奥赛培训专题四 三角 平面向量 复数

奥赛培训专题四 三角 平面向量 复数
奥赛培训专题四 三角 平面向量 复数

专题四 三角 平面向量 复数

一 能力培养

1,数形结合思想 2,换元法 3,配方法 4,运算能力 5,反思能力 二 问题探讨

问题1设向量(cos ,sin )a αα= ,(cos ,sin )b ββ=

,

求证:sin()sin cos cos sin αβαβαβ+=+.

问题2设()f x a b =?,其中向量(2cos ,1)a x =,(cos 2)b x x =,x R ∈

(I)若()1f x =[,]33

x ππ

∈-,求x ; (II)若函数2sin 2y x =的图象 按向量(,)()2

c m n m π

=<平移后得到函数()y f x =的图象,求实数,m n 的值.

问题3(1)当4

x π

,函数2

()cos sin f x x x =+的最大值是 ,最小值是 .

(2)函数3

2

cos sin cos y x x x =+-的最大值是 .

(3)当函数2

2

sin 2sin cos 3cos y x x x x =++取得最小值时,x 的集合是 . (4)函数sin (0)cos 1

x

y x x π=<<+的值域是 .

问题4已知ABC ?中,,,a b c 分别是角,,A B C 的对边,且4,5a b c =+=,tan tan A B +=

tan tan )A B -,求角A.

三 习题探讨 选择题

1在复平面内,复数12ω=-+对应的向量为OA ,复数2

ω对应的向量为OB ,

那么向量AB

对应的复数是

A,1 B,1- D,

2已知α是第二象限角,其终边上一点P(x 且cos x α=

,则sin α=

D, 3函数2sin(3)4y x π

=-

图象的两条相邻对称轴之间的距离是

A,3

π B,23π C,π D,43π

4已知向量(2,0)OB = ,向量(2,2)OC = ,向量,)CA αα=

,则向量

OA 与向量OB

的夹角的取值范围是

A,[0,

]4π

B,5[,]412ππ C,5[,]122ππ D,5[,]1212

ππ

5已知(,2)a λ=,(3,5)b =-,且a 与b 的夹角为钝角,则λ的取值范围是 A,103λ>

B,103λ≥ C,103λ< D,10

3

λ≤ 6若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =++的值域是

A,[1,)-+∞ B,[1- C, D,1]2

填空题

7已知sin sin 1αβ?=,则cos()αβ+= .

8复数13z i =+,21z i =-,则12z z z =?在复平面内的对应点位于第 象限.

9若tan 2α=,则22

4sin 3sin cos 5cos αααα--= .

10与向量1)a =-和(1b =的夹角相等,c = . 11在复数集C 内,方程2

2(5)60x i x --+=的解为 .

12若[,

]1212ππθ∈-,求函数cos()sin 24y π

θθ=++的最小值,并求相应的θ的值.

13设函数11()22x x f x ---=-,x R ∈,若当02

π

θ≤≤

时,2(cos 2sin )f m θθ++

(22)0f m --<恒成立,求实数m 的取值范围.

14设5arg 4z π=,且2

2

z R z

-∈,复数ω满足1ω=,求z ω-的最大值与最小值勤.

15已知向量33(cos ,sin )22a x x = ,(cos ,sin )22x x b =- ,且[0,]2

x π

(I)求a b ? 及a b + ; (II)求函数()4f x a b a b =?-+

的最小值.

16设平面向量1)a =- ,1(,22

b = .若存在实数(0)m m ≠和角((,))22ππ

θθ∈-,

使向量2

(tan 3)c a b =+- ,tan d ma b θ=-+ ,且c d ⊥ .

(I)求函数()m f θ=的关系式; (II)令tan t θ=,求函数()m g t =的极值.

问题1证明:由cos cos sin sin a b αβαβ?=+

,且cos()cos()a b a b αβαβ?=?-=-

得cos()αβ-=cos cos sin sin αβαβ+ ① 在①中以

2

π

α-代换α得cos[()]2παβ-+=cos()cos sin()sin 22ππ

αβαβ-+-.

即sin()αβ+=sin cos cos sin αβαβ+.

温馨提示:向量是一种很好用的工具.运用好它,可简捷地解决一些三角,平几,立几,解几等

问题.

问题2解:(I)可得2

()2cos 212sin(2)6

f x x x x π

==++

由12sin(2)6x π

++=1得sin(2)62

x π+=- 又3

3

x π

π

-

≤≤

,得5226

6x π

π

π-

≤+

,有26x π+=3π-,解得4

x π

=-. (II)函数2sin 2y x =的图象按向量(,)c m n =平移后得到函数2sin 2()y n x m -=-, 即()y f x =的图象.也就是1y -=2sin 2()12

x π

+的图象.

而2

m π

<

,有12

m π

=-

,1n =.

问题3解:(1)2

2

1

51sin sin (sin )2

4

y x x x =-+=--+

而4

x π

,有sin 22

x -

≤≤,

当1sin 2x =

,即6x π=时,max 54y =;当sin x =即4x π=-时,min 32y =(2)32

cos (1cos )cos y x x x =+--,令cos t x =,则11t -≤≤,有

321y t t t =--+,得'2321y t t =--

令'

0y =,有11t =,213

t =-

①当113t -≤<-

时,'0y >,y 为增函数;②当113t -<<时,'

0y <,y 为减函数. 32111()()()1333y =-----+极大=32

27

,而y =x=111110--+=,

于是y 的最大值是32

27

.

