分级小波神经网络在故障诊断中的应用

分级小波神经网络在故障诊断中的应用
分级小波神经网络在故障诊断中的应用

基于神经网络的故障诊断

神经网络工具箱应用于故障诊断 1.问题描述 电力系统的安全运行具有十分重要的意义。当高压变压器或其他类似设备在运行中出现局部过热、不完全放电或电弧放电等故障时,其内部绝缘油、绝缘纸等绝缘材料将分解产生多种气体,包括短链烃类气体(C2H2、CH4等)和H2、CO2等,这些气体称作特征气体。而特征气体的含量与故障的严重程度有着很密切的关系,如下图1所示。将BP神经网络应用于变压器故障诊断对大型变压器的运行有着非常重要的意义。 2.神经网络设计 (1)输入特征向量的确定 变压器的故障主要与甲烷(CH4)、氢气(H2)、总烃(C1+C2)以及乙炔(C2H2)4 种气体的浓度有关,据此可以设定特征向量由这 4 种气体的浓度组成,即CH4、H2、C1+C2(总烃)和C2H2,同时也设定了网络输入层的节点数为4个。 (2) 输出特征向量的确定 输出量代表系统要实现的功能目标,其选择确定相对容易一些。只要问题确定了,一般输出量也就确定了。在故障诊断问题中,输出量就代表可能的故障类型。变压器的典型故障类型有:一般过热故障、严重过热故障、局部放电故障、火花放电故障以及电弧放电故障等5种类型,因此这里选择 5 个向量作为网络的输出向量,即网络输出节点确定为 5 个。根据Sigmoid 函数输出值在0 到1 之间的特点,这里设定以0 到1 之间的数值大小表示对应的故障程度,也可以理解为发生此类故障的概率,数值越接近 1 表示发生此类故障的几率越大或说对应的故障程度越大。针对本系统,

设定输出值大于等于0.5 时认为有此类故障,小于0.5 时认为无此类故障。 (3)样本的收集 输入、输出向量确定好以后就可以进行样本的收集。 数据归一化处理时,注意:在归一化处理的时候,因考虑到各气体浓度值相差较大,如总烃的浓度比H2的浓度值高出几个数量级,因此在归一化处理的时候,分别对各个气体浓度值进行处理,即最大值和最小值取的是各气体的最值,而不是所有样本值中的最值。 在本实例中采用:MATLAB利用归一化公式 u=(x-min(min(x)))./(max(max(x))-min(min(x))) (1) 在公式1中x表示所需归一化处理的数据,u表示归一化后的结果 处理结果如下:

(完整版)小波神经网络的时间预测

基于小波神经网络的短时交通流预测 摘要 将小波神经网络的时间序列预测理论应用于短时交通流量的预测。通过小波分解与重构获取交通流量数据中的低频近似部分和高频随机部分, 然后在分析各种模型的优、劣的基础上, 选取较有效的模型或模型结合方式, 建立了交通流量预测模型。最后, 利用实测交通流量数据对模型仿真, 结果表明该模型可以有效地提高短时交通流量预测的精度。 关键词: 小波变换 交通流预测 神经网络 1.背景 众所周知, 道路交通系统是一个有人参与的、时变的、复杂的非线性大系统, 它的显著特点之一就是具有高度的不确定性(人为的和自然的影响)。这种不确定性给短时交通流量预测带来了极大的困难。这也就是短时交通流量预测相对于中长期预测更复杂的原因所在。在交通流量预测方面,小波分析不是一个完全陌生的工具,但是仍然处于探索性的应用阶段。实际上,这种方法在计算机网络的流量的预测中有着广泛的应用。与计算机网络一样,车流也表现出复杂的习性。所以可以把它的应用推广类比到交通流量的预测中来。小波分析有着与生俱来的解决非稳定时间序列的能力, 所以常常被单独用来解决常规时间序列模型中的问题。 2.小波理论 小波分析是针对傅里叶变换的不足发展而来的,傅里叶变换是信号处理领域里最为广泛的一种分析手段,然而他有一个严重的不足,就是变换抛弃了时间信息,变换结果无法判断某个信号发生的时间。小波是一种长度有限,平均值为0的波形,它的特点包括: (1)时域都具有紧支集或近似紧支集; (2)直流分量为0; 小波变换是指把某一基本小波函数ψ(t)平移b 后,再在不同尺度a 下与待分析的信号x(t)做内积。 dt a b t t x a b a WT x )()(1),(-=?*ψ??==?*)(),()()(,,t t x dt t t x b a b a ψψ (2 — 1) 等效的时域表达式为 dt a b x a b a WT x ωωψωj e )()(1),(-=?* a > 0 (2 — 2) 3.小波神经网络 小波神经网络是小波分析理论与神经网络理论相结合的产物,把小波基函数作为隐含层节点的传递函数,信号前向传播的同时误差反向传播的神经网络。 图一中1x ,2x ,....k x 是小波神经网络的输入参数,1y ,2y ....,m y 是小波神经网络的预测输出。

