time t?1.Consider the vector of asset returns at time t,r t.De?ne t=r t?μt the vector of demeaned returns.

Assumption1The vector

t=( 1t,..., Nt),t=1,...,T,

is a sub-Gaussian SαS random vector with underlying Gaussian vector G t;i.e.

t=(A1/2G it,...,A1/2G Nt),t=1,...,T.

Under Assumption1we are able to de?ne the distribution of the portfolio returns. Let r t=(r1t,...,r Nt)be a N×1sub-Gaussian vector of asset returns.Denote by

1See Samorodnitsky and Taqqu(1994),page87.

Modeling fat tails in stock returns:a multivariate stable-GARCH approach

P t the return of the portfolio at time t,i.e.P t= N

i=1

ωi r it withω=(ω1,...,ωN)

representing the portfolio weights.Then:

P t|I t?1~Sα(σt,0,ω μt),(6) withσ2t=ω tω.This result is a direct application of the summability property of stable distributions.Note thatα,the characteristic exponent of the distribution of the portfolio returns,coincides with the characteristic exponent of the multivariate stable distribution of the asset returns.However,estimatingαdirectly from the distribution of P t would be the erroneous procedure in the sense that while the value ofαis the same for the assets as for the portfolio,one would not get any information about the dependence among the assets this way.

This last result also tells that heteroskedasticity in the model(in terms of time varying scale parameterσt)can be introduced by simply allowing the covariance matrix of the Gaussian random vector, ,to be time varying.A GARCH structure to model the dynamics of t originates what we de?ne a multivariate Stable GARCH model.Next section describes the multivariate estimation procedure,starting from most challenging issue:the calculation of the SαS p.d.f.

4Multivariate model estimation

The most dif?cult issue when dealing with multivariate stable distributions is the model estimation.We start presenting the multivariate extension of the method of Mittnik et al.(1999a)we use to recover the p.d.f.s necessary to construct and maximize the likelihood of the returns under the sub-Gaussian assumption.The estimation routine we present recovers all the parameters of the model in one step,therefore not relying on techniques based on univariate estimations.

4.1Ef?cient calculation of the SαS PDF’s

As has been said previously,there is no closed form expression for the density of a mul-tivariate stable distribution.Only the characteristic function is known.When working with sub-Gaussian random vectors the ch.f.has a tractable expression.Starting from the ch.f.it is possible,via the inversion formula,to recover the multivariate p.d.f..To ful?ll this we extended to the bivariate setting the method of Mittnik et al.(1999a).

In the univariate case,the SαS p.d.f.can be written as

f(x;α,σ,μ)=

1

?∞

e?i xt?(t)dt.(7)

which is the inversion formula to recover the p.d.f.when the ch.f.is known.

M.Bonato In the bivariate case the formula becomes

f(x,y;α)=

1

2∞

?∞

?∞

e?i xt1?iyt2?(t1,t2)dt1dt2.(8)

In the univariate setting Mittnik et al.(1999a)derives the p.d.f.directly as the Fourier transform of the ch.f.in(1).We extend their method to the multivariate case.For ease of notation,and because it is what we in practice implemented,we restrict our analysis to the bivariate case.

The FFT is an ef?cient way of computing the Fourier transform.The integral in(8) will be calculated in a lattice of N1×N2equally-spaced points with distance h1and h2,namely x k=(k?1?(N1/2))h,k=1,...,N1and y l=(l?1?(N2/2))h, l=1,...,N2.Letting t1=2πu,t2=2πv,(8),becomes

f

k?1?

N1

2

,l?1?N2

2

=

?∞

?∞

?(2πu,2πv)e?i2πu(k?1?N12)h1?i2πv(l?1?N22)h2dud v.(9)

The double integral in(9)can be approximated by using the rectangle rule for the lattice created with the N1×N2points with spacing s1and s2,i.e.

f

k?1?

N1

2

,l?1?N2

2

≈s1s2

N1

n1=1

N2

n2=2

?

2πs1

n1?1?

N1

2

,2πs2

n2?1?

N2

2

×exp

?i2π(n1?1?(N1/2))(k?1?(N1/2))h1s1

?i2π(n2?1?(N2/2))(l?1?(N2/2))h2s2

.(10)

By setting in(10)s1=(h1N1)?1and s2=(h2N2)?1,we obtain the approximation

f

k?1?

N1

2

,l?1?N2

2

≈s1(?1)k?1?(N1/2)s2(?1)l?1?(N2/2)

×

N1

n1=1

N2

n2=2

(?1)n1+n2?2?

2πs1

n1?1?

N1

2

,2πs2

n2?1?

N2

2

×exp{(?i2π(n1?1)(k?1))/N1?i2π(n2?1)(l?1))/N2}.(11)

The summation in(11)is computed by applying FFT to the sequence

(?1)n1+n2?2?

2πs1

n1?1?

N1

2

,2πs2

n2?1?

N2

2

.

Modeling fat tails in stock returns:a multivariate stable-GARCH approach

The(k th,l th)element of the resulting sequence is normalized by

s1(?1)k?1?(N1/2)s2(?1)l?1?(N2/2)

to obtain the p.d.f.value for each lattice point.

Along with the method proposed by Mittnik et al.(1999a),the procedure to obtain

p.d.f.values for irregularly-spaced data consists of two steps.First,we specify a lattice

using two equally spaced grids covering the range of data and compute the p.d.f.on

the lattice of points.This is done using the Matlab function fft2to compute the

two dimensional Fourier transform on the N1×N2matrix of the ch.f.calculated on the lattice.In the second step we use two dimensional linear interpolation to the

data points falling between the lattice values.To accomplish this we used the Matlab

function interp2.Mittnik et al.(1999a)suggest that for1.6<α<1.9,which

are values typically of?nancial data,setting h=0.01and N=213leads to a fast

and suf?cient accurate approximation.Unfortunately,using the same values for these

tuning parameters in the bivariate case,increases in a notable way the computational

burden.In this case greater speed is more desirable than greater accuracy.Therefore

we set h1=h2=0.04and N1,N2=212.

4.2Maximum likelihood estimation

Under Assumption1,we de?ned the error term as

t=r t?μt=(A1/2G1,t,...,A1/2G N,t)

where A is a totally skewedα/2-stable random variable and G t is a conditionally zero

mean Gaussian vector independent of A with G t~N N(0, ).Letθ=(α,v ech( )) the vector of unknown parameters to be estimated and v ech( )is the operator that stacks the upper triangular components of the matrix .The ML estimate ofθis obtained by maximizing the log-likelihood function

l(θ, )=

T

t=1

log f( t;θ)

=?T

2log(| |)+

T

t=1

f(z t;α)(12)

where z t= ?1/2 t is distributed as Sα(I N,0,0),I N denotes the N×N identity matrix and the joint density function f is obtained using the method proposed in Sect.4.1.

In the univariate case,DuMouchel(1973)investigates the theoretical properties of the ML estimator forθand shows its asymptotical normality under certain regularity conditions,i.e.

M.Bonato

?θ?θ0

d→N(0,I?1(θ

0)) (13)

where“d→”stands for convergence in distribution and I denotes the Fisher information matrix

I(θ0)=?E

?l(θ; )

?θ?θ

,(14)

which can be approximated either using the Hessian matrix arising in the maximi-zation,or as in Nolan(1997),by numerical integration.In our ML estimation algo-rithm,we maximize log-likelihood function(12)numerically.Rather than employing constrained optimization,we follow Mittnik et al.(1999b)and estimate a transformed version ofθ,say?θ=(?α,?σ11,?σ12,?σ22) ,such thatθ=h(?θ).The transformation we adopt takes the form:

α=1+1

1+?α2

;σ11=?σ211,σ22=?σ22,σ12=?σ12.(15)

The transformation ofαensures that it assumes values in(1,2)as in many application it is assumed that the?rst moment of t exists.The transformation of the diagonal elements of rules out negative values for the variance.With the parameter transfor-mations in place and de?ning the gradientsδ?θh=?h

??θ

,(13)becomes

√T

?θ?θ0

d→N

0, ?θh I?1(?θ0) ?θh

.(16)

To investigate the performance of this FFT-based ML we conduct a Monte Carlo

study.In view of the complexity of the algorithm and of the computational burden

required,we focus only on values for the stability index that are compatible with the

ones generally found in the?nancial literature.Recall also that the estimated stability

index usually assumes higher values when the model is?tted to the series of resid-

uals of GARCH?lter applied to eliminate the heteroskedastic component.So,on

the basis of these previous considerations,we setα=1.8,1.85,1.9and1.95.The

diagonal entries of the matrix are 1,1=1.2, 22=1.13and the off-diagonal is 1,2= 2,1=0.45.In the estimation routine,the FFT tuning parameters are initially set to N=211and h=0.01,so that the grid,whose endpoints are±N h/2,covers

[?20.48,20.48].In the case there are(centered and scaled)observations outside this

initial grid,we increased the distance h to contain all the datapoints for the interpolation

procedure.

The simulation results are summarized in form of box plots in Fig.1.For the stability

index(upper left panel)the box plots indicate that the estimates are centered on the

true value(although slightly upward biased)and the dispersion around the median

is increasing for lower values ofα,along with an increasing left skewness.This is

certainly due to the fact that the valuesαcan assume are bounded by2.The three other

panels report the results for the entries of .In this case,irrespective of the values

ifα,the boxes are centered around the true value and display the same dispersion.

