Spitzer Spectra of a 10 mJy Galaxy Sample and the Star Formation Rate in the Local Universe

Spitzer Spectra of a 10 mJy Galaxy Sample and the Star Formation Rate in the Local Universe
Spitzer Spectra of a 10 mJy Galaxy Sample and the Star Formation Rate in the Local Universe

a r

X

i

v

:07

8

.

2

4

v

1

[

a

s

t

r

o

-

p

h

]

1

7

A

u

g

2

7

Spitzer Spectra of a 10mJy Galaxy Sample and the Star Formation Rate in the Local Universe J.R.Houck 1,D.W.Weedman 1,E.Le Floc’h 2,and Lei Hao 1ABSTRACT A complete ?ux-limited sample of 50galaxies is presented having f ν(24μm )>10mJy,chosen from a survey with the Multiband Imaging Photometer on Spitzer (MIPS)of 8.2deg 2within the NOAO Deep Wide-Field Survey region in Bootes (NDWFS).Spectra obtained with the low-resolution modules of the Infrared Spectrograph on Spitzer (IRS)are described for 36galaxies within this sample;25show strong PAH emission features characteristic of starbursts,and 11show silicate absorption or emission,emission lines,or featureless spectra characteristic of AGN.Infrared or optical spectral classi?cations are available for 48of the entire sample of 50;33galaxies are classi?ed as starbursts and 15as AGN.(There are an additional 19Galactic stars with f ν(24μm )>10mJy in the survey area.)Using a relation between 7.7μm PAH luminosity and star formation rate derived from previous IRS observations of starbursts,the star formation rate per unit volume of the local universe (SFRD)is determined from the complete sample and is found to be 0.008M ⊙yr ?1Mpc ?3.This provides an extinction-free measurement of SFRD independent of optical properties and provides a parameter that can be used for direct comparison to high-redshift starbursts being discovered with Spitzer .Individual sources in the sample have star formation rates from 0.14to 160M ⊙yr ?1.The derived value for the local SFRD is about half that of the local SFRD deduced from bolometric luminosities of the IRAS 60μm Bright Galaxy Sample,with the de?ciency being at lower luminosities and arising primarily from the small number of low luminosity sources in the 10mJy sample.The

agreement for higher luminosities con?rms the validity of using the 7.7μm PAH

feature as a measure of SFRD in the high redshift universe,where this is often

the only indicator available for faint sources.

Subject headings:dust,extinction —infrared:galaxies —galaxies:starburst—

galaxies:AGN

1.Introduction

De?ning?ux-limited,complete samples is the basic technique for initial studies of ob-jects discovered by new surveys at various wavelengths.For example,the”Bright Galaxy Sample”de?ned by the Infrared Astronomical Satellite(IRAS)led to fundamental discover-ies regarding the natures of luminous infrared galaxies(e.g.Soifer et al.1989;Sanders et al. 2003).With the capabilities of the Spitzer Space Telescope(Spitzer),it becomes possible to de?ne?ux limited samples at24μm and obtain infrared spectra for sources which reach factors of~100fainter?uxes than complete samples de?ned by IRAS.

It is important to explore the characteristics of the extragalactic infrared population at these fainter?uxes to determine unbiased luminosity functions and evolution characteristics for various categories of infrared-luminous galaxies.Such samples are needed for comparison to the large numbers of objects being observed by Spitzer but selected because of previously known optical or IRAS criteria.It is also especially important to have spectroscopy for brighter,well-de?ned Spitzer extragalactic samples for comparison to the spectroscopic re-sults for samples with fν(24μm)~1mJy or fainter,for which hundreds of hours of Spitzer observing time are being invested(e.g.Houck et al.2005;Weedman et al.2006a;Yan et al. 2007).These observations revealed a population of previously unknown,high redshift sources characterised primarily by strong silicate absorption,with a median redshift of2.1,and we need to understand how these relate to more nearby sources.

It is also crucial to have statistical distributions of spectral characteristics for Spitzer 24μm samples,because modeling of source counts that extends over a wide range of redshift requires knowledge of the spectral shape for objects.For example,counts have been modeled to deduce the evolution of starbursts by assuming that the source counts arise only from starbursts(https://www.360docs.net/doc/8a4667224.html,gache et al.2004;Chary et al.2004),but it is essential to understand how real sources divide between starbursts and AGN in order to distinguish the cosmic star formation history from the evolution of AGN.

To de?ne a sample of”Bright Galaxies”discovered by Spitzer,we have utilized our survey of8.2deg2within the Bootes?eld of the NOAO Deep Wide-Field Survey(NDWFS) (Jannuzi and Dey1999);this Spitzer survey used the Multiband Imaging Photometer for Spitzer(MIPS)(Rieke et al.2004)to reach0.3mJy at24μm and25mJy at70μm.The MIPS data were obtained with an e?ective integration time at24μm of~90s per sky pixel, reaching a5σdetection limit of~0.3mJy for unresolved sources,and40s per sky pixel for the70μm survey,reaching a5σdetection limit of~25mJy for unresolved sources.

We previously reported spectroscopic observations with The Infrared Spectrograph on Spitzer(IRS)(Houck et al.2004)for Bootes sources with fν(24μm)~1mJy(Houck et al.

2005;Weedman et al.2006b).In the present paper,we use the Bootes survey to de?ne a complete sample of brighter sources,fν(24μm)>10mJy,and present new IRS observations for most of this sample.

Several previous observing programs with the IRS have discovered a substantial popu-lation of optically faint sources at z~2which have PAH emission features in the infrared spectra(Lutz et al.2005;Weedman et al.2006a;Yan et al.2007;Menendez-Delmestre et al. 2007).These features are the signatures of starbursts.The7.7μm PAH feature is the domi-nant mid-infrared spectral feature in starbursts at z~2and is su?ciently strong that it can be measured in faint,high redshift sources with no other quantitative measure of the star-burst.The luminosity of this feature provides the potential to measure the star formation rate(SFR)for faint,optically obscured objects at high redshift for which no other indicators of the SFR are available,such as the bolometric luminosity,infrared continuum at rest-frame wavelengths>10μm,Hαemission,or rest-frame ultraviolet continuum(e.g.Kennicutt 1998;Madau et al.1998;Calzetti et al.2007).

It is vital to measure the total star formation rate per unit volume of the universe-the star formation rate density(SFRD)-at high redshifts using the various observations enabled by Spitzer to obtain a result which is independent of other methods used to track the cosmic SFRD as a function of epoch in the universe(Le Floc’h et al.2005;Takeuchi et al. 2005;Mannucci et al.2007).Because the PAH luminosity is much less subject to extinction than rest-frame optical or ultraviolet and is the best mid-infrared indicator observable at high redshift,it may prove to be the primary measure of starburst luminosity in faint,distant sources discovered within Spitzer surveys.

The?rst step in enabling this determination is a calibration of SFR as it relates to PAH luminosity,and we present an empirical calibration derived from the global characteristics of classical starburst galaxies observed with the IRS.In order to determine if this calibration is applicable to the SFRD averaged over all starbursts,we determine the local SFRD using our new Bootes10mJy sample and compare it to other estimates of the local SFRD.

Previous observations of the Bootes survey region have produced large amounts of mul-tiwavelength data,including deep optical measurements in B W,R,and I(Jannuzi and Dey 1999),a survey(Eisenhardt et al.2004)with all four bands of the Spitzer Infrared Array Camera(Fazio et al.2004),a5Ks survey with the Chandra X-ray Observatory(Brand et al. 2006),and optical spectroscopy of many sources in the AGN and Galaxy Evolution Survey (Cool et al.2006).All of these data potentially enable a detailed comparison of various mul-tiwavelength properties of all sources within the10mJy sample.We do not undertake such an analysis in the present paper because our objective is to present only the sample and the new IRS results.The extensive multiwavelength data are not utilized for our determination

of the local SFRD using the infrared spectra,because we want to determine the validity of this technique for sources which have no data other than infrared spectra.

2.Sample De?nition,New IRS Observations,and Data Analysis

The Bootes bright source sample is de?ned only by fν(24μm)>10mJy.For resolved sources with several components in the same galaxy,this criterion is for the total?ux of the galaxy.There are69sources within the8.2deg2Bo¨o tes?eld which satisfy this?ux criterion. Of these69,19are optically bright Galactic stars,as classi?ed on the Digitized Sky Survey and the Digitized First Byurakan Survey(Mickaelian et al.2007).The remaining50extra-galactic sources are listed in Table1,which summarizes the characteristics for the complete sample,including sources within our program and sources in other Spitzer programs.

Of the50sources,we describe new IRS results for26sources within our program and10from the Spitzer public archive(program20113,H.Dole,in preparation).Adding optical spectral classi?cations from the Sloan Digital Sky Survey(SDSS)(Gunn et al.1998; York et al.2000)allows the spectroscopic classi?cation of the sources as starbursts or AGN for48of the50sources in the complete sample.Spitzer spectroscopic observations were made with the IRS1Short Low module in orders1and2(SL1and SL2)and with the Long Low module in orders1and2(LL1and LL2),described in Houck et al.(2004).These give low resolution spectral coverage from~8μm to~35μm.

For our new observations,sources were placed on the slit by using the IRS peakup mode with the blue camera.All images when the source was in one of the two nod posi-tions on each slit were coadded to obtain the source spectrum.The background which was subtracted was determined from coadded background images that added both nod positions having the source in the other slit(i.e.,both nods on the LL1slit when the source is in the LL2slit produce LL1spectra of background only).The di?erence between coadded source images minus coadded background images was used for the spectral extraction,giving two independent extractions of the spectrum for each order.These independent extractions were compared to reject any highly outlying pixels in either spectrum,and a?nal mean spectrum was produced.

