Object contour tracking using level sets

Object contour tracking using level sets
Object contour tracking using level sets

1 Object Contour Tracking Using Level Sets Alper Yilmaz Xin Li Mubarak Shah

School of Computer Science Mathematics Dept.School of Computer Science

Univ.of Central Florida Univ.of Central Florida Univ.of Central Florida yilmaz@https://www.360docs.net/doc/8c5102266.html, xli@https://www.360docs.net/doc/8c5102266.html, shah@https://www.360docs.net/doc/8c5102266.html,

Abstract—High level vision tasks(recognition,under-standing,etc.)for video processing require tracking of the complete contour of the objects.In general,objects un-dergo non-rigid deformations,which limit the applicability of using motion models(e.g.a?ne,projective)that impose rigidity constraints on the objects.In this paper,we propose a contour tracking algorithm for video captured using mo-bile cameras of di?erent modalities.The proposed tracking algorithm uses Bayesian inference based on the probabil-ity density functions(PDFs)of texture and color features. These feature PDFs are fused in an independent opinion polling strategy,where the contribution of each feature is de?ned by its discrimination power.We formulate the evo-lution of the object contour as a variational calculus problem and solve the system using level sets.The associated en-ergy functional combines region-based and boundary-based object segmentation approaches into one framework for ob-ject tracking in video,evaluated in the vicinity of the object contour.In this regard,it can be viewed as generaliza-tion of formerly proposed methods where the shortcomings of other methods(color,shape,gradient constraints,etc.) are overcome.The robustness of the proposed algorithm is demonstrated on real sequences.

I.Introduction

In the recent years,a great deal of e?ort has been ex-panded on object tracking.There are three broad classes of methods for tracking multiple objects:?Correspondence-based object tracking:requires object de-

tection in every frame.Tracking is performed by establish-ing correspondence of the objects in consecutive frames. Objects are represented by their centroids or silhouettes.?Transformation-based object tracking:requires object de-tection only once.Tracking is performed by estimating the motion of objects in consecutive frames.Object are repre-sented by planar surfaces,such as rectangle and ellipse.?Contour-based object tracking:requires object detection only once.Tracking is performed by?nding the object contour given an initial contour from the previous frame. Objects are represented by contour.

Object detection,which is common in all the classes can be performed by feature detection(corner detectors),back-ground subtraction or segmentation.Due to space limi-tations,we will not discuss all possible object detectors, however it is worth to mention several.

Harris corner detector is the most favorite feature de-tector[1].It?nds the variation of image intensities by generating a2x2matrix,M,from?rst order image deriva-tives and computes the eigenvalues,λ,of M.Pixels with highλrepresent existence of a corner.

Background subtraction is the most popular detection method used in object trackers[2],[3],[4],where color observations of individual pixels in a reference frame are statistically modeled.Detection is performed by labeling the pixels that deviate from the background model.In [2],Wren et https://www.360docs.net/doc/8c5102266.html,ed a single Gaussian kernel to model YUV color space of each pixel.Stau?er and Grimson[3] generalized this scheme by modeling the RGB values of pixels using a Gaussian mixture model.

Segmentation is another object detection method.Al-though there are various ways to perform segmentation, due to the relevance to our approach,we will only review active contours(snakes)in the discussion on related work. In the sequel of an detection method,correspondence based tracking can be achieved using object’s state,where state variables can be composed of linear motion models (constant velocity and acceleration)coupled with regional information(color,texture,area and shape).These vari-ables can be modeled using dynamic linear models[4], Gaussian kernels(Kalman?ltering)[3]or Monte-Carlo techniques(particle?ltering)[5].Based on the model,ob-ject correspondence is performed by predicting the objects new position using past observations and verifying the ex-istence of the object at the predicted position. Transformation based tracking is performed directly by computing the transformation of the planar object region from one frame to the next.Object transformations used are translation,translation+scaling and a?ne motion mod-els.One of the most common transformation based tracker is“template matching”,where translation of an object template(rectangle)is computed by searching the image for a similar template.Template matching is compu-tationally expensive and sensitive to illumination varia-tion.Limitations of template matching is solved by the mean-shift tracker,which uses translation based motion model for rectangular or elliptical objects[6].In mean-shift tracking,for each object,color priors are computed using weighted kernel density estimation,where the weights are obtained based on their distance from the object cen-troid.Mean-shift vector is then computed iteratively by maximizing likelihood ratio between the object color prior and the model generated from hypothesized object posi-tion.In[7],Shi and Tomasi proposed the KLT tracker, where object transformation is modeled by a?ne.Ob-jects,detected using Harris detector,are represented by 25×25windows.Similarly,Jepson et al.[8]proposed an object tracker which computed a?ne motion of an ellip-soidal object in consecutive frames using a variation of EM algorithm based on maximizing the likelihood of observing stable features(phase response of steerable pyramids)and

2

object structure(ellipse),while dealing with the outliers (occlusions).

Tracking non-rigid objects can not be performed by us-ing rigid-body motion models.Due to the fact that all rigid and non-rigid transformations reduce to translation of pixels inside the region,tracking can be de?ned as pixel translations.This leads to tracking both rigid and non-rigid objects using contours.Contour tracking can be per-formed by evolving the contour based on minimizing an https://www.360docs.net/doc/8c5102266.html,pared to the silhouettes obtained from back-ground subtraction,contour tracking produces tighter ob-ject boundaries.There are two variations of contour track-ers in the literature,with two types of energy functionals:?Motion-based energy functional:is de?ned based on op-tical?ow to evolve an initial object contour.?Segmentation-based energy functional:clusters the im-

age into object and background regions using past obser-vations.

In this paper,we propose a novel segmentation based en-ergy functional for contour tracking,which is minimized by variational approach.Proposed functional is motivated by a Bayesian framework and is derived without imposing any constraints on object’s shape,color or gradient,and it does not use parametric motion models.It fuses color and texture features computed from the object using indepen-dent opinion polling.Proposed functional builds a bridge between the boundary-based and region-based variational tracking methods which will be detailed in the following section.The functional is evaluated in the vicinity of the contour which increases stability of the solution due to lo-cality.Thanks to texture features proposed method is less prone to lighting changes.The model priors are updated online to learn changes in the background model,thus it is suitable for tracking objects using mobile camera.

The paper is organized as follows:In Section II,we dis-cuss related work on active contours,and state di?erences and similarities between our work and others.Section III details the proposed method,outlines the features used (§III-A)and presents the proposed contour energy func-tional(§III-B).Contour representation and related evolu-tion equations based on the proposed energy functional is given in Section IV.Finally,the experimental results and conclusions are sketched in Sections V and VI respectively.

II.Related Work

Active contour(snake)was introduced to the vision com-munity by Kass et al.[9].In an active contour approach, the objective is to get tight contour enclosing the object. The contour,Γ,is usually represented explicitly by control points,v,and is initialized by placing the control points outside the object region.Segmentation is obtained by evolving the contour toward the object region.Contour evolution is associated by minimizing an energy functional. Energy functionals in active contour framework include regularity and smoothness(internal)terms along with ei-ther boundary or region based image energies.Some ap-proaches use external energies to increase stability of the evolution.A typical functional has the following form:

E(Γ)=

1

E internal(v)+E image(v)+E external(v)ds(1)

where s is the arc-length ofΓ.Kass et al.[9]used?rst order(?v)and second order(?2v)continuity terms for E internal,which guaranteed elimination of gaps and rapid bending of the contour.The evolution was terminated by gradient magnitude,|?I|,based boundary energy.In[10], authors used a greedy algorithm to minimize the contour energy,which was composed of second order regularity and curvature terms.The energy was computed using image gradient|?I|at each control point,i,which was normalized by max(|?I i?1|,|?I i+1|)?min(|?I i?1|,|?I i+1|). Caselles et al.[11]replaced the contour energy of(1) with E(Γ)=

1

E internal(v)E image(v)ds.E image was set to g(|?I|),where g was a sigmoid function.In contrast to using control points,they implicitly represented the con-tour by a level set function(see§IV for details).