Modeling fat tails in stock returns:a multivariate stable-GARCH approach

1.8 1.85 1.9 1.95

?0.1

?0.08?0.06?0.04?0.0200.020.040.060.080.1E s t i m a t e d α ? T r u e

α

1.8 1.85 1.9 1.95

?0.2

?0.15?0.1?0.0500.050.10.150.20.25α

1.8 1.85 1.9 1.95?0.15

?0.1?0.0500.050.10.15

E s t i m a t e d Σ12 ? T r u e

E s t i m a t e d Σ22 ? T r u e

E s t i m a t e d Σ11 ? T r u e

α 1.8 1.85 1.9 1.95

?0.2

?0.15?0.1?0.0500.050.10.150.20.25

α

Fig.1Estimated parameter from 1,000simulated S α( ,0,0)processes for α=1.8,1.85,1.9,1.95and =[1.20.45;0.451.13].Boxes have lines at the 25,50and 75%quantiles

This study demonstrates that the estimation procedure,based on the extension of the univariate FFT-ML estimation,delivers reliable estimates of the true parameters of a multivariate Stable distribution.

5Application to value-at-risk forecasting 5.1Data,models and estimates

The dataset we use in this empirical application consists of two US stick if the DOW JONES industrial index :Procter &Gamble (PG)and Merck &Co.(MRK).The samples span the period going from January 2,1990to May 7,2007implying 4373observations obtained from Yahoo!Finance.Continuously compounded percentage returns are considered,i.e.daily returns are measured by log-differences of closing pricing multiplied by 100.Sample path for prices and returns and marginal kernel density estimates are given in Fig.2.From the plot of the returns we notice the pres-ence of extreme events for both series which re?ects in consistent losses in terms of returns.

For the ?rst series,Procter &Gamble,the crash-down happened the 7th of March 2000.It followed the announcement that its earnings for the next two quarters would have been lower than expected.The title tumbled 31%that day,one of the biggest

M.Bonato

Fig.2Procter&Gamble(left)and Merck&Co.(right)in levels(top)and daily returns(bottom)

Table1Descriptive statistics of the Procter&Gamble–Merck

Correlation Matrix Mean Skewness Kurtosis

PG MRK

PG10.310.05?2.8067.20 MRK0.3110.04?1.3127.32

single day losses ever for a company listed on the Dow Jones Industrial Average.The crash of Merck&Co.is related to its arthritis drug Vioxx.On September30,2004,the company announced that it was immediately withdrawing Vioxx from world markets after a data safety monitoring board,overseeing a long-term study of the drug,recom-mended that the study be halted due to an increase risk of serious cardiovascular events among members of the study group.The company’s abrupt decision to withdraw Vioxx contradicted its prior public announcement repeatedly touting the safety of Vioxx.Fol-lowing the withdrawal of Vioxx from the markets,Merck’s stock price immediately plummeted by26%,resulting in billions of dollars in losses for the investors.

Descriptive statistics for the univariate series are given in Table1.From a prelimi-nary exploratory analysis we see that both series are extremely leptokurtic and present asymmetry.Sample kurtosis are67.2and27.3.This clearly indicates we are far away from a normal distribution.Both series present an index of skewness2different from zero,?2.8and?1.31,respectively.

2This index refers to the third sample moment skewness,not to stable skewness.

Modeling fat tails in stock returns:a multivariate stable-GARCH approach

Table2Results for the unconditional univariate asymmetricα-stable model

?α( SE)?c( SE)?β( SE)?μ( SE)

PG 1.74(0.0243)0.87(0.0132)0.13?(0.0601)0.07(0.0222) MRK 1.78(0.0234) 1.03(0.0153)0.0016(0.0093)0.05(0.0232)

Standard errors are expressed in parenthesis and were computed using the numeric approximation of the hessian matrix

?Significant at level95%.No star means the parameter is not statistically significant at level95%(forβandμonly)

Table2reports the estimates of the parameters when a univariate unconditional stable model is?tted to the series.Parameters are estimated via maximum likelihood. In the family of stable distributions the thickness of the tails is captured by the esti-mated value ofα,which,for both series,is statistically different from2,the stability index of a Gaussian distribution.This con?rms that the normal assumption for the returns does not seem appropriate.

An interesting issue in this basic analysis involves the presence or not of asymmetry in the series.In our two series the estimates ofβare not statistically different from zero at level1%and the hypothesis of asymmetry is rejected.As robustness check,we also computed the likelihood ration test(LRT)for the asymmetric against the symmetric model.The values of the test statistic is3.59and0for the Procter and Gamble and Merck and Co.,respectively.As for this test,the critical value at level5%is3.84,we cannot reject the hypothesis of symmetry for the two series at level5%and lower. This is not in line with the negative values of the skewness indexes.To explain these apparently contradictory results,two points must be made.First,under the assumption that a sample comes from a Stable distribution,skewness and kurtosis theoretically do not exist,and thus should not be used by any mean as indicators of asymmetry and fatness of the tails(see Bonato2011).Second,as widely documented literature(see Kim and White2004,for a review alternative measures),skewness and kurtosis are not robust to the presence of extreme observations.

The estimated parameters for the unconditional multivariate model,along with the standard errors,are reported in Table3.Figure3shows the contour plot of the two series when a multivariate stable model is?tted to the distribution of the returns.The estimate of the stability indexαis1.71and indicates that the tails of the distributions are heavier than the ones of a normal.An evaluation of the log-likelihood functions favors the stable model.The value of the standard likelihood-ratio test statistic for normal versus stable model,given by

L R N,S=?2(Loglik normal?Loglik stable)=73.4,

exceeds the99%-critical value of theχ21distribution,which is6.635.This means a clear rejection of the Gaussian hypothesis.The entries of (σ1,σ12andσ2)have no direct interpretation as they are only informative on the covariance matrix of the Gaussian vectors underlying the sub-Gaussian process.One could retrieve,starting from the entries of? ,the entries of the covariation matrix of the Stable vectors.How-ever,we already mentioned that the covariation matrix,beside being not symmetric,

M.Bonato

Table3PG–MRK multivariate DCC-Q-GARCH(1,1)results Standard errors are reported in parenthesis

For each parameter we report the estimates computed using the one-step approach and below in parenthesis the corresponding standard error.We also report,in square brackets,the estimates of the two-steps approach

LRT(S-N)are the likelihood ratio test statistics of the stable assumption vs.the normal and the Student’s t distribution, respectively Parameters Stable Stable Q-GARCH(1,1)

α 1.7191 1.8180

(0.0180)(0.0151)

[1.84]

σ10.7676

(0.0279)

σ1,20.3295

(0.0189)

σ2 1.0447

(0.0175)

a–0.0250

(0.0027)

[0.01]

b–0.9646

(0.0063)

[0.97]

LRT(S-N)73.4

Fig.3Contour plot for Procter&Gamble–Merck&Co

has not the direct interpretation the variance-covariance matrix would have,for exam-ple,if a multivariate Gaussian or Student’s t distribution were used instead.Taking this last issue into account,before presenting the result of the empirical application,we ?rst describe the speci?cation we chose for the conditional distribution of the returns.

We decided to use,amongst the plethora of multivariate GARCH speci?cations proposed in literature(see for example Bauwens et al.(2006)for an overview),the dynamic conditional correlation model of Engle(2002)and Tse and Tsui(2002).Our choice follows the one in Bauwens and Laurent(2005),where the same speci?cation is applied to the multivariate skewed t.

Modeling fat tails in stock returns:a multivariate stable-GARCH approach

The dynamic conditional correlation(DCC)model of Engle(2002)is de?ned as follows:

r t=μt+ 1/2t z t,(17)

t=D t R t D t,(18)

D t=diag(σ1,t,...,σk,t),(19)

R t=diag(Q t)?1/2Q t diag(Q t)?1/2,(20) whereμt=(μ1t,...,μkt) is the vector of conditional means, t is the vari-ance-covariance matrix,σ2i,t is the conditional variance of the i-th series speci?ed as univariate GARCH-type equation and R t is the conditional correlation matrix.Q t is a k×k positive definite matrix given by

Q t=(1?a?b)R+au t?1u t?1+bQ t?1,(21)

where u t=(u1,t,...,u k,t),u i,t=(r i,t?μi,t)/σi,t.R is the k×k unconditional covariance matrix of the the residuals u t and a and b are positive scalars.The process is mean reverting as long as a+b<1.R is usually replaced by its empirical counterpart, in order to make the estimation simpler.

In the original model of Engle(2002),the vector r t is assumed to follow a normal distribution with covariance matrix t=D t R t D t.In our approach the normal distri-bution is replaced by the sub-Gaussian distribution,with the stability indexαconstant over time and across the different components.

Under the stable hypothesis t is not the covariance matrix of the returns(it does not exist)but it represents the covariance matrix of the Gaussian vectors underlying the sub-Gaussian process.We want to stress that we are not directly modeling the stable random variables,as there they do not posses the equivalent of the variance-covariance matrix of a Gaussian distribution.We chose instead to model the covariance matrix t of the Gaussian vector underlying the sub-Gaussian system. t,unlike the covari-ation matrix,is symmetric and to some extents it captures the dependence structure also of the the stable random vectors.In addition and of fundamental importance,any portfolio under the sub-Gaussian assumption is stable distributed with scale parameter that is a linear combination of t.Thus,imposing a GARCH-type structure on t introduces heteroskedasticity also in the multivariate stable model.