小波神经网络的时间序列预测-短时交通流量预测

%% 清空环境变量 clc clear %% 网络参数配置 load traffic_flux input output input_test output_test M=size(input,2); %输入节点个数 N=size(output,2); %输出节点个数 n=6; %隐形节点个数 lr1=0.01; %学习概率 lr2=0.001; %学习概率 maxgen=100; %迭代次数 %权值初始化 Wjk=randn(n,M);Wjk_1=Wjk;Wjk_2=Wjk_1; Wij=randn(N,n);Wij_1=Wij;Wij_2=Wij_1; a=randn(1,n);a_1=a;a_2=a_1; b=randn(1,n);b_1=b;b_2=b_1; %节点初始化 y=zeros(1,N); net=zeros(1,n); net_ab=zeros(1,n); %权值学习增量初始化 d_Wjk=zeros(n,M); d_Wij=zeros(N,n); d_a=zeros(1,n);

d_b=zeros(1,n); %% 输入输出数据归一化 [inputn,inputps]=mapminmax(input'); [outputn,outputps]=mapminmax(output'); inputn=inputn'; outputn=outputn'; %% 网络训练 for i=1:maxgen %误差累计 error(i)=0; % 循环训练 for kk=1:size(input,1) x=inputn(kk,:); yqw=outputn(kk,:); for j=1:n for k=1:M net(j)=net(j)+Wjk(j,k)*x(k); net_ab(j)=(net(j)-b(j))/a(j); end temp=mymorlet(net_ab(j)); for k=1:N y=y+Wij(k,j)*temp; %小波函数 end end

小波神经网络

clc clear %% 训练数据预测数据提取及归一化 %下载四类语音信号 load data1 c1 load data2 c2 load data3 c3 load data4 c4 %四个特征信号矩阵合成一个矩阵 data(1:250,:)=c1(251:500,:); data(251:500,:)=c2(251:500,:); data(501:750,:)=c3(251:500,:); data(751:1000,:)=c4(251:500,:); %从1到2000间随机排序 % k=rand(1,1000); % [m,n]=sort(k); %输入输出数据 input=data(:,2:11); output1 =data(:,1); %把输出从1维变成4维 output=zeros(1000,4); for i=1:1000 switch output1(i) case 1 output(i,:)=[1 0 0 0]; case 2 output(i,:)=[0 1 0 0]; case 3 output(i,:)=[0 0 1 0]; case 4 output(i,:)=[0 0 0 1]; end end %随机提取1500个样本为训练样本,500个样本为预测样本% input_train=input(n(1:250),:)'; % output_train=output(n(1:250),:)'; input=input(1:250,:); output=output(1:250,:);

% input_test=input(1501:2000,:)'; % output_test=output(1501:2000,:)'; M=size(input,2); %输入节点个数 N=size(output,2); %输出节点个数 n=10; %隐形节点个数 lr1=0.0001; %学习概率 lr2=0.0001; %学习概率 maxgen=1000; %迭代次数 %权值初始化 Wjk=randn(n,M);Wjk_1=Wjk;Wjk_2=Wjk_1; Wij=randn(N,n);Wij_1=Wij;Wij_2=Wij_1; a=randn(1,n);a_1=a;a_2=a_1; b=randn(1,n);b_1=b;b_2=b_1; %节点初始化 y=zeros(1,N); net=zeros(1,n); net_ab=zeros(1,n); %权值学习增量初始化 d_Wjk=zeros(n,M); d_Wij=zeros(N,n); d_a=zeros(1,n); d_b=zeros(1,n); %% 输入输出数据归一化 [inputn,inputps]=mapminmax(input'); [outputn,outputps]=mapminmax(output'); inputn=inputn'; outputn=outputn'; error=zeros(1,maxgen); %% 网络训练 for i=1:maxgen %误差累计 error(i)=0; % 循环训练 for kk=1:size(input,1) x=inputn(kk,:); yqw=outputn(kk,:);