Image gradient based contour energy is not suitable to segment objects in textured background.To overcome this limitation,Ronfard[12]proposed a region-based energy, where statistical models were used for object and back-ground regions.All contour points with a neighborhood that?ts the object model are pushed outside,while,all con-tour points with a neighborhood that?ts the background model are pulled inside.The force on the contour was the di?erence of the statistical?ts to the object and back-ground,which was formulated as Ward distance.Since Ward distance depends on the image data in a very intri-cate way,it is impossible to use conventional techniques to minimize the contour energy.Thus Ronfard followed a heuristic evolution approach.In another region based approach,Zhu and Yuille[13]de?ned a region to be homo-geneous and its brightness(color)could be modeled using simple statistical models,such as a single Gaussian.In order to avoid over-segmenting the image,Zhu and Yuille used circular windows of m pixels around each point.At each evolution iteration,they computed the probability of pixels coming from the region prior,and evolved the boundary by minimizing E(Γ).During iterations,if the adjacent regions had similar models,they merged them o?ine and continued the iterations until the image was segmented.Paragios and Deriche[14]extended the region model to the mixture of Gaussians for magnitude of Ga-bor?lter responses.Their functional had both boundary energy(similar to[11])and region energy(similar to[13]) in E image,which were combined using convex combina-tion,E(Γ)=

1

λE boundary(v)+(1?λ)E region(v)ds.The boundary term was used to increase numerical stability. If the contour is initialized with its previous position, contour segmentation approaches become object trackers (segmentation-based functional).On the other hand,con-tour tracking using motion-based functional is motivated by the availability of comprehensive study on optical?ow. In its simplest form,optical?ow constraint is de?ned by I t+1(x,y)?I t(x?u,y?v)=0,where t is time t,and

3

(u,v )is ?ow vector.In [15],Bertalmio et https://www.360docs.net/doc/8c5102266.html,ed ?ow constraint to evolve object contour in consecutive frames.Their objective was to compute u and v iteratively for each contour position using level set representation.At each it-eration,the contour speed in normal direction,?→n ,was

computed by projecting the temporal gradient |?I t |onto ?→n .The authors used two energy functions:contour track-ing,E t (Γ)= 10E external (v )ds ,and intensity morphing,

E m (Γ)= 1

0E image (v )ds ,where E external energy of E t is based on E m .E m (Γ),which minimized intensity changes in the current and previous frames,?I t =I t ?I t ?1,on the hypothesized object contour was coupled with E m (Γ).For instance,if ?I t (x,y ) 0,then the contour moves with maximum speed in its normal direction and I t ?1(x,y )is morphed into I t (x,y ).Similarly,Mansouri [16]used the optical ?ow constraint for contour evolution.In contrast to [15],his approach was motivated by computing the ?ow vector for each regional pixel by brute-force-search in a cir-cular neighborhood with radius r .Note that,motion-based methods do not require background modeling.

Contour tracking approach proposed in this paper is mo-tivated by [12](both him and us use subregion around the contour)and [13](in terms of statistical ideas:conditional probabilities are used in an essential way in de?ning the functionals).Our work is di?erent from [12]in terms of de?ning these subregions.We followed a rigorous approach motivated by Bayesian framework,which can be minimized by conventional techniques such as gradient descent.How-ever,in [12],the energy was minimized heuristically,ie.solution is not stable,since derivatives of the energy func-tional could not be taken.Our functional is very similar in appearance to [13],but has very di?erent interpreta-tions.First,the probability in [13]is assumed to belong to a preassigned family of distributions.Second,within each region,all points are assumed to have the same distribu-tion ([13,Equation (18)]).Third,the averaging operation is not directly related with the minimization since it only serves as a noise reduction operator similar to a low-pass ?l-ter,whereas our minimization functional is directly derived from the contour neighborhood.Finally,since [13]uses parametric form of the contour for segmentation,it makes the numerical implementation di?cult and ine?cient.In comparison,by using the level set,we only calculate energy in a small neighborhood of the object contour.

Our approach naturally is a generalization of previously proposed boundary based [9],[10],[11]and region based [12],[13],[14],[16]active contour methods by de?nition of a band around the contour,such that if the band size is set to 1,it becomes a boundary based method,or if the band is set such that it covers the complete object region,then it becomes a region based method.Details on the band de?nition will be given in Section III-B.

III.Methodology

Tracking an object in an image sequence I n :0

performance of discriminant analysis depends on selection of features.In this section,we detail the features used for this purpose and derive the tracking functional associated with discriminant analysis in the spatial domain.A.Object Features And Modeling

During the last two decades,two classes of features have been widely considered for object tracking:color feature (is obtained from raw color values in an image)and texture feature (codes the repetitive details in an image).

We believe an ideal tracking approach should use both color and texture features.Therefore,in our approach,we used both of these features.In particular,raw color values are modeled by kernel density estimat ion using Epanech-nikov kernel:

K (x )=

12c ?1

d (d +2)(1? x 2)if x <10otherwis

e ,where c d is the volume o

f unit d -dimensional sphere.For

texture,we select a multi-scale and multi-oriented linear basis,speci?cally steerable pyramids (SP).In order to generate a disjoint feature space for creating independent PDFs based on texture analysis,we used Gabor wavelets,which create an orthonormal sub-band basis in SP:

G i (x,y )=e ?π[x

2

/α2+y 2/β2]

·e ?2πi [u 0x +v 0y ],

where αand βspecify width and height,while u 0and v 0specify modulation of the ?lter.We modeled both the mag-nitude and the phase responses of SP using Gaussian mix-ture model N (μk ,σk ).The probability of observing a value

x is computed by p (x |Θ)= C N

k =1P k p k (x |μk ,σk ),where P k is a priori component probability and Θ={P k ,μk ,σk :k =1...C N }.Fixing C N to 3,unknowns are computed using Expectation Maximization (EM)algorithm.

Color and texture models together construct a semi-parametric feature model.Clustering pixels using this model should take discrimination power of the fea-tures into account.For this purpose,we gener-ated the semi-parametric model using independent opin-ion polling strategy [17],in which integration of fea-tures are evaluated prior to object/background mem-bership:p (x |M α)= βp β(x |M α,β),where x is the spatial variable,α∈{object ,background }and β∈{color ,{steerable sub-bands }}.Using Bayes’rule,a pos-teriori estimate of membership can be computed by:

p (α|x )=

βp β(x |M α,β)p (α)

γ

βp β(x |M γ,β)p (γ),(2)where γ∈{object ,background }.It can be easily observed

from (2)that discriminant features will be emphasized.B.Tracking Energy Functional

In the spatial domain,the object and background regions de?ne R =R obj ∪R bck .Object contour,Γ,is de?ned by the intersection of directional curves corresponding to each region,such that Γ=Γobj ∩Γbck ,where Γobj and

4

a)

b)

Fig.1.(a)Object band (light gray),background band (dark gray)around the object contour (white ellipse),(b)subregions around the contour Γde?ned by rectangles.