It is interesting to note that,even if this Gaussian vectors are a sort of latent random variable,i.e.we cannot split t= 1/2t z t and isolate its stable component A t and the Gaussian component G t(see Assumption1),we can recover the entries of D t and R. The conditional scale parameterσit of the i-th observation it~Sα(σit,0,0)is in fact the square root of the conditional variance of the Gaussian random variable G it. Thus we recover the entries of D t from the univariate GARCH models.Following Mittnik et al.(2000)we implemented a Stable Q-GARCH,which is a generaliza-tion of the Q-GARCH model introduced by Sentana(1991,1995).Unreported results show that this model is successful in capturing the heteroskedasticity present in the two series of returns and the stability hypothesis for the residuals is not rejected at a 10%level(see Paolella2001for more details on the stability test).

M.Bonato For the entries of R we use the same strategy in combination with the so called projection method used in Nolan(2005).As we said before,R is in the original DCC model the sample correlation matrix of the standardized residuals from the univariate GARCH models.Thus the entries of the principal diagonal will be the square of the scale parameterσi of u i,given that sub-Gaussianity holds also for the residuals of the Stable Q-GARCH model.To estimate the non-diagonal entries of R,i.e.the correlations between G i and G j,we use the fact that:

σi,j=1

2

?(1,1)2?σ2i?σj2

,(22)

whereσi andσj are the scale parameters of the standardized residuals u i and u j, respectively.?(1,1)is the scale parameter of (1,1),(u i,u j) =u i+u j.See Nolan (2005)for further details on the projection method.

Our choice to use the DCC model is motivated by two reasons.First,in its for-mulations,it allows to use different types of univariate GARCH speci?cations to construct the diagonal matrix D t and to obtain the standardized residuals u t.Other models,such as BEKK for instance,are not so?exible.Second,its estimation requires a lower computational effort.To avoid the dimensionality problems of most multivariate GARCH models,Engle(2002)shows that the DCC model can be estimated consis-tently using a two step approach.This is done by?rst computing the N univariate GARCH models,then,once we obtain the standardized residuals and the matrix D t, we compute the parameters in the constant correlation part.In fact,under the normal-ity assumption,the loglikelihood can be written as the sum of a volatility part and a correlation part.One disadvantage of the two steps estimation is that the estimates are not fully ef?cient and that the standard error must be corrected.But,as long as we are interested in value-at-risk forecasting(VaR hereafter),this issue is not relevant.This could affect the estimation of the forecasts’standard error,although Ruiz and Pascual (2002)showed that this does not seem to matter much.As pointed out in Bauwens and Laurent(2005),when using a non normal distribution,the decomposition proposed by Engle(2002)is no longer possible and one should adopt a one step approach.We follow again their lines and,to stay in the spirit of the DCC model,we also propose to estimate the N univariate GARCH-type models(to obtain u t)and then estimate the correlation part together with the parameterα,the stability index.

The estimated parameters are presented in the second column of Table3,standard error are in parenthesis.Both the one-and two-step(square brackets)methods give similar results.The stability index?αis1.81,as expected from the estimates of the ?α’s in the univariate setting.It is higher than the unconditional?tting as part of the fat-tail components have been captured by the GARCH?lter.The value of0.96for?b indicates that the dynamics of Q t are quite persistent;nonetheless the process remains stationary as a+b<1.

5.2Value-at-risk forecast and evaluation

To further investigate the goodness of our model we perform value-at-risk prediction for several portfolios composed of the returns of the two assets we considered in

Modeling fat tails in stock returns:a multivariate stable-GARCH approach

our analysis.value-at-risk for long trading positions and short trading positions were computed out-of-sample one-day-ahead.

Let us denote byμt+1|I

t and t+1|I

t

the one step ahead forecast ofμt and t,

respectively,given the information available up to time t.The one-step-ahead VaR

computed at t for long trading positions isμt+1|I

t ω +qγ

ω t+1|I

t

ω ,while for short

trading positions it readsμt+1|I

t ω +q1?γ

ω t+1|I

t

ω .qγdenotes the left quantile

atγ%of the distribution we assume for the portfolio returns;q1?γis the right quantile atγ%.As possible distributions,we considered the normal,the Student’s t and the sub-Gaussian.For the stable Paretian case,recall that a linear combination of stable distributed random variables with common tail index follows a stable distribution with the same tail index.

To calculate the out-of-sample one step ahead VaR considering the?rst estimation sample as the complete sample for which data is available less the last2000obser-vations.3The multivariate model is then?tted and the predicted one-day-ahead VaR is compared with the observed return.At the i-th iteration,where i goes from2to 2,000,the estimation sample is augmented to include one more day and the VaRs are forecasted and recorded.Whenever i is a multiple of50,the model is re-estimated to update the parameters.Thus we assume a‘stability window’of50days for our parameters.The procedure is iterated until all observations less one are included in the observation sample.

After the predicted valued of the VaR are compared with the realized returns of the portfolio,the coverage probability for long and short trading positions are computed. To check whether the empirical percentage of VaR violations is close to the theoretical one we adopt the Kupiec LR test(Kupiec1995)and report the p-values for the test for long and short trading positions with different portfolios weights.Table4presents out-of-sample VaR performance evaluation.

Analyzing the VaR performance of the three models we see that both Stable and Student’s t distributions perform overall well with the former displaying only4rejec-tions in front of the12of the Student’s t.The Normal distribution does not perform particularly well and the null hypothesis is rejected in26cases.This is somehow expected given the thickness of the tails that a Gaussian distribution is incapable to capture.Grade5%summarizes the performance of each model and it is de?ned as the percentage p-values above the5%critical values(both for long and short trading positions).Since we have only two rejections for the Stable model,its Grade5%is 93%.This value is considerably higher than the one displayed by the Student’s t, which is78%.The normal model performs badly,only52%.

6Extension to higher dimensions

Although theoretically straightforward to extend to higher dimensions,the model we propose requires a remarkable computational effort with three or more assets.In the bivariate case we need to create a lattice of dimension N1×N2,where N1=N2=212 and use the fast Fourier transform to obtain the p.d.f.Then,via two dimensional linear

3Differently from Giot and Laurent(2003)and Bauwens and Laurent(2005)we perform,given the larger data sample,2000one-step-ahead out-of-sample VaR forecasts.

M.Bonato

Table4VaR results for different portfolios of Procter&Gamble–Merck(out-of-sample)

ωγLong positions Short positions

5% 2.5%1%5% 2.5%1%

Normal0.0140.4660.1350.0020.0350.093 (1/2;1/2)Student0.3490.4661.0000.3490.0510.027 Stable0.4060.7730.2790.2970.5620.093

Normal0.0070.0510.51000.3050.821 (7/10;3/10)Student0.1150.3050.4890.0730.1010.240 Stable0.4680.3801.0000.2970.5621.000

Normal0.0340.5620.058000.052 (3/10;7/10)Student0.3490.6640.5100.0140.0230.027 Stable0.4681.0000.2790.1150.4660.027

Normal0.1150.8860.0130.0190.0730.383 (?4/10;14/10)Student0.1150.5620.5100.1150.1380.154 Stable0.2090.8860.3830.1150.7730.352

Normal00.0100.6580.0100.3050.036 (14/10;?4/10)Student0.0020.0730.4890.1150.2390.383 Stable0.0040.1010.5100.5340.8860.036

Normal0.0440.5620.0900.0010.0020.240 (2/10;8/10)Student0.1420.5620.3830.0340.0510.013 Stable0.4680.7760.2790.0730.1840.093

Normal0.0070.1011.0000.0140.4660.821 (8/10;2/10)Student0.0730.0150.4890.0570.4660.093 Stable0.1150.2390.8210.6050.4660.489

Normal0.0341.0000.0580.0030.0020.489 (1/10;9/10)Student0.0730.6640.3830.0440.0510.027 Stable0.2970.7730.2790.1730.2390.154

Normal0.0030.1840.6580.0050.1380.510 (9/10;1/10)Student0.0100.1380.4890.0340.1380.240 Stable0.0340.3800.8240.1150.3050.648

Grade(5%)

Normal52%

Student78%

Stable92%

The entries are the p-values of the null hypothesis:?f l=γand?f s=γ,where?f l and?f s are the failure rate for long and short position respectively.ωis the vector of weights of the portfolio.Grades5%reports for the three models the percentage of p-values above the5%critical value,both for long and short positions. Bold numbers indicate the rejection of the null hypothesis(at a95%con?dence interval)that the VaR value is accurate

interpolation,we compute the p.d.f.of the data points falling between the lattice values. In a three-dimensional case,we should create a tensor of dimension212×212×212and so on for higher dimensions.The memory required to create this multi-dimensional

Modeling fat tails in stock returns:a multivariate stable-GARCH approach

object and the complexity of the n-dimensional interpolation at each maximization step cause a notable increase of the computational burden.

To circumvent this lack of feasibility of our model,we tackle the problem from a different angle.In particular,we show how to extend our Stable-DCC model to higher dimensions using techniques recently introduced in literature to model the covariance matrix for vast dimensional time series.We?rst present the MacGyver estimator of Engle(2007)and then the composite likelihood(CL)estimator of Engle et al.(2008). This last estimator is more desirable as it requires a lower computational complexity and,unlike the MacGyver estimator,analytical consistency is derived.