人工神经网络在设备故障诊断中的应用

人工神经网络在设备故障诊断中的应用 程瑞琪 (西南交通大学 成都 610031) 摘 要 介绍了神经网络技术在设备故障诊断中应用的2个主要方向———故障模式识别和诊断专家系统,对应用的方法、特点及存在的问题也 作了概略分析。 关键词 神经网络 故障诊断 模式识别 专家系统中图分类号 TP 18 近年来人工神经网络(Artificial neural network -ANN )的研究发展迅速,ANN 以其诸多优点在设备状态监测与故障诊断中受到了愈来愈广泛的重视,为设备故障诊断的研究开辟了一条新途径。 ANN 具有以下主要特征:①实现了并行处理机制,可提供高速的信息处理能力;②分布式信息存储,可提供联想与全息记忆的能力;③网络的拓扑结构具有非常大的可塑性,使系统有很高的自适应和自学习能力;④具有超巨量的联接关系,形成高度冗余,使系统具有很强的容错能力;⑤是一类大规模非线性系统,提供了系统自组织与协同的潜力。本文作者仅就ANN 用于故障模式识别及诊断专家系统这两个方面应用的主要方法、特点及存在的问题作概括介绍。 1 神经网络与故障模式识别 模式识别是ANN 应用的一个较成功的领域,诊断问题实质上就是一种模式分类,是将系统的状态区分为正常状态或某一种故障状态的问题。通常故障模式的分布是非常不规则的,故要求所用模式分类方法能在模式空间里形成各种非线性分割平面,ANN 的特性使其可以作为一类性能良好的非线性分类器。1.1 方法及特点 ANN 故障模式识别可用图1所示BP 模型来说明 。 图1 BP 网模型 其中网络输入节点对应故障征兆,输出节点对应故障原因。进行故障模式识别时,先用一批故障样本 对模型进行训练,以确定网络结构(隐层及其节点数)和参数(节点间的联接权);网络训练好后,故障的模式分类就是根据给定的一组征兆,实现征兆集到故障集之间非线性映射的过程。 用ANN 作故障模式识别的特点有:①可用于系统模型未知或系统模型较复杂及非线性系统的故障模式识别;②兼有故障信号的模式变换与特征提取功能;③对系统含有不确定因素、噪声及输入模式不完备的情况不太敏感;④可用于复杂多模式的故障诊断;⑤可用于离线诊断,也能适应实时监测的要求。1.2 模型 用于故障模式识别的ANN 模型按学习方式可分有监督学习模型和无监督学习模型两大类,前者主要包括B P 网和径向基函数(RB F )网;后者主要包括自适应共振(ART )网和自组织特征映射(SOM )网。1.2.1 有监督学习模型 BP 网是目前故障诊断中应用最多且较成熟的一种模型,其神经元的非线性映射函数采用Sigmoid 函数,网络训练采用误差反向传播(Back pr opagation )学习算法。BP 网的结构及学习算法简单,但应用中还存在2个问题:一是关于网络的学习,因BP 算法是自适应最小均方(LMS )算法的推广,故网络的学习速度较慢,且可能陷入局部极小值点,针对这一问题已有许多改进的BP 算法;二是关于网络的结构设计,即如何选取隐层及隐层节点数,目前尚无确定的理论和方法。根据Hecht -Nilson 的映射定理:对任何闭区间上的一个连续函数,总可以用含一层隐单元的感知器网来映射;目前应用中多采用含一层隐单元的BP 网。关于隐层节点下限的确定已有一些研究结果,鉴于问题的复杂性,此处不作说明。选择较多的隐层及隐层节点虽可加快学习速度,但使网络的结构变得复杂,网络的推广能力也会变差。实际应用中,通常用对测试样本与学习样本的误差进行交叉评价的试错 法来选择隐层及隐层节点数。 RB F 网是一种较新颖的ANN 模型,只有一层隐含层,输出节点是线性的,隐单元采用对称的高斯基 · 13·第12卷第1期 《机械研究与应用》 ME CHANICAL RESE ARCH &APPLICATION Vol 12No .1 1999

