板式塔设计

板式塔设计
板式塔设计

设计

塔设备是化工、石油等工业中广泛使用的重要生产设备。塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。因此,蒸馏和吸收操作可在同样的设备中进行。

根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。

板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。

填料塔内装有各种形式的固体填充物,即填料。液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。

目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。

本章重点介绍板式塔的塔板类型,分析操作特点并讨论浮阀塔的设计,同时还介绍各种类型填料塔的流体流体力学特性和计算。

第1节板式塔

板式塔为逐级接触式气液传质设备。在一个圆筒形的壳体内装有若干层按一定间距放置的水平塔板,塔板上开有很多筛孔,每层塔板靠塔壁处设有降液管。气液两相在塔板内进行逐级接触,两相的组成沿塔高呈阶梯式变化。板式塔的空塔气速很高,因而生产能力较大,塔板效率稳定,造价低,检修、清理方便

3.1.1塔板类型

按照塔内气液流动的方式,可将塔板分为错流塔板与逆流塔板两类。

错流塔板:塔内气液两相成错流流动,即流体横向流过塔板,而气体垂直穿过液层,但对整个塔来说,两相基本上成逆流流动。错流塔板降液管的设置方式及堰高可以控制板上液体流径与液层厚度,以期获得较高的效率。但是降液管占去一部分塔板面积,影响塔的生产能力;而且,流体横过塔板时要克服各种阻力,因而使板上液层出现位差,此位差称之为液面落差。液面落差大时,能引起板上气体分布不均,降低分离效率。错流塔板广泛用于蒸馏、吸收等传质操作中。

逆流塔板亦称穿流板,板间不设降液管,气液两相同时由板上孔道逆向穿流而过。栅板、

淋降筛板等都属于逆流塔板。这种塔板结构虽简单,板面利用率也高,但需要较高的气速才能维持板上液层,操作范围较小,分离效率也低,工业上应用较少。

本教材只介绍错流塔板。

一、泡罩塔

塔板上设有许多供蒸气通过的升气管,其上覆以钟形泡罩,升气管与泡罩之间形成环形通道。泡罩周边开有很多称为齿缝的长孔,齿缝全部浸在板上液体中形成液封。操作时,气体沿升气管上升,经升气管与泡罩间的环隙,通过齿缝被分散成许多细小的气泡,气泡穿过液层使之成为泡沫层,以加大两相间的接触面积。流体由上层塔板降液管流到下层塔板的一侧,横过板上的泡罩后,开始分离所夹带的气泡,再越过溢流堰进入另一侧降液管,在管中气、液进一步分离,分离出的蒸气返回塔板上方究竟,流体流到下层塔板。一般小塔采用圆形降液管,大塔采用弓形降液管。泡罩塔已有一百多年历史,但由于结构复杂、生产能力较低、压强降等特点,已较少采用,然而因它有操作稳定、技术比较成熟、对脏物料不敏感等优点,故目前仍有采用。

二、筛板塔

筛板是在带有降液管的塔板上钻有3~8mm直径的均布圆孔,液体流程与泡罩塔相同,蒸气通过筛孔将板上液体吹成泡沫。筛板上没有突起的气液接触元件,因此板上液面落差很小,一般可以忽略不计,只有在塔径较大或液体流量较高时才考虑液面落差的影响。

三、浮阀塔

浮阀塔是50年代开发的一种较好的塔。在带有降液管的塔板上开有若干直径较大(标准孔径为39mm)的均布圆孔,孔上覆以可在一定范围内自由活动的浮阀。浮阀形式很多,常用的有F1型,V-4型,T型浮阀。

操作时,液相流程和前面介绍的泡罩塔一样,气相经阀孔上升顶开阀片、穿过环形缝隙、再以水平方向吹入液层形成泡沫,随着气速的增减,浮阀能在相当宽的范围内稳定操作。因此目前获得较广泛的应用。

四、喷射型塔板

筛板上气体通过筛孔及液层后,夹带着液滴垂直向上流动,并将部分液滴带至上层塔板,这种现象称为雾沫夹带。雾沫夹带的产生固然可增大气液两相的传质面积,但过量的雾沫夹带造成液相在塔板间返混,进而导致塔板效率严重下降。在浮阀塔板上,虽然气相从阀片下方以水平方向喷出,但阀与阀间的气流相互撞击,汇成较大的向上气流速度,也造成严重的雾沫夹带现象。此外,前述各类塔板上存在或低或高的液面落差,引起气体分布不均,不利于提高分离效率。基于这些缺点,开发出若干种喷射型塔板,在这类塔板上,气体喷出的方向与液体流动的方向一致或相反。充分利用气体的动能来促进两相间的接触,提高传质效果。气体不必再通过较深的液层,因而压强降显著减小,且因雾沫夹带量较小,故可采用较大的气速。

3.1.3 筛板塔的工艺设计

一个完整的设备设计应包括工艺设计及机械强度设计,此外还要提出供加工制造的图纸,本教材只介绍工艺设计部分。

板式塔的类型很多,但工艺设计的原则和步骤大致相同,下面以筛板塔为例进行介绍。

筛板塔的工艺计算包括塔高、塔径以及塔板上主要部件工艺尺寸的计算,塔板的流体力学验算,最后画出操作负荷性能图。流体力学验算包括对流体阻力、淹塔、雾沫夹带、液面落差、负荷上、下限等方面的验算。

一、塔的有效高度

根据给定的分离任务,按照前面所介绍的方法求出塔内所需的理论板层数之后,便可按下式计算塔的有效段(接触段)高度,即:

T T T H E N z

式中 z -塔的有效高度,m ;

T N -理论塔板数; T E -板式塔的总效率;

T H -塔板间的距离,简称板距,m 。

塔板间距 H T 的大小对塔的生产能力、操作弹性及塔板效率都有影响。采用较大的板间距,能允许较高的空塔气速,而不致产生严重的雾沫夹带现象,因而对于一定的生产任务,塔径可以小些,但塔高要增加。反之,采用较小的板间距,只能允许较小的空塔气速,塔径就要增大,但塔高可减低一些。可见板间距与塔径互相关联,有时需要结合经济权衡,反复调整,才能确定。板间距的数值应按照规定选取整数,如300、350、450、500、600、800mm 等。

在决定板间距时应考虑安装、检修的需要。例如在塔体人孔处,应留有足够的工作空间,上、下两层塔板之间的距离不应小于600mm 。

二、塔径

根据圆管内流量公式,可写出塔径与气体流量及空塔气速的关系,即:

(5-2)

式中

塔径, m ;

塔内气体流量, m 3/s ; 空塔气速,即按空塔计算的气体线速度, m/s 。

由上式可见,计算塔径的关键在于确定适宜的空塔气速 u 。

当上升气体脱离塔板上的鼓泡液层时,气泡破裂而将部分液体喷溅成许多细小的液滴及雾沫。上升气体的空塔速度不应超过一定限度,否则这些液滴和雾沫会被气体大量携至上层塔板,造成严重的雾沫夹带现象,甚至破坏塔的操作。因此,可以根据悬浮液滴的沉降原理导出计算最大允许气速 u max 的关系式。设液滴的直径为 d ,则液滴在气体中的净重(即重力与浮力之差)为:

净重力

而悬浮液滴所受上升气流的摩擦阻力为:

摩擦阻力

式中

液相密度, kg/m 3

气相密度, kg/m 3;

气速, m/s ; 阻力系数,无因次。 当气速增大至液滴所受阻力恰等于其净重时,液滴便在上升气流中处于稳定的悬浮状

态。若气速再稍增大,液滴便会被上升气流带走。此种极限条件下力的平衡关系为:

(5-3) 式中

u max 塔径, m ; C 负荷系数。

由式 (5-3) 可见,负荷系数 C 的值应取决于阻力系数及液滴直

径,而气泡破裂所形成的液滴直 径很难确知,阻力系数的影响因素也很复杂。研究表明, C 值与气、液流量及密度、板上液滴沉降空间的高度以及液体的表面张力有关。

三、溢流装置

一套溢流装置包括降液管和溢流堰。降液管有圆形和弓形两种。圆形降液管的流通截面小,没有足够的空间分离液体中的气泡,气相夹带(气泡被液体带到下层塔板的现象)较严重,降低塔板效率。所以,除小塔外,一般不采用圆形降液管。弓形降液管具有较大的容积,又能充分利用塔板面积,应用较为普遍。

降液管的布置规定了板上液体流动的途径。一般有几种型式,即 U 形流、单溢流、双溢流及阶梯流。

总之,液体在塔板上的流径愈长,气液接触时间就愈长,有利于提高分离效果;但是液面落差也随之加大,不利于气体均匀分布,使分离效果降低。由此可见流径的长短与液面落差的大小对效率的影响是相互矛盾的。选择溢流型式时,应根据塔径大小及液体流量等条件,作全面的考虑。

目前,凡直径在2.2m 以下的浮阀塔,一般都采用单溢流。在大塔中,由于液面落差大会造成浮阀开启不均,使气体分布不均及出现泄漏现象,应考虑采用双溢流以及阶梯流。

四、塔板布置

塔板有整块式与分块式两种。一般塔径为300~800mm 时,采用整块式塔板。当塔径≥ 900mm 时,能在塔内进行装拆,可用分块式塔板,以便通过人孔装拆塔板。塔径为800~900时,可根据制造与安装的具体情况,任意选用这两种形式的塔板中任一种。

塔板面积可分为四个区域:

(1) 鼓泡区 即为塔板上气液接触的有效区域。

(2) 溢流区 即降液管及受液盘所占的区域。

(3) 破沫区 即前两区域之间的面积。

此区域内不装浮阀,主要为在液体进入降液管之前,有一段不鼓泡的安定地带。以免液体大量夹带泡沫进入降液管。破沫区也叫安定区,其宽度W S 可按下述范围选取,即:当 D <1.5m 时, W S =60~75mm 当 D >1.5m 时, W S =80~110mm 直径小于1m 的塔, W S 可适当减小。

(4) 无效区即靠近塔壁的部分,需要留出一圈边缘区域,供支持塔板的边梁之用。这个无效区也叫边缘区,其宽度视塔板支承的需要而定,小塔在 30~50mm ,大塔可达 50~75mm 。为防止液体经无效区流过而产生“短路”现象,可在塔板上沿塔壁设置挡板。 五、筛孔及其排列

(1)筛孔直径

工业筛板塔的筛孔直径为3~8mm ,一般推荐用4~5mm 。太小的孔径加工制造困难,且易堵塞。近年来有采用大孔径(φ10~25mm )的趋势,因为大孔径筛板具有加工制造简单,造价低、不易堵塞等优点。只要设计与操作合理,大孔径的筛板也可以获得满意的分离效果。

此外,筛孔直径的确定,还应根据塔板材料的厚度δ考虑加工的可能性,当用冲压法加工时,若板材为炭钢,其厚度δ可选为3~4mm ,

δ0d ≥1;若板材为合金钢,其厚度δ可选为2~2.5mm ,0d ≥1.5~2。

(2)孔中心距

一般取孔中心距t 为(2.5~5)0d 。0d t 过小,易使气流相互干扰;过大则鼓泡不均匀,都会影响传质效率。推荐

0d

t 的适宜范围为3~4。 (3)筛孔的排列

板鼓泡区内的排列有正三角形与等腰三角形两种方式,按照筛孔中心联线与液流方向的关系,又有顺排与叉排之分。叉排时气液接触效果较好,故一般情况下都采用叉排方式。对于整块式塔板,多采用正三角形叉排,孔心距 t 为 75~125mm ;对于分块式塔板,宜采用等腰三角形叉排,此时常把同一横排的筛孔中心距t 定为75mm ,而 相邻两排间的距离 t′可取为65、80、100mm 等几种尺寸。 3.1.4 筛板塔的流体力学验算

板的流体力学验算,目的在于核验上述各项工艺尺寸已经确定的塔板,在设计任务规定的气、液负荷下能否正常操作,其内容包括对塔板压强降、液泛、雾沫夹带、泄漏、液面落差等项的验算。筛板塔板上的液面落差一般很小,可以忽略。

一、塔板压强降

气体通过塔板时的压强降大小是影响板式塔操作特性的重要因素,也往往是设计任务规定的指标之一。在保证较高效率的前提下,应力求减小塔板压降,以降低能耗及改善塔的操作性能。

经筛板塔板上升的气流需要克服以下几种阻力:塔板本身的干板阻力,即板上各部件造成的阻力,对筛板塔则为通过干筛孔的阻力;板上充气液层的静压力及液体的表面张力。 因此,按照目前广泛采用的加合计算方法,气体通过一层浮阀塔板时的压强降应为: Δp p = Δp c + Δp l + Δp σ

式中 Δp p 气体通过一层浮阀塔板时的压强降, N/m 2;

Δp c 气流克服干板阻力所产生的压强降, N/m 2;

Δp l 气流克服板上充气液层的静压力所产生的压强降, N/m 2;

Δp σ 气流克服液体表面张力所产生的压强降, N/m 2。

习惯上,常把这些压强降全部折合成塔内液体的液柱高度来表示。

二、液泛

为使液体能由上一层塔板稳定地流入下一层塔板,降液管内必须维持有一定高度的液柱。若操作中降液管内全部泡沫及液体(其总体密度小于清液密度)所形成的静压相当于高度为 H d 的清液柱,则取下一层塔板为基准面在降液管内、外两液面之间列柏努利方程,可得: H d = h p + h L + h d

式中 h p 上升气体通过一层塔板的压强降所相当的液柱高度, m ;

h L 板上液层高度, m 。此处忽略了板上液面落差并认为降液管出口液体中不含气泡;

h d 液体流过降液管的压头损失, m 。

三、漏液

当上升气体流速减小,致使气体通过筛孔的动压不足以阻止板上液体经筛孔流下时,便会出现泄漏现象,开始泄漏时的瞬间称为漏液点。液体经筛孔向下泄漏,影响气液在塔板上的充分接触,特别是在靠近进口堰处的泄漏会使塔板效率严重降低故漏液点的气速u 0,min 为操作时的下限气速。正常操作时,泄漏量应不大于液体流量的 10% 。

四、雾沫夹带

雾沫夹带是指板上液体被上升气体带入上一层塔板的现象。过多的雾沫夹带将导致塔板效率严重下降。为了保证板式塔能维持正常的操作,应使每千克上升气体夹带到上一层塔板的液体量不超过0.1kg,即控制雾沫夹带量 e V<0.1kg (液)/kg(气)。

影响雾沫夹带量的因素很多,最主要的是空塔气速和塔板间距。对于浮阀塔板上雾沫夹带量的计算,迄今尚无适用于一般工业塔的确切公式。通常是间接地用操作时的空塔气速与发生液泛时的空塔气速的比值作为估算雾沫夹带量大小的指标。此比值称为泛点百分数,或称泛点率。

在下列泛点率数值范围内,一般可保证雾沫夹带量达到规定的指标,即 e V<

1kg(液)/kg(气):