6.1Engle’s method

This method(dubbed McGyver estimator)assumes that the selected DCC model is correctly speci?ed between every pair of assets i and j.Hence,the correlation process of the Gaussian vector underlying the stable model is:

ρi j,t=q i j,t

q ii,t q j j,t

q i j,t=R i,j(1?a?b)+au i,t?1u j,t?1+bq i j,t?1.

(23)

Because the high dimension model is correctly speci?ed,so is the bivariate model. In each case all bivariate pairs are estimated and then simple aggregation procedures such as means or medians are applied.In our application we will consider the median criterion only.

In our multivariate stable-GARCH DCC,using bivariate estimations renders a parallelization of this operation feasible.In fact,whereas a N dimensional log-likelihood maximization cannot be distributed to different machines,each two-dimen-sional maximization can be parallelized.

6.2The composite-likelihood method

A second way of extending the multivariate stable GARCH model to higher dimen-sions is based on the construction of a type of composite likelihood(CL),as done in Engle et al.(2008).The composite likelihood is obtained by summing up the quasi-likelihood of subsets of assets.If as subsets we consider each pair of assets,this approach can be easily adapted to our multivariate stable model.

The estimation strategy can be then generically stated as solving

?θ=argmax

θ1

K

T

t=1

K

i=1

log L jt(θ,?λj;z jt)(24)

where log L j(ψ)= T

t=1

l jt(ψ)and l jt=log f(z jt;ψ)is the density of the j-th

subset.To estimate the parameters of our multivariate stable-GARCH model using the same DCC speci?cation as before for the matrix t,we need to estimated for all the N(N?1)/2pairs(or the N?1contiguous pairs),the log-likelihoods l jt(θ,?λj)

M.Bonato Table5Result for?tting the DCC model using the MacGyver estimator and maximum m-pro?led composite-likelihood(contiguous and all pairs)

MacGyver m-Pro?le CL

(all pairs)(contiguous pairs)(all pairs)

α 1.8555 1.8989(0.0692) 1.8984(0.2639) a0.00790.0120(0.0027)0.122(0.0584) b0.98630.9739(0.0390)0.9743(0.1617)

Estimates for the MacGyver method are obtained taking the median of the406bivariate estimates.Numerical standard errors for the composite likelihood estimator are reported in parenthesis

l jt(θ,?λj)=?1

2

log(| jt|)+log f(z jt;θ)(25)

whereθ=(a,b) andλj=(η1j,η2j,σ1j,σ2j,σ12j).This results in a two-step esti-mation.In the?rst step we estimate(η1j,η2j),the parameters of the univariate Stable Q-GARCH and(σ1j,σ2j,σ12j),the entries of the correlation matrix R j of the pair of Gaussian vector underlying the sub-Gaussian process.The entries of R j are recovered using univariate estimations and the projection method as previously described.In the second step we?nd?θthat satis?es(24).This resulting?θis called a m-pro?le CL estimator(MMCLE).

6.3Illustrative application

In this subsection we demonstrate the feasibility of the model when applied to a relatively large number of stocks.We used the components of the Dow Jones Indus-trial Average index during the same period of the previous bivariate analysis,i.e.from January2,1990until May7,2007.Data were downloaded from Yahoo!Finance. Selecting only the companies that have returns throughout the sample(all except KRAFT FOODS INC.)we are left with29series of4372observations.As done in the previous application of the model,we?tted a stable Q-GARCH(1,1)to model the con-ditional distribution of the univariate series.The estimates ofαandβ,along with the summability testτT(α)are reported in Table6.The values ofαlie between a minimum of1.79for3M COMPANY and a maximum of1.93for CHEVRON CO.These rela-tively high values for the characteristic exponent are somehow expected as some of the fat-tail features of the series has been captured by the Q-GARCH?lter.In the fourth columns are reported the estimates of the asymmetry parameterβ.The null hypothesis ofβ=0is rejected at level95%in only eight series out of29.This indicates that asym-metry is present in some components but it is not a shared feature among the assets. The last column reports the summability test.At the90%the null of stable distributed residuals is rejected in13cases;at level95%is rejected in4cases and at level99%is never reject.We can then conclude we do not have elements to fully reject a multivariate stable model for the joint distribution of the29components of the Dow Jones index.

In the next step we?tted a DCC models for the entire set of assets using the MacGyver estimator with all the possible pairs and the maximum m-pro?led

建设工程经济计算公式汇总

一级建造师《建设工程经济》计算公式汇总 1、等额支付系列的终值、现值、资金回收和偿债基金计算 等额支付系列现金流量序列是连续的,且数额相等,即: ) ,,,,常数(n t A A t 321 ①终值计算(即已知A 求F ) i i A F n 11 )( ②现值计算(即已知A 求P ) n n n i i i A i F P )()() ( 1111 ③资金回收计算(已知P 求A ) 111 n n i i i P A )() ( ④偿债基金计算(已知F 求A ) 1 1 n i i F A )( 2、有效利率的计算 包括计息周期有效利率和年有效利率两种情况。 (2)年有效利率,即年实际利率。 年初资金P ,名义利率为r ,一年内计息m 次,则计息周期利率为 m r i 。根据一次支付终值公式可得该年的本利和F ,即: m m r P F 1 根据利息的定义可得该年的利息I 为: 111m m m r P P m r P I 再根据利率的定义可得该年的实际利率,即有效利率i eFF 为: 11i eff m m r P I 3、财务净现值 t c t n t i CO CI FNPV 10 式中 FNPV ——财务净现值; (CI-CO )t ——第t 年的净现金流量(应注意“+”、“-”号); i c ——基准收益率; n ——方案计算期。 4、财务内部收益率(FIRR ——Financial lnternaI Rate oF Return ) 其实质就是使投资方案在计算期内各年净现金流量的现值累计等于零时的折现率。其数学表达式为:

t t n t FIRR CO CI FIRR FNPV 10 式中 FIRR ——财务内部收益率。 5、投资收益率指标的计算 是投资方案达到设计生产能力后一个正常生产年份的年净收益总额(不是年销售收入)与方案投资总额(包括建设投资、建设期贷款利息、流动资金等)的比率: %100 I A R 式中 R ——投资收益率; A ——年净收益额或年平均净收益额; I ——总投资 6、总投资收益率 总投资收益率(ROI )表示总投资的盈利水平 %100 TI EBIT ROI 式中 EBIT-----技术方案正常年份的年息税前利润或运营期内平均息税前利润; TI------技术方案总投资包括建设投资、建设期利息和全部流动资金。 7、资本金净利润率(ROE ) 技术方案资本金净利润率(ROE )表示技术方案盈利水平 %100 EC NP ROE 式中 NP----技术方案正常年份的年净利润或运营期内年平均净利润, 净利润=利润总额-所得税 EC----技术方案资本金 8、静态投资回收期 ·当项目建成投产后各年的净收益(即净现金流量)均相同时,静态投资回收期计算: A I P t 式中 I ——总投资; A ——每年的净收益。 ·当项目建成投产后各年的净收益不相同时,静态投资回收期计算: 流量 出现正值年份的净现金的绝对值 上一年累计净现金流量现正值的年份数累计净现金流量开始出 1- t P 9、借款偿还期 余额 盈余当年可用于还款的盈余当年应偿还借款额 的年份数借款偿还开始出现盈余 1-d P 10、利息备付率 利息备付率=息税前利润/计入总成本费用的应付利息。 式中:息税前利润——即利润总额与计入总成本费用的利息费用之和(不含折旧、摊销费 11、偿债备付率 偿债备付率=(息税前利润加折旧和摊销-企业所得税)/应还本付息的金额 式中:应还本付息的资金——包括当期还贷款本金额及计入总成本费用的全部利息; 息税前利润加折旧和摊销-企业所得税=净利润+折旧+摊销+利息 12、总成本 C =C F +C u ×Q C :总成本;C F :固定成本;C u :单位产品变动成本;Q :产销量 量本利模型

建筑工程工程量计算公式

、平整场地:建筑物场地厚度在±30cm 以内的挖、填、运、找平。 1、平整场地计算规则 (1)清单规则:按设计图示尺寸以建筑物首层面积计算。 (2 )定额规则:按设计图示尺寸以建筑物外墙外边线每边各加2 米以平方米面积计算。 2、平整场地计算公式 S= (A+4 ) X ( B+4 ) =S 底+2L 外+16 式中:S———平整场地工程量;A———建筑物长度方向外墙外边线长度;B———建筑物宽度方向外墙外边线长度;S 底———建筑物底层建筑面积;L 外———建筑物外墙外边线周长。 该公式适用于任何由矩形组成的建筑物或构筑物的场地平整工程量计算。 二、基础土方开挖计算 开挖土方计算规则 ( 1 )、清单规则:挖基础土方按设计图示尺寸以基础垫层底面积乘挖土深度计算。 ( 2)、定额规则:人工或机械挖土方的体积应按槽底面积乘以挖土深度计算。槽底面积应以槽底的长乘以槽底的宽,槽底长和宽是指基础底宽外加工作面,当需要放坡时,应将放坡的土方量合并于总土方量中。 2 、开挖土方计算公式: (1) 、清单计算挖土方的体积:土方体积=挖土方的底面积X挖土深度。 (2) --------------------------------------------------------------------------------------------- 、定额规则:基槽开挖:V= (A+2C+X H) HXL。式中:V --------------------------------------------------------- 基槽土方量;A ----------- 槽底宽度;C———工作面宽度;H———基槽深度;L———基槽长度。. 其中外墙基槽长度以外墙中心线计算,内墙基槽长度以内墙净长计算,交接重合出不予 扣除。 基坑体积;A—基坑开挖:V=1/6H[A X B+a X b+(A+a) x(B+b)+a xb]。式中:V 基坑上口长度;B———基坑上口宽度;a———基坑底面长度;b———基坑底面宽度。