小波神经网络程序

这是一个小波神经网络程序,作者judyever %参考<青岛海洋大学学报> 2001年第1期一种基于BP算法学习的小波神经网络%% %step1--------网络初始化------------------------------------------- clc; clear all; %设定期望的误差最小值 err_goal=0.001; %设定最大循环次数 max_epoch=50; %设定修正权值的学习速率0.01-0.7 lr=0.7; epoch=0; x=0:0.01:0.3;%输入时间序列 d=sin(8*pi*x)+sin(16*pi*x);%目标输出序列 M=size(x,2);%输入节点的个数 N=M;%输出节点的个数 n=10;%隐形节点的个数 %这个地方需要改进,由于实际上隐形节点的个数可以通过小波的时频分析确定 Wjk=randn(n,M); Wij=randn(N,n); % a=randn(1,n); a=1:1:n; b=randn(1,n); % stepa=0.2*(x(M)-x(1)); % a=stepa(n-1)+stepa; % step=(x(M)-x(1))/n; % b=x(1)+step:step:x(1)+n*step; % y=zeros(1,N);%输出节点初始化 y=zeros(1,N);%输出节点初始化 net=zeros(1,n);%隐形节点初始化 net_ab=zeros(1,n);%隐形节点初始化 %step2--------对网络进行训练------------------------------------------- for i=1:1:N for j=1:1:n for k=1:1:M net(j)=net(j)+Wjk(j,k)*x(k); net_ab(j)=(net(j)-b(j))/a(j); end y(i)=y(i)+Wij(i,j)*mymorlet(net_ab(j)); %mymorlet是judyever编写的小波函数,以后可以扩展成输入不同的小波名字即可 % y(i)=mysigmoid(2,y(i)); end

小波神经网络及其应用

小波神经网络及其应用 This model paper was revised by the Standardization Office on December 10, 2020

小波神经网络及其应用 32 陆宇颖 摘要:小波神经网络是将小波理论和神经网络理论结合起来的一种神经网络,它避免了BP 神经网络结构设计的盲目性和局部最优等非线性优化问题,大大简化了训练,具有较强的函数学习能力和推广能力及广阔的应用前景。首先阐明了小波变换和多分辨分析理论,然后介绍小波神经网络数学模型和应用概况。 1.研究背景与意义 人工神经网络是基于生物神经系统研究而建立的模型,它具有大规模并行处理和分布式存储各类图像信息的功能,有很强的容错性、联想和记忆能力,因而被广泛地应用于故障诊断、模式识别、联想记忆、复杂优化、图像处理以及计算机领域。但是,人工神经网络模型建立的物理解释,网络激活函数采用的全局性函数,网络收敛性的保证,网络节点数的经验性确定等问题尚有待进一步探讨和改善。 小波理论自 Morlet 提出以来,由于小波函数具有良好的局部化性质,已经广泛渗透到各个领域。小波变换方法是一种窗口大小固定但其形状可以改变, 时间窗和频率窗都可以改变的时频局部化分析方法, 由于在低频部分具有较高的频率分辨率和较低的时间分辨率, 在高频部分具有较高的时间分辨率和较低的频率分辨率, 所以被誉为数学显微镜。正是这种特性, 使小波变换具有对信号的自适应性。基于多分辨分析的小波变换由于具有时频局部化特性而成为了信号处理的有效工具。实际应用时常采用Mallat快速算法,利用正交小波基将信号分解到不同尺度上。实现过程如同重复使用一组高通和低通滤波器把信号分解到不同的频带上,高通滤波器产生信号的高频细节分量,低通滤波器产生信号

基于BP神经网络的故障诊断方法

基于BP神经网络的故障诊断方法

《智能控制基础》 研究生课程设计报告 题目基于BP神经网络的故障诊断方法学院机械与汽车工程学院 专业班级车辆工程 学号221601852020 学生姓名李跃轩 指导教师武晓莉 完成日期2016年12月10日