Extraction of source spectra was done with the SMART analysis package(Higdon et al. 2004),beginning with the bcd products of version13.0of the Spitzer?ux calibration pipeline.

Final spectra were boxcar-smoothed to the approximate resolution of the di?erent IRS mod-ules(0.2μm for SL1and SL2,0.3μm for LL2,and0.4μm for LL1).Spectra from our new observations of starburst sources in Table1are illustrated in Figure1(illustrated spectra are truncated at25μm because of the absence of PAH features beyond that wavelength).

3.Discussion

3.1.Characteristics of the Bootes10mJy Sample

Because this sample is de?ned by infrared?ux density,it provides an overall distribution of the types of extragalactic sources which are encountered in an unbiased examination of the Spitzer infrared sky.The sources discovered illustrate examples of all representative infrared spectra from extragalactic sources,including strong PAH emission,strong silicate absorption,strong emission lines,and featureless power laws.

We utilize a simple classi?cation for IRS spectra,which divides sources into those with infrared spectra characterized by strong PAH emission features or spectra with silicate ab-sorption,strong emission lines,or featureless continua.The PAH spectra are assigned to starbursts(e.g.Brandl et al.2006)and the remaining spectra to AGN(e.g.Weedman et al. 2005).Sources can be composite,but we do not attempt deconvolution into AGN and star-burst components;we classify only by whether PAH features are present,or not.Quanti-tative classi?cations according to the scheme of Spoon et al.(2007)are also assigned.The classi?cation of the IRS spectrum is given in Table1for sources with available IRS spectra. Sources without IRS spectra but with SDSS spectra are also assigned as starburst or AGN based on the SDSS spectra.

Of the48sources with spectroscopic classi?cations,infrared or optical,33are starbursts and15are AGN.Several sources with an optical classi?cation as Seyfert2show strong PAH emission in the infrared;in such cases,we include these as starbursts.There are25sources in Table1for which IRS spectra show PAH emission,and we will discuss these in more detail. The remaining11sources having IRS spectra display silicate absorption,possible silicate emission,emission lines,or featureless spectra and so are attributed to AGN.Because of the variety of these AGN spectra and the small number of sources within di?erent AGN categories,we defer presentation and detailed analysis of the AGN spectra until we have a larger sample.For the remainder of this paper,we discuss only the starburst sources.There is a su?cient number of these to derive meaningful conclusions regarding star formation at low redshifts,which we present in section3.3.

3.2.Starburst Galaxies in the10mJy Sample

The subset of15sources from the Bootes10mJy sample for which we have obtained new IRS spectra that show PAH features(indicating starbursts)is listed in Table2(the archive observations from program20113are not included in Table2).This Table gives

all of the spectroscopic characteristics which were measured from our spectra,except for redshifts which are given in Table3.IRS redshifts are determined from PAH emission features,assuming rest wavelengths of6.2μm,7.7μm,8.6μm,and11.3μm.The IRS redshifts typically agree to within0.0012of the optical redshift from SDSS.All spectra in Table2 are shown in Figure1(truncated at25μm because of the lack of PAH features beyond that wavelength).

Most sources show PAH features with large equivalent width(EW).The most common classi?er of PAH strength is the EW of the6.2μm PAH feature,which is listed in Table3 for all objects in the sample which show this feature.The weakest feature detected has EW

of0.05μm.Classi?cation of sources according to the EW criteria of Spoon et al.(2007)are

in Table1.

We desire a quantitative classi?cation to place these objects in context of other star-bursts,especially the classical starburst galaxies whose IRS spectra are described by Brandl et al. (2006)and the Blue Compact Dwarfs(BCDs)described by Wu et al.(2006).For this pur-pose,the diagnostics we use are the ratios among[SIV]10.5μm,PAH11.3μm,and[NeII] 12.8μm.These ratios are the best available to compare with the previous starburst and BCD spectra,because these features all arise within the SL orders.Although the galaxies in the10mJy sample are unresolved and so are completely included within the IRS slits,the starburst galaxies and BCDs in the comparison studies are resolved,so that signi?cant but uncertain aperture corrections arise when comparing features between SL and LL modules, which have di?erent slit widths.

These ratios need to be measured on low resolution spectra which are the same as we have for the Bootes objects,but low-resolution measures of these features were not previously published.We have,therefore,re-extracted all of the SL1spectra for the10BCDs in Table4

of Wu et al.(2006)and for the22starburst galaxies in Brandl et al.(2006),using the same extraction process as for the Bootes10mJy sources.The comparison of these3samples is illustrated in Figure2.

This Figure illustrates that starbursts and BCDs are separated by the[SIV]/[NeII]ratio.

It also illustrates that all of the Bootes PAH sources are in the regime of classical starbursts, except for two objects which have[SIV]/[NeII]ratios previously observed only in BCDs. (One Bootes source did not have the necessary SL observations for classi?cation.)The two

sources within the BCD regime are sources25and30in Table2.Source25has a Seyfert2 component,according to the SDSS optical classi?cation,which explains the strong[SIV],so this source is not a BCD.Source30is con?rmed as a true BCD in the SDSS spectra,and this source also has the lowest luminosity of all PAH sources.It is also classi?ed as a BCD by Rosenberg et al.(2006)because of the strong emission lines in the objective prism survey of the Kitt Peak International Spectroscopic Survey(KISS).

3.3.PAH Luminosity and Star Formation Rate

Knowledge of the total star formation rate per unit volume of the universe,or star for-mation rate density(SFRD),as a function of age of the universe is crucial for understanding the formation and evolution of galaxies.Various studies have attempted to measure cosmic evolution of the SFRD by locating starburst galaxies using ultraviolet,optical,and near-infrared techniques(e.g.Madau et al.1998;Le Floc’h et al.2005;Takeuchi et al.2005; Mannucci et al.2007).This is done by scaling the ultraviolet luminosity to a star formation rate using assumed initial mass functions.The primary source of uncertainty is the extinction uncertainty in the rest-frame optical or ultraviolet,and this is a major uncertainty for the majority of luminous starbursts which are heavily obscured.To avoid this uncertainty,and to utilize a measure of the bolometric luminosity of the starburst,it is important to deter-mine the SFRD from infrared luminosities of galaxies(e.g.Bell et al.2005;Le Floc’h et al. 2005;Chapman et al.2005;Caputi et al.2007).

While these previous e?orts use measures of the infrared continuum emission from dust, a potential alternative technique is to use the?ux of PAH emission features characteristic of infrared spectra from starbursts as a measure of the star formation rate within a galaxy (SFR).Approximate indicators of the validity of this approach were found using the In-frared Space Observatory broad-band photometry in the LW2band which centers on the 7.7μm PAH feature for low redshift galaxies(F¨o rster Schreiber et al.2004).A broad-band measure can be an accurate determination of the7.7μm?ux for sources with redshifts such that this feature is within the band observed.However,for sources covering a range of redshifts,the transformation from broad-band?ux to7.7μm?ux depends on assuming a template for the spectrum that relates continuum and PAH?uxes(Caputi et al.2007). Having spectra that allow a direct measure of the7.7μm feature regardless of redshift avoids such assumptions and is the approach that we utilize.

While the precise natures of the PAH features depend on the physical conditions within the star-forming region(Draine and Li2007),and the PAH spectrum varies among star-forming regions within the same galaxy(Smith et al.2007),there is an unquestionable em-

pirical association between the presence of an optically-classi?ed starburst and the presence of PAH features in the infrared spectrum(e.g.Genzel et al.1998;Rigopoulou et al.2000; Brandl et al.2006).Furthermore,the integrated PAH spectra of starburst galaxies are notably uniform(Brandl et al.2006).It is reasonable,therefore,to exploit the empirical correlation between PAH features and starbursts to determine an empirical relation between PAH luminosity and SFR.

Measuring the total?uxes in PAH features is challenging,even in spectra with high signal to noise ratios(S/N),such as in Figure1.The features are sometimes broad,and the de?nition of the appropriate underlying continuum is challenging and complex,especially if silicate absorption is also present(Spoon et al.2007).The strongest PAH emission feature is at rest frame7.7μm,but the underlying continuum that should be subtracted from the emission feature is especially di?cult to de?ne if there is no observed continuum baseline at longer wavelengths.This occurs for faint sources with z 2for which the IRS spectra do not include rest frame wavelengths 11μm.

We desire to relate our measurements to faint sources at high redshifts,so we wish to utilize the parameter most easily measured for such sources.Because of poor S/N in these faint sources and the di?culty in de?ning the continuum,the parameter we utilize for PAH luminosity isνLν(7.7μm),where Lν(7.7μm)is determined from the?ux density at the peak of the7.7μm feature.If signi?cant underlying continuum is present,an estimate of that continuum can be subtracted to obtain the PAH luminosity.In the spectra in Figure1and the starbursts in Brandl et al.(2006),the underlying continuum is not signi?cant compared to the peak of this feature;the continuum which is present is also probably associated with the same starburst that produces the PAH emission.For the present paper,therefore,we utilize only the peak fν(7.7μm)with no correction for the underlying continuum.