大塔泛点率<80%

直径0.9m以下的塔泛点率<70%

减压塔泛点率<75%

五、浮阀塔板的负荷性能图

前面首先确定了塔板的工艺尺寸,又对各项进行了流体力学验算(包括对工艺尺寸的必要调整)之后,便可确认所设计的塔板能在任务规定的气、液负荷下正常操作。此时,还有必要进一步揭示该塔板的操作性能,即求出维持该塔板正常操作所允许的气、液负荷波动范围。这个范围通常以塔板负荷性能图的形式表示。

影响板式塔操作状态和分离效果的主要因素包括物料性质、气液负荷及塔板结构尺寸等。在系统物性、塔板结构尺寸已经确定的条件下,要维持塔的正常操作,必须把气、液负荷限制在一定范围之内。在以 Vs、Ls 分别为纵、横轴的直角坐标系中,标绘各种界限条件下的 Vs-Ls 关系曲线,从而得到允许的负荷波动范围图形。这个图形即称为塔板的负荷性能图。

负荷性能图对于检验塔板设计是否合理及了解塔的操作稳定性、增产的潜力及减负荷运转的可能性,都有一定的指导意义。

(1)雾沫夹带上限线

雾沫夹带上限线表示雾沫夹带量 e V=0.1kg(液)/kg(气) 时的 Vs-Ls 关系,塔板的适宜操作区应在此线以下,否则将因过多的雾沫夹带而使板效率严重下降。

(2)液泛线

液泛线表示降液管内泡沫层高度达到最大允许值时的 Vs-Ls 关系,塔板的适宜操作区也应在此线以下,否则将可能发生液泛现象,破坏塔的正常操作。

(3)液相负荷上限线

液相负荷上限线又称为降液管超负荷线。此线反映对于液体在降液管内停留时间的起码

要求。对于尺寸已经确定的降液管,若液体流量超过某一限度,使液体在降液管内停留时间过短,则其中气泡来不及放出就进入下层塔板,造成气相返混,降低塔板效率。

(4)泄漏线

泄漏线又称为气相负荷下限线。此线表明不发生严重泄漏现象的最低气体负荷,是一条平行于横轴的直线。塔板的适宜操作区应在此线的上方。

(5)液相负荷下限线

对于平堰,一般取堰上液层高度 h OW=0.006m 作为液相负荷下限条件,低于此限时,便不能保证板上液流的均匀分布,降低气液接触效果。

塔板的适宜操作区应在此线的右侧。

在负荷性能图上,由上述(1)、(2)、(3)、(4)及(5)所包围的区域,应是所设计的塔板用于处理指定物系时的适宜操作区。在此区域内,塔板上的流体力学状况是正常的,但该区域内各点处的板效率并不完全相同。代表塔的预定气、液负荷的设计点 P 如能落在该区域内的适中位置,则可望获得稳定良好的操作效果。如果操作点紧靠某一条边界线,则当负荷稍有波动时便会使效率急剧下降,甚至完全破坏塔的操作。

物系一定时,负荷性能图中各条线的相对位置随塔板结构尺寸而改变。譬如,当降液管截面积减小而板间距加大时,液相负荷上限线将向左移而液泛线将向上移,甚至可能使液泛线落到其余四条线所包围的区域之外。这是因为降液管狭小,使液体负荷成为主要限制因素,而气相负荷增大时所引起的淹塔问题便退居不显著的地位了。

通常把气相负荷上、下限之比称为塔板的操作弹性。

此外还应指出,对于内有多层塔板而直径均一的塔来说,由于从底到顶各层塔板上的操作条件(温度、压强等)及物料组成和性质(密度等)有所不同,因而各层塔板上的气、液负荷都是不同的。设计计算中应考虑到这一问题,对处于最不利情况下的塔板进行验算,看其操作点是否在适宜操作区之内,并按此薄弱环节上的条件确定该塔所允许的操作负荷范围。

3.1.5 塔板效率

理论塔板是衡量实际塔板分离效果的标准,而实际塔板分离效果接近这个标准的程度,便通过塔板效率来表达。

一、塔板效率的表示方法

1.总板效率

E T总板效率又称全塔效率,是指达到指定分离效果所需理论板层数与实际板层数的比值,即:

式中N T塔内所需理论板层数;

N P塔内实际板层数。

板式塔内各层塔板的接触效率并不相同,总板效率简单地反映了整个塔内所有塔板的平均效率。设计中为便于求算实际板层数,都采用总板效率。

2.单板效率

E M单板效率又称为默弗里 (Murphree) 板效率,是指气相或液相经过一层实际塔板前后的组成变化与经过一层理论塔板前后的组成变化的比值。参见图5-19,图中第n层塔板的效率有如下两种表达方式:

按气相组成变化表示的单板效率为:

按液相组成变化表示的单板效率为:

式中与 x n 成平衡的气相组成;

与 y n成平衡的液相组成。

一般说来,同一层塔板的 E MV与E ML数值并不相同。在一定的简化条件下通过对第n层塔板作物料衡算可以得到 EMV与EML 的关系,即:

式中m 第 n 层塔板所涉及浓度范围内的平衡线斜率;

L V气、液两相摩尔流量之比,即操作线斜率。

可见,只有当操作线与平衡线平行时, E MV 与 E ML 才会相等。

3.点效率

E0点效率是指塔板上各点处的局部效率。以气相点效率E0V为例,设流经塔板某点上方的液相浓度为 x ,与 x 成平衡的气相浓度为 y*。由下部进入该位置的气相浓度为 y n+1 ,经与液相接触后由该处液面离去的气相浓度为y,则该局部位置上的气相点效率定义为:

当板上液体处于完全混合的条件下时,点效率 E0V 与板效率 E MV 具有相同的数值。直径很小的以及逆流式的塔板上的情况与此接近。

二、塔板效率的影响因素

塔板效率反映实际板上传质过程进行的程度。根据由双膜理论导出的传质速率方程式可知,传质系数、传质推动力、传质面积和两相接触时间应是决定塔板上各点处气、液接触效率的几个重要因素。板效率是板上各点处接触效果的综合体现,因而,决定板效率高低的另一重要因素是板上液体的返混程度,此外雾沫夹带及漏液现象,造成液相在塔板之间的返混,也使达到一定分离指标所需的板的层数增多,总板效率下降。进一步分析上述各因素,可归纳出以下几个方面:

1.物系性质

物系性质主要指粘度、密度、表面张力、扩散系数、相对挥发度等。液体的粘度、密度直接影响板上液流的湍动程度,进而影响传质系数和气液接触面积。表面张力影响泡沫生成

的数量、大小及其稳定性,因而也影响接触面积的大小。物系的分子扩散系数对传质系数有直接影响,而相对挥发度等相平衡常数的影响则体现在传质推动力和过程速率的控制因素之中。

2.塔板型式与结构

塔板结构因素主要包括板间距、堰高、塔径以及液体在板上的流径长度等。各种结构因素对操作状况及塔板效率的影响前已有所讨论。

3.操作条件

操作条件是指温度、压强、气体上升速度、溢流强度、气液流量比等因素,其中气速的影响尤为重要。在避免大量雾沫夹带和避免发生淹塔现象的前提下,增大气速对于提高塔板效率一般是有利的

