大滞后PID控制说明

大滞后PID控制说明
大滞后PID控制说明

大滞后PID控制说明一、反作用模式

本模式适用于加热升温控制。

(一)回路连接

X:整型数输入为过程测量值

SV:整型数输入为给定值

EN:状态输入,为PID使能,

EN:0 PID 不工作

EN:1 PID 工作

缺省值为1

Y:PID整型数输出值。0-4094

MV:PID整型数输出值。0-1000 对应0-100%

(PLC编程画面,以上是个PID控制程序)

(二)控制模式

注:CS1、DS1、CS2、DS2为X1、X2、Y1、Y2区域分界,BS1、BS2、BS3、BS4为相应控制输出提前量

动作说明:

(1) 当测量温度在X1区域时,控制输出为100%,全功率加热。

(2) 当温度上升到X2区域时,控制输出为MV=100%-BS1,提前降热负荷。 (3) 当温度继续上升到PID 区域时,控制输出为PID 自动控制模式。 (4) 当温度继续上升,进入Y1区域时,控制输出为0%,停止加热。 (5) 当温度继续下降,进入PID 区域时,控制输出为PID 自动控制模式。 (6) 当温度继续下降,进入X1区域时,控制输出为100%,全功率加热。

测量值:X

设定值:SV 精调下偏差:CS1 粗调下偏差:DS1

精调上偏差:CS2 粗调上偏差:DS2

时间

输出值:100%输出

(三)参数说明

(四)举例说明

3. 伟达科PID参数(5温区回流焊)

4.1模拟量类

基本的功能块对模拟量进行读,不需要更多的修改,

模拟量数据以整型值表示:

10位0-1023

12位0-4095

所有UCS5模块数据以0-4095,

以下是热电偶采集模拟量块

双击UCS5.E37COM模块弹出如下窗口:

以上窗口中CH0-CH9模块上道通,

是滤波时间,可选择性的。

CH10通道是冷端补偿的,在硬件上只需要短接一下,测量出来是室温,在软件中是可调整的。

4.2模拟0-10V4-20MA输入模块如下图示:

双击UCS5.E37块弹出如下窗口:

CH0-CH10通道选择1:1信号为硬件模块的信号0-10V4-20MA。

4.3模拟量输出块:

基本的功能块对模拟量进行写,

模拟量数据以整型值表示:

12位0-4095

所有UCS5模块数据以0-4095,以下是模拟量输出块

0-10V4-20MA

复合模糊PID在温度滞后控制系统中的应用

第4期(总第173期) 2012年8月机械工程与自动化 MECHANICAL ENGINEERING & AUTOMATIONNo.4 Aug .文章编号:1672-6413(2012)04-0160-0 3复合模糊PID櫜 在温度滞后控制系统中的应用 令朝霞 (陕西理工学院电气工程学院,陕西 汉中 723000 )摘要:在具有滞后的温度系统中研究设计出一种复合型模糊PID控制器。其突出优点是应用模糊控制适应系统的不确定性,利用Smith预估补偿克服系统滞后的影响,应用PID控制实施温度系统的精确控制。在很大程度上改善了复杂系统的控制品质,提高了系统的鲁棒性,实际运行结果证明了该方法的有效性。关键词:温度系统;模糊控制;补偿控制;滞后 中图分类号:TP273+.3∶TP273+ .4 文献标识码:櫜A 陕西省教育厅资助项目( 11JK0934)收稿日期:2012-02-28;修回日期:2012-03-2 1作者简介:令朝霞(1974-) ,女,陕西岐山人,讲师,硕士,主要从事电路、电工电子及自动控制的教学与研究。0 引言 模糊控制器是一种仿人控制,根据人的思维方式构建相应的模糊逻辑规则,采用计算机控制技术构成的一种具有反馈通道的闭环结构的智能型数字控制系统。其优点是不要求精确了解被控过程的数学模型,而是根据人工控制规则来组织控制策略,再把该策略转化为控制量的大小。本文把模糊控制应用到控制系统中并和PID控制器相结合,两者扬长避短,既具有模糊控制灵活而适应性强的优点, 又克服了其静态精度不高的缺点,满足系统静、动态两方面的性能要求,对复杂控制系统具有较好的控制效果。1 系统要求及控制方案设计1.1 系统工艺要求 控制对象为某锅炉水加热系统,加热后的热水通过一段管道输送到下一道工序。工艺要求进入下一道工序的热水温度为某一恒定值(45℃)左右,且温度波动不能过大,否则会影响产品质量。 1.2 系统方案设计 根据工艺要求输送管道出口处的热水温度恒定,且是通过电加热炉来进行加热的,为此可采用不同的控制方案。 方案一:采用单回路控制系统,控制规律采用常规PID控制, 以锅炉内热水温度作为被控参数,用温度传感器来检测锅炉内温度,设计单回路控制系统实现控制要求。该方案简单易行,但由于锅炉到管道出口滞后达90s ,会影响过程的控制质量,超调量大,调节时间长,控制品质较差,不能满足工艺要求。 方案二:采用Smith预估补偿控制,但预估补偿控制的缺点是对过程的模型比较敏感,为此,本文将预估补偿控制和模糊控制结合起来, 既能克服系统大滞后的影响,也能弥补过程模型变化对系统性能的影响。2 混合型模糊控制器原理 2.1 Smith控制算法 Smith预估补偿控制从理论上完全能够克服大滞后的影响。Smith预估补偿控制系统结构框图见图1。 其中,G0(s)e-τs为具有滞后的被控对象,e -τ s为系统对象的滞后环节,τ为滞后时间,Gc( s)为系统控制器,G0(s)(1-e-τ s)为Smith预估补偿器。通过图1预估补偿,可以把对象中的滞后从闭环内移到闭环外,消除了纯滞后对系统控制品质的不利影响,提高了系统的 控制质量。但由于补偿器必须明确过程的数学模型,且对模型的误差十分敏感,为了克服其缺点而发挥其优越性,这里采用模糊控制器以实现Gc( s)。图1 Smith预估补偿控制系统结构框图 2.2 混合型模糊控制器 模糊控制器是一种不依赖于过程模型的清晰认识,而是根据操作者的经验归纳而得到的。在一般的

