介质损失角正切tanδ测量试验指导书

介质损失角正切tanδ测量试验指导书
介质损失角正切tanδ测量试验指导书

介质损耗试验

电容和介质损耗测量 一试验目的 测量介质损耗的目的是判断电气设备的绝缘状况。测量介质损耗因数在预防性试验中是不可缺少的项目。因为电气设备介质损耗因数太大,会使设备绝缘在交流电压作用下,许多能量以热的形式损耗,产生的热量将升高电气设备绝缘的温度,使绝缘老化,甚至造成绝缘热击穿。绝缘能力的下降直接反映为介质损耗因数的增大。进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。所以,在出厂试验时要进行介质损耗的试验,运行中的电气设备亦要进行此种试验。测量介质损耗的同时,也能得到试品的电容量。电容量的明显变化,反映了多个电容中的一个或几个发生短路、断路。 二概念及原理 介质损耗是绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。也叫介质损失,简称介损。 在交流电压作用下,电介质内流过的电流相量和电压相量之间的夹角为功率因数角(Φ),而余角(δ)简称介损角。 介质损耗正切值δ tg又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。 介质损耗因数(δ tg)的测量在电气设备制造、绝缘材料电气性能的鉴定、绝缘的试验等都是不可缺少的。因为测量绝缘介质的δ tg值是判断绝缘情况的一个较灵敏的试验方法。在交流电压作用下,绝缘介质不仅有电导的损耗,还有极化损耗。介质损耗因数的定义如下:

如果取得试品的电流相量和电压相量,则可以得到如下相量图: 合成,因此: 总电流可以分解为电容电流Ic和电阻电流I R 这正是损失角δ=(90°-Φ)的正切值。因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。有的介损测试仪习惯显示功率因数(PF:cos Φ),而不是介质损耗因数(DF:tgδ)。一般cosΦ

关于介质损耗的一些基本概念

关于介质损耗的一些基本概念 (泛华电子) 1、介质损耗 什么是介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。也叫介质损失,简称介损。 2、介质损耗角δ 在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角(δ)。简称介损角。 3、介质损耗正切值tgδ 又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。介质损耗因数的定义 如下: 如果取得试品的电流相量和电压相量,则可以得到如下相量图: 总电流可以分解为电容电流Ic和电阻电流IR合成,因此: 这正是损失角δ=(90°-Φ)的正切值。因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。 测量介损对判断电气设备的绝缘状况是一种传统的、十分有效的方法。绝缘能力的下降直接反映为介损增大。进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。

测量介损的同时,也能得到试品的电容量。如果多个电容屏中的一个或几个发生短路、断路,电容量就有明显的变化,因此电容量也是一个重要参数。 4、功率因数cosΦ 功率因数是功率因数角Φ的余弦值,意义为被测试品的总视在功率S中有功功率P所占的比重。功率因数的定义如下: 有的介损测试仪习惯显示功率因数(PF:cosΦ),而不是介质损耗因数(DF:tgδ)。一般cosΦ

介质损耗角

介质损耗角是在交变电场下,电介质内流过的电流向量和电压向量之间的夹角(即功率向量角ф)的余角δ,简称介损角。 介质损耗角(介损角)是一项反映高压电气设备绝缘性能的重要指标。介损角的变化可反映受潮、劣化变质或绝缘中气体放电等绝缘缺陷,因此测量介损角是研究绝缘老化特征及在线监测绝缘状况的一项重要内容。 介质损耗检测的意义及其注意问题 (1)在绝缘设计时,必须注意绝缘材料的tanδ 值。若tanδ 值过大则会引起严重发热,使绝缘加速老化,甚至可能导致热击穿。而在直流电压下,tanδ 较小而可用于制造直流或脉冲电容器。 (2)值反映了绝缘的状况,可通过测量tanδ=f(ф)的关系曲线来判断从良状态向劣化状态转化的进程,故tanδ的测量是电气设备绝缘试验中的一个基本项目。 (3)通过研究温度对tanδ值的影响,力求在工作温度下的tanδ值为最小值而避开最大值。 (4)极化损耗随频率升高而增大,尤其电容器采用极性电介质时,其极化损耗随频率升高增加很快,当电源中出现高次(如3次、5次)谐波时,就很容易造成电容器绝缘材料因过热而击穿。 (5)用于冲击测量的连接电缆,其绝缘的tanδ必须很小,否则所测冲击电压通过电缆后将发生严重的波形畸变,影响到测量的准确性。 数字化测量介质损耗角的方法 新闻出处:谢家琪发布时间: 2007年03月12日 摘要:总结了介损模拟测量方法存在的不足。 对当前几种典型的介质损耗数字化测量方法进 行了介绍,讨论了每种方法的优缺点和实际应用中出现的一些问题,并对介损数字化测量的发展前景进行了展望。 关键词:介质损耗数字化测量 1 引言 高压电气设备中,对绝缘介质损耗的测试具有很重要的意义。在高压预防性试验中,介质损耗因素的测量属于高准确度测量,通常是在被测试品两端加以工频50Hz的高电压(10kV),使被测试品流过一个极其微小的电流,利用电压与电流之间夹角的余角δ的正切值来反映被测试品的介质损耗大小。这种高电压、微电流、小角度的精密测量要求测量系统应具有很高的灵敏度和准确性,在现场条件下还需要具有较强的抗干扰能力。 过去介质损耗角的测量采用模拟测量方法,主要有谐振法、瓦特表法和电桥法,谐振法只适用于低压高频状态下的测量。瓦特表法是由介质损失的功率和经过的电流计算求得,瓦特表法由于测量准确度低,现已基本淘汰。电桥法是采用交流电桥差值比较原理,准确度相对较高,其典型代表是西林电桥,见图1所示。由电桥平衡条件可得出被试品的电容值Cx及tanδ: CX=(R4/R3)CN tanδ=ωC4R4