Because the SFR has been calibrated as a function of total bolometric luminosity for sources powered by starbursts(Kennicutt1998),we desire to relate theνLν(7.7μm)to the bolometric luminosity,and thereby to the SFR.We can determine an empirical calibration by measuringνLν(7.7μm)for the22starbursts in Brandl et al.(2006),and comparing to the L ir tabulated there as determined from the IRAS?uxes(Sanders et al.2003).Brandl et al.include aperture corrections for the?nite size of the IRS slits compared to the IRAS total?uxes,and we apply these corrections.The resulting comparison is shown in Figure3. The best linear?t which transformsνLν(7.7μm)to L ir without any luminosity dependence is shown in Figure3,log L ir=log[νLν(7.7μm)]+0.78.The one sigma dispersion in this relation is0.2,indicating thatνLν(7.7μm)can predict L ir to within a factor of1.6for a starburst over a range of~100in https://www.360docs.net/doc/8a4667224.html,ing the relation from Kennicutt(1998), this yields that log[SFR]=log[νLν(7.7μm)]-42.57,for SFR in units of M⊙yr?1.

This transformation from a PAH luminosity to a SFR depends on relating the SFR to the bolometric luminosity,assuming that the bolometric luminosity is given by L ir,and calibrating the PAH luminosity to L ir.A completely independent estimate of SFR derives from the luminosity of the[Ne II]and[Ne III]lines(Ho and Keto2007).These luminosities have been related to the luminosities of the6.2μm plus11.3μm PAH features by Farrah et al. (2007),who then determine a SFR measure from the total luminosities of these PAH features. Their measure can be transformed toνLν(7.7μm)by empirically relatingνLν(7.7μm)to L(6.2μm+11.3μm).From the starbursts in(Brandl et al.2006),νLν(7.7μm)/L(6.2μm+ 11.3μm)=40,with a dispersion of only10%.With this transformation,the SFR measure in Farrah et al.(2007)becomes log[SFR]=log[νLν(7.7μm)]-42.52.The agreement to within 10%of this independent calibration based on Ne emission lines to the calibration derived above based on L ir is certainly fortuitous,but it does provide a con?rmation of the relation that we have adopted.

As a further check to estimate the overall global validity of the calibration we have adopted betweenνLν(7.7μm)and SFR,we use the PAH luminosity in the starbursts of the complete10mJy sample to determine the integrated SFRD of the local universe.This result is then compared to independent determinations of the local SFRD to determine the systematic uncertainty in this use of PAH luminosity to determine star formation rates. 3.4.Space Densities and Star Formation Rate Density in the Local Universe

The luminositiesνLν(7.7μm)of the starbursts in Table2are given in Table3.These lu-minosities range from5.2x1041ergs s?1to2.4x1045ergs s?1.For comparison,νLν(7.7μm)of the prototype starburst NGC7714is4.4x1043ergs s?1(Brandl et al.2006),andνLν(7.7μm) for the most luminous starbursts discovered by Spitzer at z~2is~1046ergs s?1,(e.g. Yan et al.2005;Weedman et al.2006a).

Most of the starburst sources are detected at70μm,so the ratio fν(24μm)/fν(70μm)can be measured and is shown in Figure4compared to the PAH luminosities.The median value for the ratio is~0.09,with no dependence on luminosity.If the slope of the continuum measured by this ratio is a measure of dust temperature,or mixtures of dust temperatures, these results imply that such temperatures do not relate to the luminosity of the starburst. This is an indication that the uniformity of the PAH strength relative to the underlying continuum arises from a simple scaling of multiple,similar starbursts within a source.

The SFRs derived fromνLν(7.7μm)are also in Table3and range from0.14to160M⊙yr?1.These SFRs are generally much larger than those which would be derived from the

relation between L(Hα)and SFR(Kennicutt et al.1994)if no corrections are applied for extinction at Hα.Comparison of SFR derived fromνLν(7.7μm)and from L(Hα)are shown in Table3for those sources having f(Hα)in Jangren et al.(2005)from the KISS survey.The Hα-derived SFRs are always smaller,often by a factor of~10,except for one object-the low-luminosity BCD,number30.For all other starburst galaxies,the results imply that the majority of the radiation from the starburst has been absorbed by dust.

Space densities in Table3are derived from the standard V max technique,determining the maximum volume which a source could inhabit and remain within the10mJy sample. The SFRDs derive from the space densities.

Using the sample of25galaxies in Table3,we can derive the total local space densities and resulting SFRDs as a function of luminosity.Results are in Table4.The total local SFRD determined only from the sources in Table3is0.0063M⊙yr?1Mpc?3,and this value decreases to0.0057if the4starbursts in Table3at z>0.2are excluded.This value is strictly a sum of SFRDs for all sources observed.Individual luminosity bins are subject to large statistical uncertainties because of the small numbers of sources in each bin.Numbers of sources in each bin are listed in Table4,and the statistical uncertainties are illustrated in Figure5.

Some correction for incompleteness is necessary,because the galaxies in Table3with observedνLν(7.7μm)are only25of the33starburst sources in the complete sample,adopting the optical classi?cations for starbursts in Table1for sources without infrared spectra.If the remaining starbursts are similar to those in Table3,this incompleteness correction would raise the estimate of the local SFR(z<0.2)to~0.008M⊙yr?1Mpc?3.

It is notable that4sources classi?ed as starbursts from the presence of PAH features are classi?ed as Sy2galaxies from the optical SDSS spectra.The infrared spectra are clearly composite because the PAH features in these objects have weaker equivalent widths than in the starbursts.Source28is also probably such a composite although it does not have an optical spectrum for classi?cation;the PAH feature has low equivalent width,and the source has very high luminosity.A small correction could be made to the SFR because of an overestimate of the SFR arising by measuring only the peakνLν(7.7μm)within these starbursts in Table3that are also Sy2galaxies;some of the underlying continuum arises from the AGN,although all of the continuum is included in our calibration for SFR compared toνLν(7.7μm).We do not attempt to apply a correction for the presence of such composite AGN/starburst spectra,however,because the uncertainty arising from this is small compared to the statistical uncertainties arising from the small sample size.

This result for the total local SFRD of0.008M⊙yr?1Mpc?3is smaller than the re-

sult previously derived using the luminosity function derived at60μm from the IRAS Bright Galaxy Sample(BGS).For example,the compilation of Le Floc’h et al.(2005),which adopts the60μm luminosity function of Takeuchi et al.(2005),yields an infrared-derived local SFRD of0.013M⊙yr?1Mpc?3.

To determine the total local SFRD,the infrared-derived value,which represents ob-scured star formation,should be added to the value derived from the non-extincted ul-traviolet luminosity from starbursts,which represents the primary radiation that escapes without dust absorption.Ultraviolet observations with the Galaxy Evolution Explorer (GALEX)yield a observed local SFRD,not corrected for extinction,of0.003M⊙yr?1Mpc?3 (Iglesias-Paramo et al.2006),which indicates a total local SFRD of0.016M⊙yr?1Mpc?3 when both obscured and unobscured star formation are accounted for.A similar factor for infrared-derived SFRD compared to ultraviolet-derived SFRD is found when individual galaxy templates are used with models of evolving star formation(Bell et al.2005).

These empirical results indicate,therefore,that our use of the7.7μm?ux to determine the local SFRD from our10mJy sample of starburst galaxies yields a value which is~50% of the value derived from more sophisticated and extensive analyses that sum the infrared and ultraviolet luminosities of much larger galaxy samples.To understand more about the sources of this di?erence,we make a more detailed comparison to the SFRDs derived from the IRAS BGS.

https://www.360docs.net/doc/8a4667224.html,parison with IRAS Bright Galaxy Sample

Derivations of the SFR for dust-obscured starbursts depend on transformation of the 60μm luminosities of IRAS sources to bolometric luminosities,L ir,which are transformed in di?erent ways by di?erent authors.The calibration between IRAS?uxes and L ir which we adapt from Brandl et al.(2006)for the22starburst galaxies used for comparingνLν(7.7μm) to L ir is the same as the calibration used in Sanders et al.(2003).Any di?erences in results for space densities and SFRs between our10mJy sample compared to the BGS in Sanders et al.derive,therefore,from systematic errors in our determination ofνLν(7.7μm)to L ir or from de?ciencies in the10mJy sample compared to the larger BGS sample.

We reproduce in Table4the space densities and SFRs from Sanders et al.(2003)for the BGS for comparison to our10mJy results.(L ir in Table4are in L⊙.)This comparison is also shown in Figure5,which includes upper limits and statistical uncertainties for the10mJy sample of starbursts.The total SFRD from the summed BGS space densities and SFRDs in Table4would be0.018M⊙yr?1Mpc?3.While larger by~50%than the value which

others derive using the same60μm luminosity function(e.g.Le Floc’h et al.2005;Xu et al. 2006),this di?erence arises from di?erent methods of converting60μm luminosities,L60,to L ir.Because our calibration for SFR began with the Sanders et al.values for L ir,any di?erences between the samples in Table4do not arise from di?erent assumptions about relating L ir to L60.The conversion of luminosity to SFR given in Table4for the BGS and the10mJy sample also derives from the same calibration of SFR to L ir(Kennicutt1998). To understand di?erences in the local SFRDs,therefore,we need only to understand why the IRAS BGS yields space densities for starburst galaxies that are di?erent than the space densities we derive from the Spitzer10mJy sample.

The di?erences in Table4and Figure5between the space densities and resulting SFRDs from the IRAS sources and from our10mJy sources clearly depend on source luminosity. The10mJy sample is de?cient at lower luminosities.This is despite the fact that the median luminosities of the samples are very similar;the IRAS median is log L ir=10.65,and for the10mJy sources in Table3is log L ir=10.9.The IRAS space densities for all bins with log L ir<10.5are greater than those for the10mJy sample,whereas the two samples give similar results for the higher luminosity bins with log L ir>10.5.