(3) 2

2cos 1sin 2sin 2cos 22)24

y x x x x x π

=++=++=++

当224

2

x k π

π

π+

=-

,即38

x k π

π=-

,min 2y =(4)可得cos 2sin y x y x +=,有sin cos 2x y x y -=

)2x y ψ+=,

有sin()1x ψ+=

≤,

得y ≤≤,又0y >,于是有y

的值域是.

问题4解:

由已知得

tan tan 1tan tan A B

A B

+=-?

即tan()A B +=又000180A B <+<

得0

120A B +=,0

60C =.

又4,5,a b c =+=得5,b c =-由余弦定理22016(5)8(5)60c c c cos =+---. 得72c =

,32

b =. 由正弦定理得07

4

2sin sin 60

A =,

有sin A =

. 又a c b >>,得A 为最大角.

又01

sin sin 302

B =

<=,有030B <,于是090B C +<.

所以得A π=-. 习题:1

得2

122ω=--

,11()()2222

AB OB OA i =-=----+= ,选D.

2 OP

又cos 4

x α=

=

,

得x =

舍去),

有cos α=

sin α==,选A.

3它的对称轴为:34

2

x k π

π

π-=+

,即34k x ππ=

+,有(1)[]()34343

k k πππππ++-+=,选A.

4(数形结合)

由)CA αα=

,知点A 在以

C (2,2)为圆心(如图),过原点O 作

圆C 的切线'

OA ,'A 为切点,由OC =,'A C =

知'

6

AOC π

∠=

,有'

4

6

12

AOB π

π

π

∠=

-

=

,

过点O 作另一切线''

OA ,''

A 为切点,则''

546

12

A O

B π

π

π

∠=

+

=

,选D.

5由310a b λ?=-+ ,a b ?= ,设a 与b 的夹角为θ,则0090180θ<<, 有1cos 0θ-<<,即

10-<<,得225603203100λλλ?+->?

-+

,有10

3λ>,选A.

6由03

x π

<≤

,令sin cos ),4t x x x π=+=

+而7

4412

x πππ<+≤,得1t <≤又2

12sin cos t x x =+,得21

sin cos 2

t x x -=,

得22

11(1)122t y t t -=+=+-,有2111022

y -+<≤=,选D. 7显然sin 0α≠且sin 0β≠,有1

sin sin αβ

=

, 当0sin 1β<≤时,

1

1sin β

≥,有sin 1α≥,于是sin 1α=,得sin 1β=,则cos cos 0αβ== 得到cos()cos cos sin sin 1αβαβαβ+=-=-, 当1sin 0β-≤<时,同理可得cos()1αβ+=-.

8 12(3)(1)24z z z i i i =?=++=+,它对应的点位于第一象限.

9由tan 2α=,得sin 2cos αα=,有22sin 4cos αα=,即22

1cos 4cos αα-=.

则2

1cos 5

α=

,原式=2222

16cos 6cos 5cos 5cos 1αααα--==.

10设(,)c x y =,则1)(,)a c x y y ?=-?=-,(1(,)b c x y x ?=?=.

设c 与a ,b 的夹角分别为,αβ,则cos

a c a c α?=

=?,cos b c b c β?==

?

由αβ=,y -=x ①;由c 得22

2x y +=.②

最新高中数学复习讲义 第四章 平面向量与复数

最新高中数学复习讲义 第四章 平面向量与复数 【知识图解】 Ⅰ.平面向量知识结构表 Ⅱ.复数的知识结构表 【方法点拨】 由于向量融形、数于一体,具有几何形式与代数形式的“双重身份”,使它成为了中学数学知识的一个重要交汇点,成为联系众多知识内容的媒介。所以,向量成为了“在知识网络交汇处设计试题”的很好载体。从高考新课程卷来看,对向量的考查力度在逐年加大,除了直接考查平面向量外,将向量与解析几何、向量与三角等内容相结合,在知识交汇点处命题,既是当今高考的热点,又是重点。 复习巩固相关的平面向量知识,既要注重回顾和梳理基础知识,又要注意平面向量与其他知识的综合运用,渗透用向量解决问题的思想方法,从而提高分析问题与综合运用知识解决问题的能力,站在新的高度来认识和理解向量。 1. 向量是具有大小和和方向的量,具有“数”和“形”的特点,向量是数形结合的桥梁, 在处理向量问题时注意用数形结合思想的应用. 2. 平面向量基本定理是处理向量问题的基础,也是平面向量坐标表示的基础,它表明同一 平面内任意向量都可以表示为其他两个不共线向量的线性组合. 3. 向量的坐标表示实际上是向量的代数形式,引入坐标表示,可以把几何问题转化为代数 问题解决. 4. 要了解向量的工具作用,熟悉利用向量只是解决平面几何及解析几何中的简单问题的方 向量 向量的概念 向量的运算 向量的运用 向量的加、减法 实数与向量的积 向量的数量积 两个向量平行的充要条件两个向量垂直的充要条件 数系的扩充与 复数的引入 复数的概念 复数的运算 数系的扩充