介质损耗角正切值的在线监测

介质损耗角正切值的在线监测 绝缘在线监测损耗因数tgδ的方法很多,如电桥法、全数字测量法等,常用的方法是监测绝缘体的泄漏电流及PT信号,通过计算泄漏电流和电压的相角差而得到介质损耗角正切值tgδ的数值。其测量原理大都使用硬件鉴相及过零比较的方法。目前的绝缘在线监测产品基本都是用快速傅立叶变换(FFT)的方法来求介损。取运行设备PT的标准电压信号与设备泄漏电流信号直接经高速A/D采样转换后送入计算机,通过软件的方法对信号进行频谱分析,仅抽取50Hz的基本信号进行计算求出介损。这种方法能消除各种高次谐波的干扰,测试数据稳定,能很好地反映出设备的绝缘变化。但由于绝缘体的泄漏电流非常微弱,而且现场的干扰较大,要准确监测绝缘体的泄漏电流比较困难。因此,要实现绝缘损耗因数tgδ的在线监测,必须解决微弱电流的取样及抗干扰问题。 一、电桥法 电桥法在线监测tgδ的原理图如4-2所示,由电压互感器带来的角差,可通过RC移相电路予以校正。然而角差会随负载大小等因素的影响有所变动,所以校正也不可能是很理想的。电桥中R3,C4的调动可以手动,也可以自动。由于是有触头的调节,为了长年的使用,必须选择十分可靠的R3,C4可调节元件。 电桥法的优点是,它的测量与电源波形及频率不相关;其缺点是,由于R3的接入,改变了被测设备原有的状态。为了安全,还要装有周密的保护装置。 图4-2 电桥法在线监测tgδ原理图 C x——试品;C0——标准电容器;PT——电压互感器;G——指零仪 二、全数字测量法 全数字测量法又称数字积分法,这是一种用A/D转换器分别对电压和电流波形进行数字采集,然后根据傅里叶分析法的原理进行的数字运算,最终可以求得tgδ值。 被测设备的电压信号由同相的电压互感器PT提供,或再经电阻分压器输出。电流信号由电容式套管末屏C x2接地线或设备接地线上所环绕的低频电流传感器CT获得。由后者把电流信号转换为电压信号。这种CT需要特殊设计,以使所产生的角差极小。由于获取电流

浅淡介质损耗测量的意义和方法

一.测量介质损耗角正切值tg 有何意义? 介质损耗角正切值又称介质损耗因数或简称介损。测量介质损耗因数是一项灵敏 度很高的试验项目,它可以发现电力设备绝缘整体受潮、劣化变质以及小体积被试设备贯通和未贯通的局部缺陷。例如:某台变压器的套管,正常tg 值为0.5%,而当受潮后tg 值为3.5%,两个数据相差7倍;而用测量绝缘电阻检测,受潮前后的数值相差不大。 由于测量介质损耗因数对反映上述缺陷具有较高的灵敏度,所以在电工制造及电 力设备交接和预防性试验中都得到了广泛的应用。变压器、发电机、断路器等电气设备的介损测试《规程》都作了规定。 二.当前国内抗干扰介损测试仪的现状及技术难点? 抗干扰介损测试仪的技术发展很快,以前在电力系统广泛使用的QS1西林电桥正被智能型的抗干扰介损测试仪取代,新一代的抗干扰介损测试仪均内置升压设备和标准电容,并且具有操作简单、数据准确、试验结果读取方便等特征。虽然目前抗干扰介损测试仪发展很快,但与国际水平相比,在很多方面仍有很大差距,差距主要表现在以下几个方面: (1)抗干扰能力 由于介质损耗测试是一个灵敏度很高的项目,因此测试数据也极易受到外界电场 的干扰,目前抗干扰介损测试仪采取的抗干扰方法主要有:倒相法、移相法、异频法等。虽然这些方法能在一定程度下解决干扰的问题,但当外界干扰很强的情况下,仍会产生较大的偏差。 (2)反接法的测试精度问题 现场很多电力设备均已接地,因此必须使用反接法进行检测,但反接时,影响测 试数据的因素较多,往往数据会有很大偏差,特别是当被试品容量较小(如套管),高压导线拖地测试时(有些介损测试仪所配高压导线虽能拖地使用,但对地泄漏电流较大),会严重影响测试的准确度。 三.什么是“全自动反干扰源”,与其它几种抗干扰方法相比有何特点? 所谓“全自动反干扰源”,即抗干扰介损测试仪内部有一套检测装置,能检测到外 界干扰信号的幅值和相位,将相关信息传送给CPU,CPU输出指令给“反干扰源控制装置”,该装置会在抗干扰介损测试仪内部产生一个和干扰信号幅值相同但相位相反的“反干扰信号”,与“干扰信号”叠加抵消,以达到抗干扰的目的。由于在整个测试过程,“反 干扰源”自动产生,用户无需干预,我们称之为“全自动反干扰源”。 四.传统的抗干扰方法主要有倒相法、移相法、异频法等,其工作原理如何? 1、倒相法 将抗干扰介损测试仪工作电源正、反两次倒相测试,将两次测试结果进行分析处理,达到抗干扰目的,该方法在外界干扰很弱的情况下有一定的效果。 2、移相法 思路缘于“倒相法”,只是将工作电源倒相改为移相至干扰信号相位相同而达到减 弱干扰影响的目的,实践表明,在干扰强烈的情况下,数据仍然偏差较大。 3、异频法