Most of the di?erences appear to arise from the very small number of sources in the10 mJy sample.Four of the6bins with log L ir<10.5have no sources discovered;the upper limits shown in Figure5are based on a limit of one source in each bin.By contrast,the single bin with the most10mJy sources(10.5 10.5,the summed results agree identically,with IRAS giving31x10?5starburst galaxies Mpc?3,and the10mJy sample also yielding31x10?5Mpc?3.

These comparative results indicate that for high luminosities,which are the luminosity bins within which su?cient10mJy sources are found for meaningful statistics,the calibration of PAH luminosity to bolometric luminosity gives consistent values for local space densities, and thereby for local SFRDs,as given by previous measures from the BGS.This is an encouraging result,because our eventual objective in testing this calibration is to compare SFRDs in the local universe to SFRDs at high redshift,where only the high luminosity sources can be observed with Spitzer.

Nevertheless,it is important to consider possible reasons for the discrepancies between BGS and10mJy samples at low luminosities.In order to include most of the10mJy starbursts in a determination of the local SFRD,we de?ned”local”to mean z<0.2.The mean redshift of the25galaxies in Table3is0.115,which is about a factor of10greater than for the BGS.As a result,we are comparing very di?erent volumes of the universe.As also emphasized by the very small number of sources in both samples in the lowest luminosity

bins of the10mJy sample,a reasonable explanation for the di?erences is that accidents of cosmic variance mean that the10mJy sample did not include a volume containing many low luminosity starbursts.This test can be improved by increasing the sample to other areas surveyed by Spitzer.

Another possibility is that a24μm survey to?nd starbursts and estimate their L ir from the strength of PAH emission leads to a sample of starbursts which,for some reason,prefer-entially omits low luminosity sources compared to sources discovered by IRAS.Because our determination of L ir for the10mJy sample is done using the calibration withνLν(7.7μm), perhaps this calibration systematically is di?erent for lower luminosity sources.This could happen,for example,if low luminosity starbursts have cooler dust and higher ratios of fν(60μm)/fν(24μm),so that lower luminosity starbursts are preferentially revealed in the IRAS60μm surveys compared to the24μm surveys.There is no evidence of such a trend in Figure4comparing fν(24μm)with fν(70μm),and the empirical calibration for starbursts in Figure3covers all of the lower luminosity range in Table4.Based on the limited data available in the10mJy sample,we have no evidence for any systematic spectral di?erences among starbursts as a function of luminosity.

It is known,however,that low luminosity starbursts of low metallicity(BCDs)gener-ally have weak PAH features(Wu et al.2006)compared to the continuum strength.For such sources,our adopted calibration betweenνLν(7.7μm)and L ir would overestimate L ir because the calibration assumes negligible contribution by the continuum toνLν(7.7μm). Without correcting the PAH luminosity for the underlying continuum,BCDs with weak PAH features would be incorrectly assigned to higher luminosity bins of L ir.Only one of the 10mJy galaxies in our sample is a BCD(number30)so reassigning this object to a lower luminosity bin would not explain the systematic de?ciency of sources with low L ir;however, the presence of only one low-luminosity BCD indicates the statistical de?ciency of the10 mJy sample.

4.Summary and Conclusions

We present a complete sample of50galaxies discovered by Spitzer within8.2deg2having fν(24μm)>10mJy.IRS spectra are available for36galaxies,of which25show strong PAH emission features characteristic of starbursts,and11show spectral characteristics of AGN. Of the complete sample of50,48galaxies have classi?cations from either infrared or optical spectra,of which33are starbursts and15are AGN.This result indicates that unbiased samples of Spitzer sources selected with no criteria other than fν(24μm)are dominated by starbursts.

The starburst sample is used to derive the star formation rate in the local universe (z<0.2)based only on the luminosities of the7.7μm PAH feature,using an empirically determined relation betweenνLν(7.7μm)and L ir derived from a previously observed sample of starbursts(Brandl et al.2006).The result gives a local star formation rate density of0.008 M⊙yr?1Mpc?3,which is about a factor of two lower than previous estimates derived from L ir using the IRAS Bright Galaxy https://www.360docs.net/doc/8a4667224.html,parison of the IRAS and10mJy samples indicates that the de?ciency in the measured local SFRD arises because our10mJy sample ?nds far fewer galaxies for L ir<10.5(units of L⊙),probably because of the small size of the 10mJy sample.For L ir>10.5,the derived space densities and resulting SFRDs are similar between the IRAS and10mJy samples.

The primary motivation for usingνLν(7.7μm)to derive SFRs is the need to apply this technique to faint Spitzer sources being discovered at z~2,for whichνLν(7.7μm)is the best measurable parameter that relates to https://www.360docs.net/doc/8a4667224.html,e of this parameter gives a method for comparing SFRDs in the universe at di?erent epochs.Our con?rmation that this technique is valid for determining the global SFRD for high luminosity galaxies in the local universe indicates thatνLν(7.7μm)should also give a reliable measure of SFRDs at high redshifts, where only the most luminous sources are detectable.

We thank D.Devost,G.Sloan and P.Hall for help in improving our IRS spectral analysis,A.Mickaelian for classi?cation of bright stars in the survey,K.Brand for help in organizing the10mJy catalog,and B.T.Soifer for discussions.This work is based primarily on observations made with the Spitzer Space Telescope,which is operated by the Jet Propulsion Laboratory,California Institute of Technology under NASA contract1407. Support for this work by the IRS GTO team at Cornell University was provided by NASA through Contract Number1257184issued by JPL/Caltech.

REFERENCES

Bell,E.F.et al.2005,ApJ,625,23.

Brand,K.et al.2006,ApJ,641,140

Brandl,B.et al.2006,ApJ,653,1129.

Chary,R.et al.2004,ApJS,154,80

Calzetti,D.et al.2007,ApJ,in press(astro-ph/07053377)

Caputi,K.I.et al2007,ApJ,in press(astro-ph0701283)

Chapman,S.C.,Blaine,A.W.,Smail,I.,and Ivison,R.J.,(2005),ApJ,622,772

Cool,R.J.et al.2006,AJ,132,823.

Desai,V.et al.2006,ApJ,641,133.

Draine,B.T and Li,A.2007,ApJ,in press(astro-ph/0608003)

Eisenhardt,P.et al.2004,ApJS,154,48

Farrah,D.et al.2007,ApJ,in press

Fazio,G.et al.2004,ApJS,154,10

F¨o rster Schreiber,N.M.,Roussel,H.,Sauvage,M.,and Charmandaris,V.2004,A&A,419, 501

Genzel,R.et al.1998,ApJ,498,579

Gunn,J.E.,et al.1998,AJ,116,3040

Higdon,S.J.U.,et al.2004,PASP,116,975

Ho,L,and Keto,E.2007,ApJ,in press(astro-ph/0611856)

Houck,J.R.,et al.2004,ApJS,154,18

Houck,J.R.,et al.2005,ApJ,622,L105(H05)

Iglesias-Paramo,J.et al.2006,ApJS,164,381

Jangren,A.et al.2005,AJ,130,2571

Jannuzi,B.T.,and Dey,A.,1999,in”Photometric Redshifts and the Detection of High Redshift Galaxies”,ASP Conference Series,Vol.191,Edited by R.Weymann,L.

Storrie-Lombardi,M.Sawicki,and R.Brunner.ISBN:158381-017-X,p.111 Kennicutt,R.C.1998,Ann.Rev.Astron.Ap,36,189

Kennicutt,R.C.,Tamblyn,P.,and Congdon,C.E.1994,ApJ,435,22

Lagache,G.,et al.2004,ApJS,154,112

Le Floc’h,E.et al.2005,ApJ,632,169

Lutz,D.,Valiante,E.,Sturm,E.,Genzel,R.,Tacconi,L.J.,Lehnert,M.D.,Sternberg,A., and Baker,A.J.2005,ApJ,625,83

Madau,P.,Pozzetti,L.,and Dickinson,M.1998,ApJ,498,106

Mannucci,F.,Buttery,H.,Maiolino,R.,Marconi,A.,and Pozzetti,L.2007,A&A,461,423 Menendez-Delmestre,K.et al.2007,ApJ,655,L65.

Mickaelian,A.et al.2007,A&A,464,1177.

Rieke,G.H.et al.,2004,ApJS,154,25

Rigopoulou,D.,Spoon,H.W.W.,Genzel,R.,Lutz,D.,Moorwood,A.F.M.,and Tran,Q.

D.2000,AJ,118,2625

Rosenberg,J.L.,Ashby,M.L.N.,Salzer,J.J.,and Huang,J.-S.2006,ApJ,636,742 Sanders,D.B.,Mazzarella,J.M.,Kim,D.-C.,Surace,J.A.,and Soifer,B.T.2003,AJ, 126,1607

Smith,J.D.T.et al.2007,ApJ,656,770

Soifer,B.T.,Boehmer,L.,Neugebauer,G.,and Sanders,D.B.1989,AJ,98,766 Spoon,H.W.W.et al2007,ApJ,654,L49.

Takeuchi,T.T.,Buat,V.,Iglesias-Paramo,J.,Boselli,A.,and Burgarella,D.2005,A&A, 432,423

Weedman,D.W.et al.,2006a,ApJ,653,101.