建设项目工程经济计算公式汇总

.. 一级建造师《建设工程经济》计算公式汇总 1、等额支付系列的终值、现值、资金回收和偿债基金计算 等额支付系列现金流量序列是连续的,且数额相等,即: ) ,,,,常数(n t A A t 321①终值计算(即已知 A 求F ) i i A F n 1 1 )(②现值计算(即已知 A 求P ) n n n i i i A i F P ) ()() (1111 ③资金回收计算(已知 P 求A ) 1 1 1 n n i i i P A )()(④偿债基金计算(已知 F 求A ) 1 1 n i i F A ) (2、有效利率的计算 包括计息周期有效利率和年有效利率两种情况。(2)年有效利率,即年实际利率。年初资金P ,名义利率为r ,一年内计息m 次,则计息周期利率为 m r i 。根据一次支付终值公式可得该年的 本利和F ,即: m m r P F 1 根据利息的定义可得该年的利息I 为: 1 1 1 m m m r P P m r P I 再根据利率的定义可得该年的实际利率,即有效利率 i eFF 为: 1 1 i eff m m r P I 3、财务净现值 t c t n t i CO CI FNPV 1 式中 FNPV ——财务净现值; (CI-CO )t ——第t 年的净现金流量(应注意“+” 、“-”号); i c ——基准收益率;n ——方案计算期。

.. 4、财务内部收益率(FIRR ——Financial lnternaI Rate oF Return ) 其实质就是使投资方案在计算期内各年净现金流量的现值累计等于零时的折现率 。其数学表达式为: t t n t FIRR CO CI FIRR FNPV 10 式中 FIRR ——财务内部收益率。 5、投资收益率指标的计算 是投资方案达到设计生产能力后一个正常生产年份的年净收益总额( 不是年销售收入)与方案投资总额(包括 建设投资、建设期贷款利息、流动资金等) 的比率: % 100I A R 式中 R ——投资收益率; A ——年净收益额或年平均净收益额;I ——总投资 6、总投资收益率 总投资收益率(ROI )表示总投资的盈利水平 % 100TI EBIT ROI 式中 EBIT-----技术方案正常年份的年息税前利润或运营期内平均息税前利润; TI------技术方案总投资包括建设投资、建设期利息和全部流动资金。7、资本金净利润率( ROE ) 技术方案资本金净利润率( ROE )表示技术方案盈利水平 % 100EC NP ROE 式中 NP----技术方案正常年份的年净利润或运营期内年平均净利润,净利润=利润总额-所得税 EC----技术方案资本金 8、静态投资回收期 ·当项目建成投产后各年的净收益(即净现金流量)均相同时,静态投资回收期计算: A I P t 式中 I ——总投资;A ——每年的净收益。 ·当项目建成投产后各年的净收益不相同时,静态投资回收期计算: 流量 出现正值年份的净现金 的绝对值 上一年累计净现金流量 现正值的年份数 累计净现金流量开始出 1 -t P 9、借款偿还期 余额 盈余当年可用于还款的 盈余当年应偿还借款额的年份数 借款偿还开始出现盈余 1 -d P 10、利息备付率 利息备付率=息税前利润 /计入总成本费用的应付利息。 式中:息税前利润——即利润总额与计入总成本费用的利息费用之和(不含折旧、摊销费 11、偿债备付率 偿债备付率=(息税前利润加折旧和摊销-企业所得税)/应还本付息的金额 式中:应还本付息的资金——包括当期还贷款本金额及计入总成本费用的全部利息; 息税前利润加折旧和摊销 -企业所得税=净利润 +折旧+摊销+利息

土建工程量计算公式大全

土建全套工程量计箅 砌筑砂浆采用你说M强度等级,抹灰砂浆设计都是直接注明采用**:**:**,比如1:1:6在混合砂浆。就不拿你说在M20说事了,这么高在强度等级在砌筑砂浆人还没有用过,比如就水泥砂浆1:3,1斤水泥三斤砂,一方约2.25吨,面积乘以厚度就得到了,根据比例一算就可以了。 计算砂浆的体积,比如你这里是2CM厚,4038.34平方,那么体积就是: 4038.34*2/100=80.8立方米。 那么需要砂的数量就是80.8立方米。 如果按重量算,就是80.8*1.4=113吨。 水泥是用来填充砂子的空隙的,不必计算体积。20M砂浆中,水泥:砂=1:5 可以算的。 1M3砌体砂浆的净用量(标准砖)=1-0.24x0.115x0.053x标准砖的净用量 1M3标准砖的净用量=1/[砌体厚X(标准砖长+灰缝厚)X(标准砖厚+灰缝厚)]x2x 砌体厚度的砖数。 砌体厚半砖取0.11M 一砖取0.24M 一砖半取0.365M。 砌体厚度的砖数半砖取0.5 一砖取1 一砖半取1.5。 灰缝厚度一般取0.01M。 砂浆有水灰比,可以根据这个比例算出沙子和水泥的用量,再根据工程量计算出要使用多少砂浆即可。 基础部分工程量计算 一、平整场地:建筑物场地厚度在&plus mn;30cm以内的挖、填、运、找平。 1、平整场地计算规则 (1)清单规则:按设计图示尺寸以建筑物首层面积计算。 (2)定额规则:按设计图示尺寸以建筑物外墙外边线每边各加2米以平方米面积计算。2、平整场地计算公式 S=(A+4)×(B+4)=S底+2L外+16 式中:S―――平整场地工程量;A―――建筑物长度方向外墙外边线长度;B―――建筑物宽度方向外墙外边线长度;S底―――建筑物底层建筑面积;L外―――建筑物外墙外边线周长。

建筑工程工程量计算公式大全

?工程量计算规则公式汇总 土建工程工程量计算规则公式汇总 平整场地: 建筑物场地厚度在±30cm以的挖、填、运、找平. 1、平整场地计算规则 (1)清单规则:按设计图示尺寸以建筑物首层面积计算。 (2)定额规则:按设计图示尺寸以建筑物首层面积计算。 2、平整场地计算法 (1)清单规则的平整场地面积:清单规则的平整场地面积=首层建筑面积 (2)定额规则的平整场地面积:定额规则的平整场地面积=首层建筑面积 3、注意事项 (1)、有的地区定额规则的平整场地面积:按外墙外皮线外放2米计算。计算时按外墙外边线外放2米的图形分块计算,然后与底层建筑面积合并计算;或者按“外放2米的中心线×2=外放2米面积” 与底层建筑面积合并计算。这样的话计算时会出现如下难点: ①、划分块比较麻烦,弧线部分不好处理,容易出现误差。 ②、2米的中心线计算起来较麻烦,不好计算。 ③、外放2米后可能出现重叠部分,到底应该扣除多少不好计算。 (2)、清单环境下投标人报价时候可能需要根据现场的实际情况计算平整场地的工程量,每边外放的长度不一样。 大开挖土 1、开挖土计算规则 (1)、清单规则:挖基础土按设计图示尺寸以基础垫层底面积乘挖土深度计算。 (2)、定额规则:人工或机械挖土的体积应按槽底面积乘以挖土深度计算。槽底面积应以槽底的长乘以槽底的宽,槽底长和宽是指混凝土垫层外边线加工作面,如有排水沟者应算至排水沟外边线。排水沟的体积应纳入总土量。当需要放坡时,应将放坡的土量合并于总土量中。 2、开挖土计算法 (1)、清单规则: ①、计算挖土底面积: 法一、利用底层的建筑面积+外墙外皮到垫层外皮的面积。外墙外边线到垫层外边线的面积计算(按外墙外边线外放图形分块计算或者按“外放图形的中心线×外放长度”计算。)法二、分块计算垫层外边线的面积(同分块计算建筑面积)。 ②、计算挖土的体积:土体积=挖土的底面积*挖土深度。 (2)、定额规则: ①、利用棱台体积公式计算挖土的上下底面积。 V=1/6×H×(S上+ 4×S中+ S下)计算土体积(其中,S上为上底面积,S中为中截面面积,S下为下底面面积)。如下图 S下=底层的建筑面积+外墙外皮到挖土底边线的面积(包括工作面、排水沟、放坡等)。 用同样的法计算S中和S下 3、挖土计算的难点 ⑴、计算挖土上中下底面积时候需要计算“各自边线到外墙外边线图”部分的中心线, 中心线计算起来比较麻烦(同平整场地)。