O A P Q B a b 第4题 法. 第1课 向量的概念及基本运算 【考点导读】 1. 理解平面向量和向量相等的含义,理解向量的几何表示. 2. 掌握向量的加法、减法、数乘的运算,并理解其几何意义. 3. 了解平面向量基本定理及其意义. 【基础练习】 1.出下列命题:①若,则;②若A 、B 、C 、D 是不共线的四点,则是四边形为平行四边形的充要条件;③若,则;④的充要条件是 且;⑤若,,则。其中,正确命题材的序号是②③ 2. 化简得 3.在四边形ABCD 中,=a +2b ,=-4a -b ,=-5a -3b ,其中a 、b 不共线, 则四边形ABCD 为梯形 4.如图,设点P 、Q 是线段AB 的三等分点, 若=a ,=b ,则=, = (用a 、b 表示) 【范例导析】 例1 .已知任意四边形ABCD 的边AD 和BC 的中点分别为E 、F , 求证:. 分析:构造三角形,利用向量的三角形法则证明. 证明:如图,连接EB 和EC , 由和可得, (1) 由和可得, (2) (1)+(2)得, (3) ∵E 、F 分别为AD 和BC 的中点,∴,, =a b =a b DC AB =,==a b b c =a c =a b =a b //a b //a b //b c //a c AC -BD +CD -AB 0AB BC CD OA OB OP 21 33+a b OQ 12 33 +a b 2AB DC EF +=EA AB EB +=EF FB EB +=EA AB EF FB +=+ED DC EC +=EF FC EC +=ED DC EF FC +=+2EA ED AB DC EF FB FC +++=++0EA ED +=0FB FC += D C E F A 例1

平面向量题型全归纳,平面向量知识点和题型总结

第五章 平面向量 题型57 平面向量的概念及线性运算 ? 知识点摘要: 1. 向量的定义:既有大小又有方向的量叫做向量,一般用c b a ,,来表示,或用有向线段的起点与终点的大写字母表示,如AB (其中A 为起点,B 为终点)。 2. 向量的大小:又叫向量的模,也就是向量的长度,记作||a 或||AB 。 3. 零向量:长度为0的向量,记作0,其方向是不确定的。我们规定零向量与任何向量a 共线(平行),即a ∥0。 4. 单位向量:模长为1个单位的向量叫做单位向量。当≠||a 0时,很明显| |a a ± 是与向量a 共线(平行)的单位向量。 5. 相等向量:大小相等,方向相同的向量,记为b a =。 6. 相反向量:大小相等,方向相反的向量,向量a 的相反向量记为a -。 7. 共线向量(平行向量):方向相同或方向相反的向量,叫做平行向量,也叫做共线向量,因为任何平行向量经过平移后,总可以移到同一条直线上。 一、向量的线性运算 1. 向量的加法: 1.1. 求两个向量和的运算叫做向量的加法。已知向量b a ,,在平面内任取一点A ,作b BC a AB ==,,则向量AC 叫做向量a 和b 的和(或和向量),即AC BC AB b a =+=+。 1.2. 向量加法的几何意义:向量的加法符合三角形法则和平行四边形法则,如图: 1.3. 若向量b a ,不共线,加法的三角形法则和平行四边形法则都适用;当向量b a ,共线时,只能用三角形法则。 1.4. 三角形法则可推广至若干个向量的和,如图:

2. 向量的减法: 2.1. 向量a 与b 的相反向量之和叫做向量a 与b 的差或差向量,即)(b a b a -+=-。 2.2. 向量减法的几何意义:向量的减法符合三角形法则,同起点,指向被减数,如图: 3. 向量的数乘运算: 3.1. 实数λ与向量a 的积是一个向量,记为a λ,其长度与方向规定如下: ①||||||a a λλ= ②当0>λ时,a λ与a 的方向相同;当0<λ时,a λ与a 的方向相反;当0=λ时,0=a λ,方向不确定。 3.2. 向量数乘运算的运算律:设μλ,为实数,则 ①a a a μλμλ+=+)(; ②a a )()(λμμλ=; ③b a b a λλλ+=+)(。 二、重要定理和性质 1. 共线向量基本定理:如果)(R b a ∈=λλ,则b a ∥;反之,如果b a ∥且0≠b 时,一定存在唯一实数λ,使b a λ=。 2. 三点共线定理:平面内三点A,B,C 共线的充要条件是,存在实数μλ,,使μλ+=,其中 1=+μλ,O 为平面内任一点。即A,B,C 三点共线?OC OB OA μλ+=(1=+μλ) ? 典型例题精讲精练: 57.1平面向量相关概念 1. 给出下列命题:①若a =b ,b =c ,则a =c ;②若A ,B ,C ,D 是不共线的四点,则AB ―→=DC ―→ 是四 边形ABCD 为平行四边形的充要条件;③a =b 的充要条件是|a |=|b |且a ∥b ;④若a ∥b ,b ∥c ,则a ∥c ;其中正确命题的序号是________.[答案] ①② 2. 给出下列命题:①两个具有公共终点的向量,一定是共线向量;②λa =0(λ为实数),则λ必为零;③λ, μ为实数,若λa =μb ,则a 与b 共线.其中错误的命题的个数为( )D A .0 B .1 C .2 D .3

复数、平面向量与算法(教师版)

高考微点二 复数、平面向量与算法 牢记概念公式,避免卡壳 1.复数z =a +b i(a ,b ∈R )概念 (1)分类:当b =0时,z ∈R ;当b ≠0时,z 为虚数;当a =0,b ≠0时,z 为纯虚数. (2)z 的共轭复数z - =a -b i. (3)z 的模|z |=a 2+b 2. 2.复数的四则运算法则 (a +b i)±(c +d i)=(a ±c )+(b ±d )i ; (a +b i)(c +d i)=(ac -bd )+(bc +ad )i ; (a +b i)÷(c +d i)= ac +bd c 2+d 2+bc -ad c 2+ d 2 i(a ,b ,c ,d ∈R ,c +d i ≠0). 3.平面向量的有关运算 (1)两个非零向量平行(共线)的充要条件:a ∥b a =λb . 两个非零向量垂直的充要条件:a ⊥b a ·b =0|a +b |=|a -b |. (2)若a =(x ,y ),则|a |=a ·a =x 2+y 2. (3)若A (x 1,y 1),B (x 2,y 2), 则|AB →|=(x 2-x 1)2+(y 2-y 1 )2. (4)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 2 2. 4.算法的三种基本逻辑结构 (1)顺序结构;(2)条件结构;(3)循环结构. 活用结论规律,快速抢分 1.复数的几个常用结论 (1)(1±i)2=±2i ; (2) 1+i 1-i =i ,1-i 1+i =-i ; (3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i. 2.复数加减法可按向量的三角形、平行四边形法则进行运算. 3.z ·z - =|z |2 =|z - |2. 4.三点共线的判定