Weedman,D.W.et al.,2006b,ApJ,651,101.

Weedman,D.W.,et al.2005,ApJ,633,706

Wu,Y.,Charmandaris,V.,Hao,L.,Brandl,B.R.,Bernard-Salas,J.,Spoon,H.W.W.,and Houck,J.R.2006,ApJ,639,157

Yan,L.,et al.2005,ApJ,628,604

Yan,L.et al.2007,ApJ,658,778

York,D.G.et al.2000,AJ,120,1579

Xu,C.K.et al.2006,ApJ,646,834

Table1.The Bootes10mJy Sample

Number Source Name a AOR a program time b fν(24μm)c fν(70μm)d class e

s mJy mJy

Table1—Continued

Number Source Name a AOR a program time b fν(24μm)c fν(70μm)d class e

s mJy mJy

a SST24source name derives from discovery with the MIPS24μm images;coordinates listed are J200024μm positions with typical3σuncertainty of±1.2′′.AOR number is the observation number in the Spitzer archive.

b First value is total integration time in IRS short-low orders1and2;second value is total integration time in IRS long-low orders1and2.

c Values of fν(24μm)are for an unresolve

d point sourc

e measured from MIPS images,except that sources noted by(r) are resolved within the same galaxy in the24μm image,and the?ux listed is the total?ux for all components.Values in parentheses are the fν(24μm)measured independently from the extracted IRS spectra;the mean di?erence of±4% between IRS and MIPS values gives an estimate o

f uncertainties in results.

d Values of fν(70μm)ar

e for an unresolved point source,measured from MIPS images;?uxes are uncertain for sources 13and14because these are two closely interacting galaxies.Sources without measured fν(70μm)are outside o

f the?eld of view for the70μm survey.

e Classi?cation o

f IRS spectrum,whether showin

g PAH emission,emission lines,absorption by the9.7μm Si fea-ture,emission by the9.7μm silicate feature,or no features;numerical value gives classi?cation according to scheme of Spoon et al.(2007);sources without IRS spectra but wit

h optical classi?cations are described in footnote f.

f SDSS spectra show that source1is a type1QSO with z=0.2019,source3is a starburst with z=0.0138,source 8is a starburst with z=0.0418,source10is a starburst with z=0.09386,source11is a starburst with z=0.0738, source13is a starburst with z=0.0424,source14is a type1QSO with z=1.0820,source28is a type1QSO with z= 0.7155,source29is a starburst with z=0.0393,source39is a Sy2AGN with z=0.084,source41is a Sy2AGN with z=0.0287,source42is a Sy1AGN with z=0.2168,source48is a starburst with z=0.0773;source18is an emission

line galaxy within the Kitt Peak International Spectroscopic Survey(KISS)with z=0.0337.Additional SDSS results for PAH sources that have IRS spectra are included in Table3.

g spiral galaxy and liner NGC5656,with SDSS z=0.01055.

h IRS spectrum in Desai et al.(2006).

联想乐Pad A1刷机详细图文教程

联想乐Pad A1刷机详细图文教程 联想乐Pad A1刷机教程,教你如何刷机此帖是一个较为粗略的教程,不过分三种方法,这里是针对第一种方法进行详细说明。 针对一些不太懂刷机的朋友,我这里针对上面帖子里的第一种方法写一篇更为详细的教程,对联想乐Phone刷机不太清楚的机油可以看看。 首先,要下载一个刷机包A107W0_A234_001_008_2375_SC.zip点击下载。值得说明的是,在最早的2035教程中提到的“压缩包中6个文件 Update.zip,Recovery.img,MLO,uImage,u-boot,make_boot_sdcard. zip均拷贝到TF卡根目录下”的步骤,在2493这个版本时,这个步骤中完全可以只拷贝一个Update.zip文件即可,因为其他几个文件在Update.zip中已有,文件完全一样,作用也一样,没有必要再次全部拷贝了。 第二步是把下载完的固件文件改名为update.zip(注意:不是update.zip.zip,部分网友的电脑默认设置是看不到后缀名,所以不要以为就没有后缀名) 第三步,把改名后的update.zip拷贝到TF卡上,TF卡格式化为FAT32,

且确定能在A1系统中被识别。 刷机前必须关机。把联想A1关机(长按电源键10秒可强行关机,请确定保持A1在关机状态)

同时按住“电源键”和“音量小键”,A1会震动一次,这时A1 开机,持续按住两个按键不松手,当第一次出现Lenovo字样的logo 时,松开两个按键。(提醒一下急性子的人,出现logo时候挺一秒,再松手吧。我觉得0.05秒时候是最好)

8500使用说明书

4、问:S8500内存整理软件 答:见附件哦~注册码13个0 5、问:如何鉴别电池真伪 答:大家都知道电池都有序列号的,而且每一颗电池的序列号都是不同的,因此序列号不可能同电池上的其它文字一样一起印刷在贴纸上面(这点懂印刷的应该都知道),所以序列号都是后来打印上去的。因为序列号要求必须耐磨所以对打印机的要求很高,所以只有专用的条码打印机才可以打印。这种打印机往往很昂贵,因此一般的JS是不会采用的。基于以上原因: 1。仔细看序列号文字是后来打印上去的还是跟其它文字一起印刷的,如果是一起印刷的肯定是假的。如果眼神不太好使的,可以用手摸序列号文字,如果很粗糙有凹凸感才有可能是真的。 2. 在第一点的基础上再看文字字体是否有锯齿感(最好有放大镜),如果有恭喜电池是真的,如果文字很平滑则有可能是假的。(因为条码打印机都是针式的,打出来的字不可能会很平滑,除非是600dpi的打印机,但是非常昂贵,所以一般都是用的300dpi的) PS:基于以上种种,假电池的序列号往往都是一样的。以上方法还可以用来鉴别手机另外也有部分厂商用喷码技术来印序列号,出来的字体跟针式打印差不多很粗糙有锯齿感,喷码技术的成本更高,估计不会有JS使用的,呵呵。总之看序列号文字就对了,当然整体做工也是要看的从SN码辨别真伪:三星电池的SN码,包含着电池的生产厂家、生产日期等信息。三星电池SN为11位序号,由数字与字母组成,格式为123-ABCD-EF-GH,其中,第二位“2”代表电芯,用“A”表示三星视界生产,“O”表示SONY公司生产(其它的符号本人不确定,汗一个)第四至七位“ A”、“B”、“CD”分别代表生产年、月、日,用“S”代表2009年,“Z”代表2010年。用1~9分别代表1至9月份,用A、B、C分别代表10月、11月和12月第八位E表示出货的国家第九位F表示颜色,“S”表示银色最后两位表示电池容量。如下图所示,电池SN码是SO1S501AS/5-B,O表示是索尼生产的,S501表示生产日期是2009年5月1号,S表示银色,5-B表示1500毫安,真电池的SN码里的信息和电池上写的生产日期、生产厂家相同下载(146.23 KB)2010-6-30 22:08索尼生产的电池,“生产日期”等文字是空心字,是电池生产完后,用激光将生产日期印上去的,用手摸上去有凹凸感,而假电池的生产日期是在电池生产前直接将所有的信息直接印刷在贴纸上的,当然包含生产日期和SN码三星视界生产的电池,文字都是实心的,从印刷上不易区别,但是SN码里的信息和电池上写的生产日期、生产厂家相同。按以上内容辨别后,如果没有问题就继续按下面的方法鉴别,如果SN码里的信息和电池上写的生产日期、生产厂家不相同,那就可以确定是假电池了,那就没必要再按以下的方法鉴别了。 1、电池装入手机后,应该无间隙、晃动,电池盖盖上后,电池盖的缝隙无增大; 2、电池铜片位置很正、无歪斜,铜片旁边的印有“+”“-”符号的圆孔底面是光面,“+”“-”符号的表面是毛面; 3、铜片端的塑胶部分是软的,用指甲按会留下痕迹,假电池是硬的,按不动(此项不一定); 4、待机时间,这个可以和其他人对比,就不多说了

联想ZUK Z2 Pro(尊享版全网通) 线刷教程_刷机教程

联想ZUK Z2 Pro(尊享版/全网通) 线刷教程_刷机教程 联想ZUKZ2Pro(尊享版/全网通):联想ZUK手机Z2(Z2131)全网通4G双卡双待(4G 运行+64G内存1300万像素5.0英寸。这款手机要怎么刷机呢?请看下面的教程。1:刷机准备 联想ZUKZ2Pro(尊享版/全网通)一部(电量在百分之20以上),数据线一条,原装数据线刷机比较稳定。 刷机工具:线刷宝下载 刷机包:联想ZUKZ2Pro(尊享版/全网通)刷机包 1、打开线刷宝,点击“线刷包”(如图2)——在左上角选择手机型号联想ZUKZ2Pro(尊享版/全网通),或者直接搜索Z2131 (图2) 2、选择您要下载的包(优化版&官方原版&ROOT版:点击查看版本区别。小编建议选择官方原版。), 3、点击“普通下载”,线刷宝便会自动把包下载到您的电脑上(如图3)。

(图3) 1:解析刷机包 打开线刷宝客户端——点击“一键刷机”—点击“选择本地ROM”,打开您刚刚下载的线刷包,线刷宝会自动开始解析(如图4)。 (图4)

第三步:安装驱动 1、线刷宝在解包完成后,会自动跳转到刷机端口检测页面,在刷机端口检测页面(图5)点击“点击安装刷机驱动”, 2、在弹出的提示框中选择“全自动安装驱动”(图6),然后按照提示一步步安装即可。 (图5)