数字化测量介质损耗角的方法

1 引言 高压电气设备中,对绝缘介质损耗的测试具有很重要的意义。在高压预防性试验中,介质损耗因素的测量属于高准确度测量,通常是在被测试品两端加以工频50Hz 的高电压(10kV),使被测试品流过一个极其微小的电流,利用电压与电流之间夹角的余角δ的正切值来反映被测试品的介质损耗大小。这种高电压、微电流、小角度的精密测量要求测量系统应具有很高的灵敏度和准确性,在现场条件下还需要具有较强的抗干扰能力。 过去介质损耗角的测量采用模拟测量方法,主要有谐振法、瓦特表法和电桥法,谐振法只适用于低压高频状态下的测量。瓦特表法是由介质损失的功率和经过的电流计算求得,瓦特表法由于测量准确度低,现已基本淘汰。电桥法是采用交流电桥差值比较原理,准确度相对较高,其典型代表是西林电桥,见图1所示。由电桥平衡条件可得出被试品的电容值Cx及tanδ:CX=(R4/R3)CN tanδ=ωC4R4 目前数字化自动电桥其实只是采用数字化技术来调节电桥的平衡,而实际的测量原理仍然是用标准电容和电阻与被试品进行比较的模拟方法。其缺点是:(1)测量程序复杂,操作工作量大,自动化水平低,易受人为因素的影响。 (2)随着输变电工程电压等级的提高,强电场干扰严重,使变电站高压电器设备的tanδ测量误差过大。 (3)当试验电源有较大谐波干扰时,即使基波电压已获平衡,检流计仍不能为零,不能排除与基波相近的谐波干扰。 2 几种介损的数字化测量方法 数字化测量方法的原理是利用传感器从试品上取得所需的信号U和I,经前置预处理电路数字化后送至数据处理计算机或单片机,算出电流电压之间的相位差△ψ,最后得到tanδ的测量值,见图2. 2.1过零电压比较法 过零电压比较法是测量两个频率相同,幅值相等,相角差小的正弦电压波之间的相角差的方法。满足上述条 这种方法的特点是电路简单,对启动采样电路、A/D转换电路要求不高,且以过零点附近两个正弦波的平均电压差来评价两正弦波的相位差,所以抗干扰扰能力强。但要求满足的测量条件十分苛刻,如要求两个被测的正弦波谐波分量和谐波相位相等,增大了测量难度[1]. 2.2过零时差比较法 这是一种将相位测量变为时间测量的方法其原理见图3.系统先通过采样电路 捕捉电流和电压信号的过零点(图3(b),(c)),然后通过一系列的逻辑转换电路形成宽度为△t的方波信号(图3(d))。由于方波的宽度反映了电流电压信号的相位差,所以通过测量△t即可求出试品的介损值。 该方法具有测量分辨率高、线性好、易数学化的优点。但误差因素有时对测量结果影响很大,从而限制了应用。其中最重要的误差原因是由于零线漂移和波形畸变而导致信号过零点偏移。

介质损耗

电介质在交变电场作用下,所积累的电荷有两种分量:(1)有功功率。一种为所消耗发热的功率,又称同相分量;(2)无功功率,又称异相分量。异相分量与同相分量的比值即称为介质损耗。 通常用正切tanδ表示。tanδ=1/WCR(式中W为交变电场的角频率;C为介质电容;R为损耗电阻)。介电损耗角正切值是无量纲的物理量。可用介质损耗仪、电桥、Q表等测量。对一般陶瓷材料,介质损耗角正切值越小越好,尤其是电容器陶瓷。仅仅只有衰减陶瓷是例外,要求具有较大的介质损耗角正切值。橡胶的介电损耗主要来自橡胶分子偶极化。在橡胶作介电材料时,介电损耗是不利的;在橡胶高频硫化时,介电损耗又是必要的,介质损耗与材料的化学组成、显微结构、工作频率、环境温度和湿度、负荷大小和作用时间等许多因素有关。 电介质损耗(dielectric losses ):电介质中在交变电场作用下转换成热能的能量。这些热会使电介质升温并可能引起热击穿,因此,在电绝缘技术中,特别是当绝缘材料用于高电场强度或高频的场合,应尽量采用介质损耗因数(即电介质损耗角正切tgδ,它是电介质损耗与该电介质无功功率之比)较低的材料。但是,电介质损耗也可用作一种电加热手段,即利用高频电场(一般为0.3~300 兆赫)对电介质损耗大的材料(如木材、纸、陶瓷等)进行加热。这种加热由于热量产生在介质内部,比外部加热的加热速度快、热效率高,且加热均匀。频率高于300兆赫时,达到微波波段,即为微波加热(家用微波炉即据此原理)。 电介质损耗按其形成机理可分为弛豫损耗、共振损耗和电导损耗。前两者分别与电介质的弛豫极化和共振极化过程有关。对于弛豫损耗,当交变电场的频率ω=1/τ时,介质损耗达到极大值,τ为组成电介质的极性分子和热离子的弛豫时间。对于共振损耗,当电场频率等于电介质振子固有频率(共振)时,损失能量最大。电导损耗则是由贯穿电介质的电导电流引起,属焦耳损耗,与电场频率无关。 电容介质损耗和电流电压相位角之间的关系 又称介电相位角。反映电介质在交变电场作用下,电位移与电场强度的位相差。在交变电场作用下,根据电场频率、介质种类的不同,其介电行为可能产生两种情况。对于理想介质电位移与电场强度在时间上没有相位差,此时极化强度与交变电场同相位,交流电流刚好超前电压π/2。对于实际介质而言,电位移与电场强度存在位相差。此时介质电容器交流电流超前电压的相角小于π/2。由此,介质损耗角等于π/2与介质电容器交流电流超差电压的相角之差。 介质损耗角是在交变电场下,电介质内流过的电流向量和电压向量之间的夹角(即功率向量角ф)的余角δ,简称介损角。介质损耗角(介损角)是一项反映高压电气设备绝缘性能的重要指标。介损角的变化可反映受潮、劣化变质或绝缘中气体放电等绝缘缺陷,因此测量介损角是研究绝缘老化特征及在线监测绝缘状况的一项重要内容。 介质损耗检测的意义及其注意问题 (1)在绝缘设计时,必须注意绝缘材料的tanδ 值。若tanδ 值过大则会引起严重发热,使绝缘加速老化,甚至可能导致热击穿。而在直流电压下,tanδ 较小而可用于制造直流或脉冲电容器。