目录 1 设计概述 (2) 1.1研究对象介绍 (2) 1.2设计内容及目标 (2) 2 设计原理、方法及步骤 (3) 2.1基于BP算法的神经网络模型 (3) 2.2 神经网络信息融合故障诊断步骤 (4) 3 结果及分析 (6) 3.1数据仿真 (6) 3.2 结果分析 (9) 4 设计小结 (10) 参考文献 (10) 附录程序 (11)

1 设计概述 1.1研究对象介绍 信息融合是多源信息综合处理的一项新技术,是将来自某一目标(或状态)的多源信息加以智能化合成,产生比单一信息源更精确、更完全的估计和判决。信息融合所处理的多传感器信息具有更为复杂的形式,可以在不同的信息层次上出现。多传感器信息融合的优点突出地表现在信息的冗余性、容错性、互补性、实时性和低成本性。 神经网络是由大量互联的处理单元连接而成,它是基于现代神经生物学以及认知科学在信息处理领域应用的研究成果。它具有大规模并行模拟处理、连续时间动力学和网络全局作用等特点,有很强的自适应学习和非线性拟合能力,从而可以替代复杂耗时的传统算法,使信号处理过程更接近人类思维活动。 柴油机故障具有相似性,故障与征兆的关系不明确,具有较强的模糊性,故障特征相互交织,柴油机故障诊断是一个复杂的问题。综合柴油机故障的特点以及神经网络的优势,采用基于BP神经网络的多传感器信息融合技术对柴油机机械故障进行诊断。 1.2设计内容及目标 设计内容:针对传统故障诊断方法存在的诊断准确性不高的问题,提出了BP神经网络信息融合的方法,实现对柴油机的机械故障诊断。由多个传感器采

小波神经网络及其应用

小波神经网络及其应用 陆宇颖 摘要:小波神经网络是将小波理论和神经网络理论结合起来的一种神经网络,它避免了BP 神经网络结构设计的盲目性和局部最优等非线性优化问题,大大简化了训练,具有较强的函数学习能力和推广能力及广阔的应用前景。首先阐明了小波变换和多分辨分析理论,然后介绍小波神经网络数学模型和应用概况。 1. 研究背景与意义 人工神经网络是基于生物神经系统研究而建立的模型,它具有大规模并行处理和分布式存储各类图像信息的功能,有很强的容错性、联想和记忆能力,因而被广泛地应用于故障诊断、模式识别、联想记忆、复杂优化、图像处理以及计算机领域。但是,人工神经网络模型建立的物理解释,网络激活函数采用的全局性函数,网络收敛 即 ,焦李神经网络2. 2.1()x ,使式中为的Fourier 变换。对作伸缩、平移变换得到小波基函数系 对任意2()()f x L R ∈,其连续小波变换定义为: 反演公式为: 在实际应用中,特别是计算机实现中,往往要把上述的连续小波及其变换离散化,通常采用二进制离散,即 令2,2m m a b k ==,则 二进小波一定是一个允许小波,且是一个正交小波基。考虑一个连续的、平方可积的函数 2()()f x L R ∈在分辨率2m 下的逼近()m f x ,由多分辨分析理论可知:

()x Φ是尺度函数,对其作伸缩、平移变换得到()mk x Φ。 Mallat 同时证明了函数()f x 在2m 和12m -分辨率下的信息差别(即细节)()m D f x ,可以通过将函数() f x 在一小波正交基上分解而获得,从而定义了一种完全而且正交的多分辨率描述,即小波描述。 ()mk x ψ就是式(5)定义的二进小波,则()f x 在12m -分辨率下的逼近式为: Mallat 并指出,对于任意一个函数 2()()f x L R ∈可以在一组正交小波基上展开: 式(11)是一个平方可积函数的小波分解,提供了小波神经网络设计的理论框架。 .. 12(,)x x ο 则有2.2 (ψ(f x 式(Lk a 与式 (17i c i 则有: 即(21)=f Ac 式(20)的最小二乘解为: +A 被称为A 的伪逆矩阵。且 如果样本i x 均匀分布,(1,2,...,)θ=i i n 是正交基, 则T A A 是一个?n n 单位矩阵,且