(图6) 第四步:手机进入刷机模式 线刷包解析完成后,按照线刷宝右边的提示操作手机(图7),直到手机进入刷机模式(不知道这么进?看这里!): (图7)第五步:线刷宝自动刷机

手机进入刷机模式,并通过数据线连接电脑后,线刷宝会自动开始刷机: (图8) 刷机过程大约需要两三分钟的时间,然后会提示您刷机成功(图9),您的爱机就OK啦! 刷机成功后,您的手机会自动重启,启动的时间会稍微慢一些,请您耐心等待。直到手机进入桌面,此次刷机就全部完成啦。 刷机失败了? 如果您刷机失败了,可能是刷机过程中出现了什么问题,可以这么解决: 1、按照以上步骤重新刷一遍,特别注意是否下载了和您手机型号完全一样的刷机包; 2、联系我们的技术支持人员解决:>>点击找技术 3、刷机中遇到问题,可以查看常见问题进行解决>>常见问题。 以上就是小编今天关于联想ZUKZ2Pro(尊享版/全网通)如何刷机的介绍。一建刷机,让您从此手机无忧,如论您是小白用户,还是手机维修人员,线刷宝,只为

联想a820刷机教程

联想a820刷机教程(附刷机包、刷机工具、驱动下载) 卡刷刷机是利用第三方recovery来刷机,如果你还没有刷入第三方recovery,请接着往下看: 刷入第三方recovery:联想A820线刷中文recovery卡刷模块教程 联想A820官方线刷工具:点此下载 联想A820含中文recovery卡刷模块线刷包:点此下载 之前有部分机友因驱动未成功安装等原因,导致无法刷,或者出现其他问题,现更新教程,使用的电脑建议采用XP系统!比较安全、易装驱动; 1、先安装好线刷驱动,已经安装过的请跳过,这里就不多介绍安装驱动的方法,具体方法,可移步至 2、先备份好您手机上的短信、图片、软件等信息,然后下载好联想A820官方线刷工具Fla sh_tool,下载地址见最后面,如果已经下载可跳过; 3、下载好最下面的“含中文recovery的线刷包”,如果您之前已经下载官方固件,可无需下载,看最后面的特别说明; 3、打开刷机工具Flash_tool,选择Scatter-loading,选择含中文recovery卡刷模块的线刷包里面的txt文档文件MT6589那个,如图:

4、确定全部勾已经勾选,然后点击Ferware-upgade,然后插上你的联想A820(装电池的),然后进度条会走,四五分钟之后,刷成功,会弹出一个小小的窗口,表示成功刷入中文rec overy。如图: 5.弹出下面的绿色圈圈窗口之后,表示成功刷入中文recovery,拔掉数据线,按住电源键2秒左右,再同时按音量加、减键(此时3个键一起),一直到进入中文recovery模式。或者借助刷机精灵、卓大师等软件重启到recovery模式!

制作U盘启动及联想刷机

刷新方法: 1、制作U盘启动盘。usboot170.rar下载地址: https://www.360docs.net/doc/8a4667224.html,/d/7043bb9d285353728d2f47862a5839538 eb5d3a47c6b0500 DOS启动版U盘制作方法详解 https://www.360docs.net/doc/8a4667224.html,/News/technic/200506/2005060815103174 006.shtml 2、将刷新主板BIOS用的文件, markfile和Reset文件夹下所有文 件拷贝到DOS启动 U盘根目录; 3、刷新主板BIOS,和刷新普通主板的BIOS一样; 【进入DOS(开机按F12.选择你的U盘回车)输入MB回车; 开始刷新BIOS】 4、刷新完成重启电脑; 5、重新进入DOS,先运行Reset.BAT, 再运行markfile.BAT。 请各位注意:我上传的BIOS(2UKT070A)是联想彬彬版主提供;没有经过任何修改。 但是MB.BAT批处理有误。 ResetOA2.exe AFUdos4 2UKT070A.ROM /B /P IF errorlevel 1 goto end AMIDEDOS.EXE /Su 00020003000400050006000700080009 IF errorlevel 1 goto end AMIDEDOS.EXE /sp "7339AL2" IF errorlevel 1 goto end

AMIDEDOS.EXE /ss "111111" IF errorlevel 1 goto end :end AFUdos4(错误)修改:AFU417 00020003000400050006000700080009修改成你的UUID号。

联想a60刷机步骤

近来有朋友问怎么刷联想A60于是写了个傻瓜操作流程,希望对需要的人有帮助,共享出来。 本文的内容与软件均来自移动叔叔论坛与网络,本人只是整理了一下,下载链接在金山快盘中,不保证永久有效。 By fjnpcch at 2011.10.14 分成三个步骤: 一、root手机。 1、首先把“联想A60固件USB刷机驱动forXP.rar"解压缩。 下载地址:https://www.360docs.net/doc/8a4667224.html,/index.php?ac=file&oid=9015011800255251。 2、把手机关机,连上usb线,这时会找到设备,安装驱动。驱动在第1步中的目录中找。 3、下载Lenovo_A60_Flash_Tool_m44.rar,下载地址: https://www.360docs.net/doc/8a4667224.html,/index.php?ac=file&oid=9015011800255250,将其解压缩。 运行刚解压出来目录中的:Lenovo_A60_Flash_Tool_m44\Lenovo_A60_Flash_Tool_m44.exe 4、选择第二个框后面的,如图中1处红色的。 5、会让你找文件,找到: Lenovo_A60_Flash_Tool_m44\rom\ MT6573_Android_scatter.txt (在第3步中解压出来的目录中)

6、把手机usb线拔下来,记得一定机先拔下来。 7、按软件中的下载,如上图中2处。 8、这里会出现倒计时:如图 9、把手机usb 线插上。 10、出现如下图的黄色条和绿色圈就已经root成功了。 二、刷入第三方recovery。(recover是卡刷系统的前提) 11、下载:下载地址:https://www.360docs.net/doc/8a4667224.html,/index.php?ac=file&oid=9015011800255250, 解压m44-20110812-a60-2[1].3-recovery.rar,得到m44-20110812-a60-2.3-recovery.img文件。 12、下载https://www.360docs.net/doc/8a4667224.html,/index.php?ac=file&oid=9015011800255289,得到m44tools.apk 文件。 13、手机开机,把上面两个文件拷贝到手机卡的根目录中。 14、在手机上安装m44tools.apk文件,出现“移动叔叔工具箱”软件。

刷新网卡激活win7-用带有BootRom功能的网卡为系统添加SLIC2

前言: A. 撰写本文的目的是为了学习和交流计算机技术及操作技巧,并不是鼓励大家使用盗版软件或盗版系统,由此引起的一切直接的、间接的责任和损失本人概不负责。请勿引用本文的内容或使用本文中涉及的技术、手段用于商业盈利目的。 B. 文章中的PCI模块程序来自dkpnop大侠,网卡换SLIC工具由zhaoliang大侠开发,驱动程序以及相应工具来自Intel网站或者驱动之家,下文中另外提到的“超级急救盘光盘版”由DOS之家提供。 C. 在此声明,本文内容仅供参考。引用、借鉴、利用本文中提及的技术、软件、方法而引起的一切直接的、间接的责任和损失本人概不负责!! D. 其实关于使用网卡激活Win7的文章论坛上已经有不少了,然后就有朋友就问我为什么还要发表类似的文章?我的回答其实很简单:论坛上曾经发表的文章要么就是太简单,要么就是说的太玄乎让人不敢尝试,正因为这样,在本文中不但有比较详细的操作步骤,同时也对一些会碰到的问题进行了简单的讲解,让大家看了后基本都可以明白,也可以放心大胆的按照步骤操作。当然,这样一来,文章的整体字数就上去了,但对于需要的人来说,具体点总是不错的…… ―――――――――――――――――――――――――――――――――――――――――― ―――――――――――――――――――――――――――――――――――――――――― 需要的硬件及软件工具: ――――――――――――――――――――――――――――――――――――――――――

1. intel 82559或者550ey等带bootrom的网卡,启动芯片为eeprom可带电擦除。 2. intel网卡驱动12.0版或更高版本,包含intel proset工具包。 3. ProBoot工具。 4. PCI模块。 5. 网卡换SLIC工具。 6. 超级急救盘光盘版(DOS之家有最新版下载,请自行刻录成光盘) ――――――――――――――――――――――――――――――――――――――――――

酷派手机怎么双清

酷派手机怎么双清 酷派是一个比较知名的手机品牌了,前几年,酷派和中兴、华为、联想并称“中华酷联”,是中国四家手机品牌。酷派的手机一般是运营商运营商定制销售,前几年是市场份额很高,这两年已经下降了很多,不过市面上的酷派手机还是很多的。那么,酷派的手机要如何双清呢? 什么是双清? 双清就是指清掉手机的数据,包括用户数据和缓存数据。也叫双wipe。wipe的中文翻译就是"擦,拭,擦去,涂上”。所以双wipe,和双清实际上是一个意思。 为什么要双清呢? 1、刷机之前一般要双清,避免之前的数据和新刷机的系统产生冲突; 2、当许多应用都有问题(比如闪退),但是又无法确定问题的原因时,可以使用双清,基本就能解决问题; 3、觉得自己手机内软件垃圾太多了,而无所适从时,可以使用双清,还原一个崭新的系统。