PID 通俗解释

PID控制原理 3个故事:看完您就明白了。 1、:PID的故事小明接到这样一个任务:有一个水缸点漏水(而且漏 水的速度还不一定固定不变),要求水面高度维持在某个位置,一旦发 现水面高度低于要求位置,就要往水缸里加水。 小明接到任务后就一直守在水缸旁边,时间长就觉得无聊,就跑到房 里看小说了,每30分钟来检查一次水面高度。水漏得太快,每次小明 来检查时,水都快漏完了,离要求的高度相差很远,小明改为每3分 钟来检查一次,结果每次来水都没怎么漏,不需要加水,来得太频繁 做的是无用功。几次试验后,确定每10分钟来检查一次。这个检查时 间就称为采样周期 开始小明用瓢加水,水龙头离水缸有十几米的距离,经常要跑好几趟 才加够水,于是小明又改为用桶加,一加就是一桶,跑的次数少了, 加水的速度也快了,但好几次将缸给加溢出了,不小心弄湿了几次鞋,小明又动脑筋,我不用瓢也不用桶,老子用盆,几次下来,发现刚刚好,不用跑太多次,也不会让水溢出。这个加水工具的大小就称为比 例系数 小明又发现水虽然不会加过量溢出了,有时会高过要求位置比较多, 还是有打湿鞋的危险。他又想了个办法,在水缸上装一个漏斗,每次 加水不直接倒进水缸,而是倒进漏斗让它慢慢加。这样溢出的问题解 决了,但加水的速度又慢了,有时还赶不上漏水的速度。于是他试着 变换不同大小口径的漏斗来控制加水的速度,最后终于找到了满意的 漏斗。漏斗的时间就称为积分时间 小明终于喘了一口,但任务的要求突然严了,水位控制的及时性要求 大大提高,一旦水位过低,必须立即将水加到要求位置,而且不能高 出太多,否则不给工钱。小明又为难了!于是他又开努脑筋,终于让 它想到一个办法,常放一盆备用水在旁边,一发现水位低了,不经过 漏斗就是一盆水下去,这样及时性是保证了,但水位有时会高多了。 他又在要求水面位置上面一点将水凿一孔,再接一根管子到下面的备 用桶里这样多出的水会从上面的孔里漏出来。这个水漏出的快慢就称 为微分时间 看到几个问采样周期的帖子,临时想了这么个故事。微分的比喻一点 牵强,不过能帮助理解就行了,呵呵,入门级的,如能帮助新手理解 下PID,于愿足矣。故事中小明的试验是一步步独立做,但实际加水 工具、漏斗口径、溢水孔的大小同时都会影响加水的速度,水位超调 量的大小,做了后面的实验后,往往还要修改改前面实验的结果。 2、控制模型:人以PID控制的方式用水壶往水杯里倒印有刻度的半杯 水后停下; 设定值:水杯的半杯刻度;

PID控制算法经验之谈

PID控制概述 PID控制是目前工程上应用最广的一种控制方法,它的优点在于结构简单,且不依赖被控对象模型,控制所需的信息量也很少,因而非常易于工程实现,同时通过参数的调整也可获得较好的控制效果。 PID控制是将误差信号的比例(P)、积分(I)和微分通过线性组合构成控制量,故称之为PID控制。因此,在使用中只需要设定三个参数即可。在很多情况,往往不一定需要三个单元,但是比例单元是必不可少的。 PID控制器设计的难点在于参数整定。但是实际上很多情况下我们可以直接根据系统的时域响应来调整比例、微分和积分三个环节的参数,当然这就需要了解这三个环节对时域响应的有什么样的影响。 (1)比例环节:直接将误差信号放大或缩小,因此将比例环节参数增大可以提高响应速度并且减小稳态误差,但是,快速性和稳定性总是一对矛盾,也就是在增大比例系数的同时,系统的稳定性逐渐减低,系统将会出现超调、振荡,甚至发散,因此合适的比例增益是在快速性和稳定性之间进行折中。 (2)积分环节:从积分的定义可知,该环节是将误差不断进行累积,可实现消除稳态误差。增益越大,积分作用越强,稳态误差消除也越快,但是带来的问题是容易产生积分饱和现象,带来大的超调并延缓了系统进入稳态的速度,因此这又是一个矛盾。 (3)微分环节:该环节或取的是误差的微分信息,根据微分的定义,我们可以知道,这是一个超前环节,也就是说该信号提前告诉我们控制量是该减还是该增,避免造成超调、振荡,因此增大该环节增益有助于提高系统的稳定性,避免振荡,但是对快速性却产生了负作用(快速性和稳定性总是一会矛盾体),因此必须合理选取。还有必须注意的是,微分环节对噪声信号将产生放大作用,因此在噪声较大的系统中慎用。 正是由于PID控制参数整定的复杂性,目前出现了多种改进的PID控制方法,我们将在下一篇中对这些改进型进行归纳总结。 各种改进型PID控制总结 随着数字控制技术的发展,我们在控制器的设计上有了更大的灵活性,一些原来在模拟PID控制器中无法实现的问题,现在我们很容易就能在数字计算机上实现了,于是产生来了一系列改进的控制算法,形成非标准的控制算法,改善系统品质,满足不同控制系统的需要。 1.积分分离PID控制算法 PID控制中引入积分环节,主要是为了消除静差,提高控制精度。但在启动、结束或大幅度增减指令时,短时间内系统有很大输出,由于积分积累的作用,致使控制量超过执行机构可能运行的最大动作范围对应的极限控制量,引起系统较大的超调,甚至引起系统较大的振荡,这在生产中是绝对不允许的。积分分离的