神经网络的电网故障诊断资料

基于新型神经网络的电网故障诊断方法 1引言 快速事故后恢复系统正常运行是减少电能中断时间和增强供电可靠性的必要条件。作为事故恢复的第一步,应实现快速、准确的故障诊断以隔离故障元件并采取相应措施以恢复电能供应。然而在线快速、准确地故障诊断仍是一个悬而未决的难题,尤其在保护和断路器不正常动作或多重故障的情况下,故障诊断更为困难。 故障诊断一般基于SCADA系统所提供的保护和断路器信息来判别电力系统中的故障元件。多种人工智能技术已用于解决此问题,如专家系统[1~4],随机优化技术[5~10]和人工神经网络[11~14]等等。其中基于专家系统的方法得到了广泛的注意和研究。这种方法能够提供强有力的推理并具解释能力,然而专家系统中知识的获取、组织、校核和维护等都非常困难,并成为其应用的瓶颈。而且,专家系统必须搜索庞大的知识库以得到最终的诊断结论,这使得它不能满足故障诊断实时的要求。另外,当系统中存在保护和断路器不正常动作时,专家系统可能会因缺乏识别错误信息的能力而导致错误的诊断结论。 用于故障诊断的另一种较有潜力的方法是基于工程随机优化的方法。这种方法的主要原则是将故障诊断表述为一个整数优化问题,随后使用全局优化方法,如波尔兹曼机[5]、遗传算法[6~8]、仿蚂蚁系统[9]或tabu搜索[10]等,去求解该优化问题。这种方法在实际应用过程中也出现了一些问题:如何确定这些随机优化方法的参数以实现快速正确的故障诊断;如何使这些方法适用于保护和断路器不正常动作的情况等等。 近年来,人工神经网络[11~14]引起了研究工作者的兴趣,因为它具有学习、泛化和容错能力。并且神经元的计算是并行的,这有利于实现实时应用。在神经网络的各种模型中,应用得最为广泛的模型就是BP(Back-Propagation)神经网络。标准的BP模型使用梯度下降算法训练,因此BP神经网络的结构必须是事先已知的,而且该学习算法收敛速度很慢,并有可能收敛于局部最小点。这些不利因素限制了BP模型在故障诊断中的应用。 本文提出使用径向基函数(Radial basis function,RBF)神经网络[15~16]解决电力系统中的故障诊断问题。理论上讲RBF神经网络具有任意函数逼近能力[17]。

2021年小波神经网络及其应用

小波神经网络及其应用 欧阳光明(2021.03.07) 1014202032 陆宇颖 摘要:小波神经网络是将小波理论和神经网络理论结合起来的一种神经网络,它避免了BP 神经网络结构设计的盲目性和局部最优等非线性优化问题,大大简化了训练,具有较强的函数学习能力和推广能力及广阔的应用前景。首先阐明了小波变换和多分辨分析理论,然后介绍小波神经网络数学模型和应用概况。 1.研究背景与意义 人工神经网络是基于生物神经系统研究而建立的模型,它具有大规模并行处理和分布式存储各类图像信息的功能,有很强的容错性、联想和记忆能力,因而被广泛地应用于故障诊断、模式识别、联想记忆、复杂优化、图像处理以及计算机领域。但是,人工神经网络模型建立的物理解释,网络激活函数采用的全局性函数,网络收敛性的保证,网络节点数的经验性确定等问题尚有待进一步探讨和改善。 小波理论自Morlet 提出以来,由于小波函数具有良好的局部化性质,已经广泛渗透到各个领域。小波变换方法是一种窗口大小固定但其形状可以改变, 时间窗和频率窗都可以改变的时频局部化分析方法, 由于在低频部分具有较高的频率分辨率和较低的时间分辨率, 在高频部分具有较高的时间分辨率和较低的频率分辨率, 所