Γbck are respectively borders of the object and background regions in the counterclockwise direction.The likelihood of observing the boundary (contour)between two regions is equal to the likelihood of partitioning the regions:

P (Γ)=P (?(R )={R obj ,R bck }),

(3)

where ?is the partitioning operator [13].Posteriori prob-ability for the boundary (left side of (3))can be used in-terchangeably with posteriori probability of partitioning the space.Thus,for frame I n ,we formulate the object tracking problem in terms of the boundary probability,P Γ,given I n ,and the previous object boundaries,Γn ?1,Γn ?2,...,Γ1:P Γ=P ?(R n )|I n ,Γn ?1,Γn ?2,...,Γ1 .Using Markovian assumption and Bayes’rule,P Γis simpli?ed to:

P Γ≈P I n |R n obj ,Γn ?1 P I n |R n

bck ,Γn ?1 P ?(R n )|Γn ?1

(4)

The last term in (4)is based on only the pre-vious contour observation,which corresponds to the shape of the object.For the sake of simplicity,we will assume P ?(R n )|Γn ?1 =1and drop the term.Thus,the contour probability becomes P Γ=P I n |R n obj ,Γn ?1 P I n |R n bck ,Γn ?1 .Let there be two

subregions R Γobj and R Γ

bck de?ned in the neighborhood of

the curve,such that R Γobj ?R n obj and R Γbck ?R n

bck .Due to the artifacts

and noise,P Γcan be de?ned in terms of

subregions R Γ

obj

and R Γ

bck as shown in Figure 1a using:P Γ P Γ=P I n |R Γobj ,Γn ?1 P I n |R Γ

bck ,Γn ?1 .(5)

In the remainder of the paper,we will replace P Γwith P

Γand assume that observation at each pixel is independent.Let R obj (x )and R bck (x )denote a neighborhood of x in R Γobj and R Γbck respectively.Then,we can estimate P obj as:

P

Γ=

x 1

x 2

P R Γobj (I n (x 2))

object likelihood x 3

P R Γbck (I n (x 3))

background likelihood

,(6)where x 1∈Γ,x 2∈R obj (x 1)and x 3∈R bck (x 1).

The maximum a posteriori (MAP)estimate of the con-tour being tracked, Γ

n ,is found by maximizing the prob-ability P

Γover the subsets Γ??,where ?is the space

of all object contours.Based on (6), Γ

n can be written in terms of the subregions de?ned by Γ:

Γn =arg max Γ??

x 1

x 2

P R Γobj (I n (x 2)) x 3

P R Γbck

(I n (x 3)) .(7)

In (7),the band around the hypothesized object contour

serves both as boundary constraint [9],[10],[11]and as a region constraint [13],[14]generalizing previously proposed active contour methods into one framework.The advan-tages of using the band around the boundary compared to using the complete region are:?Reduced contour search space;

?Noise and artifacts (holes in the object)are not consid-ered in contour estimation;

?Boundary and region region based energy functionals are generalized into one framework.

?It allows object tracking using mobile cameras by adapt-ing to the local changes around the object contour.

A convenient way of converting a MAP estimation to a minimization problem is by computing the negative log-likelihood of probabilities.Thus,the tracking scheme pro-posed in (7)becomes:

E (Γ)=

x 1∈Γ

x 2∈R obj (x 1)

Ψobj (x 2)dx 2

E A

+

x 3∈R bck (x 1)

Ψbck (x 3)dx 3

E B

d x 1,(8)

where Ψobj (x )=?log P R obj (I n (x ))and Ψbck (x )=?log P R bck (I n (x )).The planar integrals given in (8)are not de?ned.To de?ne these integrals,we select subre-gion R obj ∪R bck to be a square region [?m,m ]x[?m,m ]centered around x i (Figure 1b).The pixels inside the R obj ∪R bck are de?ned for each contour position (f (s ),g (s ))by x =?x +f (s )and y =?y +g (s ),where f and g are para-metric curve functions with parameter s ,?x ,?y ∈[?m,m ].To compute object and background probabilities inside subregion,we de?ne an indicator function of the form:

1Γα{x ∈R α}=

1x ∈R α

0otherwise ,Using the above de?nitions,the functional E A becomes:

E A (s )= m ?m

m

?m

Ψ(x,y )J 1Γobj (x,y )d ?x

d ?y ,wher

e J is the Jacobian introduced due to the change of

variables and x ,y are de?ned above.Due to the translation of the square window around Γthe J =1and is dropped.Once E B is rewritten,(8)results in the tracking functional:

E

=

1

0 ?

Φobj ?posteriori object log likelihood

m

?m

log P R obj (I (x ))1Γobj {x }d?x d?y ? m

?m log P R bck (I (x ))1Γbck {x }d?x d?y

Φbck ?posteriori background log likelihood

ds (9)where l is contour length and 1?Γbck =1?1?Γ

obj .

5 The functional given in(9)is very general and function-

als proposed in[11],[13],[14],[16]are special cases of(9):

?Limiting the discriminant analysis to the pixels inside

the region and setting the probabilities of(9)to

Pα(x)=max

z: z ≤m e?

(I n?1(x)?I n(x+z))2

2σ2

and dropping the plane integrals(due to max operation) results in the tracking scheme proposed in[16].?Replacing the probabilities in(9)with the e?|?I|reduces

to energy proposed in[11].

?Functional given in(9)can be simpli?ed to[13]by in-creasing m such that the band covers both object and back-ground regions.In this case,the front dependent subre-gions RΓαof(8)are changed to region terms Rα.?Similarly,convex combination of boundary and regional forces given in[14]is uni?ed through regional probabilities in(9)attracted by the contour which de?nes the regions.

C.Minimizing the Tracking Functional

Tracking using(9)requires that evolved object contour has minimum energy.The?rst order necessary condition in this regard is to compute the derivative of the energy functional.Associated Euler-Lagrange equations of(9)are:

δE δx =?(Φobj+Φbck)˙y,δE

δy

=(Φobj+Φbck)˙x,(10)

whereΦobj andΦbck are de?ned in(9).An interesting observation about the speed function in(10)is that it is a di?erential equation with integrals,and are called nonlinear ?rst order partial integro-di?erential equations,which are not well-studied.This is di?erent than the integral terms in [13],which was used for averaging purposes.Although con-vergence issue needs analysis,a practical approach to show its convergence is to assume that the rectangle centered on the contour has equal object and background regions on all the contour positions.Thus,the planar integral can be dropped and the system of equations can be transformed into a second order di?erential equation.

IV.Level Sets and Contour Evolution Contours can be implicitly represented using level sets. Level set function,φ:R2→R1,is a grid,where each grid position has a value representing a level.The con-tour,Γ,in level set function is de?ned by the0th level,φ(Γ(s,t),t)=0,and other grid positions inφcarry nega-tive(insideΓ)and positive(outsideΓ)values.Evolution of the contour in level set function is obtained by modify-ingφ:φt(Γ(s,t),t)=F(x,t)|?φ(Γ(s,t),t)|with speed F in the normal direction, n,such that changing the values creates new zero crossings.The Euler-Lagrange equations given in(10)can be related to contour evolution on level sets by de?ning F.To do so,we rewrite(10):

δE δ v =?(Φobj+Φbck)

?˙y˙x

T

(11)

where v=(x,y).Note that,object and the background normals are n obj=(˙y,?˙x)and n bck=(?˙y,˙x).Thus,(11)relates to F:

F x,y=?

m

i=?m

m

j=?m

log P R

obj

(I x )1Γobj{(x )}+

m

i=?m

m

j=?m

log P R

bck

(I x )1Γbck{(x )},(12)

where x =(x+i,y+j).Negative and positive terms correspond to the shrinking and expanding forces and are due to the opposite normal directions.Equation12can be interpreted as follows:

?When the contour is correctly positioned,F≈0.