《自动控制原理》课程设计_温度控制系统的滞后校正

目录 引言 (1) 1 无源滞后校正的原理 (2) 2 系统校正前的图像 (4) 2.1 系统校正前的波特图 (4) 2.2 系统校正前奈氏图的绘制 (5) 3 校正环节参数计算 (6) 4 系统校正后的图像 (6) 4.1 系统校正后的波特图 (6) 4.2系统校正后的奈氏图 (7) 4.3系统校正前后的波德图对比 (8) 5 校正前后系统的阶跃响应曲线 (9) 6 心得体会 (12) 7 参考文献 (13)

引言 在现代的科学技术的众多领域中,自动控制技术起着越来越重要的作用。自动控制技术是能够在没有人直接参与的情况下,利用附加装置(自动控制装置)使生产过程或生产机械(被控对象)自动地按照某种规律(控制目标)运行,使被控对象的一个或几个物理量(如温度、压力、流量、位移和转速等)或加工工艺按照预定要求变化的技术。它包含了自动控制系统中所有元器件的构造原理和性能,以及控制对象或被控过程的特性等方面的知识,自动控制系统的分析与综合,控制用计算机(能作数字运算和逻辑运算的控制机)的构造原理和实现方法。自动控制技术是当代发展迅速,应用广泛,最引人瞩目的高技术之一,是推动新的技术革命和新的产业革命的核心技术,是自动化领域的重要组成部分。 自控控制理论是以传递函数为基础的经典控制理论,它主要研究单输出入—单输出,线性定常系统的分析和设计问题。在线性控制系统中,常用的无源校正装置有无源超前网络和无源滞后网络,通过校正来改善系统的动态性能指标。系统的动态性能的改变可以由校正前后的奈奎斯特曲线和波特图看出。

1 无源滞后校正的原理 无源滞后网路电路图如下: 1 R C 图1-1无源滞后网络电路图 如果信号源的内部阻抗为零,负载阻抗为无穷大,则滞后网络的传递函数为 分度系数 时间常数 在设计中力求避免最大滞后角发生在已校系统开环截止频率''c ω附近。如图1-2所示, 选择滞后网络参数时,通常使网络的交接频率 T α1远小于''c ω一般取=T α1''c ω/10 T s T s Ts Ts s U s U s G c 1111)()()(12++ ?=++==αααC R R T R R R )(121212+=<+=α

精心编制的 S7-300 PID 使用说明

定时中断组织块OB35 西门子S7-300/400有9个定时中断组织块:OB30、OB31、OB32、OB33、OB34、OB35、OB36、OB37、OB38 。 CPU可以定时中断去执行这些模块中的程序,即:每隔一段时间就停止当前的程序,转去执行定时中断组织块中的程序,执行结速后再返回。相当于单片机的定时中断。 这9个组织块功能相同,你可以选择其中之一使用,区别是它们的中断优先级不同,如果程序中用到了多个定时中断组织块,应设好它们的执行优先级。 S7-300CPU 可用的定时中断组织模块是OB35,在300站点的硬件组态中,打开CPU 属性设置可以看到其它的中断组织块为灰色。OB35默认的调用时间间隔为100ms 我们可以根据需要更改,定时范围是1-60000毫秒(ms) 设置中断时间间隔如下图所示 注意:设置的时间必须大于OB35中程序执行所花费的时间。 例如:如果中断时间间隔为50ms而OB35中的程序花费的时间是70ms,那么OB35中的程序还没执行完毕就产生第二次中断,程序就会出错,这显然是我们不想看到的结果。 以现在的技术,让你间隔一小时去月球拿一块石头你能做到吗??? 去月球所用的时间大于去月球的时间间隔,你做不到吧??? 正确设置:中断时间间隔大于OB35中程序执行完毕一次所需的时间

使用FB41实现PID控制 在自动化领域中常常要用到PID控制,而常规仪表里一个控制器就只能实现一路的PID 控制,如果要现实多路的PID控制成本就会变得非常高,而且不便于我们集中控制与管理。 经过学习西门子S7-300PLC,我们可以使用模块FB41来实现PID控制,FB41就相当于我们常规仪表里的控制器,既然是PID控制器就应该能够设定P、I、D参数。即:比例度、积分时间、微分时间。常规仪表的面板上可以更改PID参数,又有手动/自动切换按钮等。 今天我们要做的就是使用S7-300PLC 的FB41来代替常规仪表,如何使用FB41来实现PID控制的呢?? FB41是一个功能块,它所能实现的功能(PID)已经由专业人员设计好,我们只要调用它,并根据我们的需要来更改相应的参数即可使用。所以我们不用理会FB41是如何实现比例运算、积分运算、微分运算等等这些问题,只需要会调用就可以了。 现在我们已经知道FB41就相当于常规仪表里的一个控制器了,那么我们是如何使用FB41并给它设置相应的参数呢?? FB41相当于一个子程序,它是用来实现PID运算的,我们只需要每隔一段时间去调用这一“子程序”就可以实现PID控制。所以我们在OB35里调用FB41就可以了,调用的频率可以在属性里面设置。 我们是在OB35里调用FB41的所以在OB35里可以看到FB41的端口。因此可以直接在这些端口上直接设参数。 如下图所示