第六章 平面向量与复数

第六章 平面向量与复数 , 第32课 向量的概念与线性运算 激活思维 1. (必修4P 67练习4改编)化简:AB →+CD →+DA →+BC → =________. 2. (必修4P 62习题5改编)判断下列四个命题:①若a ∥b ,则a =b ;②若|a|=|b |,则a =b ;③若|a|>|b|,则a>b ;④若a ∥b ,b ∥c ,则a ∥c .其中正确的个数是________. 3. (必修4P 57习题2改编)对于非零向量a ,b ,“a ∥b ”是“a +b =0”成立的________条件. (第4题) 4. (必修4P 60例1改编)如图,在正六边形ABCDEF 中,BA →+CD →+EF → =________. 5. (必修4P 68习题10改编)在△ABC 中,若|AB →|=|AC →|=|AB →-AC → |,则△ABC 的形状是________. 知识梳理 1. 向量的有关概念 向量:既有大小又有方向的量叫作向量.向量的大小叫向量的________(或模). 2. 几个特殊的向量 (1) 零向量:____________,记作____,其方向是任意的. (2) 单位向量:________________________. (3) 平行向量:________________________,平行向量又称为共线向量,规定0与任一向量共线. (4) 相等向量:________________________. (5) 相反向量:________________________. 3. 向量的加法 (1) 运用平行四边形法则时,将两个已知向量平移到公共起点,和向量是____________的对角线所对应的向量. (2) 运用向量加法的三角形法则时,要特别注意“首尾相接”,即第二个向量要以____________为起点,即由第一个向量的起点指向____________的向量为和向量. 4. 向量的减法 将两个已知向量平移到公共起点,差向量是________的终点指向________的终点的向量.注意方向指向被减向量.

第五章 5.4平面向量及复数

§5.4复数 最新考纲考情考向分析 1.理解复数的基本概念. 2.理解复数相等的充要条件. 3.了解复数的代数表示法及其几何意义.能将代数 形式的复数在复平面上用点或向量表示,并能将复 平面上的点或向量所对应的复数用代数形式表示. 4.能进行复数代数形式的四则运算. 5.了解复数代数形式的加、减运算的几何意义. 主要考查复数的基本概念(复数的实部、 虚部、共轭复数、复数的模等),复数相 等的充要条件,考查复数的代数形式的 四则运算,重点考查复数的除法运算, 突出考查运算能力与数形结合思想.一 般以选择题、填空题的形式出现,难度 为低档. 1.复数的有关概念 (1)定义:我们把集合C={a+b i|a,b∈R}中的数,即形如a+b i(a,b∈R)的数叫做复数,其中a叫做复数z的实部,b叫做复数z的虚部(i为虚数单位). (2)分类: 满足条件(a,b为实数) 复数的分类a+b i为实数?b=0

(3)复数相等:a +b i =c +d i ?a =c 且b =d (a ,b ,c ,d ∈R ). (4)共轭复数:a +b i 与c +d i 共轭?a =c ,b =-d (a ,b ,c ,d ∈R ). (5)模:向量OZ → 的模叫做复数z =a +b i 的模,记作|a +b i|或|z |,即|z |=|a +b i|=a 2+b 2(a ,b ∈R ). 2.复数的几何意义 复数z =a +b i 与复平面内的点Z (a ,b )及平面向量OZ → =(a ,b )(a ,b ∈R )是一一对应关系. 3.复数的运算 (1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R . (2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行. 如图给出的平行四边形OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即OZ →=OZ 1→+OZ 2→ ,Z 1Z 2→=OZ 2→-OZ 1→.

高中数学平面向量知识点总结及常见题型x

平面向量 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用a,b,c……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB几何表示法AB , a ;坐标表示法a =xi ? yj (x, y).向量 的大小即向量的模(长度),记作| A B |即向量的大小,记作I 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行零向量a = 0 = I a I = 0"由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件. (注意与0的区别) ③单位向量:模为1个单位长度的向量向量a0为单位向量二I a0I = 1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量.记作a // b ■由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为 亠% =x2 小相等,方向相同(x「yj = (x2, y2)=」 y2 2向量加法 求两个向量和的运算叫做向量的加法t―4 ―4 设AB 二a, BC =b,贝y a + b =AB BC = AC (1)0 a a,0二a ;( 2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则?向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ ? QR二AR,但这时必须“首尾相连” ? 3向量的减法 ①相反向量:与a长度相等、方向相反的向量,叫做a的相反向量 记作-a,零向量的相反向量仍是零向量 关于相反向量有:(i) -(-a)=a ; (ii) a+(-a)=( - a)+ a = 0 ; (iii) 若a、b是互为相反向量, 则a=-b,b = -a,a + b=0 ②向量减法:向量a加上b的相反向量叫做a与b的差, 记作:a - b二a ? (-b)求两个向量差的运算,叫做向量的减法 ③作图法:a -b可以表示为从b的终点指向a的终点的向量(a、b有共同起点) 4实数与向量的积: ①实数入与向量a的积是一个向量,记作入a,它的长度与方向规定如下: (I) a a ;

平面向量知识点易错点归纳

§平面向量的概念及线性运算1.向量的有关概念 2.向量的线性运算

3.共线向量定理 向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa. 方法与技巧 1.向量的线性运算要满足三角形法则和平行四边形法则,做题时,要注意三角形法则与平行四边形法则的要素.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”. 2.可以运用向量共线证明线段平行或三点共线.如AB→∥CD→且AB与CD不共线,则AB∥CD; 若AB→∥BC→,则A、B、C三点共线. 失误与防范 1.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量是否也满足条件.要特别注意零向量的特殊性. 2.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.