电容器损耗角正切值

什么是 正如名词本身“电容损耗角正切值”,就是电容的电损耗的比例; 如果对一个电容加上一个电压,除了对电容充电的电流外还有漏掉的电流(电容的漏电流),漏电流被消耗成了热能,因此表示为电阻上的电流。漏电流与纯电容的充电电流之比就是电容损耗角正切值(注意: 理论上纯粹的电容是不耗电功率的)。 我们国家对于浸渍全纸介质单元,其值应不大于0.0040;对于浸渍纸膜复合介质单元,其值应不大于0.0022;其值对于浸渍全膜介质单元,应不大于 0.0015。 单元在其电介质允许最高运行温度下的损耗角正切值应不超过上述相应的规定值。 1、介质损耗 什么是介质损耗: 绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。也叫介质损失,简称介损。 2、介质损耗角δ 在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角(δ)。简称介损角。 3、介质损耗正切值tgδ 又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。介质损耗因数的定义如下: 如果取得试品的电流相量和电压相量,则可以得到如下相量图: 总电流可以分解为电容电流Ic和电阻电流IR合成,因此:

这正是损失角δ=(90°-Φ)的正切值。因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。 测量介损对判断电气设备的绝缘状况是一种传统的、十分有效的方法。绝缘能力的下降直接反映为介损增大。进一步就可以分析绝缘下降的原因,如: 绝缘受潮、绝缘油受污染、老化变质等等。 测量介损的同时,也能得到试品的电容量。如果多个电容屏中的一个或几个发生短路、断路,电容量就有明显的变化,因此电容量也是一个重要参数。

介质损耗角正切值的测量

介质损耗角正切值的测量 一.实验目的: 学习使用QS1型西林电桥测量介质损耗正切值的方法。 二.实验项目: 1.正接线测试 2.反接线测试 三.实验说明: 绝缘介质中的介质损耗(P=ωC u2 tgδ)以介质损耗角δ的正切值(tgδ)来表征, 介质损耗角正切值等于介质有功电流和电容电流之比。用测量tgδ值来评价绝缘的好坏的方法是很有效的,因而被广泛采用,它能发现下述的一些绝缘缺陷: 绝缘介质的整体受潮; 绝缘介质中含有气体等杂质; 浸渍物及油等的不均匀或脏污。 测量介质损耗正切值的方法较多,主要有平衡电桥法(QS1),不平衡电桥法及瓦特表法。 目前,我国多采用平衡电桥法,特别是工业现场广泛采用QS1 型西林电桥。这种电桥工作电压为10Kv,电桥面板如图2-1 所示,其工作原理及操作方法简介如下: ⑴.检流计调谐钮⑵.检流计调零钮 ⑶.C4电容箱(tgδ)⑷.R3电阻箱 ⑸.微调电阻ρ(R3桥臂)⑹.灵敏度调节钮 ⑺.检流计电源开关⑻.检流计标尺框 ⑼.+tgδ/-tgδ及接通Ⅰ/断开/接通Ⅱ切换钮

⑽.检流计电源插座 ⑾.接地 ⑿.低压电容测量 ⒀.分流器选择钮 ⒁.桥体引出线 图2-1 QS1西林电桥面板图 1. 工作原理: 原理接线图如图2-2所示,桥臂BC 接入标准电容C N (一般C N =50pf ),桥臂BD 由固定的无感电阻R 4和可调电容C 4并联组 成,桥臂AD 接入可调电阻R 3,对角线AB 上接入检流计G ,剩下一个桥臂AC 就接被试品C X 。 高压试验电压加在CD 之间,测量时只要调节R 3和C 4就可使G 中的电流为零,此时电桥达到平衡。由电桥平衡原理有: 图2-1 QS1西林电桥面板图 BD CB AD CA U U U U = 即: BD CB AD CA Z Z Z Z = (式2-1) 各桥臂阻抗分别为: X X X X CA R C j R Z Z ?+= =?1 44441R C j R Z Z BD ?+= =? 33R Z Z AD == N N CB C j Z Z ?1 = = 将各桥臂阻抗代入式2-?,并使等式两边的实部和虚部分别相等,可得: 3 4 R R C C N X ? = 44R C tg ??=?δ (式2-2) 在电桥中,R 4的数值取为=10000/π=3184(Ω),电源频率ω=100π,因此: tg δ= C 4(μf ) (式2-3) 即在C 4电容箱的刻度盘上完全可以将C 4的电容值直接刻度成tg δ值(实际上是刻度成tg δ(%)值),便于直读。