温度控制系统的滞后校正

题 目: 温度控制系统的滞后校正 初始条件:某温箱的开环传递函数为3()(41) s p e G s s s -=+ 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、 试用Matlab 绘制其波特图和奈奎斯特图,计算相角裕度和幅值裕度; 2、 试设计滞后校正装置,使系统的相角裕度增加15度。 3、 用Matlab 对校正后的系统进行仿真,画出阶跃相应曲线 时间安排: 指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日

温度控制系统的滞后校正 1 系统传递函数分析 该传递函数由比例环节,延迟环节,积分环节,惯性环节组成。 1.1比例环节 比例环节的传递函数和频率特性: 1)(=s G 1)(=ωj G 幅值特性和相频特性: 。 )()( 1|)G(j |)A (=∠===ωω?ωωj G 对数幅频特性和对数相频特性: 。 )(0 20lg1)20lgA()(L ====ω?ωω 所以对数幅频特性L (ω)是ω轴线。 1.2延迟环节 延迟环节的传递函数和频率特性: s e s G 3)(-= ωωj e j G 3)(-= 幅频特性和相频特性: 1|e *1||)G (j |)A(-3j ===ωωω ?ωωωωω33.57)(3)()(3*-=-=∠=∠=-rad e j G j 对数幅频特性和对数相频特性: ω ω?ωω3*-57.3)(0 20lg1)20lgA()L(==== 由以上可知延迟环节不影响系统的幅频特性,只影响系统的相频特性。 1.3积分环节 积分环节的传递函数和频率特性: s s G 1)(=

PID参数设置参考说明

FB41称为连续控制的PID用于控制连续变化的模拟量,与FB42的差别在于后者是离散型的,用于控制开关量,其他二者的使用方法和许多参数都相同或相似。 PID的初始化可以通过在OB100中调用一次,将参数COM-RST置位,当然也可在别的地方初始化它,关键的是要控制COM-RST; PID的调用可以在OB35中完成,一般设置时间为200MS, 一定要结合帮助文档中的PID框图研究以下的参数,可以起到事半功倍的效果 以下将重要参数用黑体标明.如果你比较懒一点,只需重点关注黑体字的参数就可以了。其他的可以使用默认参数。 A:所有的输入参数: COM_RST:BOOL: 重新启动PID:当该位TURE时:PID执行重启动功能,复位PID内部参数到默认值;通常在系统重启动时执行一个扫描周期,或在PID进入饱和状态需要退出时用这个位; MAN_ON:BOOL:手动值ON;当该位为TURE时,PID功能块直接将MAN的值输出到LMN,这可以在PID框图中看到;也就是说,这个位是PID的手动/自动切换位;(默认为1) PEPER_ON:BOOL:过程变量外围值ON:过程变量即反馈量,此PID可直接使用过程变量PIW(不推荐),也可使用PIW规格化后的值(常用),因此,这个位为FALSE; P_SEL:BOOL:比例选择位:该位ON时,选择P(比例)控制有效;一般选择有效; I_SEL:BOOL:积分选择位;该位ON时,选择I(积分)控制有效;一般选择有效; INT_HOLD BOOL:积分保持,不去设置它; I_ITL_ON BOOL:积分初值有效,I-ITLVAL(积分初值)变量和这个位对应,当此位ON 时,则使用I-ITLVAL变量积分初值。一般当发现PID功能的积分值增长比较慢或系统反应不够时可以考虑使用积分初值; D_SEL :BOOL:微分选择位,该位ON时,选择D(微分)控制有效;一般的控制系统不用; CYCLE :TIME:PID采样周期,一般设为200MS; SP_INT:REAL:PID的给定值; PV_IN :REAL:PID的反馈值(也称过程变量); PV_PER:WORD:未经规格化的反馈值,由PEPER-ON选择有效;(不推荐) MAN :REAL:手动值,由MAN-ON选择有效; GAIN :REAL:比例增益; TI :TIME:积分时间; TD :TIME:微分时间; TM_LAG:TIME:我也不知道,没用过它,和微分有关; DEADB_W:REAL:死区宽度;如果输出在平衡点附近微小幅度振荡,可以考虑用死区来降低灵敏度; LMN_HLM:REAL:PID上极限,一般是100%; LMN_LLM:REAL:PID下极限;一般为0%,如果需要双极性调节,则需设置为-100%;(正负10V输出就是典型的双极性输出,此时需要设置-100%); PV_FAC:REAL:过程变量比例因子 PV_OFF:REAL:过程变量偏置值(OFFSET) LMN_FAC:REAL:PID输出值比例因子; LMN_OFF:REAL:PID输出值偏置值(OFFSET); I_ITLVAL:REAL:PID的积分初值;有I-ITL-ON选择有效;