§平面向量基本定理及坐标表示 1.平面向量基本定理 如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2. 其中,不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算 (1)向量加法、减法、数乘及向量的模 设a=(x1,y1),b=(x2,y2),则 a+b=(x +x2,y1+y2),a-b=(x1-x2,y1-y2), 1 λa=(λx ,λy1),|a|=x21+y21. 1 (2)向量坐标的求法 ①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A(x1,y1),B(x2,y2),则AB→=(x2-x1,y2-y1),|AB→|=?x2-x1?2+?y2-y1?2. 3.平面向量共线的坐标表示 设a=(x1,y1),b=(x2,y2),其中b≠∥b?x1y2-x2y1=0. 方法与技巧 1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 2.平面向量共线的坐标表示 (1)两向量平行的充要条件

第06练-平面向量与复数(解析版)

第06练-平面向量与复数 一、单选题 1.已知复数2a i i +-是纯虚数(i 是虚数单位),则实数a 等于 A .-2 B .2 C .1 2 D .-1 【答案】C 【解析】 2a i i +-21255a a i -+=+是纯虚数,所以2121 0,0552 a a a -+=≠∴=,选C. 2.设i 为虚数单位,复数z 满足21i i z =-,则复数z 的共轭复数等于( ) A .1-i B .-1-i C .1+i D .-1+i 【答案】B 【解析】 【分析】 利用复数的运算法则解得1i z =-+,结合共轭复数的概念即可得结果. 【详解】 ∵复数z 满足 21i i z =-,∴ ()()()2121111i i i z i i i i +===---+, ∴复数z 的共轭复数等于1i --,故选B. 【点睛】 本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题. 3.虚数()2++x yi ,,x y R ∈,当此虚数的模为1时,y x 取值范围为( ) A .???? B .???? ?? ???? U C .?? D .)( ??? 【答案】B 【解析】 【分析】 虚数()2++x yi ,得0y ≠,根据模长公式可得2 2 (2)1,0x y y ++=≠, y x 表示圆上点(去掉与x 轴交

点)与坐标原点的连线的斜率,当连线为圆的切线时为最大和最小值,即可求出结论. 【详解】 虚数()2++x yi ,得0y ≠, 虚数()2(,)x yi x y R ++∈的模为1, 2222(2)1,(2)1,0x y x y y ∴++=++=≠, y x ∴表示圆上的点(去掉与x 轴交点)与坐标原点的连线斜率, 0y x ∴≠,当过原点的直线与22(2)1x y ++=相切时, y x 取得最值,如下图所示,圆心C ,切点分别为,A B , 3tan tan 3 BOC AOC ∠=∠= , 切线,OA OB 的斜率分别为33 ,33 - , 所以30y x - ≤<或30y x <≤ . 故选:B. 【点睛】 本题以虚数的模的背景,考查斜率的几何意义和直线与圆的位置关系,要注意虚数条件,不要忽略,属于中档题. 4.设复数11i z i =+,21z z i =,12,z z 在复平面内所对应的向量分别为OP uuu v ,OQ uuu v (O 为原点),则OP OQ ?=u u u v u u u v ( ) A .1 2 - B .0

第五章 5.2平面向量及复数

§5.2平面向量基本定理及坐标表示 最新考纲考情考向分析 1.了解平面向量基本定理及其意义. 2.掌握平面向量的正交分解及其坐标表示. 3.会用坐标表示平面向量的加法、减法与数 乘运算. 4.理解用坐标表示的平面向量共线的条件. 主要考查平面向量基本定理、向量加法、减法、 数乘的坐标运算及向量共线的坐标表示,考查向 量线性运算的综合应用,考查学生的运算推理能 力、数形结合能力,常与三角函数综合交汇考查, 突出向量的工具性.一般以选择题、填空题的形 式考查,偶尔有与三角函数综合在一起考查的解 答题,属于中档题.

1.平面向量基本定理 如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2. 其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标表示 (1)向量及向量的模的坐标表示 ①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB → |=(x 2-x 1)2+(y 2-y 1)2. (2)平面向量的坐标运算 设a =(x 1,y 1),b =(x 2,y 2),则 a + b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2), λa =(λx 1,λy 1). 3.平面向量共线的坐标表示 设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ,b 共线?x 1y 2-x 2y 1=0.

高考数学专题练习:平面向量与复数

高考数学专题练习:平面向量与复数 1.已知向量a =(-1,2),b =(3,m ),m ∈R ,则“m =-6”是“a ∥(a +b )”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 解析:由题意得a +b =(2,2+m ),由a ∥(a +b ),得-1×(2+m )=2×2,解得m =-6,则m =-6时,a =(-1,2),a +b =(2,-4),所以a ∥(a +b ),则“m =-6”是“a ∥(a +b )”的充要条件,故选A. 答案:A 2.在梯形ABCD 中,AD ∥BC ,已知AD =4,BC =6,若CD →=mBA →+nBC →(m ,n ∈R ),则m n =( ) A .-3 B .-13 C.13 D .3 解析:过点A 作AE ∥CD ,交BC 于点E ,则BE =2,CE =4,所以mBA →+nBC →=CD →=EA →=EB →+BA →= -26BC →+BA →=-13BC →+BA →,所以m n =1-13 =-3. 答案:A 3.已知向量a =(x ,3),b =(x ,-3),若(2a +b )⊥b ,则|a |=( ) A .1 B. 2 C. 3 D .2 解析:因为(2a +b )⊥b ,所以(2a +b )·b =0,即(3x ,3)·(x ,-3)=3x 2-3=0,解得x =±1,所以a =(±1,3),|a |= ±12+32=2,故选D. 答案:D 4.已知向量a =(m,1),b =(m ,-1),且|a +b |=|a -b |,则|a |=( ) A .1 B.62 C. 2 D .4 解析:∵a =(m,1),b =(m ,-1),∴a +b =(2m,0),a -b =(0,2),又|a +b |=|a -b |,∴|2m |=2,∴m =