板式塔设计

板式塔设计 概述 本章符号说明 英文字母 A a——塔板开孔区面积,m2; A f——降液管截面积,m2; A0——筛孔总面积,m2; A T——塔截面积,m2; c0——流量系数,无因次; C——计算u max时的负荷系数,m/s; C s——气相负荷因子,m/s; d0——筛孔直径,m; D——塔径,m; ev——液沫夹带量,kg(液)/kg(气); E——液流收缩系数,无因次; E T——总板效率,无因次; F——气相动能因子,kg1/2/(s·m1/2); F0——筛孔气相动能因子,kg1/2/(s·m1/2); h1——进口堰与降液管间的水平距离,m; h c——与干板压降相当的液柱高度,m液柱; h d——与液体流过降液管的压降相当的液柱高度,m:h f——塔板上鼓泡层高度,m; h l——与板上液层阻力相当的液柱高度,m; h L——板上清液层高度,m; h0——降液管的底隙高度,m; h ow——堰上液层高度,m; h w——出口堰高度,m; h′w——进口堰高度,m; hσ——与克服σ的压降相当的液柱高度,m;H——板式塔高度; H B——塔底空间高度,m; H d——降液管内清液层高度,m; H D——塔顶空间高度,m; H F——进料板处塔板间距,m ;

H P——人孔处塔板间距,m; H T——塔板间距,m; H1——封头高度,m; H2——裙座高度,m; K——稳定系数,无因次; l W——堰长,m; L h——液体体积流量,m3/h; L S——液体体积流量,m3/s; n——筛孔数目; N T——理论板层数; P——操作压力,Pa; △P——压力降,Pa; △P p——气体通过每层筛板的压降,Pa;r——鼓泡区半径,m; t——筛孔的中心距,m; u——空塔气速,m/s; u F——泛点气速,m/s u0——气体通过筛孔的速度,m/s; u0.min——漏液点气速,m/s; u′0——液体通过降液管底隙的速度,m/s;V h——气体体积流量,m3/h; V S——气体体积流量,kg/s; W L——液体质量流量,kg/s; W V——气体质量流量,kg/s; W c——边缘无效区宽度,m; W d——弓形降液管宽度,m; W s——破沫区宽度,m; Z——板式塔的有效高度,m; 希腊字母 β——充气系数,无因次; δ——筛板厚度,m θ——液体在降液管内停留时间,s;μ——粘度,Pa·s; ρ——密度,kg/m3; σ——表面张力,N/m; φ——开孔率或孔流系数,无因次;

塔设备机械设计

第一章绪论 1.1塔设备概述 塔设备是石油、化工、轻工等各工业生产中仅次与换热设备的常见设备。在上述各工业生产过程中,常常需要将原料中间产物或粗产品中的各个组成部分(称为组分)分离出来作为产品或作为进一步生产的精制原料,如石油的分离、粗酒精的提纯等。这些生产过程称为物质分离过程或物质传递过程,有时还伴有传热和化学反应过程。传质过程是化学工程中一个重要的基本过程,通常采用蒸馏、吸收、萃取。以及吸附、离子交换、干燥等方法。相对应的设备又可称为蒸馏塔、吸收塔、萃取塔等。 在塔设备中所进行的工艺过程虽然各不相同,但从传质的必要条件看,都要求在塔内有足够的时间和足够的空间进行接触,同时为提高传质效果,必须使物料的接触尽可能的密切,接触面积尽可能大。为此常在塔内设置各种结构形式的内件,以把气体和液体物料分散成许多细小的气泡和液滴。根据塔内的内件的不同,可将塔设备分为填料塔和板式塔。 在板式塔中,塔内装有一定数量的塔盘,气体自塔底向上以鼓泡喷射的形式穿过塔盘上的液层,使两相密切接触,进行传质。两相的组分浓度沿塔高呈阶梯式变化。 不论是填料塔还是板式塔,从设备设计角度看,其基本结构可以概括为: (1)塔体,包括圆筒、端盖和联接法兰等; (2)内件,指塔盘或填料及其支承装置; (3)支座,一般为裙式支座; (4)附件,包括人孔、进出料接管、各类仪表接管、液

体和气体的分配装置,以及塔外的扶梯、平台、保温层等。 塔体是塔设备的外壳。常见的塔体是由等直径、等壁厚的圆筒及上、下椭圆形封头所组成。随着装置的大型化,为了节省材料,也有用不等直径、不等壁厚的塔体。塔体除应满足工艺条件下的强度要求外,还应校核风力、地震、偏心等载荷作用下的强度和刚度,以及水压试验、吊装、运输、开停车情况下的强度和刚度。另外对塔体安装的不垂直度和弯曲度也有一定的要求。 支座是塔体的支承并与基础连接的部分,一般采用裙座。其高度视附属设备(如再沸器、泵等)及管道布置而定。它承受各种情况下的全塔重量,以及风力、地震等载荷,因此,应有足够的强度和刚度。 塔设备强度计算的主要的内容是塔体和支座的强度和刚度计算。 化工生产对塔设备的基本要求 塔设备设计除应满足工艺要求外,尚需考虑下列基本要求:(1)气、液处理量大,接触充分,效率高,流体流动阻力小。 (2)操作弹性大,即当塔的负荷变动大时,塔的操作仍然稳定,效率变化不大,且塔设备能长期稳定运行。 (3)结构简单可靠,制造安装容易,成本低。 (4)不易堵塞,易于操作、调试及检修。 1.2板式塔 板式塔具有物料处理量大,重量轻,清理检修方便,操作稳定性好等优点,且便于满足工艺上的特殊要求,如中间加热或或冷却、多段取出不同馏分、“液化气”较大等。但板式塔的结构复杂,成本较高。由于板式塔良好的操作的性能和成熟的使用经验,目前在化工生产的塔设备中,占有很大比例,广泛用于蒸馏、吸收等传质过程。 板式塔内部装有塔盘,塔体上有进料口、产品抽出口以及回流口等。此外,还有很多附属装置,如除沫器、入手孔、支座、

板式塔介绍

塔设备是化工、石油等工业中广泛使用的重要生产设备。塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。因此,蒸馏和吸收操作可在同样的设备中进行。 根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。 板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。 填料塔内装有各种形式的固体填充物,即填料。液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。 目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。 本章重点介绍板式塔的塔板类型,分析操作特点并讨论浮阀塔的设计,同时还介绍各种类型填料塔的流体流体力学特性和计算。 第1节板式塔 板式塔为逐级接触式气液传质设备。在一个圆筒形的壳体内装有若干层按一定间距放置的水平塔板,塔板上开有很多筛孔,每层塔板靠塔壁处设有降液管。气液两相在塔板内进行逐级接触,两相的组成沿塔高呈阶梯式变化。板式塔的空塔气速很高,因而生产能力较大,塔板效率稳定,造价低,检修、清理方便 3.1.1塔板类型 按照塔内气液流动的方式,可将塔板分为错流塔板与逆流塔板两类。 错流塔板:塔内气液两相成错流流动,即流体横向流过塔板,而气体垂直穿过液层,但对整个塔来说,两相基本上成逆流流动。错流塔板降液管的设置方式及堰高可以控制板上液体流径与液层厚度,以期获得较高的效率。但是降液管占去一部分塔板面积,影响塔的生产能力;而且,流体横过塔板时要克服各种阻力,因而使板上液层出现位差,此位差称之为液面落差。液面落差大时,能引起板上气体分布不均,降低分离效率。错流塔板广泛用于蒸馏、吸收等传质操作中。 逆流塔板亦称穿流板,板间不设降液管,气液两相同时由板上孔道逆向穿流而过。栅板、淋降筛板等都属于逆流塔板。这种塔板结构虽简单,板面利用率也高,但需要较高的气速才能维持板上液层,操作范围较小,分离效率也低,工业上应用较少。 本教材只介绍错流塔板。