PID控制的基本原理

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 PID 控制的基本原理 1.PID 控制概述 当今的自动控制技术绝大部分是基于反馈概念的。反馈理论包括三个基本要素:测量、比较和执行。测量关心的是变量,并与期望值相比较,以此误差来纠正和控制系统的响应。反馈理论及其在自动控制中应用的关键是:做出正确测量与比较后,如何用于系统的纠正与调节。 在过去的几十年里,PID 控制,也就是比例积分微分控制在工业控制中得到了广泛应用。在控制理论和技术飞速发展的今天,在工业过程控制中95%以上的控制回路都具有PID 结构,而且许多高级控制都是以PID 控制为基础的。 PID 控制器由比例单元(P)、积分单元(I)和微分单元(D)组成,它的基本原理比较简单,基本的PID 控制规律可描述为: G(S ) = K P + K1 + K D S (1-1) PID 控制用途广泛,使用灵活,已有系列化控制器产品,使用中只需设定三个参数(K P ,K I和K D )即可。在很多情况下,并不一定需要三个单元,可以取其中的一到两个单元,不过比例控制单元是必不可少的。 PID 控制具有以下优点: (1)原理简单,使用方便,PID 参数K P、K I和K D 可以根据过程动态特性变化,PID 参数就可以重新进行调整与设定。 (2)适应性强,按PID 控制规律进行工作的控制器早已商品化,即使目前最新式的过程控制计算机,其基本控制功能也仍然是PID 控制。PID 应用范围广,虽然很多工业过程是非线性或时变的,但通过适当简化,也可以将其变成基本线性和动态特性不随时间变化的系统,就可以进行PID 控制了。 (3)鲁棒性强,即其控制品质对被控对象特性的变化不太敏感。但不可否认PID 也有其固有的缺点。PID 在控制非线性、时变、偶合及参数和结构不缺点的复杂过程时,效果不是太好; 最主要的是:如果PID 控制器不能控制复杂过程,无论怎么调参数作用都不大。 在科学技术尤其是计算机技术迅速发展的今天,虽然涌现出了许多新的控制方法,但PID 仍因其自身的优点而得到了最广泛的应用,PID 控制规律仍是最普遍的控制规律。PID 控制器是最简单且许多时候最好的控制器。 在过程控制中,PID 控制也是应用最广泛的,一个大型现代化控制系统的控制回路可能达二三百个甚至更多,其中绝大部分都采用PID 控制。由此可见,在过程控制中,PID 控制的重要性是显然的,下面将结合实例讲述PID 控制。 1.1.1 比例(P)控制 比例控制是一种最简单的控制方式,其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳定误差。比例控制器的传递函数为: G C (S ) = K P (1- 2) 式中,K P 称为比例系数或增益(视情况可设置为正或负),一些传统的控制器又常用比例带(Proportional Band,PB),来取代比例系数K P ,比例带是比例系数的倒数,比例带也称为比例度。 对于单位反馈系统,0 型系统响应实际阶跃信号R0 1(t)的稳态误差与其开环增益K 近视成反比,即: t→∞

PID白话式理解说明及智能车闭环控制详解

PID白话式理解说明及智能车闭环控制详解 By jiahangsonic 编码器专卖https://www.360docs.net/doc/854561936.html, 本文只是技术交流,仅仅是鄙人对一些知识的看法和认识,由于鄙人学疏才浅,必然会在本文中出现定义理解不深刻,原理叙述有误等错误,敬请各位高人理解,如有错误之处,请大家指出,我将积极学习改进。 其实很早就应该写这么一个东西,由于学习和工作太忙,一直没有时间去写,春节放假,偶尔有了时间,决心一定要写好,本文只是针对初学者,对于那些老鸟和大神们,基本上没有看的必要,所以再您看这篇文章之前,还要对我多多的理解和宽容,写不好,我改进学习,写的好,希望对您有帮助。 (一) PID的背景和一些原理上理解 PID控制技术,是最简单的闭环控制技术之一,一般都是利用单反馈或者多反馈来实现对控制对象的调节,实现被控对象的可控性和可预知性的控制。使得设备运行的更加的可靠,合理且平稳。 PID的全称为比例积分微分控制,P即为比例,I即为积分,D即为微分。PID往往都是应用于惰性系统,所谓惰性系统就是变化较慢且无法精确控制和调节的对象,其中最最重要的特点就是变化速度慢,调节速度慢,控制周期较长,最经典的控制对象就为温度的温控。 下面就举一个简单的例子进行说明: 比如我们要对一个水箱里面的水进行加热,我们的目标加热温度为100℃,首先我们不用闭环对水温进行加热,也就是说我们只是靠人为观察温度计的温度值来对加热器进行人工的干预。

当温度加热到100℃以后,我们就停止加热,这个时候,虽然水温已经到达100且加热器已经不再通电加热,但是由于加热器的预热和水本身传递温度的惰性,导致水温会继续上升,经过一段时间后,水温会继续升高,并且超过100℃,那么该系统就无法达到我们所预期的要求。 这个时候您谁想,停止加热后本身会继续散热继续升温,那等到温度到90摄氏度左右以后,我们停止加热,然后利用水的惰性和加热器的散热,让水温继续升温,正好达到100℃,这样不就解决问题了吗?这么想是对的,但是水温要达到90几度的时候我们停止加热呢?还有就是从停止加热到100℃的时间是多少?经过一段时间后,温度没有达到100℃,而是小于100摄氏度以后温度就达到了顶峰,这样怎么办? 上述所有的办法,可能能够解决水温到达100℃的要求,但是其中很多环节很多结果都是无法预测和无法控制的,即便经历了很麻烦的人为干预同时经过了一个较长的时间达到了我们对水温加热到100℃的要求,也要经历一个相当复杂和相当漫长的时间才能达到,并且整个过程一直要有人为的干预,实在是属于劳民伤财。 不只是对温度的控制,还有其他很多领域的过程控制,都遇到了这些让人很困惑问题,所以科学家就针对此类问题发明了闭环控制原理,其中最经典最简单最实用的就是PID闭环控制。该控制原理简单可靠,参数调整简便,实用性强,广泛的受到人们的支持。 利用PID控制原理对水温进行加热控制,我现在进行举例说明:目标温度