什么是电容器损耗角正切值

什么是电容器损耗角正切值 正如名词本身“电容损耗角正切值”,就是电容的电损耗的比例;如果对一个电容加上一个电压,除了对电容充电的电流外还有漏掉的电流(电容的漏电流),漏电流被消耗成了热能,因此表示为电阻上的电流。漏电流与纯电容的充电电流之比就是电容损耗角正切值(注意:理论上纯粹的电容是不耗电功率的)。我们国家对于浸渍全纸介质单元,其值应不大于0.0040;对于浸渍纸膜复合介质单元,其值应不大于0.0022;其值对于浸渍全膜介质单元,应不大于0.0015. 单元在其电介质允许最高运行温度下的损耗角正切值应不超过上述相应的规定值。 1、介质损耗 什么是介质损耗:绝缘材料在电场作用下,由于介质电导和介质极化的滞后效应,在其内部引起的能量损耗。也叫介质损失,简称介损。 2、介质损耗角δ 在交变电场作用下,电介质内流过的电流相量和电压相量之间的夹角(功率因数角Φ)的余角(δ)。简称介损角。 3、介质损耗正切值tgδ 又称介质损耗因数,是指介质损耗角正切值,简称介损角正切。介质损耗因数的定义如下: 如果取得试品的电流相量和电压相量,则可以得到如下相量图: 总电流可以分解为电容电流Ic和电阻电流IR合成,因此:这正是损失角δ=(90°-Φ)的正切值。因此现在的数字化仪器从本质上讲,是通过测量δ或者Φ得到介损因数。测量介损对判断电气设备的绝缘状况是一种传统的、十分有效的方法。绝缘能力的下降直接反映为介损增大。进一步就可以分析绝缘下降的原因,如:绝缘受潮、绝缘油受污染、老化变质等等。测量介损的同时,也能得到试品的电容量。如果多个电容屏中的一个或几个发生短路、断路,电容量就有明显的变化,因此电容量也是一个重要参数。

实验二介质损耗角测量

实验二介质损耗角的测量 一.实验目的 1.了解MS-101型抗干扰介损自动测量仪的使用方法及工作原理。 2.掌握电桥正、反接线的测量方法,比较测试结果。 3.掌握测量时电场干扰的消除方法原理。 4.了解高电压实验时基本的安全技术、注意事项。 二.实验内容 1.了解MS-101型抗干扰介损自动测量仪的操作方法及注意事项。 2.变压器介质损耗因数tgδ和Cx用反桥接线测量,套管用正反接线测量。 3.采取措施消除电场及磁场干扰。 4.整理实验数据。 二.实验仪器 MS-101型抗干扰介损自动测量仪 变压器(试品):额定电压6KV 套管(试品):10KV套管 三.实验仪器面板介绍 1、控制面板图(图1)及高压背板图(图2) C X试品输入:正接线时输入试品电流,正接线时芯线(红夹子)接试品低压信 号端,如果试品低压端有屏蔽极可接屏蔽线(黑夹子),无屏蔽时 可悬空。反接线时,C X试品输入线不接或悬空。 测量接地:它同外壳连在一起,在正、反两种测量过程中,仪器都应可靠独立接地。应仔细检查接地导体不能有油漆或锈蚀,否则应将接地导体 刮干净,并保证零电阻接地。接地不良可能引起误差或数据波动, 严重时,呈带高压开路可能引起危险。 内高压允许:打开此开关,仪器有高压输出。关闭此开关仪器内部无高压产生,亦无高压输出。 总电源开关:打开该开关,屏幕显示测量内容。 按键盘:“退出”、“确认”、“”、“”

“退出”:对光标所在的内容否认时,或者已完成该内容;复用功能是 历史数据查询。 “确认”:对光标所在处的内容认同时,可按此键加以确认,并将光标移至它处。 “ ”、“ ”:改变数值或改变正、反接线,异频、工频等内容。 屏幕显示:显示菜单、测量信息、测量结果。应避免长时间阳光爆晒。 亮度调节:调节屏幕对比度。 打印机:测量完毕按“确认”键,打印显示结果。 图1 控制面板图 四.实验接线及注意事项 1. 本仪器只能在停电的设备上使用; 2. 接地端应可靠接在接地网; 3. 根据被试设备接地情况正确选择正、反接法; 正接法: (被试设备的低压测量端或二次端对地绝缘)专用高压电缆从仪器后侧的HVx 端上引出 ,高压屏蔽线接被试设备高压端;专用低压电缆从仪器面板上的Cx 端引出 ,低压芯线接被试设备低压端L (见图11);低压屏蔽线接被试设备屏蔽端E 。(试品无屏蔽端则悬空)HVx 及Cx 的芯线与屏蔽线之间严禁短接,否则无法取样,无法测量; 反接法: (被试设备的低压测量端或二次端对地无法绝缘)专用高压电缆从仪器后侧的HVx 端上引出高压芯线接被试设备高压端;低压端接地(见图12);此时的C X 输入线悬空;注意 HVx 的芯线与屏蔽线严禁短接,否则无取样,无法测量; 试品 图11正接法接线 图12反接法接线 4.AC220V 接入电源插座口; 5.对于小电容,空气湿度较大时,其tg δ受其表面状态影响,介损测量值异常 且不稳定。此时可采用屏蔽环吸收试品表面泄漏电流,其屏蔽电极在正接法

电气设备的介质损失角正切值试验

I R R I = = 电气设备的介质损失角正切值试验 电介质就是绝缘材料。当研究绝缘物质在电场作用下所发生的物理现象时, 把绝缘物质称为电介质;而从材料的使用观点出发,在工程上把绝缘物质称为 绝缘材料。既然绝缘材料不导电,怎么会有损失呢?我们确实总希望绝缘材料 的绝缘电阻愈高愈好,即泄漏电流愈小愈好,但是,世界上绝对不导电的物质 是没有的。任何绝缘材料在电压作用下,总会流过一定的电流,所以都有能量 损耗。把在电压作用下电介质中产生的一切损耗称为介质损耗或介质损失。 如果电介质损耗很大,会使电介质温度升高,促使材料发生老化(发脆、 分解等),如果介质温度不断上升,甚至会把电介质熔化、烧焦,丧失绝缘能力, 导致热击穿,因此电介质损耗的大小是衡量绝缘介质电性能的一项重要指标。 在外加交流电压作用下,绝缘介质就流过电流,电流在介质中产生能量损 耗,这种损耗成为介质损耗。介质损耗很大时,就会使介质温度升高而老化, 甚至导致热击穿。因此,介质损耗的大小就反映了介质的优劣状况。 当绝缘物上加交流电压时,可以把介质看成为一个电阻和电容并联组成的 等值电路,如图 1-15(a )所示。根据等值电路可以作出电流和电压的相量图, 如图 1-15(b )所示。 I I I R I U I R I C δ ? U (a) (b) 图 1-15 在绝缘物上加交流电压时的等值电路及相量图 (a )介质等值电路 (b )等值电路电流、电压相量 由相量图可知,介质损耗由 & 产生,夹角δ 大时, & 就越大,故称δ 为介质 损失角,其正切值为 tg δ = I R I C U/R 1 U/ωC ωCR