板式塔设备机械设计

板式塔设备机械设计

————————————————————————————————作者:————————————————————————————————日期:

1 板式塔设备机械设计任务书 1.1 设计任务及操作条件 试进行一蒸馏塔与裙座的机械设计 已知条件为:塔体内径mm D i 2000=,塔高m 30,工作压力为MPa 2.1,设计温度为300℃,介质为原油,安装在广州郊区,地震强度为7度,塔内安装55层浮阀塔板,塔体材料选用16MnR ,裙座选用A Q -235。 1.2 设计内容 (1)根据设计条件选材; (2)按设计压力计算塔体和封头壁厚; (3)塔设备质量载荷计算; (4)风载荷与风弯矩计算; (5)地震载荷与地震弯矩计算; (6)偏心载荷与偏心弯矩计算; (7)各种载荷引起的轴向应力; (8)塔体和裙座危险截面的强度与稳定校核; (9)塔体水压试验和吊装时的应力校核; (10)基础环设计; (11)地脚螺栓计算; (12)板式塔结构设计。 1.3.设计要求: (1)进行塔体和裙座的机械设计计算; (2)进行裙式支座校核计算; (3)进行地脚螺栓座校核计算; (4)绘制装备图(A3图纸)

2 塔设备已知条件及分段示意图 已知设计条件 分段示意图 塔体内径i D 2000mm 塔体高度H 30000mm 设计压力P 1.2MPa 设计温度t 300℃ 塔 体 材料 16MnR 许用应力 [σ] 170MPa [σ]t 144MPa 设计温度下弹性模量E MPa 51086.1? 常温屈服点s σ 345MPa 厚度附加量C 2mm 塔体焊接接头系数φ 0.85 介质密度ρ 3/800m kg 塔盘数N 55 每块塔盘存留介质层高度w h 100mm 基本风压值0q 500N/㎡ 地震设防烈度 7度 场地土类别 II 类 地面粗糙度 B 类 偏心质量e m 4000kg 偏心距e 2000mm 塔外保温层厚度s δ 100mm 保温材料密度2ρ 3/300m kg 材料 Q235-A 裙 座 许用应力t s ][σ 86MPa 常温屈服点s σ 235MPa 设计温度下弹性模量s E

精馏塔机械设计方案

精馏塔机械设计方案 1.1 塔设备概论 塔设备是化工、石油化工和炼油、医药、环境保护等工业部门的一种重要的单元操作设备。它的作用是实现气(汽)——液相或液——液相之间充分的接触,从而达到相际间进行传质及传热的目的。可在塔设备中完成的常见的单元操作有:精馏、吸收、解吸和萃取等。此外,工业气体的冷却与回收、气体的湿法净制和干燥,以及兼有气液两相传质和传热的增湿、减湿等。 塔设备应用面广、量大,其设备投资费用占整个工艺设备费用较大的比例。在化工或炼油厂中,塔设备的性能对整个装置的产品产量、质量、生产能力和消耗定额以及三废处理和环境保护等各个方面都有着重大影响。因此,塔设备的设计和研究受到化工、炼油行业的极大重视。 为了使塔设备能更有效、更经济地运行,除了要求它满足特定的工艺条件外,还应满足以下要求: (1)气(汽)液两相充分接触,相际间的传热面积大; (2)生产能力大,即气液处理量大; (3)操作稳定,操作弹性大; (4)流体流动的阻力小,即流体通过塔设备的压力降小。这将大大减少生产中的动力消耗,以降低操作的费用; (5)结构简单,制造、安装、维修方便,并且设备的投资及操作费用低; (6)耐腐蚀,不易堵塞。方便操作、调节和检修。 塔设备的分类: (1)按操作压力可分有加压塔、常压塔以及减压塔;

(2)按单元操作可分有精馏塔、吸收塔、介吸塔、萃取塔、反应塔、干燥塔等; (3)按件结构可分有填料塔、板式塔; (4)按形成相际接触界面的方式可分为具有固定相界面的塔和流动过程中形成相界面的塔。 1.2 常压塔的主要结构 在塔设备的类别中,由于目前工业上应用最广泛的是填料塔以及板式塔,所以主要考虑这两种类别。 考虑到设计条件,成分复杂,并且板式塔和填料塔相比效率更高一些,更稳定,液——气比适用围大,持液量较大,安装、检修更容易,造价更低,故选用板式塔更为合理。 板式塔是一种逐级(板)接触的气液传质设备。塔使用塔板作为基本构件,气体自塔底向上以鼓泡或喷射的形式穿过塔板上的液层,使气——液相密切接触而进行传质与传热,并且两相的组分浓度呈阶梯式变化。 塔盘采用浮阀型式。因为浮阀塔在石油、化工、等工业部门应用最为广泛,并具备优异的综合性能,在设计和选用时经常作为首选的板式塔型式。 板式初馏塔的总体结构见装配草图。板式塔除了各种件之外,主要由塔体、支座、人孔或手孔、除沫器、接管、吊柱及扶梯、操作平台组成。 (1) 塔体 塔体即塔设备的外壳,常见的塔体由等直径、等厚度的圆筒和上下封头组成。对于大型塔设备,为了节省材料偶尔采用不等直径、不等厚度的塔体。塔设备一般情况下安装在室外,因而塔体除了承受一定的操作压力(压或外压)、温度外,还要考虑到风载荷、地震载荷、偏心载荷等。此外还要满足在试压、运输及吊装时的强度、刚度及稳定性要求。本设计中精馏塔为常压0.11MPa,采用等直径等厚度型式。 (2) 支座

塔设备

目录 一、塔设备的应用 (2) 二、塔设备的分类 (2) 2.1 填料塔 (3) 2.2板式塔 (4) 三、塔的强度设计 (5) 3.1塔的强度设计的基本步骤 (5) 3.2 塔设备的强度设计 (6) 3.2.1 塔的固有周期 (6) 3.2.2 塔的载荷分析 (10) 四、塔的强度校核和稳定性计算 (14) 4.1筒体的强度及稳定性校核 (14) 4.2 裙座的强度及稳定性校核 (15) 五、学习体会 (17)

一、塔设备的应用 塔设备是石油化工、化学工业、石油工业等生产中最重要的设备之一。它可使气(汽)液或液液相之间进行充分接触,达到相际传热及传质的目的。在塔设备中能进行的单元操作有:精馏、吸收、解吸,气体的增湿及冷却等。表1中所示为几个典型的实例。 表1 塔设备的投资及重量在过程设备中所占的比例 实现气(汽)—液相或液—液相之间的充分接触,从而达到相际传质和传热的目的。塔设备广泛用于蒸馏、吸收、介吸、萃取、气体的洗涤、增湿及冷却等单元操作中,它的操作性能好坏,对整个装置性能好坏、对整个装置的生产,产品产量、质量、成本以及环境保护、“三废”处理等都有较大的影响。因此对设备的研究一直是工程界所关注的热点。随着石油、化工的发展,塔设备的合理造型及设计将越来越受到关注和重视。 为了使塔设备能更有效、更经济的运行,除了要求它满足特定的工艺条件,还应满足以下基本要求。 ①满足特定的工艺条件; ②气—液两相能充分接触,相际传热面积大; ③生产能力大,即气、液处理量大; ④操作稳定,操作弹性大,对工作负荷的波动不敏感; ⑤结构简单、制造、安装、维修方便,设备投资及操作成本低; ⑥耐腐蚀,不易堵塞。 二、塔设备的分类 塔设备的种类很多,为了便于比较和选型,必须对塔设备进行分类,常见的分类方法有: ①按操作压力分有加压塔、常压塔及减压塔;