自我简述PID调节的方法

PID调节口诀 1. PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1, 2. 一看二调多分析,调节质量不会低2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照: 温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。 3.PID控制的原理和特点 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID 控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 比例(P)控制比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。 积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。 微分(D)控制在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

温度控制系统曲线模式识别及仿真

锅炉温度定值控制系统模式识别及仿真专业:电气工程及其自动化姓名:郭光普指导教师:马安仁 摘要本文首先简要介绍了锅炉内胆温度控制系统的控制原理和参数辨识的概念及切线近似法模式识别的基本原理,然后对该系统的温控曲线进行模式识别,而后着重介绍了用串级控制和Smith预估器设计一个新的温度控制系统,并在MATLAB的Simulink中搭建仿真模型进行仿真。 关键词温度控制,模式识别,串级控制,Smith预测控制 ABSTRACT This article first briefly introduced in the boiler the gallbladder temperature control system's control principle and the parameter identification concept and the tangent approximate method pattern recognition basic principle, then controls the curve to this system to carry on the pattern recognition warm, then emphatically introduced designs a new temperature control system with the cascade control and the Smith estimator, and carries on the simulation in the Simulink of MATLAB build simulation model. Key Words:Temperature control, Pattern recognition, Cascade control, Smith predictive control

PID使用说明

PID调节器又称回路调节器,本调节器提供的具体功能有:手动、自动、串级、及跟踪运行方式的切换,设定值、手动输出值的调整,PID参数的整定等。 PID调节有三种画面:回路操作画面、趋势显示画面和参数调整画面。下面介绍每种画面显示的信息及用途。 1.回路操作画面 在预先设置的PID热点上,单击鼠标左键,屏幕上将弹出如图3.11-1所示回路操作画面,由回路操作画面可分别进入其它两种画面。 (1)显示信息说明 在回路调节画面中显示的有设定值、过程值和输出值的棒图及数值显示,运行方式显示,报警状态显示等。 ?棒图显示 画面左边的三个棒图分别代表设定值、过程值和输出值,棒的颜色依次为蓝、天蓝、粉色。 设定值棒的高度为当前值相对量程的百分数。如果PID运行于串级状态,则设定棒显示串级外给定值,在其它运行状态下显示内给定值。 过程值棒的高度表示过程输入值。 输出棒的高度表示输出值。 ?数值显示 画面右下区域的三个方框中显示的内容依次为设定量、过程量及输出量的当前值,各数值颜色与棒颜色相对应。 当PID调节器运行于手动、自动或跟踪状态时,设定值为内部给定值;当运行于串级状态时,显示为串级输入值。 当PID调节器运行于手动状态时,输出值由手动给出;运行于自动和串级状态时,由算法结果给出;运行于跟踪状态时,为跟踪量点值。 ?报警状态显示 当偏差报警到来时,左上角灯置亮(呈红色);报警消失时,恢复正常颜色。 ?运行方式显示 PID调节器的运行方式包括手动、自动、串级及跟踪四种,当某个运行方式下的状态灯呈绿色时,表示调节器处于某方式。 ?其它 PID调节器画面静态显示的内容有点名、点描述(说明)等。

S7-300PID控制说明

S7-300的PID控制的方法 1、这是一个典型的PID控制系统。 通过模拟量4--20mA的传感器来监视水池的液位,对应PLC的0-27648的工程值,经这个比例转换成水池的液位。对应的液位是你液位传感器对应的最高量程。这个值就是PID的反馈值。 阀门调节由量模拟量输出控制阀门调节开度,控制你水池的液位。 2、无法与实际水位对应(读的参数不知道表示什么意思)? 在PID调节中有不同的物理量,因此在参数设定中需将其规格化。参数规格化: 1.规格化概念及方法:PID参数中重要的几个变量,给定值, 反馈值和输出值都是用0.0~1.0之间的实数表示,因此,需要将模拟输入转换为0.0~1.0的数据,或将0.0~1.0的数据转换为模拟输出,这个过程称为规格化。规格化的方法:(即变量相对所占整个值域范围内的百分比对应与27648数字量范围内的量)。对于输入和反馈,执行:变量*100/27648,然后将结果传送到PV-IN和SP-INT,对于输出变量,执行:LMN*27648/100,然后将结果取整传送给PQW即可; 2.例: 输入参数: SP_INT(给定值):0--100%的实数。 假定模块的输入变量量程为0-10Mpa,则SP_IN的范围0.0-1.00