那么再来看看酷派手机要怎么双清呢? 手机双清,需要先进入recovery模式,那么酷派的手机怎么进入recovery模式呢? 一、将手机彻底关机。 二、在关机状态下同时按住:电源按键+音量下,进入Recovery。 三、在recovery模式下使用音量键选择,电源键确认。就可以双清手机了: 1、进入到Recovery模式后,通过“音量-”键选中“wipe data/factory reset”,按“音量+”键确认(进入下一个界面)。 2、通过“音量-”键选中“Yes – delete all user data”,通过“音量+”键确认执行清掉DATA分区数据操作。 3、进入到Recovery模式后,通过“音量-”键选中“Wipe cache partition”,按“音量+”键确认执行清掉CACHE分区数据操作。 4、完成后重启手机。 双清完成,接下来就可以刷机了。 酷派手机线刷工具: https://www.360docs.net/doc/8a4667224.html,/ashx/downloadTransfer.ashx 酷派手机刷机包下载:https://www.360docs.net/doc/8a4667224.html,/rom/coolpad/ 酷派手机刷机教程:https://www.360docs.net/doc/8a4667224.html,/guide?brandId=1666

华为g610-t11刷机步骤

第二步,安装华为G610-T11必需的刷机驱动 打开从第一步解压后的文件夹,找到“MTK智能机USB驱动-刷机必备驱动大全by移动叔叔.rar”,解压后,进入“刷机驱动自动安装版”文件夹,点击“点击安装by移动叔叔.exe”进行驱动安装。如果电脑是64位的,请点击“installdrv64.exe”。 PS:WIN7 64位系统的请更换32位系统来刷机! 识别刷机驱动步骤:安装完驱动,将手机拔掉电池,直接裸机不带电池的和电脑联机,即可弹出发现硬件。 PS:不成功的,请更换USB端口、更换电脑系统为XP。 如华为G610-T11安装驱动过程出错,提示“inf中的段落无效”之类,请下载缺失文件放到windows目录下相关文件夹中。 inf补丁:https://www.360docs.net/doc/8a4667224.html,/c0tk60b8hc 将mdmcpq.inf 复制到c:/windowsinf 将usbser.sys 复制到c:/windows/system32/drivers 另外考虑到自动安装版驱动未必100%凑效,这里有手动安装版的操作教程,请前往https://www.360docs.net/doc/8a4667224.html,/thread-291645-1-1.html -------------------------------------------------------------------------------- 第三步,具体图解华为G610-T11刷机教程如下: 刷机的时候需要扣掉电池的刷,简单说明下过程: 数据线接电脑一端,手机关机扣电池出来,刷机软件点download(下载),数据线另一端接手机,这样就会开刷。 PS:供电不足情况下,需要在加装电池的刷!就是手机扣完电池后再装回去才点download,操作类似。 还有,必须将DA DL ALL With Check Sum前面的框框勾上勾勾! 1、单刷recovery教程如下图

联想A68E刷机教程

使用1月23日版集成软件楼主自用版:https://www.360docs.net/doc/8a4667224.html,/viewthread.php?tid=3196249&page=1&extra=#pid73215718 2月3日版,下载地址:https://www.360docs.net/doc/8a4667224.html,/thread-3195039-1-1.html 1月23日版,下载地址:https://www.360docs.net/doc/8a4667224.html,/viewthread.php?tid=3175932&page=1&extra=#pid72305386 增加电池容量的方法实测,待机时间有明显增长:https://www.360docs.net/doc/8a4667224.html,/thread-3180482-1-1.html 官方S019原版,只修改刷机脚本为recovery刷入其它没有任何改变,为刷机上瘾机油和不满意精简ROM的机油预备。下载地址https://www.360docs.net/doc/8a4667224.html,/file/c2mvdhxv#A68E_S019_update.zip 我的所有ROM基于官方原版修改,请参考,官网论坛地址 https://www.360docs.net/doc/8a4667224.html,/forum.php?mod=viewthread&tid=23401&extra=page%3D1 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@ ......下面是刷机教程……… @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@ 失败原因排名:1、驱动没有装好88.88888%,2、杀毒或者安全软件阻扰11.111%, 3、 其他原因0.000000001% 步骤一、首先安装手机驱动(这步很简单,但后面的更简单。很多机油不成功就是这步都没有搞好) 装驱动方法一、电脑装91助手,并运行,手机usb调试打勾,电脑运行基带升级程序“updatetool”。但是什 么都不要做。切忌手痒去按那个“start”。等会91助手就识别出a68e。哈哈!驱动就已经装好了,这个也是很多机油说不能连接91助手的简单解决方法!!(updatetool在步骤三那里下) 装驱动方法二、把手机和电脑连起。手机:设置—应用程序—开发—USB调试—打勾。电脑会自动安装驱动, 如果没有自动安,双击我的电脑。再点击多出来的盘或者光驱。等一会电脑端就安好了三个东西:1、天翼宽带。 2、天翼网盘。 3、手机驱动(前面两个跟Root 和刷机无关,3才是最重要的。它安1和2, 3自然就有了) 装驱动方法三、单独安装电脑端驱动,下载:https://www.360docs.net/doc/8a4667224.html,/file/c2bq17q8# 如果驱动都装不起那就别刷机了,去大街上找手机维修点刷吧,呵呵!我敢说他们也刷不好

诺基亚手机无法开机后,强刷修复系统的方法

诺基亚手机无法开机后,强刷修复系统的方法 ?最近更新: 2011-07-21 23:41 ?浏览次数: 7840 次 ? 2011年我的手机我做主,手机要玩就要这么玩!! ---idea_wj 以下内容适用于诺基亚BB5型手机,其他机型还不太确定,你可以上网看看你的诺基亚手机是否是BB5型的,一般非智能的都适用,该教程以6303C为例,vista32位操作系统下进行,软件是凤凰刷机软件,资料包(刷机包)code 0583415。为了让本教程大众化,更通俗易懂,先说一些必要内容,刷机和强刷是有一些区别的,刷机是一些港行货使用不便或必须在客服才允许升级的手机,水货等诺基亚官方不提供升级,只能通过杂牌软件刷机才能是自己手机正常使用,刷机是有很大风险的,且失败几率很大,失败后手机将会彻底不能使用,也就是变成人们所说的废铁或板砖;而强刷是指手机成为板砖不能开机,而客服又不提供合理的解决办法,自己只好通过一些别的软件强行修复这已关机的手机,使成为板砖的手机能正常使用,而前提是,这手机成板砖时,按开机键后,usb在电脑上有反应(中间有个重要步骤,待会儿会解释)! 如果你是因为刷机或自己在电脑上ovi套件升级手机失败或一些别的什么原因,致使手机无法开机而成为板砖,不要急着找客服或修手机的,他们九成会说:“无法修复,只能换主板”,拜托,换主板的钱够买台新机子了,更何况,即使他会刷机,会给你强刷,没有100到200块钱,他绝对不给你修,对于你,你会损失几百块,对于他,只是动动鼠标,你心里会平衡吗?学会以下内容,将会为你带来极大的方便,随时随地,你都可以修复你的宝机! 强刷有个优势就是,你可以多次去刷,失败了继续重来,不用担心手机问题,反正已经有问题了。以下内容是通过自己亲自试验后写出的步骤,其中有很多重要步骤,我可以明说,在网上是很难找到的,而每个细节都应该注意,否则你会走很多弯路的,由于兼容问题,vista上安装软件太麻烦,软件光安装就安装了好几次才成功。 工具/原料 ?你得准备这些东西,凤凰软件(可以在凤凰网上找到,我选的是2010年汉语版)、相应的刷机包code(在班塞网上有,我6303c,选的是rm-443 code:0583415。补充:强烈注意:找到的code刷机包的版本必须比手机 成板砖前的版本高,否则刷机会失败,要是实在不清楚自己是哪个版本就 下载个最新的版本) 还有诺基亚官方网站和你手机相应的ovi套件(这是我多次连接失败后,发现的,必须有这个东西,否则你usb连不倒凤凰软件,更别谈强刷),这三样东西是必需的。【除了code外,这些软件我 都库存了,跟前需要的朋友可以直接来取,可以省下不少下载的麻烦】 (注意:你的code是在手机放电话卡旁边的一串数字,7位数基本都是 05开头,找到后再到网上找相应的刷机包)

A820T刷机教程

联想A820T获取ROOT权限教程: (说明:网上好多教程都没用,我试过蘑菇云刷机大师、百度刷机、腾讯一键root···都是显示root成功,但还是不能卸载系统软件,相信多数朋友有相同的苦恼。本人也是走了很多弯路,希望我的经验能帮到你,相信我一定能够成功!) 1、先刷入联想家园网发布的第三方中文recovery卡刷模块 2、将你的A820T手机进入中文recovery模式,进入方法比较多: a、比如用刷机精灵、或者卓大师等自动进入,有重启(进入)到recovery的功能; b、当然,你也可以手动进入中文recovery,进入方法:关机状态下,安装电源键2秒左右,再按住音量加、减两个键(此时3键一起),一直到进入中文recovery模式。 3、进入中文recovery模式之后,选择倒数第二个选项“获取ROOT 权限”-电源键确定,1秒之后提示成功。 4、只要几秒时间,即可成功,完成之后,返回立即重启,你的联想A820t手机就获取ROOT权限了; 具体的步骤: 1、先刷入联想家园网发布的第三方中文recovery卡刷模块(有点麻烦,请耐心看完,也是关键的一步)