化工机械设备程设计(板式塔)副本

目 录 第1章 绪 论 .................................................................................................................. 4 1.1 课程设计的目的 ................................................................................................... 4 1.2 课程设计的要求 ................................................................................................... 4 1.3 课程设计的内容 ................................................................................................... 4 1.4 课程设计的步骤 ................................................................................................... 4 第2章 塔体的机械计算 ................................................................................................ 6 2.1 按计算压力计算塔体和封头厚度 ....................................................................... 6 2.1.1 塔体厚度的计算 ............................................................................................ 6 2.1.2 封头厚度计算 ................................................................................................ 6 2.2 塔设备质量载荷计算 ........................................................................................... 6 2.2.1 筒体圆筒、封头、裙座质量 m 01 ................................................................. 6 2.2.2 塔内构件质量 m 02 ......................................................................................... 7 2.2.3 保温层质量 m 03 ............................................................................................. 7 2.2.5 操作时物料质量 ............................................................................................ 7 2.2.6 附件质量 a m ............................................................................................... 8 2.2.7 充水质量w m .................................................................................................. 8 2.2.8 各种载荷质量汇总 ...................................................................................... 8 2.3 风载荷与风弯矩的计算 ....................................................................................... 9 2.3.1 风载荷计算 .................................................................................................... 9 2.3.2 风弯矩的计算 .............................................................................................. 10 2.4 地震弯矩计算 ..................................................................................................... 11 2.5 偏心弯矩的计算 ................................................................................................. 12 偏心弯矩 mm N ge m M e e ??=??==81057.1200081.98000 ............................ 12 2.6 各种载荷引起的轴向应力 ................................................................................. 12 2.6.1 计算压力引起的轴向应力 .......................................................................... 12 2.6.2 操作质量引起的轴向压应力2δ .................................................................. 12 2.6.3 最大弯矩引起的轴向应力3δ ...................................................................... 13 2.7 塔体和裙座危险截面的强度与稳定校核 ......................................................... 14 2.7.1 截面的最大组合轴向拉应力校核 .............................................................. 14 2.7.2 塔体与裙座的稳定性校核 .. (14)

化工机械设备课程设计(板式塔) - 副本

目录 第1章绪论 (3) 1.1 课程设计的目的 (3) 1.2 课程设计的要求 (3) 1.3 课程设计的内容 (3) 1.4 课程设计的步骤 (3) 第2章塔体的机械计算 (5) 2.1 按计算压力计算塔体和封头厚度 (5) 2.1.1 塔体厚度的计算 (5) 2.1.2 封头厚度计算 (5) 2.2 塔设备质量载荷计算 (5) 2.2.1 筒体圆筒、封头、裙座质量 (5) 2.2.2 塔内构件质量 (6) 2.2.3 保温层质量 (6) 2.2.5 操作时物料质量 (6) 2.2.6 附件质量 (7) 2.2.7 充水质量 (7) 2.2.8 各种载荷质量汇总 (7) 2.3 风载荷与风弯矩的计算 (8) 2.3.1 风载荷计算 (8) 2.3.2 风弯矩的计算 (9) 2.4 地震弯矩计算 (10) 2.5 偏心弯矩的计算 (11) 2.6 各种载荷引起的轴向应力 (11) 2.6.1 计算压力引起的轴向应力 (11) 2.6.2 操作质量引起的轴向压应力 (11) 2.6.3 最大弯矩引起的轴向应力 (12) 2.7 塔体和裙座危险截面的强度与稳定校核 (13) 2.7.1 截面的最大组合轴向拉应力校核 (13) 2.7.2 塔体与裙座的稳定性校核 (13) 2.8 塔体水压试验和吊装时代应力校核 (16)

2.8.1 水压试验时各种载荷引起的应力 (16) 2.8.2 水压试验时应力校核 (16) 2.9 基础环设计 (17) 2.9.1 基础环尺寸 (17) 2.9.2 基础环的应力校核 (17) 2.9.3 基础环的厚度 (18) 2.10 地脚螺栓计算 (18) 2.10.1地脚螺栓承受的最大拉应力 (18) 2.10.2 地脚螺栓的螺纹小径 (19) 第3章塔结构设计 (20) 3.1 塔盘结构 (20) 3.2塔盘的支承 (20) 参考文献 (20) 自我总结 (20)

塔设备选型

塔设备选型 1、1 设计标准 1、2 塔设备设计原则 塔设备设计应满足以下原则: (1) 生产能力大。在较大的气(汽)液流速下,仍不致发生大量的雾沫夹带、拦液或液泛等破坏正常操作的现象。 (2) 操作稳定、弹性大。当塔设备的气(汽)液负荷量有较大的波动时,仍能在较高的传质效率下进行稳定的操作,并且塔设备应保证能长期连续操作。 (3) 流体流动阻力小,即流体透过塔设备的压力降小。这将大大节省生产中的动力消耗,以降低操作费用。对于减压蒸馏操作,较大的压力降还将使系统无法维持必要的真空度。 (4) 结构简单、材料耗用量小、制造与安装容易。这可以减少基建过程中的投资费用。 (5) 耐腐蚀与不易堵塞,方便操作、调节与检修。 1、3 塔型的选择 1、3、1 板式塔与填料塔的比较 精馏塔按传质元件区别可分为两大类,即板式精馏塔与填料精馏塔。根据上述要求,可对板式塔与填料塔的性能作一简要的比较,详见表1-1所示。 表1-1 板式塔与填料塔的对比

选择塔型时应考虑的因素有很多,主要有:物料性质、操作条件、塔设备的性能,以及塔设备的制造、安装、运输与维修等,具体如下: ?与物性有关的因素 a)易起泡的物系,如处理量不大时,以选择填料塔为宜。因为填料能使泡沫破裂,在板式塔中则易引起液泛。 b)具有腐蚀性的介质,可选用填料塔,如必须用板式塔,宜选用结构简单、造价便宜的筛板塔、穿流式塔盘或舌形塔盘,以便及时更换。 c)具有热敏性的物料需减压操作,以防过热引起分解或聚合时,应选用压力降较小的塔型,如可采用装填规整填料的塔、湿壁塔等,当要求真空度较低时,宜用筛板塔与浮阀塔。 d)粘性较大的物系,可以选用大尺寸填料。板式塔的传质效率太差。 含有悬浮物的物料,应选择液流通道较大的塔型,以板式塔为宜。可选用泡罩塔、浮阀塔、栅板塔、舌形塔与孔径较大的筛板塔等。不宜使用小填料。 e)操作过程中有热效应的系统,用板式塔为宜。因塔盘上有液层,可在其中安放换热管,进行有效的加热或冷却。 ?与操作条件有关的因素 a)若气相传质阻力大(即气相控制系统,如低粘度液体的蒸馏,空气增湿等),宜采用填料塔,因填料层中气相呈湍流,液相为膜状流。反之,受液相控制的系统,宜采用板式塔,因为板式塔中液相呈湍流,用气体在液层中鼓泡。 b)大的液体负荷,可选用填料塔,若用板式塔时,宜选用气液并流的塔型(如喷射型塔盘)或选用板上液流阻力较小的塔型(如筛板与浮阀)。此外,导向筛板塔盘与多降液管筛板塔盘都能承受较大的液体负荷。 c)低的液体负荷,一般不宜采用填料塔。因为填料塔要求一定数量的喷淋密度,但网体填料能用于低液体负荷的场合。

化工设备简介——塔设备.