对应0-10米.可以根据这一比例关系来设置给定值。例:如给定5.0米 SP_INT(给定值)=5.0/(10.0-0.0)*100.0=50.0(50%) PV_IN(过程值,即反馈值):0--100%的实数。 此值来自与阀门阀位(开度)的相应的压力反馈值。其范围0.0-1.0对应0-100%.即,当模拟量模板输入为数值为27648时则对应100%(量程的上限),数值为0时则对应0%(量程的下限)。 可以根据这一比例关系来换算PV_IN值。例:如输入数值为12000时 PV_IN(过程值,即反馈值)=12000/27648*100.0=43.403(43.403%) 输出参数: 当通过PID控制器(FB41)运算后,即得出调节值LMN_PER,该值已转化范围为0-27648的整型数值。例如经运算为43.403%, LMN_PER=43.403*27648/100,取整后为12000,将LMN_PER 送入模拟量输出模板即可. 3、积分时间不知道该如何设定? (1)对于比例控制来说,将比例度调到比较大的位置,逐步减小以得到满意的曲线。 (2)对于比例积分来说,先将积分时间无限大,按纯比例作用

PID调节方法

PID调节方法 PID是由比例、微分、积分三个部分组成的,在实际应用中经常只使用其中的一项或者两项,如P、PI、PD、PID等。就可以达到控制要求...PLC编程指令里都会有PID这个功能指令...至于P,I,D 数值的确定要在现场的多次调试确定.. 比例控制(P): 比例控制是最常用的控制手段之一,比方说我们控制一个加热器的恒温100度,当开始加热时,离目标温度相差比较远,这时我们通常会加大加热,使温度快速上升,当温度超过100度时,我们则关闭输出,通常我们会使用这样一个函数 e(t) = SP – y(t); u(t) = e(t)*P SP——设定值 e(t)——误差值 y(t)——反馈值 u(t)——输出值 P——比例系数 滞后性不是很大的控制对象使用比例控制方式就可以满足控制要求,但很多被控对象中因为有滞后性。 也就是如果设定温度是200度,当采用比例方式控制时,如果P选择比较大,则会出现当温度达到200度输出为0后,温度仍然会止不住的向上爬升,比方说升至230度,当温度超过200度太多后又开始回落,尽管这时输出开始出力加热,但温度仍然会向下跌落一定的温度才会止跌回升,比方说降至170度,最后整个

系统会稳定在一定的范围内进行振荡。 如果这个振荡的幅度是允许的比方说家用电器的控制,那则可以选用比例控制.比例积分控制(PI): 积分的存在是针对比例控制要不就是有差值要不就是振荡的这种特点提出的改进,它常与比例一块进行控制,也就是PI控制。 其公式有很多种,但大多差别不大,标准公式如下: u(t) = Kp*e(t) + Ki∑e(t) +u0 u(t)——输出 Kp——比例放大系数 Ki——积分放大系数 e(t)——误差 u0——控制量基准值(基础偏差) 大家可以看到积分项是一个历史误差的累积值,如果光用比例控制时,我们知道要不就是达不到设定值要不就是振荡,在使用了积分项后就可以解决达不到设定值的静态误差问题,比方说一个控制中使用了PI控制后,如果存在静态误差,输出始终达不到设定值,这时积分项的误差累积值会越来越大,这个累积值乘上Ki后会在输出的比重中越占越多,使输出u(t)越来越大,最终达到消除静态误差的目的。 PI两个结合使用的情况下,我们的调整方式如下: 1、先将I值设为0,将P值放至比较大,当出现稳定振荡时,我们再减小P 值直到P值不振荡或者振荡很小为止(术语叫临界振荡状态),在有些情况下,

PID调节方法

1、先调节P值(I、D均为0),使其调节速度达到要求。P值增减先按倍 数处理(乘2或除2),直到超越了要求,再将前后两个值取平均值。 2、再根据调节偏差处理I的取值,该值从大往小试验,温度调节初始值可以从10min开始,而流量、压力可以从1min开始。直到偏差小到符合要求。 3、D值只在超调量过大时采用,取值从小往大试验,以超差幅度小于允许值, 又不发生震荡为度。 1. PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后 再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘 往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长, 理想曲线两个波,前高后低4比1, 2. 一看二调多分析,调节质量不会低 2.PID控制器参数的工程整定,各种调节 系统中P.I.D参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。 PID控制原理与PID参数的整定方法 PID是比例、积分、微分的简称,PID控制的难点不是编程,而是控制器的参数整定。参数整定的关键是正确地理解各参数的物理意义,PID控制的原理可以用人对 炉温的手动控制来理解。阅读本文不需要高深的数学知识。 1.比例控制 有经验的操作人员手动控制电加热炉的炉温,可以获得非常好的控制品质,PID控制 与人工控制的控制策略有很多相似的地方。 下面介绍操作人员怎样用比例控制的思想来手动控制电加热炉的炉温。 假设用热电偶检测炉温,用数字仪表显示温度值。在控制过程中,操作人员用眼睛读取炉温,并与炉温给定值比较,得到温度的误差值。然后用手操作电位器,调节加热的电流,使 炉温保持在给定值附近。 操作人员知道炉温稳定在给定值时电位器的大致位置(我们将它称为位置L),并根 据当时的温度误差值调整控制加热电流的电位器的转角。炉温小于给定值时,误差 为正,在位置L的基础上顺时针增大电位器的转角,以增大加热的电流。炉温大 于给定值时,误差为负,在位置L的基础上反时针减小电位器的转角,并令转角与位置L的差值与误差成正比。 上述控制策略就是比例控制,即PID控制器输出中的比例部分与误差成正比。 闭环中存在着各种各样的延迟作用。例如调节电位器转角后,到温度上升到新的 转角对应的稳态值时有较大的时间延迟。由于延迟因素的存在,调节电位器转角后 不能马上看到调节的效果,因此闭环控制系统调节困难的主要原因是系统中的延迟 作用。比例控制的比例系数如果太小,即调节后的电位器转角与位置L的差值太小,调节的力度不够,使系统输出量变化缓慢,调节所需的总时间过长。比例系数如果过大,即