建筑工程工程量计算规则公式汇总

建筑工程量计算规则公式汇总 一、平整场地 建筑物场地厚度在±30cm以内的挖、填、运、找平。 1、平整场地计算规则 (1)清单规则:按设计图示尺寸以建筑物首层面积计算。 (2)定额规则:按设计图示尺寸以建筑物首层面积计算。 2、平整场地计算方法 (1)清单规则的平整场地面积:清单规则的平整场地面积=首层建筑面积 (2)定额规则的平整场地面积:定额规则的平整场地面积=首层建筑面积 3、注意事项 (1)有的地区定额规则的平整场地面积:按外墙外皮线外放2米计算。计算时按外墙外边线外放2米的图形分块计算,然后与底层建筑面积合并计算;或者按“外放2米的中心线×2=外放2米面积” 与底层建筑面积合并计算。这样的话计算时会出现如下难点: ①划分块比较麻烦,弧线部分不好处理,容易出现误差。 ②2米的中心线计算起来较麻烦,不好计算。 ③外放2米后可能出现重叠部分,到底应该扣除多少不好计算。 (2)清单环境下投标人报价时候可能需要根据现场的实际情况计算平整场地的工程量,每边外放的长度不一样。 二、大开挖土方 1、开挖土方计算规则 (1)清单规则:挖基础土方按设计图示尺寸以基础垫层底面积乘挖土深度计算。 (2)定额规则:人工或机械挖土方的体积应按槽底面积乘以挖土深度计算。槽底面积应以槽底的长乘以槽底的宽,槽底长和宽是指混凝土垫层外边线加工作面,如有排水沟者应算至排水沟外边线。排水沟的体积应纳入总土方量内。当需要放坡时,应将放坡的土方量合并于总土方量中。 2、开挖土方计算方法 (1)清单规则: ①计算挖土方底面积:

方法一、利用底层的建筑面积+外墙外皮到垫层外皮的面积。外墙外边线到垫层外边线的面积计算(按外墙外边线外放图形分块计算或者按“外放图形的中心线×外放长度”计算。) 方法二、分块计算垫层外边线的面积(同分块计算建筑面积)。 ②计算挖土方的体积:土方体积=挖土方的底面积*挖土深度。 (2)定额规则: ①利用棱台体积公式计算挖土方的上下底面积。 V=1/6×H×(S上+ 4×S中+ S下)计算土方体积(其中,S上为上底面积,S中为中截面面积,S下为下底面面积)。如下图 S下=底层的建筑面积+外墙外皮到挖土底边线的面积(包括工作面、排水沟、放坡等)。 用同样的方法计算S中和S下 3、挖土方计算的难点 (1)计算挖土方上中下底面积时候需要计算“各自边线到外墙外边线图”部分的中心线,中心线计算起来比较麻烦(同平整场地)。 (2)中截面面积不好计算。 (3)重叠地方不好处理(同平整场地)。 (4)如果出现某些边放坡系数不一致,难以处理。 4、大开挖与基槽开挖、基坑开挖的关系 槽底宽度在3m以内且长度是宽度三倍以外者或槽底面积在20m2以内者为地槽,其余为挖土方。 三、满堂基础垫层 1、满堂基础垫层工程量: 如图所示,(1)素土垫层的体积;(2)灰土垫层的体积;(3)砼垫层的体积;(3)垫层模板。 2、满堂基础垫层工程量计算方法 (1)素土垫层体积的计算: 利用棱台的计算公式:素土垫层体积=1/6×H×(S上+ 4×S中+ S下)计算土方体积(其中,S上为上底面积,S中为中截面面积,S下为下底面面积)。

建筑工程经济公式汇总

建筑工程经济公式汇总 1、单利计算 单i P I t ?= 式中 I t ——代表第t 计息周期的利息额;P ——代表本金;i 单——计息周期单利利率。 2、复利计算 1-?=t t F i I 式中 i ——计息周期复利利率;F t-1——表示第(t -1)期末复利本利和。 而第t 期末复利本利和的表达式如下: ) 1(1i F F t t +?=- 3、一次支付的终值和现值计算 ①终值计算(已知P 求F 即本利和) n i P F )1(+= ②现值计算(已知F 求P ) n n i F i F P -+=+= )1() 1( 4、等额支付系列的终值、现值、资金回收和偿债基金计算 等额支付系列现金流量序列是连续的,且数额相等,即: ) ,,,,常数(n t A A t 321=== ①终值计算(即已知A 求F ) i i A F n 11-+=)( ②现值计算(即已知A 求P ) n n i i i A i F P ) ()()(+-+=+=-11 11 ③资金回收计算(已知P 求A ) 111-++=n n i i i P A )()( ④偿债基金计算(已知F 求A ) 11-+=n i i F A )( 5、名义利率r 是指计息周期利率:乘以一年内的计息周期数m 所得的年利率。即:m i r ?= 6、有效利率的计算 包括计息周期有效利率和年有效利率两种情况。 (1)计息周期有效利率,即计息周期利率i ,由式(1Z101021)可知: m r I = (1Z101022-1) (2)年有效利率,即年实际利率。 年初资金P ,名义利率为r ,一年内计息m 次,则计息周期利率为 m r i =。根据一次支付终值公式可得该年的本利和F ,即: m m r P F ?? ? ?? +=1

建筑工程常用计算公式

一、平整场地(建筑物场地厚度在±30cm以内的挖、填、运、找平) 1、平整场地计算规则 (1)清单规则:按设计图示尺寸以建筑物首层面积计算。 (2)定额规则:按设计图示尺寸以建筑物外墙外边线每边各加2米以平方米面积计算。 2、平整场地计算公式 S=(A+4)×(B+4)=S底+2L外+16 式中:S——平整场地工程量;A——建筑物长度方向外墙外边线长度;B——建筑物宽度方向外墙外边线长度;S底——建筑物底层建筑面积;L外——建筑物外墙外边线周长。 该公式适用于任何由矩形组成的建筑物或构筑物的场地平整工程量计算。 二、基础土方开挖计算 1、开挖土方计算规则

(1)清单规则:挖基础土方按设计图示尺寸以基础垫层底面积乘挖土深度计算。 (2)定额规则:人工或机械挖土方的体积应按槽底面积乘以挖土深度计算。槽底面积应以槽底的长乘以槽底的宽,槽底长和宽是指基础底宽外加工作面,当需要放坡时,应将放坡的土方量合并于总土方量中。 2、开挖土方计算公式 (1)清单计算挖土方的体积:土方体积=挖土方的底面积×挖土深度。 (2)定额规则:基槽开挖:V=(A+2C+K×H)H×L。式中:V——基槽土方量;A——槽底宽度;C——工作面宽度;H——基槽深度;L——基槽长度。 其中外墙基槽长度以外墙中心线计算,内墙基槽长度以内墙净长计算,交接重合出不予扣除。 基坑开挖:V=1/6H[A×B+a×b+(A+a)×(B+b)+a×b]。式中:V——基坑体积;A——基坑上口长度;B——基坑上口宽度;a——基坑底面长度;b——基坑底面宽度。 三、回填土工程量计算规则及公式

1、基槽、基坑回填土体积=基槽(坑)挖土体积-设计室外地坪以下建(构)筑物被埋置部分的体积。 式中室外地坪以下建(构)筑物被埋置部分的体积一般包括垫层、墙基础、柱基础、以及地下建筑物、构筑物等所占体积 2、室内回填土体积=主墙间净面积×回填土厚度-各种沟道所占体积 主墙间净面积=S底-(L中×墙厚+L内×墙厚) 式中:底——底层建筑面积;L中——外墙中心线长度;L内——内墙净长线长度。 回填土厚度指室内外高差减去地面垫层、找平层、面层的总厚度。 四、运土方计算规则及公式 运土是指把开挖后的多余土运至指定地点,或是在回填土不足时从指定地点取土回填。土方运输应按不同的运输方式和运距分别以立方米计算。 运土工程量=挖土总体积-回填土总体积

建筑工程量计算公式及计算方法大全

建筑工程量计算公式及计算方法大全 一、平整场地:建筑物场地厚度在±30cm以内的挖、填、运、找平。 1、平整场地计算规则 (1)清单规则:按设计图示尺寸以建筑物首层面积计算。 (2)定额规则:按设计图示尺寸以建筑物外墙外边线每边各加2米以平方米面积计算。 2、平整场地计算公式 S=(A+4)×(B+4)=S底+2L外+16 式中:S———平整场地工程量;A———建筑物长度方向外墙外边线长度;B———建筑物宽度方向外墙外边线长度;S底———建筑物底层建筑面积;L外———建筑物外墙外边线周长。 该公式适用于任何由矩形组成的建筑物或构筑物的场地平整工程量计算。 二、基础土方开挖计算 开挖土方计算规则 (1)、清单规则:挖基础土方按设计图示尺寸以基础垫层底面积乘挖土深度计算。(2)、定额规则:人工或机械挖土方的体积应按槽底面积乘以挖土深度计算。槽底面积应以槽底的长乘以槽底的宽,槽底长和宽是指基础底宽外加工作面,当需要放坡时,应将放坡的土方量合并于总土方量中。 2、开挖土方计算公式: (1)、清单计算挖土方的体积:土方体积=挖土方的底面积×挖土深度。 (2)、定额规则:基槽开挖:V=(A+2C+K×H)H×L。式中:V———基槽土方量;A———槽底宽度;C———工作面宽度;H———基槽深度;L———基槽长度。. 其中外墙基槽长度以外墙中心线计算,内墙基槽长度以内墙净长计算,交接重合出不予扣除。 基坑开挖:V=1/6H[A×B+a×b+(A+a)×(B+b)+a×b]。式中:V———基坑体积;A—基坑上口长度;B———基坑上口宽度;a———基坑底面长度;b———基坑底面宽度。 三、回填土工程量计算规则及公式 1、基槽、基坑回填土体积=基槽(坑)挖土体积-设计室外地坪以下建(构)筑物被埋置部