?If the contour is not correct,background(object)prob-ability will be higher and F becomes negative(positive).

V.Experiments

To demonstrate the performance of the proposed con-tour tracker,we have experimented with various sequences captured with infrared and electro-optical cameras and ob-tained excellent results.Model priors are computed online by reevaluating the change in the object and background features.The level set contour evolution is implemented using the narrow band method,where(12)is used as the speed function.The algorithm is initialized with bound-aries of objects in the?rst frame.Selection of m in(12)is not sequence dependent and is?xed to6for all sequences. In contrast to[16],magnitude of motion is not constrained. In Figure2i,the results are shown for the standard tennis player sequence.The player generates non-rigid motion while the camera pans.The tracking performance is the best among other tracking methods including[18]and[19]. Shown in Figure2ii,the method is tested on a sequence captured using mobile camera.Both texture and color fea-tures played roles during the course of tracking.For in-stance,in regions,where the texture is similar with the background,the method chose color to perform tracking, while in regions,where the color of the pants is similar with the background,the texture features are emphasized.

We also tested our method on a low quality sequence cap-tured using surveillance camera(Figure2iii).The tracked person in the sequence undergoes high nonrigid motion. Due to the similarities in the object and background tex-ture color feature contributes more to the tracking.The ob-ject contour is correctly tracked throughout the sequence. Results given in Figure2iv show where both features si-multaneously contribute to the tracking.The contour of the object is correctly tracked while the camera pans.

We also tested the method on IR sequences.In addition to the problems due to clutter,objects sometimes are not visible or distinguishable from the background.Due to these limitations[16](use intensity di?erences)[14](use only texture)will perform poor on these sequences.In Figure3,we show two di?erent closing sequences,where the target size increases.Since the imagery is of low quality and the atmospheric e?ects cause changes in the features, online models can adapt to the changes in the scene.

To conclude,experiments demonstrated here show the superiority of the proposed method over the methods cited

i)

ii)

iii)

iv)

Fig.2.Contour tracking results for:(i)non-rigid tennis player sequence;(ii)object that has similar feature set with the changing background (iii)sequence captured by a stationary surveillance camera;(iv)changing background.We suggest colored printout to view the results.

i)

ii)

Fig.3.Contours tracking of targets in closing infrared sequences taken from an airborne vehicle.(i)Sequence RNG1415every30th frame; (ii)sequence RNG1618every30th frame.

here.In general,all background subtraction based algo-rithms will fail for sequences given in Figure2except for 2iii where the camera is stationary.The methods given in[9],[10],[11]will not work for all these sequences due to the dependence on image or temporal gradients.Tex-ture based methods given in[8],[14]will fail for sequences in Figures2i,iii and3due to the dependence on purely repetitive texture information which is not present.

VI.Conclusions

We proposed an contour tracking method for tracking non-rigid objects in video captured from mobile cameras. The method generates online color and texture models for both object and background regions.Based on the fea-ture priors,object tracking is formulated as maximization of a posteriori contour probability evaluated in the vicin-ity of the contour,given the previous contour observations. The locality introduced by a band around the contour sup-presses the noise and artifacts that generally occur during the course of tracking and increase stability of the solu-tion.The minimization of the proposed tracking method is performed by evolving the contour in the steepest descent direction,using the implicit level set representation.The results presented show robustness of tracking algorithm for EO and IR imagery.

References

[1] C.G.Harris and M.Stephens,“A combined corner and edge

detector,”in4th Alvey Vision Conference,1988,pp.147–151.

[2] C.R.Wren,A.Azarbayejani,and A.Pentland,“P?nder:Real-

time tracking of the human body,”PAMI,vol.19,no.7,pp.

780–785,1997.

[3] C.Stau?er and W.E.L.Grimson,“Learning patterns of activity

using real time tracking,”PAMI,vol.22,no.8,pp.747–767, 2000.

[4]O.Javed and M.Shah,“Tracking and object classi?cation for

automated surveillance,”in ECCV,2002,vol.4,pp.343–357.

[5]J.Rittscher,J.Kato,S.Joga,and A.Blake,“A probabilistic

background model for tracking,”in ECCV,2000,vol.2,pp.

336–350.

[6] https://www.360docs.net/doc/8c5102266.html,aniciu,V.Ramesh,and P.Meer,“Real-time tracking of

non-rigid objects using mean shift,”in CVPR,2000,vol.2,pp.

142–149.

[7]J.Shi and C.Tomasi,“Good features to track,”in CVPR,1994,

pp.593–600.

[8] A.D.Jepson,D.J.Fleet,and T.F.El-Maraghi,“Robust online

appereance models for visual tracking,”in CVPR,2001,vol.1, pp.415–422.

[9]M.Kass,A.Witkin,and D.Terzopoulos,“Snakes:active con-

tour models,”IJCV,vol.1,pp.321–332,1988.

[10] D.Williams and M.Shah,“A fast algorithm for active contours

and curvature estimation,”CVGIP,vol.55,no.1,pp.14–26, 1992.

[11]V.Caselles,R.Kimmel,and G.Sapiro,“Geodesic active con-

tours,”in ICCV,1995,pp.694–699.

[12]R.Ronfard,“Region based strategies for active contour models,”

IJCV,vol.13,no.2,pp.229–251,1994.

[13]S.C.Zhu and A.Yuille,“Region competition:unifying snakes,

region growing,and bayes/mdl for multiband image segmenta-tion,”PAMI,vol.18,no.9,pp.884–900,1996.

[14]N.Paragios and R.Deriche,“Geodesic active regions and level

set methods for supervised texture segmentation,”IJCV,vol.

46,no.3,pp.223–247,2002.

[15]M.Bertalmio,G.Sapiro,and G.Randall,“Morphing active

contours,”PAMI,vol.22,no.7,pp.733–737,2000.

[16] A.R.Mansouri,“Region tracking via level set pdes without

motion computation,”PAMI,vol.24,no.7,pp.947–961,2002.

[17]P.Torr,R.Szeliski,and P.Anandan,“An integrated bayesian

approach to layer extraction from image sequences,”PAMI,vol.

23,no.3,pp.297–303,2001.

[18] E.Hayman and J.Eklundh,“Probabilistic and voting ap-

proaches to cue integration for?gure ground segmentation,”in ECCV,2002,pp.469–486.

[19]S.Khan and M.Shah,“Object based segmentation of video

using color motion and spatial information,”in CVPR,2001, vol.2,pp.746–751.