高中数学讲义 第四章 平面向量与复数(超级详细)

高中数学复习讲义第四章平面向量与复数 【知识图解】 Ⅰ.平面向量知识结构表 Ⅱ.复数的知识结构表 【方法点拨】 由于向量融形、数于一体,具有几何形式与代数形式的“双重身份”,使它成为了中学数学知识的一个重要交汇点,成为联系众多知识内容的媒介。所以,向量成为了“在知识网络交汇处设计试题”的很好载体。从高考新课程卷来看,对向量的考查力度在逐年加大,除了直接考查平面向量外,将向量与解析几何、向量与三角等内容相结合,在知识交汇点处命题,既是当今高考的热点,又是重点。 复习巩固相关的平面向量知识,既要注重回顾和梳理基础知识,又要注意平面向量与其他知识的综合运用,渗透用向量解决问题的思想方法,从而提高分析问题与综合运用知识解决问题的能力,站在新的高度来认识和理解向量。 1.向量是具有大小和和方向的量,具有“数”和“形”的特点,向量是数形结合的桥梁,在处理向量问 题时注意用数形结合思想的应用. 2.平面向量基本定理是处理向量问题的基础,也是平面向量坐标表示的基础,它表明同一平面内任意向 量都可以表示为其他两个不共线向量的线性组合. 3.向量的坐标表示实际上是向量的代数形式,引入坐标表示,可以把几何问题转化为代数问题解决. 4.要了解向量的工具作用,熟悉利用向量只是解决平面几何及解析几何中的简单问题的方法.

第1课 向量的概念及基本运算 【考点导读】 1. 理解平面向量和向量相等的含义,理解向量的几何表示. 2. 掌握向量的加法、减法、数乘的运算,并理解其几何意义. 3. 了解平面向量基本定理及其意义. 【基础练习】 1.出下列命题:①若=a b ,则=a b ;②若A 、B 、C 、D 是不共线的四点,则DC AB =是四边形为平行四边形的充要条件;③若,==a b b c ,则=a c ;④=a b 的充要条件是=a b 且//a b ;⑤若//a b , //b c ,则//a c 。其中,正确命题材的序号是②③ 2. 化简AC -u u u r BD +u u u r CD -u u u r AB u u u r 得0 3.在四边形ABCD 中,=a +2b ,BC =-4a -b ,CD =-5a -3b ,其中a 、b 不共线,则四边形ABCD 为梯形 4.如图,设点P 、Q 是线段AB 的三等分点, 若OA u u u r =a ,OB u u u r =b ,则OP u u u r =21 33 +a b , OQ u u u r =12 33+a b (用a 、b 表示) 【范例导析】 例1 .已知任意四边形ABCD 的边AD 和BC 的中点分别为E 、F , 求证:2AB DC EF +=u u u r u u u r u u u r . 分析:构造三角形,利用向量的三角形法则证明. 证明:如图,连接EB 和EC , 由EA AB EB +=u u u r u u u r u u u r 和EF FB EB +=u u u r u u u r u u u r 可得,EA AB EF FB +=+u u u r u u u r u u u r u u u r (1) 由ED DC EC +=u u u r u u u r u u u r 和EF FC EC +=u u u r u u u r u u u r 可得,ED DC EF FC +=+u u u r u u u r u u u r u u u r (2) (1)+(2)得, 2EA ED AB DC EF FB FC +++=++u u u r u u u r u u u r u u u r u u u r u u u r u u u r (3) ∵E 、F 分别为AD 和BC 的中点,∴0EA ED +=u u u r u u u r r ,0FB FC +=u u u r u u u r r , 代入(3)式得,2AB DC EF +=u u u r u u u r u u u r 点拨:运用向量加减法解决几何问题时,需要发现或构造三角形或平行四边形. 例1

平面向量、复数w

平面向量 一、向量 1、即有大小又有方向的量叫向量 2、O 方向是任意的 3、单位向量a =1 4、平行向量?共线向量 ?//,a b a b ? 方向相同或相反。(注意//o a ) 5、相反向量,a a - 6、相等向量——方向相同,长度相等。 注://,////a b b c a c ?/ (当b o = 不成立)。 二、向量的运算 1.加法 (1)平行四边形法则(共起点、对角线) (2)三角形法则(首尾相连,起点到终点) 122311n n n A A A A A A A A -+++= 2.减法,共起点,终点指向被减数向量 3.实数与向量的积 (1)a λ 仍是一个向量|||||| 0000a a a a a a a λλλλλλλλ=?? >??