?化工行业设备大体分为动设备和静设备 静设备包括塔器、换热器、反应器、工业管式炉、气柜、储罐等,又称“化工设备”。 ?动设备是指有驱动机带动的转动设备(亦即有能源消耗的设备),如压缩机、风机、离心机、泵等。即“三机一泵”。又称 “化工机器”。 塔设备通过其内部构件使气(汽)-液相或液-液相之间的充分接触,从而使不同相之间进行质量传递和热量传递。 塔设备完成的单元操作通常有:精馏、吸收、解吸、萃取等,也可以进行介质冷却,气体的净制与干燥以及增湿等。是化工、石油、生物、制药等生产过程中广泛采用的设备。 化工生产对塔设备提出的要求: ?①工艺性能好——塔设备要使气、液两相尽可能充分接触,具有较大的接触面积和分离空间,以获得较高的传质效率。 ?②生产能力大——在满足工艺要求的前提下,要使塔截面上单位时间内物料的处理量大。 ?③操作稳定性好——当气液负荷产生波动时,仍能维持稳定、连续操作,且操作弹性好。 化工生产对塔设备提出的要求: ?④能量消耗小——要使流体通过塔设备时产生的阻力小、压降小,热量损失少,以降低塔设备的操作费用。

?⑤结构合理——塔设备内部结构既要满足生产的工艺要求,又要结构简单、便于制造、检修和日常维护。 ?⑥选材要合理——塔设备材料要根据介质特性和操作条件进行选择,既要满足使用要求,又要节省材料,减少设备投资费 用。 ?⑦安全可靠——在操作条件下,塔设备各受力构件均应具有足够的强度、刚度和稳定性,以确保生产的安全运行。 ?上述各项指标的重要性因不同设备而异,要同时满足所有要求很困难。因此,要根据传质种类、介质的物化性质和操作条件 的具体情况具体分析,抓住主要矛盾,合理确定塔设备的类型 和内部构件的结构形式,以满足不同的生产要求。 ?塔设备的种类很多,常见的分类: ⑴按操作压力分为加压塔、常压塔及减压塔 ⑵按单元操作分为精馏塔、吸收塔、萃取塔、反应塔等。 ⑶按塔内气、液接触构件的结构分为板式塔和填料塔。 ?目前工业生产中应用最广泛的是填料塔和板式塔。 填料塔是一种常用的气、液传质设备。它结构简单,塔内装有填料,其作用是使向下流动的液体与向上逆流的气体在填料层中充分接触达到传质的目的。填料塔造价低,阻力小,具有良好的耐腐蚀性能。 ?在生产中,当生产量较大时,一般采用板式塔。在板式塔中,塔内设有许多块塔盘,相邻两块塔盘有一定的距离,气、液两

板式塔设计计算说明书

一、设计任务 1. 结构设计任务 完成各板式塔的总体结构设计,绘图工作量折合A1图共计4张左右,具体包括以下内容: ⑴各塔总图1张A0或A0加长; ⑵各塔塔盘装配及零部件图2张A1。 2. 设计计算内容 完成各板式塔设计计算说明书,主要包括各塔主要受压元件的壁厚计算及相应的强度校核、稳定性校核等内容。 二、设计条件 1. 塔体内径mm 2000=i D ,塔高m 299.59H i =; 2.设计压力p c =2.36MPa ,设计温度为=t 90C ?; 3. 设置地区:山东省东营市,基本风压值q 0=480Pa ,地震设防烈度8度,场地土类别III 类,地面粗糙度是B 类; 4. 塔内装有N=94层浮阀塔盘;开有人孔12个,在人孔处安装半圆形平台12个,平台宽度B=900m m ,高度为1200m m ; 5. 塔外保温层厚度为δs =100m m ,保温层密度ρ2=3503m /kg ; 三、设备强度及稳定性校核计算 1. 选材说明 已知东营的基本风压值q 0=480Pa ,地震设防烈度8度,场地土类别III 类;塔壳与裙座对接;塔内装有N=94层浮阀塔盘;塔外保温层厚度为δs =100m m ,保温层密度ρ 2=350 3m /kg ;塔体开有人孔12个,在人孔处安装半圆形平台12个,平台宽度B=900m m , 高度为1200m m ;设计压力 p c =2.36MPa ,设计温度为=t 90C ?;壳 3m m ,裙座厚度附加量2m m ;焊接接头系数取为0.85;塔内径mm 2000=i D 。 通过上述工艺条件和经验,塔壳和封头材料选用Q345R 。对该塔进行强度和稳定计算。 2. 主要受压元件壁厚计算

板式塔设备机械设计资料

1 板式塔设备机械设计任务书 1.1 设计任务及操作条件 试进行一蒸馏塔与裙座的机械设计 已知条件为:塔体内径mm D i 2000=,塔高m 30,工作压力为MPa 2.1,设计温度为300℃,介质为原油,安装在广州郊区,地震强度为7度,塔内安装55层浮阀塔板,塔体材料选用16MnR ,裙座选用A Q -235。 1.2 设计内容 (1)根据设计条件选材; (2)按设计压力计算塔体和封头壁厚; (3)塔设备质量载荷计算; (4)风载荷与风弯矩计算; (5)地震载荷与地震弯矩计算; (6)偏心载荷与偏心弯矩计算; (7)各种载荷引起的轴向应力; (8)塔体和裙座危险截面的强度与稳定校核; (9)塔体水压试验和吊装时的应力校核; (10)基础环设计; (11)地脚螺栓计算; (12)板式塔结构设计。 1.3.设计要求: (1)进行塔体和裙座的机械设计计算; (2)进行裙式支座校核计算; (3)进行地脚螺栓座校核计算; (4)绘制装备图(A3图纸)

2 塔设备已知条件及分段示意图 已知设计条件 分段示意图 塔体内径i D 2000mm 塔体高度H 30000mm 设计压力P 1.2MPa 设计温度t 300℃ 塔 体 材料 16MnR 许用应力 [σ] 170MPa [σ]t 144MPa 设计温度下弹性模量E MPa 51086.1? 常温屈服点s σ 345MPa 厚度附加量C 2mm 塔体焊接接头系数φ 0.85 介质密度ρ 3/800m kg 塔盘数N 55 每块塔盘存留介质层高度w h 100mm 基本风压值0q 500N/㎡ 地震设防烈度 7度 场地土类别 II 类 地面粗糙度 B 类 偏心质量e m 4000kg 偏心距e 2000mm 塔外保温层厚度s δ 100mm 保温材料密度2ρ 3/300m kg 材料 Q235-A 裙 座 许用应力t s ][σ 86MPa 常温屈服点s σ 235MPa 设计温度下弹性模量s E

课程设计板式塔设计示范

苯-氯苯板式精馏塔的工艺设计工艺计算书(精馏段部分) 生物与化学工程系 生物工程专业 2011年11月27日

课程设计题目一——苯-氯苯板式精馏塔的工艺设计 一、设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为99.8%的氯苯50000t/a,塔顶馏出液中含氯苯不高于2%。原料液中含氯苯为35%(以上均为质量%)。 二、操作条件 1.塔顶压强4kPa(表压); 2.进料热状况,自选; 3.回流比,自选; 4.塔釜加热蒸汽压力506kPa; 5.单板压降不大于0.7kPa; 6.年工作日330天,每天24小时连续运行。 三、设计内容 1.设计方案的确定及工艺流程的说明; 2.塔的工艺计算; 3.塔和塔板主要工艺结构的设计计算; 4.塔内流体力学性能的设计计算; 5.塔板负荷性能图的绘制; 6.塔的工艺计算结果汇总一览表; 7.辅助设备的选型与计算; 8.生产工艺流程图及精馏塔工艺条件图的绘制; 9.对本设计的评述或对有关问题的分析与讨论。 四、基础数据 p(mmHg) 1.组分的饱和蒸汽压 i