Alevel 化学专业词汇。

Alevel基础化学常用英语词汇 1.The Ideal-Gas Equation 理想气体状态方程 2. Partial Pressures 分压 3. Real Gases: Deviation from Ideal Behavior 真实气体:对理想气体行为的偏离 4. The van der Waals Equation 范德华方程 5. System and Surroundings 系统与环境 6. State and State Functions 状态与状态函数 7. Process 过程 8. Phase 相 9. The First Law of Thermodynamics 热力学第一定律 10. Heat and Work 热与功 11. Endothermic and Exothermic Processes 吸热与发热过程 12. Enthalpies of Reactions 反应热 13. Hess’s Law 盖斯定律 14. Enthalpies of Formation 生成焓 15. Reaction Rates 反应速率 16. Reaction Order 反应级数 17. Rate Constants 速率常数 18. Activation Energy 活化能 19. The Arrhenius Equation 阿累尼乌斯方程 20. Reaction Mechanisms 反应机理 21. Homogeneous Catalysis 均相催化剂 22. Heterogeneous Catalysis 非均相催化剂 23. Enzymes 酶 24. The Equilibrium Constant 平衡常数 25. the Direction of Reaction 反应方向 26. Le Chatelier’s Principle 列·沙特列原理 27. Effects of Volume, Pressure, Temperature Changes and Catalysts 体积,压力,温度变化以及催化剂的影响 28. Spontaneous Processes 自发过程 29. Entropy (Standard Entropy) 熵(标准熵) 30. The Second Law of Thermodynamics 热力学第二定律 31. Entropy Changes 熵变 32. Standard Free-Energy Changes 标准自由能变 33. Acid-Bases 酸碱 34. The Dissociation of Water 水离解 35. The Proton in Water 水合质子 36. The pH Scales pH值 37. Bronsted-Lowry Acids and Bases Bronsted-Lowry 酸和碱 38. Proton-Transfer Reactions 质子转移反应 39. Conjugate Acid-Base Pairs 共轭酸碱对 40. Relative Strength of Acids and Bases 酸碱的相对强度

a-level化学课程大纲

第一单元 化学的基本原理 1) 公式、方程和物质的量 1. 理解原子、元素、离子、分子、化合物、实验式和分子式的定义。 2. 能写出简单反应的平衡方程式(全方程和离子方程),包括状态符号的使用。 3. 理解相对原子量、物质量、分子量、百万分率的定义,比如大气、废弃和水污染中的气体。 4. 计算已知浓度溶液中物质的量(不包括滴定计算)。 5. 用化学方程计算反应量,反过来利用物质量和摩尔量的定义计算。 6. 用化学方程计算气体的体积,反过来利用物质量和气体摩尔体积的定义计算。 7. 用化学方程和实验结果推测百分产率、实验室原子经济和工业过程,并理解它们为何重要。 8. 用阿佛加德罗常数计算。 9. 制盐并计算产物的百分产率。 10. 进行一些简易的试管反应并分析结果,如置换、酸的反应、沉淀,练习写完整的化学方程和离子方程。 2)能量学 1. 理解焓变的定义。 2.构建简易的焓级图体现焓变。

3. 放热反应和吸热反应。 4. 复述反应、生成、燃烧、中和和原子化中标准焓变的定义;用实验数据计算反应中转换的能量以及焓变。 5. 复习赫斯定律并将其运用于计算提供数据的反应中的焓变,理解为什么标准数据用于这类型的计算是必要的。 6. 转换能(焦耳)=质量X特定热容量X温差,用此公式估算从实验中会得到的结果。需要做的实验有:在一个绝缘容器内将物质混合并测量升高的温度;简易的燃烧焓实验;做一个焓变不能直接被测量的实验。 7. 证明对键焓和平均键焓定义的理解,将键焓运用于计算赫斯周期并能说出它的局限性。 3)原子结构和元素周期表 1. 复习相对原子量、相对同位素质量和相对分子量的定义。理解他们是通过测量一个12C原子的1/12的质量。 2. 证明对质谱仪基本原理的理解,并能从质谱仪中分析数据去推测一个元素的同位素组成,相对原子量和测量一个化合物的相对分子量。 3. 放热反应和吸热反应。 4. 复述反应、生成、燃烧、中和和原子化中标准焓变的定义;用实验数据计算反应中转换的能量以及焓变。 5. 复习赫斯定律并将其运用于计算提供数据的反应中的焓变,理解为什么标准数据用于这类型的计算是必要的。

chapter 7 redox reaction氧化还原反应alevel化学CIE

Chapter 7 Redox reaction 7.1 What is redox reaction? There are two ways of finding out whether or not a substance has been oxidised or reduced during a chemical reaction: ■■ electron transfer ■■ changes in oxidation number. Oxidation is losing electrons. (OIL) Reduction is gaining electrons .(RIG) 7.2 Redox and electron transfer Half-equations Example: 2Na(s) + Cl2(g) →2NaCl(s) ?Na → Na++ e– Na – e– → Na+ Oxidation is losing electrons. (OIL) ?Cl2 + 2e– → 2Cl– Reduction is gaining electrons .(RIG) Balancing half-equations Example : 1 Construct the balanced ionic equation for the reaction between nickel and iron(III) ions, Fe3+, from the half-equations: Ni(s) →Ni2+(aq) + 2e– Fe3+(aq) + e–→ Fe2+(aq) The balanced ionic equation is: ___________________________________________________ Example : 2 Construct the balanced ionic equation for the reaction of iodide ions (I–) with manganate(VII) ions (MnO4–) inthe presence of hydrogen ions (H+). Use the following two half-equations to help you: i 2I–(aq) →I2(aq) + 2e– ii MnO4–(aq) + 8H+(aq) + 5e–→ Mn2+(aq) + 4H2O(l) The balanced ionic equation is: ___________________________________________________ Exercise : 2 a Write two half-equations for the following reactions. For each half-equation state whether oxidation or reduction is occurring. i Cl2 + 2I– → I2 + 2Cl– ii 2Mg + O2→ 2MgO iii 4Fe + 3O2 → 2Fe2O3 b Zin c metal reacts with IO3– ions in acidic solution.Construct a balance d ionic equation for this

一起来看看新加坡的A-level考试都考些什么

一起来看看新加坡的A-level考试都考些什么 新加坡alevel考试是新加坡教育部和剑桥大学国际考试委员会联合组织共同举办的考试,相当于国内的高考,凭此成绩可以申请新加坡政府大学,英联邦国家的大学等。国内大部分想要进入新加坡政府大学的学生都会选择通过考新加坡alevel考试。那么,新加坡alevel考试考什么呢? 新加坡alevel考试考什么 新加坡alevel考试科目: 5门公共课:英语,华文,地理,数学基础,微积分; 理科:必考2门,英语,数学;选考2门,高等数学,物理,化学,经济学; 商科:必考2门,高等数学,经济学;选考2门,英语,数学,会计; 无论理科还是商科,共考4门。 新加坡alevel考试计分方式 新加坡的alevel计分方式是等级式。A是最好的成绩,B次之,以此类推。 分数(满分100分)/级别 70-100分(A)/69-60分(B)/55-59分(C)/50-54分(D)/45-49分(E)/40-44分(S)/40分以下(U) alevel考试出题到阅卷都在英国进行,成绩回到新加坡后,教育部会根据