①a b b a ?=? ②()()()a b a b a b λλλ?=?=? ③()a b c a c b a +?=?+? 但 ()()a b c a b c ??≠?? a b a c b c ?=??=/ ()0a b a o b o ?=?==/ 或(可能a ⊥b ) (4)cos ||||a b a b θ?==? (5) ||||||a b a b ?≤? 三、平面向量的基本定理 12,e e 不共线,在平面内任一向量a ,有且仅有唯一12,R λλ∈,使1122a e e λλ=+ 。当12,e e 为i ,j 时,12(,)λλ即为直角坐标 四、平面向量的坐标运算 1. 11222121(,)(,)(,)A x y B x y AB x x y y =-- 则 2. 1212(,)a b x x y y ±=±± 3. 1212a b x x y y ?=+ 4. 12120a b x x y y ⊥?+= 5. 1221//0a b x y x y ?-= ?=λ()R ∈λ cos θ= 7. a b 在五、定比分点公式 AP AP PB PB λλ=?= 000,1P P P A P λλλλ>??

必修四平面向量知识点与题型归纳总结

必修四平面向量知识点与题型归纳梳理平面向量的基本概念与线性运算 知识点1平面向量的线性运算 运算定义法则(或几何意义)运算律 加法求两个向量和的运算 (1)交换律: a+b=b+a; (2)结合律: (a+b)+c=a+(b+c) 减法 求a与b的相反向量-b的 和的运算叫作a与b的差 a-b=a+(-b) 数乘 求实数λ与向量a的积的运 算 (1)|λa|=|λ||a|; (2)当λ>0时,λa与a 的方向相同; 当λ<0时,λa与a的 方向相反; 当λ=0时,λa=0 (1)结合律:λ(μ a)=λμ a=μ(λa); (2)第一分配律: (λ+μ)a=λa+μa; (3)第二分配律: λ(a+b)=λa+λb 知识点2共线向量定理、平面向量基本定理及应用 1.向量共线的判定定理和性质定理 (1)判定定理:a是一个非零向量,若存在一个实数λ使得b=λa,则向量b与a共线. (2)性质定理:若向量b与非零向量a共线,则存在唯一一个实数λ,使得b=λa. (3)A,B,C是平面上三点并且在同一条直线上,且A与B不重合,P是平面内任意一点,若点C在直线AB上,则存在实数λ,使得________(如图所示). 三、题型分析 (一) 关于平面向量的概念及其特殊向量的概念(零向量与单位向量) 例1.给出下列四个命题:①若a b →→ =,则a b =;

②若A ,B ,C ,D 是不共线的四点,则“AB DC = ”是“四边形ABCD 为平行四边形”的充要条件; ③若a b =,b c =,则a c =; ④a b =的充要条件是a b → → =且//a b . 其中正确命题的序号是( ) A .②③ B .①② C .③④ D .②④ 【解析】①不正确.两个向量的长度相等,但它们的方向不一定相同. ②正确.∵AB DC =,∴AB DC =且//AB DC ,又A ,B ,C ,D 是不共线的四点,∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则AB DC =且//AB DC 方向相同,因此AB DC =. ③正确.∵a b =,∴a b ,的长度相等且方向相同,又b c =,∴,b c 的长度相等且方向相同,∴,a c 的长度相等且方向相同,故a c =. ④不正确.当//a b 且方向相反时,即使a b → → =,也不能得到a b =,故a b → → =且//a b 不是a b =的充要条件,而是必要不充分条件. 【变式训练1】下列说法正确的是( ) A .A B CD ∥就是AB 所在的直线平行于CD 所在的直线 B .长度相等的向量叫做相等向量 C .有向线段可以表示向量但不是向量,且向量也不是有向线段 D .共线向量是在一条直线上的向量 【解析】对于A ,若AB ∥CD ,则AB ,CD 的方向相同或相反,AB 所在的直线与CD 所在的直线平行或在同一直线上,故A 错误; 对于B ,长度相等且方向相同的向量为相等向量,故B 错误; 对于D ,方向相同或相反的向量叫共线向量,故共线向量不一定在同一条直线上,故D 错误.故选:C . 【变式训练2】下列说法正确的个数是( ) ①两个有公共终点的向量是平行向量; ②任意两个相等的非零向量的起点与终点是一平行四边形的四个顶点; ③向量a 与b 不共线,则a 与b 都是非零向量;

2015届高考数学总复习第四章 平面向量与复数第4课时 复 数课时训练

第四章 平面向量与复数第4课时 复 数 1. (2013·南通期末)已知复数z =3-2i i (i 是虚数单位),则复数z 所对应的点位于复平面的第________象限. 答案:三 解析:z =3-2i i =(3-2i )(-i )i (-i ) =-2-3i. 2. (2013·苏州期末)设复数z 满足z(2+i)=1-2i(i 为虚数单位),则|z|=________. 答案:1 解析:由z(2+i)=1-2i ,得z =1-2i 2+i =(1-2i )(2-i )(2+i )(2-i ) =0-5i 5=-i ,故|z|=1. 3. (2013·徐州三模)已知i 是虚数单位,若a +3i i =b +i(a 、b ∈R ),则ab 的值为________. 答案:-3 解析:由a +3i i =b +i(a 、b ∈R ),得a +3i =bi -1,根据复数相等的条件得a =-1,b =3,ab =-3. 4. (2013·常州期末)已知复数z =-1+i(i 为虚数单位),计算:z·z -z -z -=________. 答案:-i 解析:z =-1+i ,z·z -z -z - =(-1+i )(-1-i )(-1+i )-(-1-i )=22i =-i. 5. (2013·苏锡常镇一模)若实数a 满足2+ai 1-i =2i ,其中i 是虚数单位,则a =________. 答案:2 解析:由2+ai 1-i =2i 得2+ai =(1-i)2i ,即2+ai =2+2i ,根据实部、虚部分别相等,可知a =2. 6. 若z -·z +z =154 +2i(i 为虚数单位),则复数z =________. 答案:-12 +2i 解析:设z =x +yi(x ,y ∈R ),则由z -·z +z =154+2i ,得x 2+y 2+x +yi =154 +2i ,所以?????x 2+y 2+x =154,y =2,解得?????x =-12,y =2, 所以z =-12 +2i. 7. 若复数z 满足|z -i|=1(其中i 为虚数单位),则|z|的最大值为________. 答案:2 解析:设z =x +yi(x ,y ∈R ),则由|z -i|=1,得x 2+(y -1)2=1,由画图可知|z|的最大值为2. 8. 已知x =-3-2i(i 为虚数单位)是一元二次方程x 2+ax +b =0(a ,b 均为实数)的一个根,则a +b =________. 答案:19