介质损耗测试相关问题

介质损耗测试相关问题 一.测量介质损耗角正切值tg 有何意义? 介质损耗角正切值又称介质损耗因数或简称介损。测量介质损耗因数是一项灵敏度很高的试验项目,它可以发现电力设备绝缘整体受潮、劣化变质以及小体积被试设备贯通和未贯通的局部缺陷。例如:某台变压器的套管,正常tg 值为0.5%,而当受潮后tg 值为3.5%,两个数据相差7倍;而用测量绝缘电阻检测,受潮前后的数值相差不大。 由于测量介质损耗因数对反映上述缺陷具有较高的灵敏度,所以在电工制造及电力设备交接和预防性试验中都得到了广泛的应用。变压器、发电机、断路器等电气设备的介损测试《规程》都作了规定。 二.当前国内介损测试仪的现状及技术难点? 介损测试仪的技术发展很快,以前在电力系统广泛使用的QS1西林电桥正被智能型的介损测试仪取代,新一代的介损测试仪均内置升压设备和标准电容,并且具有操作简单、数据准确、试验结果读取方便等特征。虽然目前介损测试技术发展很快,但与国际水平相比,在很多方面仍有很大差距,差距主要表现在以下几个方面: (1)抗干扰能力 由于介质损耗测试是一个灵敏度很高的项目,因此测试数据也极易受到外界电场的干扰,目前介损测试仪采取的抗干扰方法主要有:倒相法、移相法、异频法等。虽然这些方法能在一定程度下解决干扰的问题,但当外界干扰很强的情况下,仍会产生较大的偏差。 (2)反接法的测试精度问题 现场很多电力设备均已接地,因此必须使用反接法进行检测,但反接时,影响测试数据的因素较多,往往数据会有很大偏差,特别是当被试品容量较小(如套管),高压导线拖地测试时(有些介损测试仪所配高压导线虽能拖地使用,但对地泄漏电流较大),会严重影响测试的准确度。 三.什么是“全自动反干扰源”,与其它几种抗干扰方法相比有何特点? 所谓“全自动反干扰源”,即仪器内部有一套检测装置,能检测到外界干扰信号的幅值和相位,将相关信息传送给CPU,CPU输出指令给“反干扰源控制装置”,该装置会在仪器内部产生一个和干扰信号幅值相同但相位相反的“反干扰信号”,与“干扰信号”叠加抵消,以达到抗干扰的目的。由于在整个测试过程,“反干扰源”自动产生,用户无需干预,我们称之为“全自动反干扰源”。 四.传统的抗干扰方法主要有倒相法、移相法、异频法等,其工作原理如何? 1、倒相法 将仪器工作电源正、反两次倒相测试,将两次测试结果进行分析处理,达到抗干扰目的,该方法在外界干扰很弱的情况下有一定的效果。 2、移相法 思路缘于“倒相法”,只是将工作电源倒相改为移相至干扰信号相位相同而达到减弱干扰影响的目的,实践表明,在干扰强烈的情况下,数据仍然偏差较大。 3、异频法 这是近几年来发展起来的一种方法,其基本原理是工作电源的频率不是50Hz,即与工频不同,这样采样信号为两个不同频率信号(测试电流和干扰电流)的叠加,通过模拟滤波器和数字滤波器对信号滤波,衰减工频信号,以达到抗干扰的目的,实践表明:该方法的抗干扰能力优于“倒相法”和“移相法”,但在一些特定场合下,由于干扰影响,数据仍有偏差,甚至出现负值。另外,由于其自身原理特点存在几个方面的矛盾:

电气设备的介质损失角正切值试验(1)

电气设备的介质损失角正切值试验 电介质就是绝缘材料。当研究绝缘物质在电场作用下所发生的物理现象时,把绝缘物质称为电介质;而从材料的使用观点出发,在工程上把绝缘物质称为绝缘材料。既然绝缘材料不导电,怎么会有损失呢?我们确实总希望绝缘材料的绝缘电阻愈高愈好,即泄漏电流愈小愈好,但是,世界上绝对不导电的物质是没有的。任何绝缘材料在电压作用下,总会流过一定的电流,所以都有能量损耗。把在电压作用下电介质中产生的一切损耗称为介质损耗或介质损失。 如果电介质损耗很大,会使电介质温度升高,促使材料发生老化(发脆、分 解等),如果介质温度不断上升,甚至会把电介质熔化、烧焦,丧失绝缘能力,导致热击穿,因此电介质损耗的大小是衡量绝缘介质电性能的一项重要指标。 在外加交流电压作用下,绝缘介质就流过电流,电流在介质中产生能量损耗,这种损耗成为介质损耗。介质损耗很大时,就会使介质温度升高而老化,甚至导致热击穿。因此,介质损耗的大小就反映了介质的优劣状况。 当绝缘物上加交流电压时,可以把介质看成为一个电阻和电容并联组成的等 值电路,如图1-15(a )所示。根据等值电路可以作出电流和电压的相量图,如图1-15(b )所示。 U I I R I (a)(b)