当年考试成绩具体情况,做出相应的调整,每个学生的最终成绩是按照这个学生的成绩在当年全国总成绩的百分比的位置,比如在前10%的就是A,下一个10%就是B,依次类推。 新加坡alevel考试时间说明 报考时间:每年3月中下旬; 考试时间:在每年7月/8月为口试,笔试在10月、11月; 成绩发布时间:每年成绩发布时间为第二年的3月中旬,有效期为两年; 报考大学的时间:一般在公布成绩后的1-2周内结束大学和理工学院的网络报名申请,学校会组织老师和学长召开指导大会,指导同学们选择可行的专业,并提供网络报名的帮助; 大学的录取时间:学生在成绩公布后的一周左右的时间通过网络申请大学的课程,一般要等2-3个月才能得到大学的录取通知书,然后学生根据录取通知书上的指导到学校报道、申请准证,开始新的留学旅程。大学的开学时间一般在每年的8月份; 新加坡学生报名截止日期为3月,留学生预备班报名截止日期为2月。此外,如考生成绩不理想,可以第二年再考一次,每名学生最多可考两次,以最好的成绩组合申请。 新加坡alevel考试考什么 中国留学生alevel考试备考指南

alevel有机化学烯烃部分知识点总结

alevel有机化学:烯烃部分知识点总结 今天给参加洋高考的同学讲的内容是烯烃部分的知识点总结。我把它整理出来,便于大家学习。 The homologous series of alkenes has the general formula CnH2n. Alkenes are unsaturated hydrocarbons with one carbon-carbon double bond consisting of a σbond and a πbond. 烯烃同系物通式为: CnH2n.烯烃是具有一个碳碳双键的不饱和碳氢化合物,碳碳双键由一个σ键和一个π键组成. Ethene is a planar molecule, other alkenes are planar of the double bond and the four adjacent atom. Many alkenes have cis-trans isomers which arise because rotation about the double bond is prevented. 乙烯是一个平面分子.烯烃的碳碳双键以及与其相连的四个原子均处在同一平面上.由于碳碳双键不可扭转,一些烯烃存在顺反异构体. Alkenes are more reactive than alkanes because they contain aπbond. The characteristic reaction of the alkene functional group is addition, which occurs across the πbond. For example ethene produces ethane with hydrogen over a nickel catalyst; 1,2-dibromoethane with bromine at room temperature; chloroethane with hydrogen chloride at room temperature; ethanol with steam in the prescence of H3PO4. 由于烯烃中存在一个π键,烯烃相对于烷烃来说,较活泼.由于碳碳双键官能团的存在,烯烃可以通过π键发生加成反应.例如,乙烯和氢气在镍的催化作用下可以生成乙烷;在室温下可以与溴反应生成1.2-二溴乙烷;在室温下雨氯化氢反应生成氯乙烷; 在H3PO4存在的条件下与水蒸汽生成乙醇. The mechanism of the reaction of bromine with ethene is electrophilic addition. Electrophiles accept a pair of electrons from an electron-rich atom or centre, in this case theπbond. A carbocation intermediate is formed after the addition of the first bromine atom. This rapidly reacts with a bromide ion to form 1,2-dibromoethane. 乙烯与溴的反应机理为亲电加成.溴受外界影响,其一端带微正电荷,形成亲电试剂,亲电试剂容易与富电子原子结合,形成π配位化合物,双键中的碳在接受了第一个溴原子的进攻之后,形成了碳正离子,碳正离子的形成促使其很快与另一个溴原子结合,形成1.2-二溴乙烷. Alkenes produce many useful polymers by addition polymerisation. For example, poly(ethene) from CH2=CH2, poly(propene) from CH3CH=CH2, poly(chloroethene) from CH2=CHCl and poly(tetrafluoroethene) from CF2=CF2.烯烃通过加成反应可以生成许多高分子材料.例如, CH2=CH2可以生成聚乙烯, CH3CH=CH2可以生成聚丙烯, CH2=CHCl可以生成聚氯乙烯, CF2=CF2可以生成聚四氟乙烯. The disposal of polymers is difficult as they are chemically inert and non-biodegradable. When burnt, they may produce toxic products such as hydrogen chloride from PVC(poly(chloroethene)). Whilst much manufacturing wast plastic is recycled, the costs of collecting and sorting most domestic plastic are too high to make recycling worthwhile. Use of the energy released on combustion (for heating buildings) is a better option for domestic waste, but treatment of flue gases is required to remove toxic pollutants. A third option is

最新烯烃知识点总结

第三节乙烯烯烃 【知识讲解】一、乙烯的分子结构(与乙烷比较) 乙烯乙烷分子式C2H4C2H6 电子式 结构式 结构简式CH2=CH2CH3CH3 C原子间键C=C(双键)C-C(单键)键角120°109°28' 键长 1.33×10-10m 1.54×10-10m 键能615KJ/mol(一个键易断)348KJ/mol 分子内各原子相对位置各原子均在同一平面不在一个平面 加成反应不能 能 取代反应能 较难 二、乙烯的实验室制法 1、试剂:乙醇(酒精)和浓硫酸按体积比1:3混合 2、反应原理 3、气体发生装置:的装置(与制Cl2相似) 4、集气方法:排水集气法

5、几个应该注意的问题 ① 浓硫酸的作用催化和脱水 ② 碎瓷片的作用防止液体剧烈跳动(防止煮沸)。 ③ 反应温度应控制在170℃,若温度过低(140℃)将发生副反应,而生成乙醚;若温度过高,则乙醇易被浓H2SO4氧化。为了控制温度,应将温度计的水银球插在液面下。以准确测定反应液体的温度。 ④ 反应后液体易变黑,且有刺激性气味气体产生。这是由于浓硫酸的强氧化性将乙醇氧化生成C和CO2,且硫酸被还原成SO2所致。其反应方程式可表示为: 若要净化乙烯,可将其通过NaOH溶液除去SO2、CO2。 三、乙烯的性质 通常情况下,乙烯是无色,稍有气味的气体,密度与空气相近,难溶于水。乙烯化学性较活泼,易发生如下反应: 1、加成反应:有机物分子里不饱和碳原子跟其它原子或原子团直接结合生成别的物质的反应。 ① 与卤素加成:CH2=CH2+Br2→CH2Br-CH2Br(使溴水褪色,可用于检验乙烯或除去乙烯) ② 与氢气加成: ③ 与卤化氢HX加成:(可用于制氯乙烷) ④ 与水加成:(可用于工业上制酒精) 2、氧化反应 ① 燃烧:(火焰明亮有黑烟)

用Alevel成绩申请澳洲大学该如何选课呢

用Alevel成绩申请澳洲大学该如何选课呢 之前说过Alevel不仅可以选择自己感兴趣的课程, 还可以申请英国,澳洲,美国,加拿大,新西兰等等国家的大学,绝对是留学党的秘密武器、 但是Alevel的课程有70多门,该如何选择课程呢? 首先你要知道这6件事…. 1.有些大学会要求具体的ALEVEL课程 如果你已经想好自己要选什么专业了,这一点就至关重要。在一些学校,用ALevel的成绩申请一些课程,有特定课程的要求,例如,在一些大学:申请药学:必须学了化学,生物,数学,物理至少有 一项;申请地理/地球科学:数学,物理,化学和生物至少两门; 具体学校,具体专业对于ALevel课程都有不同的要求,所以选 择ALEVEL课程对于选学校,选专业也至少重要; 2.选一些课程,会让你有更多选择 想申请大学,但是不知道自己想学什么?这种情况很常见。所以,选择一些大学要求最常见的ALevel课程也能让你有更多的选择,包括:biology生物;Chemistry化学;English英语;Maths数 学;Physics物理;当然,选择的课程越多,你未来的选项也就越多。另外,如果你有艺术,设计,音乐方面的才能,觉得未来会往这个 方向发展,你也可以选择相关的课程;另外,需要注意的是,有些大 学不鼓励学生选择一些ALevel课程组合,尤其是比较相似的课程, 像是商科与经济学; 3.ALevel课程比GCSE课程更难

如果从GCSE课程向ALevel转化,那么要做好迎接挑战的准备,因为课程的跨度很大,而且Alevel课程要难得多; 4.也有一些大学和专业会列出不可接受的课程; 5.不要完全相信传说 不要完全相信那些传说,有时候事实可能完全不同; 学校除了审视你的ALevel成绩之外,也会考察其他方面,例如课外活动,你的作品集,所以,不要完全听信别人的经验就觉得不行,最好自己在检查一遍; 6.很多大学和课程,不管你选什么都会考虑; 问题:会计,人类学,商科,酒店管理,法学,营销等等,这些专业都有什么共同点? 答案:这些课程都会接收广泛的ALevel课程申请,一般没有特定课程要求。所以,不要被特定的课程局限了你的选择。