复数与向量的关系

重视复平面上复数与向量的联系作用 平面向量与复数是高中数学的重要内容,联系紧密,联系是在复平面进行的。随着知识的发展,相互对应相互促进是联系的主要体现。复数中的概念、运算等在向量中可以作出几何解释;向量的运算,可以对应有关的复数运算.复数与向量的这种联系,只要我们需要,可以将它们组合起来,在计算推理中发挥它们的联系作用,将是一件高效快乐的事情. 一 复数商与内积的联系 复数运算,向量运算之间的许多联系,在现有课本里是可以学习到的,下面我们来看复数商与内积的联系. 例1 复数z 1=a 1+b 1i, z 2=a 2+b 2i ,它们的三角式分别为z 1=|z 1|(cos θ1+isin θ1), z 2=|z 2|(cos θ2+isin θ2),对应的向量分别是1oz =(a 1,b 1)、2oz =(a 2,b 2). 然后复数作商: 代数式作商: 21z z =2221122121||)()(z i b a b a b b a a -++;-------------(1) 三角式作商: 21z z =| || |21z z [cos(θ1-θ2)+isin(θ1-θ2)],------(2) 比较(1)(2)式,可得 ||||21z z [cos(θ1-θ2)]=222121||z b b a a +, ……(3) ||||21z z [sin(θ1-θ2)]=222112| |z b a b a -………(4) 则从中可得下列变式: (1) 复数对应向量间的夹角余弦公式: cos(θ1-θ2| |||212121oz oz ? ,( 我們总可以适当选择θ1、θ2的主值范围,使得|θ 1-θ2 |∈),0[π,所以1oz 与2oz 的夹角就是|θ1-θ2|). (2) 向量内积: 1oz ·2oz =a 1a 2+b 1b 2=|1oz |·|oz 2|cos(θ1-θ2). 若对(4)取绝对值得到:|1oz ×2oz |=|a 1b 2 -a 2b 1|=|1|oz |·2|oz |sin(θ1-θ2)|, 这是空间xoy 平面上向量)0,,(),0,,(2121b b a a ==叉积的绝对值,是以线段oz 1、oz 2为邻边的平行四边形的面积公式. 复数商运算式中,隐含着向量间的夹角公式,向量的内积,平行四边形面积的公式. 若复数代数式i y x z i y x z 222111,-=+=的三角式分别是)sin (cos 1111θθi r z +=,

平面向量与复数

专题复习___________平面向量与复数 【例题选讲】 例1. 设z ∈C ,求满足z+z 1 ∈R 且|z -2|=2的复数z. 解法一:设z=a+bi ,则z+z 1=a+bi+i 1 b a +=a+bi+2 2i b a b a +- =a+ 22 a a b ++(b -22b a b +)i ∈R ∴b=22b a b +∴b=0或a 2+b 2 =1 当b=0时,z=a , ∴|a -2|=2∴a=0或4 a=0不合题意舍去,∴z=4 当b ≠0时,a 2+b 2=1 又∵|z -2|=2,∴(a -2)2+b 2 =4 解得a=41,b=±415,∴z=41±415i 综上,z=4或z=41 ±415i 解法二:∵z+z 1∈R ,∴z+z 1 =z +z 1 ∴(z -z )-z z z z -=0,(z -z )·2 2||1||z z -=0 ∴z=z 或|z|=1,下同解法一 例 2. 四边形ABCD 中,AB a = , BC b = ,CD c = , DA d = ,且a b b c c d d a ?=?=?=? ,判断四边形ABCD 是什么图形? 分析:在四边形ABCD 中,a+b+c+d=0,这是一个隐含条件, 对a+b=-(c+d ),两边平方后,用a ·b=b ·c=d ·c 代入, 从四边形的边长与内角的情况来确定四边形的形状. 解:∵a+b+c+d=0, ∴a+b=-(c+d ), ∴(a+b )2=(c+d )2,即|a|2+2a ·b+|b|2=|c|2+2c ·d+|d|2 , ∵a ·b=c ·d , ∴|a|2+|b|2=|c|2+|d|2……① 同理:|a|2+|d|2=|b|2+|c|2 ……② ①,②两式相减得:|b|2=|d|2,|a|2=|c|2 ,即|b|=|d|,|a|=|c|. ∴ABCD 为平行四边形. 又∵a ·b=b ·c ,即b ·(a -c )=0,而a=-c ,∵b ·(2a )=0 ∴a ⊥b , ∴四边形ABCD 为矩形. 例3. 已知A(0,a),B(0,b),(0<a <b),在x 轴的正半轴上求点C ,使∠ACB 最大,并求出最大值、 解,设C(x,0)(x >0) 则=(-x,a), =(-x,b) 则·=x 2 +ab cos ∠ 22222b x a x ab x +++ 令t=x 2 +ab 故cos ∠ACB= 11)(1 )(1 222 +?-+--t b a t b a ab 当t 1=ab 21即t=2ab 时,cos ∠ACB 最大值为b a ab +2、

相关文档
最新文档