建筑工程工程量计算公式大全

工程量计算规则公式汇总 ~ 土建工程工程量计算规则公式汇总 平整场地: 建筑物场地厚度在±30cm以内的挖、填、运、找平. 1、平整场地计算规则 (1)清单规则:按设计图示尺寸以建筑物首层面积计算。 (2)定额规则:按设计图示尺寸以建筑物首层面积计算。 2、平整场地计算方法 (1)清单规则的平整场地面积:清单规则的平整场地面积=首层建筑面积 : (2)定额规则的平整场地面积:定额规则的平整场地面积=首层建筑面积 3、注意事项 (1)、有的地区定额规则的平整场地面积:按外墙外皮线外放2米计算。计算时按外墙外边线外放2米的图形分块计算,然后与底层建筑面积合并计算;或者按“外放2米的中心线×2=外放2米面积” 与底层建筑面积合并计算。这样的话计算时会出现如下难点: ①、划分块比较麻烦,弧线部分不好处理,容易出现误差。 ②、2米的中心线计算起来较麻烦,不好计算。 ③、外放2米后可能出现重叠部分,到底应该扣除多少不好计算。 (2)、清单环境下投标人报价时候可能需要根据现场的实际情况计算平整场地的工程量,每边外放的长度不一样。 大开挖土方 《 1、开挖土方计算规则 (1)、清单规则:挖基础土方按设计图示尺寸以基础垫层底面积乘挖土深度计算。 (2)、定额规则:人工或机械挖土方的体积应按槽底面积乘以挖土深度计算。槽底面积应以槽底的长乘以槽底的宽,槽底长和宽是指混凝土垫层外边线加工作面,如有排水沟者应算至排水沟外边线。排水沟的体积应纳入总土方量内。当需要放坡时,应将放坡的土方量合并于总土方量中。 2、开挖土方计算方法 (1)、清单规则: ①、计算挖土方底面积: 方法一、利用底层的建筑面积+外墙外皮到垫层外皮的面积。外墙外边线到垫层外边线的面积计算(按外墙外边线外放图形分块计算或者按“外放图形的中心线×外放长度”计算。)方法二、分块计算垫层外边线的面积(同分块计算建筑面积)。 ②、计算挖土方的体积:土方体积=挖土方的底面积*挖土深度。 (2)、定额规则: ①、利用棱台体积公式计算挖土方的上下底面积。 V=1/6×H×(S上+ 4×S中+ S下)计算土方体积(其中,S上为上底面积,S中为中截面面积,S 下为下底面面积)。如下图 S下=底层的建筑面积+外墙外皮到挖土底边线的面积(包括工作面、排水沟、放坡等)。 用同样的方法计算S中和S下

建筑工程经济公式大全

建筑工程经济公式汇总 1、单利计算 式中 I t ——代表第t 计息周期的利息额;P ——代表本金;i 单——计息周期单利利率。 2、复利计算 1-?=t t F i I 式中 i ——计息周期复利利率;F t-1——表示第(t -1)期末复利本利和。 而第t 期末复利本利和的表达式如下: ) 1(1i F F t t +?=- 3、一次支付的终值和现值计算 ①终值计算(已知P 求F 即本利和) n i P F )1(+= ②现值计算(已知F 求P ) n n i F i F P -+=+= )1() 1( 4、等额支付系列的终值、现值、资金回收和偿债基金计算 等额支付系列现金流量序列是连续的,且数额相等,即: ) ,,,,常数(n t A A t 321=== ①终值计算(即已知A 求F ) i i A F n 11-+=)( ②现值计算(即已知A 求P ) n n n i i i A i F P )()()(+-+=+=-1111 ③资金回收计算(已知P 求A ) 111-++=n n i i i P A )()( ④偿债基金计算(已知F 求A ) 1 1-+=n i i F A )( 5、名义利率r 是指计息周期利率:乘以一年内的计息周期数m 所得的年利率。即:m i r ?= 6、有效利率的计算 包括计息周期有效利率和年有效利率两种情况。 (1)计息周期有效利率,即计息周期利率i ,由式(1Z101021)可知:

m r I = (1Z101022-1) (2)年有效利率,即年实际利率。 年初资金P ,名义利率为r ,一年内计息m 次,则计息周期利率为 m r i =。根据一次支付终值公式可得该年的本利和F ,即: m m r P F ?? ? ?? +=1 根据利息的定义可得该年的利息I 为: ??? ?????-??? ??+=-??? ?? +=111m m m r P P m r P I 再根据利率的定义可得该年的实际利率,即有效利率i eFF 为: 7、财务净现值 ()()t c t n t i CO CI FNPV -=+-= ∑10 (1Z101035) 式中 FNPV ——财务净现值; (CI-CO )t ——第t 年的净现金流量(应注意“+”、“-”号); i c ——基准收益率; n ——方案计算期。 8、财务内部收益率(FIRR ——Financial lnternaI Rate oF Return ) 其实质就是使投资方案在计算期内各年净现金流量的现值累计等于零时的折现率。其数学表达式为: ()()()t t n t FIRR CO CI FIRR FNPV -=+-= ∑10 (1Z101036-2) 式中 FIRR ——财务内部收益率。 9、财务净现值率(FNPVR ——Financial Net Present Value Rate ) 其经济含义是单位投资现值所能带来的财务净现值,是一个考察项目单位投资盈利能力的指标,考察 投资的利用效率,作为财务净现值的辅助评价指标。计算式如下: p I FNPV FNPVR = (1Z101037-1) () t i F P I I c k t t p ,,/0 ∑== (1Z101037-2) 式中 I p ——投资现值; I t ——第t 年投资额; k ——投资年数;

工程项目造价常用计算公式大全

工程项目造价常用计算公式大全 钢板重量计算公式: 钢管重量(公斤)=0.00617×直径×直径×长度 方钢重量(公斤)=0.00785×边宽×边宽×长度 六角钢重量(公斤)=0.0068×对边宽×对边宽×长度 八角钢重量(公斤)=0.0065×对边宽×对边宽×长度 螺纹钢重量(公斤)=0.00617×计算直径×计算直径×长度 角钢重量(公斤)=0.00785×(边宽+边宽-边厚)×边厚×长度扁钢重量(公斤)=0.00785×厚度×边宽×长度 钢管重量(公斤)=0.02466×壁厚×(外径-壁厚)×长度 钢板重量(公斤)=7.85×厚度×面积 园紫铜棒重量(公斤)=0.00698×直径×直径×长度 园黄铜棒重量(公斤)=0.00668×直径×直径×长度 园铝棒重量(公斤)=0.0022×直径×直径×长度 方紫铜棒重量(公斤)=0.0089×边宽×边宽×长度 方黄铜棒重量(公斤)=0.0085×边宽×边宽×长度 方铝棒重量(公斤)=0.0028×边宽1×边宽×长度 六角紫铜棒重量(公斤)=0.0077×对边宽×对边宽×长度 六角黄铜棒重量(公斤)=0.00736×边宽×对边宽×长度 六角铝棒重量(公斤)=0.00242×对边宽×对边宽×长度 紫铜板重量(公斤)=0.0089×厚×宽×长度

黄铜板重量(公斤)=0.0085×厚×宽×长度 铝板重量(公斤)=0.00171×厚×宽×长度 园紫铜管重量(公斤)=0.028×壁厚×(外径-壁厚)×长度 园黄铜管重量(公斤)=0.0267×壁厚×(外径-壁厚)×长度 园铝管重量(公斤)=0.00879×壁厚×(外径-壁厚)×长度 园钢重量(公斤)=0.00617×直径×直径×长度 注:公式中长度单位为米,面积单位为平方米,其余单位均为毫米长方形的周长=(长+宽)×2 正方形的周长=边长×4 长方形的面积=长×宽 正方形的面积=边长×边长 三角形的面积=底×高÷2 平行四边形的面积=底×高 梯形的面积=(上底+下底)×高÷2 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径=圆周率×半径×2 圆的面积=圆周率×半径×半径 长方体的表面积= (长×宽+长×高+宽×高)×2 长方体的体积=长×宽×高 正方体的表面积=棱长×棱长×6 正方体的体积=棱长×棱长×棱长

建筑工程量计算方法(含图及计算公式)[详细]

工程量计算方法 一、基础挖土 1、挖沟槽:V=(垫层边长+工作面)×挖土深度×沟槽长度+放坡增量 (1)挖土深度: ①室外设计地坪标高与自然地坪标高在±0.3米以内,挖土深度从基础垫层下表面算至室外设计地坪标高; ②室外设计地坪标高与自然地坪标高在±0.3米以外,挖土深度从基础垫层下表面算至自然设计地坪标高. (2)沟槽长度:外墙按中心线长度、内墙按净长线计算 (3)放坡增量:沟槽长度×挖土深度×系数(附表二P7) 2、挖土方、基坑:V=(垫层边长+工作面)×(垫层边长+工作面)×挖土深度+放坡增量 (1)放坡增量:(垫层尺寸+工作面)×边数×挖土深度×系数(附表二P7) 二、基础 1、各类混凝土基础的区分 (1)满堂基础:分为板式满堂基础和带式满堂基础,(图10-25 a、c、d).

(2)带形基础 (3)独立基础 1、独立基础和条形基础 (1)独立基础:V=a’×b’×厚度+棱台体积 (2)条形基础:V=断面面积×沟槽长度 (1)砖基础断面计算 砖基础多为大放脚形式,大放脚有等高与不等高两种.等高大放脚是以墙厚为基础,每挑宽1/4砖,挑出砖厚为2皮砖.不等高大放脚,每挑宽1/4砖,挑出砖厚为1皮与2皮相间(见图10-18).