图1-15 在绝缘物上加交流电压时的等值电路及相量图 (a )介质等值电路 (b )等值电路电流、电压相量 由相量图可知,介质损耗由R I &产生,夹角δ大时,R I &就越大,故称δ为介质 损失角,其正切值为 R C I U/R 1tg I U/C CR δωω=== (1-8) 介质损耗 22U P=U Ctg R ωδ= (1-9) 由上式可见,当U 、ω、C 一定时,P 正比于tg δ,所以用tg δ来表征介质损 耗。 测量tg δ(cos ?)的灵敏度较高,可以发现绝缘的整体受潮、劣化、变质及 小体积设备的局部缺陷。 一、介质损失角正切值的测量原理 介质损失角正切的测量方法很多,从原理上来分,可分为平衡测量法和角差 测量法两类。传统的测量方法为平衡测量法,即高压西林电桥法。由于技术的发展和检测手段的不断完善,角差测量法使用的越来越普遍。 (一)用高压西林电桥法测量tgδ 当绝缘受潮、老化时,有功电流R I 将增大,tg δ也增大。通过测tg δ可以反 映出绝缘的分布性缺陷。如果缺陷是集中性的,有时测tg δ就不灵敏,这是因为集中性缺陷为局部的,可以把介质分为缺陷和无缺陷的两部分;无缺陷的部分为

电介质正切损耗角

目录 一.引言 (2) 1.电介质损耗角研究的意义 (2) 2.电介质损耗角正切的理论基础 (3) 二.电介质损耗与电介质损耗角 (3) 1.电介质损耗 (3) 2.电介质损耗角 (3) 三.等值电路 (5) 1.并联等值电路 (5) 2.串联等值电路 (6) 四.介质损耗角正切的测量 (6) 1.西林电桥原理 (7) 2.测量的影响因素 (9) a) 外界电磁场的干扰影响 (9) b) 温度的影响 (8) c) 试验电压的影响 (9) d) 试品表面泄漏的影响 (10) e) 试品电容量的影响 (10) 五.结论 (10) 六.参考文献 (11)

介质损耗角正切 摘要:电力系统中检测高压设备的运行可靠性和发现电气绝缘方面缺陷,电介质损耗角的测量必不可少。电介质损耗角是一项反映高压电气设备绝缘性能的重要指标。本文介绍了介质损耗角的基本概念和其意义,简单分析了介质损耗角检测的方法。 关键词:电介质损耗角;方法;测量;因素 一.引言 1.电介质损耗角研究的意义 电气设备是组成电力系统的基本元件,是保证供电可靠性的基础。无论是大型关键设备如发电机、变压器,还是小型设备如电力电容器、绝缘子等,一旦发生失效,必将引起局部甚至全部地区的停电。而导致设备失效的主要原因是其绝缘性能的劣化。绝缘劣化有很多原因,不仅电应力可引起绝缘劣化,导致绝缘故障,而且机械力或热得作用,或者和电场的共同作用,最终也会发展为绝缘性故障。鉴于绝缘故障在电力故障中所占的比重及其后果的严重性,电力运行部门历来十分重视电气设备的绝缘监督。 电介质的电气特性,主要表现为它们在电场作用下的导电性能、介电性能和电气强度,它们分别以四个主要参数,即电导率(或绝缘电阻率)、介电常数、介质损耗角正切和击穿场强来表示。电介质损耗角是一项反映高压电气设备绝缘性能的重要指标。电介质损耗角的变化可反映受潮、劣化变质或绝缘中气体放电等绝缘缺陷,因此测量介质损耗角是研究绝缘老化特征及在线监视绝缘状况的一项重要内容。而在实际测量中,由于电介质损耗很小,所以需要测量系统有较高的测量精度,这样才能正确及时地反映电介质损耗的变化。对于电容型绝缘设备,通过对其介质特性的监视,可以发现尚处于早期发展阶段的缺陷。

介质损耗角正切值测量仪器

FS3001变频高压介质损耗测试仪 一、概述 介损测量是绝缘试验中很基本的方法,可以有效地发现电器设备绝缘的整体受潮劣化变质,以及局部缺陷等。在电工制造、电气设备安装、交接和预防性试验中都广泛应用。变压器、互感器、电抗器、电容器以及套管、避雷器等介损的测量是衡量其绝缘性能的最基本方法。 FS3001介质损耗测试仪是发电厂、变电站等现场全自动测量各种高压电力设备介损正切值及电容量的高精度仪器。主电源由仪器内部的逆变器产生,经变压器升压后用于被试品测试。主电源的频率为45HZ和55HZ,避开了工频电场对试品的干扰,从根本上解决了强电场干扰下准确测量的难题。同时适用于全部停电后用发电机供电的场合。 二、性能特点 1、仪器配备了大屏幕(240×128)中文菜单界面,分为左右两部分,左边为菜单,右边为相关提示,每一步都非常清楚,结果可以存储或打印输出,操作人员不需要专业培训就能使用。一次操作,微机自动完成全过程的测量,是目前非常理想的介损测量设备。 2、仪器内部配备有日历芯片和大容量存储器,能将检测结果按时间顺序保存,随时可以查看历史记录,并可以打印输出;同时仪器内部带有接线图菜单,帮助操作人员正确接线;仪器还具备接地检测,确保升压前仪器已经可靠接地。 3、该仪器同样适用于车间、试验室、科研单位测量高压电器设备的tgδ及电容量,配