可汗学院有机化学2简单烷烃的命名

简单烷烃的命名 So when we name organic molecules,the core of what we think about is just how many carbons form the chain or form the ring that we’re looking at?So let’s say I have something like this.And hopefully ,you’re reasonably familiar with what this represents.And I’ll review it a little bit.So let’s say I have something like this .Let’s say that is the molecular structure right there.And so the first question you should be asking is how many carbons are there?And some of you might say, wait,how is that even a molecule?And just as a review,the end point of every line represents a carbon.So that’s a carbon,that’s a carbon,that’s a carbon,that’s a carbon,that’s a carbon ,that’s a carbon.And we have one,two ,three, four ,five ,six carbons and we have no double bonds.So if you have all of that information you’re ready to name this molecule.And before I actually name it ,let me just kind of give you all of the different prefixes.So if you have one carbon,the prefix is meth- ,If you have two carbons, the prefix is eth-.And it’s good to memorize at least up to about 10.And actually it kind of repeats after that .If you have three carbons ,the prefix is prop-.Prop-like propane,and you’ve heard of ethane and methane.So you’ll see all of that soon.Four,you’re talking about but-. Five,and after five it kind of becomes the traditional prefixes that we associate with a lot of these numbers. So at five,it’s pent-,like pentagon.Six, it’s hex-,like hexagon.Seven is hept-. Eight is oct-,like octagon.Nine, is non-.Ten is dec-.And then after that it kind of starts to have a pattern here,and you’ve not going to really deal with things much beyond the teens,but I’ll just write them down here just out of interest.Eleven is undec-. And for those of you who know French ,I’m not one of them,but I know that one in French is une,or in Spanish ,uno.So it’s 1 and 10,11. Twelve is dodec-. Do or dos,if you’re speaking Spanish ,for 2.Dec for ten.two and ten,that’s twelve.Thirteen ,you could imagine what it’s going to be.It’s tridec-.Fourteen is tetradec-. A tetrapod is something with four legs. And after that it, becomes very systematic.At fifteen is pentadec-. Notice pent-, five and ten.Sixteen is hexadec-. Seventeen is heptadec-.So it just goes on and on and on.I don’t think I’ve got to go anyway, It’s hexadec-,heptadec-,octadec-is eighteen,nineteen is nonadec-, and then twenty is actually iso-.But we won’t even go into that.This’ll probably serve our purposes.I mean, I could go up to sixteen is hexadec-. So this is just how many carbons are in our longest chain.What I drew here is just one chain. So we could immediately--let’s try to name it .Well, how many carbons do we have here?Well ,we have one,two,three , four ,five ,six carbons.So we’ll be dealing with hex- as a prefix.And then to get, I guess ,the post-fix on this prefix,or the kind of the root,you look to see if there are any double bonds here.And there are no double bonds here.And if we have no double bonds in this carbon chain,we’re dealing with an alkane.This is called alkane.which is a general term for all of the chains of carbons that have no double bonds on them,or no triple bonds,all single bonds.So in this situation, you take hex- for six, so this is hex-.And then ,because it’s an alkane,it gets the -ane from alkane.So this is hex- ,this is hexane. Let’s do another one.Let’s say I have this thing right here.I’ll draw let’s make it even longer.So let’s say I have that thing right there. So how many carbons do we have? We have one,two,three, four,five ,six ,seven carbons.They’re all single bonds, so it’s an alkane.So this will be seven carbons.It is heptane because we have all single bonds.Now ,if things form a chain, of if things form a ring, I should say,we put the prefix cyclo- in front of it .So if Ihve let me show you what I’m talking about.So if I just have five carbons ,one , two ,three, four ,so one ,two ,three ,four ,five. I have one , two ,three, four ,five carbons in a chain.If I just have five carbons in a chain like this, this would be pentane.But if I have five

如何学好Alevel A-Level满分女孩的独家秘笈

如何学好Alevel? A-Level满分女孩的独家秘笈 也许我们觉得满分并不难,小学的时候经常双百。但是你听说过高考拿满分的吗?听说过国际高考拿满分的吗?培诺教育青岛大学A-Level中心的女孩赵艺凡书写了培诺A-Level史上的满分奇迹——参加英国高考A-Level,一共考试18个单元,满分1800,获得了14个满分,总分1788。 1月份赵艺凡考了12个单元,主要是数学和化学。其中10个单元满分,数学S1遗憾失掉3分,比较有难度的化学2失掉7分。在5、6月份6个单元的考试中,赵艺凡又拿到了4个单元的满分,数学F1和化学6各扣掉一分。学习A-Level仅8个月时间,赵艺凡以成绩3个A*完美告一段落。因为申请剑桥大学的自然科学专业还需要一门自然科学课的成绩,所以开学后赵艺凡还会在培诺继续学习物理。 谈到学习经验,赵艺凡和大家分享了几点。首先上课时认真听课,休息时认真休息。课余时间和周六周天该休息就认真休息。一节课40分钟,精力也不可能完全集中,但是讲授新课的阶段一定要听好,这是一节课的精髓。第二要刨根问底,学习一个公式不但要知道这个公式用在哪,怎么用,还要知道这个公式是怎么推导出来的。知其然,还要知其所以然!当然学习过程中有良师益友的相伴也很重要。艺凡说每次数学课她都刨根问底,教数学的徐文蓁老师都会尽力帮她讲解,即使当时讲不全面,课后查资料还会继续给她补充。她也会和同学于海舒一起讨论,通常答案就产生在两人的思想碰撞中。这样不但弄懂了题目,而且印象会很深刻。说到化学,邹顺成老师的刷题策略也对她帮助很大,因为别人犯的错误也绝对不能忽视。每次刷题对艺凡的收获就是借他人之鉴,长自己经验,而且还会增加不少信心。 A-Level考试越来越灵活,尤其是化学,考试前后的联系性很强,而且经常出现许多没见过的新题型。遇到这样的情况,艺凡说一定要相信自己的感觉,努力回忆相关知识点,然后大胆分析,认真书写,一定会拿到高分。1月份考的不错,所以5、6月份的考试心理压力比较小,这也是她能以轻松心态参加考试并取得成功的关键。继培诺A-Level中心总体分数力压群雄之外,“满分女孩”赵艺凡再创A-Level奇迹。没有最好,只有更好!培诺的老师和学子们非常有信心将胜利进行到底! 来源:成都晚报

A-Level高中GPA算法(申请美国)

各位同学, 今年UC表格中需要填写9年级成绩,10-11年级的平时成绩,IGCSE,AS,A-LEVEL成绩和高三目前在读科目。以下是成绩填写指导,请仔细阅读,成绩填写须由学生自己完成。 1,进入ACADEMIC HISTORY,点击7th/8th Grade Course 填写如下:

2,填写完整后,点击下一步 首先填写初中,图片只是举例,初中在读时间按照真实情况填写: 此处要注意!上图中WHAT IS YOUR SCHOOL’S GRADING SYSTEM(评分制度),有很多中学的成绩单中成绩包含百分制和等第,比如数学上学期80 下学期A,此种情况下,WHAT IS YOUR SCHOOL’S GRADING SYSTEM 选择OTHER,然后下面的框里写明评分制度 然后在下图OTHER ACADEMIC HISTORY里解释A B C D代表什么百分制分数,比如A=90-100,B=80-89,C=70-79,