基础断面计算如下:(见图10-19) 砖基断面面积=标准厚墙基面积+大放脚增加面积或 砖基断面面积=标准墙厚×(砖基础深+大放脚折加高度) 混凝土工程量计算规则 一、现浇混凝土工程量计算规则 混凝土工程量除另有规定者外,均按图示尺寸实体体积以米3计算.不扣除构件内钢筋、预埋铁件及墙、板中0.3㎡内的孔洞所占体积. 1、基础 (1)有肋带形混凝土基础,其肋高与肋宽之比在4:1以内的按有肋带形基础计算.超过4:1时,其基础底按板式基础计算,以上部分按墙计算. (2)箱式满堂基础应分别按无梁式满堂基础、柱、墙、梁、板有关规定计算,套相应定额项目. (3)设备基础除块体以外,其他类型设备基础分别按基础、梁、柱、板、墙等有关规定计算,套相应的定额项目计算2、柱

建筑工程工程量计算公式大全

工程量计算规则公式汇总 土建工程工程量计算规则公式汇总 平整场地: 建筑物场地厚度在±30cm以内的挖、填、运、找平. 1、平整场地计算规则 (1)清单规则:按设计图示尺寸以建筑物首层面积计算。 (2)定额规则:按设计图示尺寸以建筑物首层面积计算。 2、平整场地计算方法 (1)清单规则的平整场地面积:清单规则的平整场地面积=首层建筑面积 (2)定额规则的平整场地面积:定额规则的平整场地面积=首层建筑面积 3、注意事项 (1)、有的地区定额规则的平整场地面积:按外墙外皮线外放2米计算。计算时按外墙外边线外放2米的图形分块计算,然后与底层建筑面积合并计算;或者按“外放2米的中心线×2=外放2米面积” 与底层建筑面积合并计算。这样的话计算时会出现如下难点: ①、划分块比较麻烦,弧线部分不好处理,容易出现误差。 ②、2米的中心线计算起来较麻烦,不好计算。 ③、外放2米后可能出现重叠部分,到底应该扣除多少不好计算。 (2)、清单环境下投标人报价时候可能需要根据现场的实际情况计算平整场地的工程量,每边外放的长度不一样。 大开挖土方 1、开挖土方计算规则 (1)、清单规则:挖基础土方按设计图示尺寸以基础垫层底面积乘挖土深度计算。 (2)、定额规则:人工或机械挖土方的体积应按槽底面积乘以挖土深度计算。槽底面积应以槽底的长乘以槽底的宽,槽底长和宽是指混凝土垫层外边线加工作面,如有排水沟者应算至排水沟外边线。排水沟的体积应纳入总土方量内。当需要放坡时,应将放坡的土方量合并于总土方量中。

2、开挖土方计算方法 (1)、清单规则: ①、计算挖土方底面积: 方法一、利用底层的建筑面积+外墙外皮到垫层外皮的面积。外墙外边线到垫层外边线的面积计算(按外墙外边线外放图形分块计算或者按“外放图形的中心线×外放长度”计算。)方法二、分块计算垫层外边线的面积(同分块计算建筑面积)。 ②、计算挖土方的体积:土方体积=挖土方的底面积*挖土深度。 (2)、定额规则: ①、利用棱台体积公式计算挖土方的上下底面积。 V=1/6×H×(S上+ 4×S中+ S下)计算土方体积(其中,S上为上底面积,S中为中截面面积,S 下为下底面面积)。如下图 S下=底层的建筑面积+外墙外皮到挖土底边线的面积(包括工作面、排水沟、放坡等)。 用同样的方法计算S中和S下 3、挖土方计算的难点 ⑴、计算挖土方上中下底面积时候需要计算“各自边线到外墙外边线图”部分的中心线,中心线计算起来比较麻烦(同平整场地)。 ⑵、中截面面积不好计算。 ⑶、重叠地方不好处理(同平整场地)。 ⑷、如果出现某些边放坡系数不一致,难以处理。 4、大开挖与基槽开挖、基坑开挖的关系 槽底宽度在3m以内且长度是宽度三倍以外者或槽底面积在20m2以内者为地槽,其余为挖土方。 满堂基础垫层 1、满堂基础垫层工程量: 如图所示,(1)、素土垫层的体积(2)、灰土垫层的体积(3)、砼垫层的体积(3)垫层模板

施工常用计算公式大全

施工常用计算公式大全 各类钢材理论重量计算公式大全,欢迎收藏哦! 1. 钢板重量计算公式 公式:7.85 X长度(m)X宽度(m)X厚度(mm) 例:钢板6m(长)X 1.51m(宽)X 9.75mm厚) 计算:7.85X6X1.51 X9.75=693.43kg 2. 钢管重量计算公式 公式:(外径-壁厚)X壁厚mn X 0.02466 X长度m 例:钢管114mm外径)X 4mm壁厚)X 6m长度)计算:(114-4)X 4X0.02466X6=65.102kg 3. 圆钢重量计算公式 公式:直径mrr X直径mn X 0.00617 X长度m 例:圆钢①20mm直径)X 6m(长度) 计算:20X20X 0.00617X6=14.808kg 4. 方钢重量计算公式 公式:边宽(mm)X边宽(mm)X长度(m)X 0.00785 例:方钢50mm边宽)X 6m(长度) 计算:50X50X 6X0.00785=117.75(kg) 5. 扁钢重量计算公式 公式:边宽(mm)X厚度(mm)X长度(m)X 0.00785 例:扁钢50mm边宽)X 5.0mm(厚)X 6m(长度)计算: 50X5X6X0.00785=11.7.75(kg) 6. 六角钢重量计算公式 公式:对边直径X对边直径X长度(m)X 0.00068 例:六角钢50mm(直径)X 6m(长度) 计算:50X50X 6X0.0068=102(kg) 7. 螺纹钢重量计算公式 公式:直径mrr X直径mn X 0.00617 X长度m 例:螺纹钢①20mm直径)X 12m低度) 计算:20X20X 0.00617X12=29.616kg 8. 扁通重量计算公式 公式:(边长+边宽)X 2X厚X 0.00785 X长m 例:扁通100mm X 50mm< 5mm厚X 6m(长) 计算:(100+50)X 2X 5X 0.00785X 6=70.65kg 9. 方通重量计算公式 公式:边宽mm X4X厚X 0.00785 X长m 例:方通50mm< 5mm厚X 6m低) 计算:50X4X5X0.00785X 6=47.1kg 10. 等边角钢重量计算公式 公式:边宽mm X厚X 0.015 X长m粗算) 例:角钢50mm< 50mn X 5 厚X 6m(长) 计算:50X 5X 0.015 X 6=22.5kg(表为22.62) 11. 不等边角钢重量计算公式

工程造价常用计算公式大全

工程造价常用计算公式大全,有没有你不会的呢?(钢板重量计算公式: 钢管重量(公斤)=0.00617×直径×直径×长度 方钢重量(公斤)=0.00785×边宽×边宽×长度 六角钢重量(公斤)=0.0068×对边宽×对边宽×长度 八角钢重量(公斤)=0.0065×对边宽×对边宽×长度 螺纹钢重量(公斤)=0.00617×计算直径×计算直径×长度 角钢重量(公斤)=0.00785×(边宽+边宽-边厚)×边厚×长度 扁钢重量(公斤)=0.00785×厚度×边宽×长度 钢管重量(公斤)=0.02466×壁厚×(外径-壁厚)×长度 钢板重量(公斤)=7.85×厚度×面积 园紫铜棒重量(公斤)=0.00698×直径×直径×长度 园黄铜棒重量(公斤)=0.00668×直径×直径×长度 园铝棒重量(公斤)=0.0022×直径×直径×长度 方紫铜棒重量(公斤)=0.0089×边宽×边宽×长度 方黄铜棒重量(公斤)=0.0085×边宽×边宽×长度 方铝棒重量(公斤)=0.0028×边宽1×边宽×长度 六角紫铜棒重量(公斤)=0.0077×对边宽×对边宽×长度 六角黄铜棒重量(公斤)=0.00736×边宽×对边宽×长度 六角铝棒重量(公斤)=0.00242×对边宽×对边宽×长度 紫铜板重量(公斤)=0.0089×厚×宽×长度

黄铜板重量(公斤)=0.0085×厚×宽×长度 铝板重量(公斤)=0.00171×厚×宽×长度 园紫铜管重量(公斤)=0.028×壁厚×(外径-壁厚)×长度 园黄铜管重量(公斤)=0.0267×壁厚×(外径-壁厚)×长度 园铝管重量(公斤)=0.00879×壁厚×(外径-壁厚)×长度 园钢重量(公斤)=0.00617×直径×直径×长度 注:公式中长度单位为米,面积单位为平方米,其余单位均为毫米 长方形的周长=(长+宽)×2 正方形的周长=边长×4 长方形的面积=长×宽 正方形的面积=边长×边长 三角形的面积=底×高÷2 平行四边形的面积=底×高 梯形的面积=(上底+下底)×高÷2 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径=圆周率×半径×2 圆的面积=圆周率×半径×半径 长方体的表面积= (长×宽+长×高+宽×高)×2 长方体的体积 =长×宽×高

相关文档
最新文档