PID控制详解

PID控制原理和特点 工程实际中,应用最为广泛调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制主要技术之一。当被控对象结构和参数不能完全掌握,或不到精确数学模型时,控制理论其它技术难以采用时,系统控制器结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象﹐或不能有效测量手段来获系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是系统误差,利用比例、积分、微分计算出控制量进行控制。 1、比例控制(P): 比例控制是最常用的控制手段之一,比方说我们控制一个加热器的恒温100度,当开始加热时,离目标温度相差比较远,这时我们通常会加大加热,使温度快速上升,当温度超过100度时,我们则关闭输出,通常我们会使用这样一个函数 e(t) = SP – y(t)- u(t) = e(t)*P SP——设定值 e(t)——误差值 y(t)——反馈值 u(t)——输出值 P——比例系数 滞后性不是很大的控制对象使用比例控制方式就可以满足控制要求,但很多被控对象中因为有滞后性。 也就是如果设定温度是200度,当采用比例方式控制时,如果P选择比较大,则会出现当温度达到200度输出为0后,温度仍然会止不住的向上爬升,比方说升至230度,当温度超过200度太多后又开始回落,尽管这时输出开始出力加热,但温度仍然会向下跌落一定的温度才会止跌回升,比方说降至170度,最后整个系统会稳定在一定的范围内进行振荡。 如果这个振荡的幅度是允许的比方说家用电器的控制,那则可以选用比例控制 2、比例积分控制(PI): 积分的存在是针对比例控制要不就是有差值要不就是振荡的这种特点提出的改进,它常与比例一块进行控制,也就是PI控制。 其公式有很多种,但大多差别不大,标准公式如下: u(t) = Kp*e(t) + Ki∑e(t) +u0

自适应控制中PID控制方法

自适应PID 控制方法 1、自适应控制的理论概述 设某被控对象可用以下非线性微分方程来描述: '()((),(),,) ()((),(),,)x t f x t u t t y t h x t u t t θθ== (1-1) 其中x(t),u(t),y(t)分别为n,p,m 维列向量。假设上述方程能线性化、离散化,并可得出在扰动与噪音影响下的方程: (1)(,)()(,)()()()(,)()() X k k X k k U k k Y k H k X k V k θρθωθ+=Φ++=+ (1-2) X(k),X(k),U(k),Y(k),V(k)分别为n,n,p,m,m 维列向量;(,)k θΦ、(,)k ρθ、(,)H k θ分别为n ×n 系统矩阵、n ×p 控制矩阵、m ×n 输出矩阵。那么自适应控制就就是研究:在矩阵(,)k θΦ,(,)k ρθ,(,)H k θ中的参数向量,随机 {()k ω},{v(k)}的统计特性及随机向量X(0)的统计特性都未知的条件下的控制问题,也就就是说自适应控制的问题可归结为在对象及扰动的数学模型不完全确定的条件下,设计控制序列u(0),u(1),…,u(N- 1),使得指定的性能指标尽可能接近最优与保持最优。 自适应控制就是现代控制的重要组成部分,它同一般反馈控制相比有如下突出特点: (l)一般反馈控制主要适用于确定性对象或事先确知的对象,而自适应控制主要研究不确定对象或事先难以确知的对象。

(2)一般反馈控制具有抗干扰作用,即它能够消除状态扰动引起的系统误差,而自适应控制因为有辨识对象与在线修改参数的能力,因而不仅能消除状态扰动引起的系统误差,还能消除系统结构扰动引起的系统误差。 (3)自适应控制就是更复杂的反馈控制,它在一般反馈控制的基础上增加了自适应控制机构或辨识器,还附加了一个可调系统" 1、1模型参考自适应控制系统 模型参考自适应控制系统由参考模型、反馈控制器、自适应机构及被控对象组成。此系统的主要特点就是具有参考模型,其核心问题可归纳为如何确定自适应调节律及算法。目前设计自适应律所采用的方法主要有两种:局部参数最优法,如梯度算法等,该方法的局限性在于不一定能保证调节过程总就是稳定的;基于稳定性理论的设计方法,如Lyapunov稳定性理论与Popov超稳定性理论的设计方法。 1、2自校正调节器 自校正调节器可分为设计机构、估计器、调节器及被控对象4个部分。此控制器的主要特点就是具有在线测量及在线辨识环节,其核心问题可归纳为如何把不同参数估计算法与不同控制算法相结合。根据参数估计算法与控制算法相结合的情况把自校正控制分为:最小方差自校正控制,其特点就是算法简单、易理解、易实现,但只适用于最小相位系统,对靠近单位圆的零点过于灵敏,而且扰动方差过大时调节过程过于猛烈;广义最小方差自校正控制,可用于非逆稳系统,但难以实现;基于多步预测的自适应控制,适用于不稳定系统等,具有易实现、鲁棒性强的优点;自校正极点配置控制,具有动态性能好、无控制过激现象的特点,但静态干扰特性差;自校正PID控制,具有算法简单、鲁棒性强、待定参数少的特点;增益调度控制,优点就是参数适应快,缺点就是选择合适的列表需要大量的仿真实验,另外离线的计算量大。

相关文档
最新文档