⑴首先安装驱动 本教程以win7为例,XP系统也是一样的(建议用XP系统,驱动比较容易装上,本人首先用的win7没有安好驱动,后改为XP成功的) 【步骤一】下载好最后面的A820T线刷驱动之后,解压到最后面,将你的联想A820T手机关机,扣下电池,整个安装驱动的过程,不需要电池; 【步骤二】打开电脑的“设备管理器”(右击我的电脑打开); 【步骤三】手机不要电池,用USB数据线连上电脑,这个时候,注意你电脑的设备管理器,插上的时候,会弹出一个感叹号的驱动(MT65XX Preloader),注意,它只出现几秒的时间,一出现,马上双击它。 【步骤四】双击感叹号的驱动之后,会弹出窗口,选择“更新驱动程序”,如图: 本帖隐藏的内容 【步骤五】如上图所示,选择更新驱动程序之后,选择“浏览计算机以查找驱动程序”,如果是XP的系统,在连上手机的时候,应该会自己自动弹出新驱动的安装,然后一样选择浏览计算机来选择驱动,不要自动搜索。如图:

联想A60卡刷刷机教程-移动叔叔

你的联想A60爱机是不是也想要刷机呢?想知道刷机的步骤么?现在就来个详细的刷机教程吧! 一、root手机 1.还没ROOT的朋友可先参考https://www.360docs.net/doc/8a4667224.html,/topic/6610 二、刷入第三方recovery。(recovery是卡刷系统的前提) 联想A60要怎么样才能刷入第三方recovery呢?方法很简单,现在就来看联想A60刷recovery教程吧! 2.准备工作:下载下面两个附件(已一起打包在帖子最下面的附件处了) 1).m44-20110812-a60-2.3-recovery.img 2).m44tools.apk 3.开始刷recovery: 1).手机开机,把上面两个文件拷贝到手机卡的根目录中。 2).在手机上安装m44tools.apk文件,出现“移动叔叔工具箱”软件。 3).在手机上运行“移动叔叔工具箱”,找到从“SD卡刷Recovery区”,选择后就能看到” m44-20110812-a60-2.3-recovery.img”。选择它。 4).手机关机,按住音量向上键和电源键启动就能进入recovery状态。 三、刷系统 4、你可以从以下几个中选一个来刷, 1)【完美版】联想A60MTK6573肌肉定制版MIUI天气20110822.zip------是精简过的系统,最好用。下载地址:https://www.360docs.net/doc/8a4667224.html,/index.php?ac=file&oid=9015011800255157, 2)联想A60_MTK6573_定制卡刷rom_SPB3D主题解决蓝牙问题_2011-08-17.zip也是一个有3d的系统。 下载地址:https://www.360docs.net/doc/8a4667224.html,/index.php?ac=file&oid=9015011800255159, 3)联想A60最新官方0830rom官方卡刷rom.zip -------联想官方最新系统,刷了要再刷其它系统又要重做过了。 下载地址:https://www.360docs.net/doc/8a4667224.html,/index.php?ac=file&oid=9015011800255160, 4)这个googleservice.zip不是系统,是谷歌的服务,如果你想用的话可以刷完系统后再刷进去。 下载地址:https://www.360docs.net/doc/8a4667224.html,/index.php?ac=file&oid=9015011800255220, 5、在第3步进入recovery后,先选择U盘模式,连上usb线就可以把rom文件拷贝到卡的根目录中了。确定用home键(有房子的那个键),上下选择用音量键。回到上一级用返回键。 6、拷贝完文件后,要选择“清除数据/恢复工厂设置”所有的数据会丢失,先要备份通讯录,短信等,可以先在手机系统中下个”QQ同步助手“同步到QQ上去。 7、清完,选择“用sd卡上的zip文件包刷机”,会看到刚才第5步拷贝上去的文件,选择之(不要选择错了)。等几分钟后,有点慢。 8、选择“重启手机”。 9、等一下,如果能启动手机就成功了

三星GALAXY Mega 2(G7508Q双4G)刷机教程_救砖图解

三星GALAXY Mega 2(G7508Q/双4G)刷机教程_救砖图解 三星GALAXYMega2(G7508Q/双4G)搭载三星Exynos4415四核处理器,手机成砖的教程工具摆在面前都难以救回手机。三星GALAXYMega2(G7508Q/双4G)要怎么刷机呢?今天线刷宝小编给大家讲解一下关于三星GALAXYMega2(G7508Q/双4G)的图文刷机教程,线刷教程和救砖教程,一步搞定刷机失败问题,跟着小编一步步做,刷机Soeasy! 三星GALAXYMega2(G7508Q/双4G)搭载联发科MT6572双核处理器,作为一款中端大屏智能手机,支持移动/联通双4G网络,拥有5.98英寸720P大屏幕,显示效果尚可,但不易携带。这款手机要怎么刷机呢?请看下面的教程。 (图1) 1:刷机准备 三星GALAXYMega2(G7508Q/双4G)一部(电量在百分之20以上),数据线一条,原装数据线刷机比较稳定。

刷机工具:线刷宝下载 刷机包:三星GALAXYMega2(G7508Q/双4G)刷机包 1、打开线刷宝,点击“线刷包”(如图2)——在左上角选择手机型号(三星-G7508Q),或者直接搜索G7508Q (图2) 2、选择您要下载的包(优化版&官方原版&ROOT版:点击查看版本区别。小编建议选择官方原版。) 3、点击“普通下载”,线刷宝便会自动把包下载到您的电脑上(如图3)。

(图3) 2:解析刷机包 打开线刷宝客户端——点击“一键刷机”—点击“选择本地ROM”,打开您刚刚下载的线刷包,线刷宝会自动开始解析(如图4)。 (图4) 第三步:安装驱动 1、线刷宝在解包完成后,会自动跳转到刷机端口检测页面,在刷机端口检测页

联想 A820t线刷教程_刷机教程图解,救砖教程

联想A820t线刷教程_刷机教程图解,救砖教程 联想A820t:下载联想A820t安卓ROM刷机包,选线刷宝官网。本站所有联想A820tROM刷机包都经过人工审核检测,更有刷机保为您提供刷机保险,让您无忧刷机!。联想A820t要怎么刷机呢?今天线刷宝小编给大家讲解一下关于联想A820t的图文刷机教程,线刷教程和救砖教程,一步搞定刷机失败问题,跟着小编一步步做,刷机从未如此简单! 联想A820t:采用MT6589WM的1.2GHz高速四核处理器,28nm工艺制程,CPU速度更快,功耗更低。4.5英寸IPS高清绚丽大屏,qHD级别分辨率,16:9宽屏显示,玩转高清视频。这款手机要怎么刷机呢?请看下面的教程。 1:刷机准备 联想A820t一部(电量在百分之20以上),数据线一条,原装数据线刷机比较稳定。 刷机工具:线刷宝下载 刷机包:联想A820t刷机包

1、打开线刷宝,点击“线刷包”(如图2)——在左上角选择手机型号联想A820t,或者直接搜索联想A820t (图2) 2、选择您要下载的包(优化版&官方原版&ROOT版:点击查看版本区别。小编建议选择官方原版。), 3、点击“普通下载”,线刷宝便会自动把包下载到您的电脑上(如图3)。 (图3)

2:解析刷机包 打开线刷宝客户端——点击“一键刷机”—点击“选择本地ROM”,打开您刚刚下载的线刷包,线刷宝会自动开始解析(如图4)。 (图4) 第三步:安装驱动 1、线刷宝在解包完成后,会自动跳转到刷机端口检测页面,在刷机端口检测页面(图5)点击“点击安装刷机驱动”, 2、在弹出的提示框中选择“全自动安装驱动”(图6),然后按照提示一步步安装即可。

联想手机变砖怎么办

联想手机变砖怎么办 中兴、华为、酷派、联想曾是国内几家手机厂商。这两年随着小米、OPPO的火热,联想手机的销量虽然已经不如之前了,但是还是拥有相当一部分市场。几年前的联想手机,现在用起来估计已经比较卡了。很多联想的手机用户就会想着给手机刷一下机,不过如果刷机不正确的话,可能会让手机变砖,也就是无法启动。那么遇到这种情况怎么办呢?不用担心,小编来帮您解决联想手机变砖的问题。 手机变砖,又分为两种情况。俗称“真砖”和“假砖”,要怎么判断呢? 1、手机充电无反应; 2、不能进入任何模式,按手机键没有任何反应; 3、电脑或刷机工具完全检测不到手机; 4、手机硬件损坏。 如果是上面这几种情况,就是真砖,基本上可以判断是手机硬件故障率,这时候可以选择拿到维修店去维修,自己一般来说是没办法解决的。 那什么是假砖呢? 1、手机还可以开机,但是卡在启动界面或者反复重启,无法进入操作系统;

2、无法开机,但是可以进入恢复模式(recovery模式); 3、无法开机,但是可以进入刷机模式; 4、黑屏、按键无反应,但是刷机工具可以识别。 如果是上面这几种情况,那么还有救,而且自己就可以解决。那么具体要怎么做呢? 1:下载安装手机救砖工具线刷宝,下载地址: https://www.360docs.net/doc/8a4667224.html,/ashx/downloadTransfer.ashx?utm_source=wen ku 2:确认自己的手机型号,然后在线刷宝上找到该型号的刷机包并下载: 第三步:按照联想手机救砖教程开始救砖 在这里 (https://www.360docs.net/doc/8a4667224.html,/guide?brandId=1583?utm_source=wenku)搜索想要救砖的手机型号,然后按照教程的步骤操作,即可救回您的联想手机啦! 救砖失败了怎么办?

相关主题
相关文档
最新文档