2.组分的液相密度ρ(kg/m 3) 纯组分在任何温度下的密度可由下式计算 苯 t A 187.1912-=ρ 推荐:t A 1886.113.912-=ρ 氯苯 t B 111.11127-=ρ 推荐:t B 0657.14.1124-=ρ 式中的t 为温度,℃。 3.组分的表面张力σ(mN/m ) 双组分混合液体的表面张力m σ可按下式计算: A B B A B A m x x σσσσσ+= (B A x x 、为A 、B 组分的摩尔分率) 4.氯苯的汽化潜热 常压沸点下的汽化潜热为35.3×103kJ/kmol 。纯组分的汽化潜热与温度的关系可用下式表示: 38 .01238 .012??? ? ??--=t t t t r r c c (氯苯的临界温度:C ?=2.359c t ) 5.其他物性数据可查化工原理附录。 附参考答案:苯-氯苯板式精馏塔的工艺计算书(精馏段部分)

筛孔板式塔设计 毕业设计

摘要 筛板塔是化工生产中主要的气液传质设备。为完成苯-甲苯二元物系的精馏进行了相关塔设备的设计,本次设计的任务为分离进料量50000吨/年,质量分数为40%的苯-甲苯溶液,使塔顶产品苯的质量分数达到96%,塔底釜液质量分数为2%。我们对此塔进行了工艺设计,按照梯级图解法算求得理论板数为15,实际板数为27,,加料位置在第13块板。进行了塔板结构的设计,塔径1.2m,精馏段板间距0.35m,提馏段板间距为0.4m,对塔板进行了校核,均在安全操作范围内,确定了操作点,精馏段弹性操作为5.04,提馏段弹性操作为5.30,符合操作要求。最后进行辅助设备及塔高计算。本次设计包括设备分析、选取、计算、核算、绘图等,是较完整的精馏设计过程,其设计结果满足设计任务要求,结构合理,是一次较理想的设计。 关键词:筛板塔;苯-甲苯;精馏;负荷性能图;塔设备;结构

Abstract Sieve plate tower is the main gas liquid mass transfer in chemical production equipment.To complete the binary system benzene - toluene distillation tower equipment, the use of design, the design tasks for the separation of feed rate of 50000 tons/year, the mass fraction of 40% of benzene - toluene solution, make the top products of benzene mass fraction of 96%, the bottom kettle liquid mass fraction of 2%.We for the technological design of this tower, according to the theoretical plate number obtained by cascade graphical method calculation for 15, real plate number is 27, and feeding location in 13boards.For the design of the plate structure, the tower diameter 1.2 m, plate spacing of 0.4m on the plate, are within the scope of the safety operation, determine the operating point, rectifying section elastic operation is 5.04, stripping section of the elastic operating at 5.30, conform to the requirements of the operation.Finally auxiliary equipment and height calculation.This design including equipment analysis, selection, calculation, accounting, drawing, etc., is a complete distillation process design, the design result satisfies the requirement of design task, reasonable structure, is an ideal design. Keywords: Sieve-plate tower ;Benzene-Toluene;Rectification;Load performance diagram;Distillation equipment ;structure

课程设计(板式塔)

《化工设备设计基础》 课程设计计算说明书 学生姓名:何泽骁学号: 1001090621 所在学院:化学化工学院 专业:化学工程与工艺专业 设计题目:板式塔的设计 指导教师: 2010年月日

目录 一.设计任务书 (2) 二.设计参数与结构简图 (4) 三.设备的总体设计及结构设计 (5) 四.强度计算 (7) 五.设计小结 (13) 六.参考文献 (14)

一、设计任务书 1、设计题目 根据《化工原理》课程设计工艺计算内容进行板式塔设计。 设计题目:精馏塔(DN1400)设计 2、设计任务书 2.1设备的总体设计与结构设计 (1)根据《化工原理》课程设计,确定塔设备的型式(填料塔、板式塔); (2)根据化工工艺计算,确定塔板数目(或填料高度); (3)根据介质的不同,拟定管口方位; (4)结构设计,确定材料。 2.2设备的机械强度设计计算 (1)确定塔体、封头的强度计算。 (2)各种开孔接管结构的设计,开孔补强的验算。 (3)设备法兰的型式及尺寸选用;管法兰的选型。 (4)裙式支座的设计验算。 (5)水压试验应力校核。 2.3完成塔设备装配图 (1)完成塔设备的装配图设计,包括主视图、局部放大图、焊缝节点图、管口方位图等。 (2)编写技术要求、技术特性表、管口表、明细表和标题栏。 3、原始资料 3.1《化工原理》课程设计塔工艺计算数据。 3.2参考资料: [1] 董大勤.化工设备机械基础[M].北京:化学工业出版社,2003. [2] 全国化工设备技术中心站.《化工设备图样技术要求》2000版[S]. [3] GB150-1998.钢制压力容器[S]. [4] 郑晓梅.化工工程制图化工制图[M].北京:化学工业出版社,2002. [5] JB/T4710-2005.钢制塔式容器[S].

板式塔设备机械

板式塔设备机械

1 板式塔设备机械设计任务书 1.1 设计任务及操作条件 试进行一蒸馏塔与裙座的机械设计 已知条件为:塔体内径mm D i 2000=,塔高m 30,工作压力为MPa 2.1,设计温度为300℃,介质为原油,安装在广州郊区,地震强度为7度,塔内安装55层浮阀塔板,塔体材料选用16MnR ,裙座选用A Q -235。 1.2 设计内容 (1)根据设计条件选材; (2)按设计压力计算塔体和封头壁厚; (3)塔设备质量载荷计算; (4)风载荷与风弯矩计算; (5)地震载荷与地震弯矩计算; (6)偏心载荷与偏心弯矩计算; (7)各种载荷引起的轴向应力; (8)塔体和裙座危险截面的强度与稳定校核; (9)塔体水压试验和吊装时的应力校核; (10)基础环设计; (11)地脚螺栓计算; (12)板式塔结构设计。 1.3.设计要求: (1)进行塔体和裙座的机械设计计算; (2)进行裙式支座校核计算; (3)进行地脚螺栓座校核计算; (4)绘制装备图(A3图纸)

2 塔设备已知条件及分段示意图 已知设计条件分段示意图塔体内径 i D2000mm 塔体高度H 30000m m 设计压力P 1.2MPa 设计温度t300℃ 塔体 材料16MnR 许用 应力 [σ] 170MPa [σ]t144MPa 设计温度下 弹性模量E MPa 5 10 86 .1? 常温屈服点 s σ 345MPa 厚度附加量 C 2mm 塔体焊接接头 系数φ 0.85 介质密度ρ3/ 800m kg 塔盘数N 55 每块塔盘存留100mm

介质层高度w h 基本风压值0 q 500N/㎡ 地震设防烈度 7度 场地土类别 II 类 地面粗糙度 B 类 偏心质量e m 4000kg 偏心距e 2000mm 塔外保温层厚 度s δ 100mm 保温材料密度 2 ρ 3 /300m kg 材料 Q235-A 裙 座 许用应力t s ][σ 86MPa 常温屈服点 s σ 235MPa 设计温度下弹性模量s E 厚度附加量s C 2mm 人孔,平台数 6 地 脚 螺 材料 Q235-A 许用应力 bt ][σ 147MPa

相关文档
最新文档