D=60-69 然后填写高中,如果在入读镇中前读过高一,请把这个高一也添加进去,添加程序和初中相同。镇中的学校CODE是694294,添加镇中的时候,直接输入CODE即可,不需要输入名字

学校添加完成后,如图 3,点击NEXT,开始填写9年级成绩,每个同学选择的科目不同,所以要参照“初中成绩”来填

点击NEXT,填写10年级成绩,样本如下 点击NEXT,填写11年级成绩,每个同学选择的科目不同,所以要参照“高中平时成绩”来填,A LEVEL的所有科目都是HL,非A LEVEL的科目都是NH

点击NEXT,填写12年级在读课程,每个同学选择的科目不同,所以要参照“高中平时成绩”来填。 点击NEXT,进入OTHER ACADEMIC HISTORY, 在前面我提到过,如果初中或高中的GRADING SYSTEM是OTHER,那么这里要解释!镇中GRADING SYSTEM就是OTHER, 解释内容为: Explanation for 10th (IGCSE), 11th (AS) and 12th (A2) grade: A*: 90-100%, A: 80-89%, B: 70-79%, C: 60-69%, D: 50-59%, E: 40-49%, U: failed 4,进入Activities & Awards,添加Coursework other than A-G 把体育填进去。 Briefly describe the course自行填写

Alevel数学词汇

A-level数学必学词汇汇总 数学 mathematics, maths(BrE), math(AmE) 公理理 axiom 定理理 theorem 计算 calculation 运算 operation 证明 prove 假设 hypothesis, hypotheses(pl.) 命题 proposition

算术 arithmetic 加 plus(prep.), add(v.), addition(n.) 被加数 augend, summand 加数 addend 和 sum 减 minus(prep.), subtract(v.), subtraction(n.)被减数 minuend 减数 subtrahend 差 remainder 乘 times(prep.), multiply(v.), multiplication(n.) 被乘数 multiplicand, faciend 乘数 multiplicator 积 product 除 divided by(prep.), divide(v.), division(n.) 被除数 dividend 除数 divisor 商 quotient 等于 equals, is equal to, is equivalent to ?大于 is greater than ?小于 is lesser than ?大于等于 is equal or greater than ?小于等于 is equal or lesser than

运算符 operator 数字 digit 数 number ?自然数 natural number 整数 integer ?小数 decimal ?小数点 decimal point 分数 fraction 分?子 numerator 分?母 denominator ?比 ratio 正 positive 负 negative 零null, zero, nought, nil ?十进制 decimal system ?二进制 binary system ?十六进制 hexadecimal system 权 weight, significance 进位 carry 截尾 truncation 四舍五?入 round

alevel化学常用单词汇总

chapter 1 atomic structure element n.元素 all know materials can be broken down into fundamental substances we call element. 我们所知道的所有物质都可以分解成原子。 atom n.原子 atom is the smallest particle of matter having all that element ’s characteristics. 原子时具有元素性质的最小粒子。 nucleus /’nju:kli?s ,’nu ?kli ?s/ 原子核 electron n.电子 proton 质子 neutron 中子 compound n. 化合物: When two or more elements combine and form a compound, a chemical change takes place. 当两种或两种以上的元素结合形成化合物时, 发生化学变化。 化学中的物质分为单质和化合物,大部分元素是以化合物的形式存在atom nucleus election proton neutron {{(+)(-)

的。 ion n. 离子: when an atom get or lost elections,it becomes ion. 原子得失电子后形成离子。 cathode n. 阴极(negative electrode) Cathode rays are attracted by a positive charge. 阴极射线被阳电荷所吸引。 anode n. 阳极(positive election) A red wire is often attached to the anode. 红色电线通常与阳极相联。 particle n. 粒子: Particles include moleculars,atoms , protons, neutrons ,electrons and ions.微小粒子包括分子,原子,质子,中子,电子,离子等等。 ionisation n. 电离,离子化: We can get some elementary substance by ionisation. 可以通过电离的方法来制取某些单质。

alevel化学中前三章的相关练习题

第一章原子结构 1(2008) Use of the Data Booklet is relevant to this question. The graph represents the variation of a property of the Group II elements. What is this property? A ionic radius B ionisation energy C neutron / proton ratio D rate of reaction with water 2 (2008)In which pair do both atoms have one electron only in an s orbital in their ground states? A Ca, Sc B Cu, Be C H, He D Li, Cr Use of the Data Booklet is relevant to this question. Hard water contains calcium ions and hydrogencarbonate ions arising from dissolved calcium hydrogencarbonate, Ca(HCO3)2. How many electrons are present in the hydrogencarbonate anion? A 30 B 31 C 32 D 33 3(2010) Use of the Data Booklet is relevant to this question. What could be the proton number of an element that has three unpaired electrons in each of its atoms? A 5 B 13 C 15 D 21

【最新2018】2018年度教师述职报告-范文word版(2页)

【最新2018】2018年度教师述职报告-范文word版 本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除! == 本文为word格式,下载后可方便编辑和修改! == 2018年度教师述职报告 XX年度教师述职报告 一年很快就过去了,感觉日子就像是车轮旋转,在你不经意的时候就已经度过了一些困难,度过了一些艰苦,度过了一些压力,度过了一些幸福。蓦然回首,原来那些所谓的困难、压力也不过如此,乐观、积极的去面对也就迎刃而解了。 首先谈谈我的个人感受,概括起来就是三句话:累并快乐着,累并坚持着!累并感动着! 这一学期里我除了担任中一班的班长还兼任一幼的工会小组长,当班长的老师都知道,尽管我们的教学任务不是很重,只负责分享阅读和蒙氏数学这两个教学活动,但班上所有的事务性工作都需要自己过问,再加上中一班是个全托班,光说班级老师就有7位,如何协调好班级老师的工作,指导新教师熟悉自己的岗位都需要花费很多精力。 记得开学第一个月,我几乎每天下班回家吃完晚饭都会去班上看看,在孩子们洗澡的那天去班上帮忙,给孩子们吹头发,与新的生活老师进行沟通指导。有的时候到了下班时间,我走到园门口又接到全托班小朋友家长的电话,于是我又返回教室。家里的饭熟了,老公打来电话催我回去吃,我说一会儿就回去,这一会儿就成了一小时、两小时,直到老公说你别回来了!很多人都问我,你怎么每天都这么有劲儿啊?不累吗?我笑笑,我只能说这是我喜欢的事情,做自己喜欢的事情,累也是快乐的!正是有了这样的累,我才能在很短的时间内熟悉了全托班的管理,并且与班级老师配合默契。 正当班级工作发展到顺风顺水时,我有备而孕的计划也实现了,虽然是照计划进行,心里也有所准备,但好孕并没有给我带来很多欢喜,因为接踵而来的体育节活动和工会活动,让我有些力不从心。尽管有的时候会自我安慰,不要太劳累,不要太操心,但这样的自我安慰也只是像流星划过,该做的我还是像之前一样坚持做完、做好。只是抱歉,教师组的工会活动目前还没有组织。 最后我要说的一个感受就是累并感动着,感动来源于大家对我的一句问候,一个细微动作,我的父母都不在身边,但怀孕之后,大家给我的关心却胜似亲人。走路的时候慢一点,天冷的时候多穿一点,多吃一点……有了在座的各位老师的关心,工作累是累点但心却温暖着,真不知道该如何感谢大家,唯有将心里的感激之情化为工作的动力!

相关主题
相关文档
最新文档