以绝缘油杯可测试绝缘油介质损耗。 4、该仪器可用正、反接线方法测量不接地或直接接地的高压电器设备。同时还可以测试全密封的CVT(电容式电压互感器)。 5、仪器内部的逆变器和采样电路全部由数字化控制,输出电压连续可调。 6、仪器具备输入电压波动、输出短路、过压、过流、温度等多重保护措施,保证了仪器安全、可靠。 三、技术指标 准确度:Cx: ±(读数×1%+1pF) tgδ: ±(读数×1%+0.00040) 抗干扰指标:变频抗干扰,在200%干扰下仍能达到上述准确度 电容量范围:内施高压:3pF~60000pF/10kV 60pF~1μF/0.5kV 外施高压:3pF~1.5μF/10kV 60pF~30μF/0.5kV 分辨率:最高0.001pF,4位有效数字 tgδ范围:不限,分辨率0.001%,电容、电感、电阻三种试品自动识别。 试验电流范围:10μA~1A 内施高压:设定电压范围:0.5~10kV 最大输出电流:200mA 升降压方式:连续平滑调节 试验频率:45、50、55单频 45/55Hz自动双变频 频率精度:±0.01Hz 外施高压:正接线时最大试验电流1A,工频或变频40-70Hz 反接线时最大试验电流10kV/1A,工频或变频40-70Hz CVT自激法低压输出:输出电压3~50V,输出电流3~30A 测量时间:约40s,与测量方式有关 输入电源:180V~270VAC,50Hz±1%,市电或发电机供电 计算机接口:标准RS232接口 打印机:炜煌A7热敏微型打印机 环境温度:-10℃~50℃

ESR 损失角正切值

在选用射频片状陶瓷电容时,等效串联电阻(ESR)常常是最重要参数。ESR通常以毫欧姆为单位,是电容的介质损耗(Rsd)和金属损耗(Rsm)的综合(ESR=Rsd+Rsm)。事实上所有射频线路都用到陶瓷电容,所以评估陶瓷电容损耗对线路性能的影响是十分重要的。 低损耗射频电容的优点,在所有射频电路设计中,选用低损耗(超低ESR)片状电容都是一项重要考虑。以下是几种应用中低损耗电容的优点。在手持便携式发射设备的末级功率放大器内使用低损耗电容作场效应晶体管源极旁路和漏极耦合,可以延长电池寿命。ESR高的电容增加I2ESR损耗,浪费电池能量。使用低损耗电容产品使射频功率放大器更容易提高功率输出和和效率。例如,用低损耗射频片状电容作耦合,可以实现最大的放大器功率输出和效率。对于目前的射频半导体设备,例如便携手持设备的单片微波集成电路,尤其是如此。许多这种设备的输入阻抗极低,因此输入匹配电路中电容的ESR损耗在全部网络的阻抗中占了很大的百分比。如果设备输入阻抗是1欧姆而电容ESR是0.8欧姆,约40%的功率将由于ESR损耗而被电容消耗掉。这将减低效率和输出功率。高射频功率应用也需要低损耗电容,这方面的典型应用是要使一个高射频功率放大器和动态阻抗相匹配。例如半导体等离子炉需要高射频功率匹配,设计匹配网络时使用了电容。负载从接近零的低阻抗大幅度摆动到接近开路,导致匹配网络中产生大电流,使电容负荷剧增。这种情况使用超低损耗电容,例如ATC的100系列陶瓷电容,最为理想。发热控制,特别是在高射频功率情况下,和元件ESR直接有关。这种情况下的电容功率耗散可以经由I2ESR 损耗计算出来。低损耗电容产品在这些线路中能减少发热,使线路发热问题更容易控制。见下节“功率耗散”中的例子。 使用低损耗电容可增加小信号放大器的有效增益和效率。设计低噪声放大器(LNA)时使用低损耗陶瓷电容可以把热噪声(KTB)减到最小。使用超低损耗电容也可很容易地改善信噪比和总体噪声温度。设计滤波网络时使用低损耗陶瓷电容能把输入频带插入损耗(S21)减到最小,而且使滤波曲线更接近矩形,折返损耗性能更好。MRI成象线圈的陶瓷电容必须是超低损耗。这些电容和MRI线圈相接,线圈是调谐电路的一部分。因为MRI 扫描器要检测极弱的信号,线圈的损耗必须很低,一般在几个毫欧姆的量级。如果ESR损耗超过这个量级,而设计者没有采取措施降低损耗,成象分辨率就会降低。ATC100系列陶瓷电容组具有超低损耗,因而经常用于线圈电路。这些电容组在谐振电路中发挥功能,却不增加整个线路的损耗。 1. ESR引起的电容功率耗散 ESR乘以射频网络电流的平方就得到耗散在电容里的功率。所以耗散在电容里的功率可以表示为:Pd=ESRx(射频电流)2或Pd=ESR x I2一个有趣的现象是,低损耗电容用于高射频功率设备中时,设备功率可以是电容额定功率的几百倍。 下面是低ESR电容这样使用的一例。射频功率=1000瓦电容是ATC100E102 (1000pF) 频率=30MHzESR=0.018 欧姆(18 毫欧姆);设备线路阻抗=50 欧姆。注意,100E 系列最大允许功率耗散是大约5瓦。 解:计算这一线路的射频电流,再以电流计算电容中的射频功率耗散。电流=(功率/阻抗) 1/2 (这是这一线路内的电流)(1000/50)1/2 =4.47 安培电容中实际耗散功率:P=I2 x ESR (这 是电容将耗散的功率)P=4.47 x 4.47 x 0.018 = 0.34 瓦。 这个结果意味着在一个1000瓦射频功率,50欧姆阻抗的设备中,只有0.34瓦是由于ESR 而被电容消耗掉的。因此,电容由于ESR只消耗了它额定最大功率的6.8%。由于电容ESR 损耗极低,电容温升可以忽略。

相关文档
最新文档