以被誉为数学显微镜。正是这种特性, 使小波变换具有对信号的自适应性。基于多分辨分析的小波变换由于具有时频局部化特性而成为了信号处理的有效工具。实际应用时常采用Mallat快速算法,利用正交小波基将信号分解到不同尺度上。实现过程如同重复使用一组高通和低通滤波器把信号分解到不同的频带上,高通滤波器产生信号的高频细节分量,低通滤波器产生信号的低频近似分量。每分解一次信号的采样频率降低一倍,近似分量还可以通过高通滤波和低通滤波进一步地分解,得到下一层次上的两个分解分量。 而小波神经网络(Wavelet Neural Network, WNN)正是在近年来小波分析研究获得突破的基础上提出的一种人工神经网络。它是基于小波分析理论以及小波变换所构造的一种分层的、多分辨率的新型人工神经网络模型,即用非线性小波基取代了通常的非线性Sigmoid 函数,其信号表述是通过将所选取的小波基进行线性叠加来表现的。 小波神经网络这方面的早期工作大约开始于1992 年,主要研究者是Zhang Q、Harold H S 和焦李成等。其中,焦李成在其代表作《神经网络的应用与实现》中从理论上对小波神经网络进行了较为详细的论述。近年来,人们在小波神经网络的理论和应用方面都开展了不少研究工作。 小波神经网络具有以下特点。首先,小波基元及整个网络结构的确定有可靠的理论根据,可避免BP 神经网络等结构设计上的盲目性;其次,网络权系数线性分布和学习目标函数的凸性,使网络

小波神经网络研究进展及展望_陈哲

综 述 小波神经网络研究进展及展望 陈 哲 冯天瑾 (青岛海洋大学电子工程系,青岛,266003)摘 要 关于小波分析与人工神经网络结合的研究,近些年来已成为信号处理学科的热点之一,已有大量的研究成果见诸各种学术刊物和会议论文。小波变换具有良好的时频局部性质,神经网络则具有自学习功能和良好 的容错能力,小波神经网络(W NN )由于较好地结合了两者的优点而具有强大的优势。作者较系统地综述了小 波神经网络的研究进展,讨论了小波神经网络的主要模型和算法,并就其存在的一些问题,应用与发展趋势进 行了探讨。 关键词 神经网络;小波分析;小波神经网络 中图法分类号 T P 911.7 小波自80年代提出以来,理论和应用都得到了巨大的发展,小波分析的出现被认为是傅立叶分析的突破性进展[1~3]。多层感知器(M ultila yer Perceptr on,M L P)是一种广泛应用的神经网络模型,实践证明M L P 具有较好的空间映射能力和推广能力。目前,神经网络的理论研究日趋深入,其重要发展方向之一,就是注重与小波、混沌、模糊集等非线性科学理论相结合。小波变换具有时频局部特性和变焦特性,而神经网络具有自学习、自适应、鲁棒性、容错性和推广能力,如何把两者的优势结合起来,一直是人们关注的问题。一种方法是用小波分析对信号进行预处理,即以小波空间作为模式识别的特征空间。通过将小波基与信号的内积进行加权和来实现信号的特征提取,然后将提取的特征向量送入神经网络处理;另一种即所谓的小波神经网络(W av elet neura l netw or k,W NN )或小波网络,把小波变换与神经网络有机地结合起来,充分继承了两者的优点。小波与前馈神经网络的结合是小波网络的主要研究方向,也是本文着重讨论的内容。小波还可以与其它类型的神经网络相结合:例如用Koho nen 网络对信号做自适应小波分解[4],RBF 网络与小波的结合[5]等。1 小波神经网络 小波神经网络可看作是以小波函数为基底的一种函数连接型网络,也可以认为是径向基函数(Radial ba-sis functio n,RBF)网络的推广,但它又具有与一般前馈网络和RBF 网络所不同的特点,在神经网络研究领域中具有巨大的潜力。现就其主要模型和算法综述如下。 1.1小波网络基本模型 Pati 和Krish napra sad [6]最早研究了神经网络与小波变换的联系,提出了离散仿射小波网络模型。其思想是将离散小波变换引入神经网络模型,通过对Sig moid 函数的平移伸缩构成L 2(R )中的仿射框架,进而构造小波神经网络。1992年Zhang Qing hua 和Benv eniste [7]明确提出了小波网络的概念和算法。其思想是用小波元代替了神经元,即用已定位的小波函数代替S ig modi 函数作激活函数,通过仿射变换建立起小波变换与网络系数之间的联接,并应用于函数逼近。随后Szu 等[8]又提出了基于连续小波变换的两种自适应小波神经网络模型。一种用于信号表示,偏重于函数逼近;另一种偏重于选取合适的小波做特征提取,其实质是在小波特征空间中寻找一组最佳的小波基,因不涉及重构问题,小波的正交性要求不是很苛刻, 第29卷 第4期 1999年10月 青岛海洋大学学报J OU RN AL OF OCE AN UVIVE RSI TY OF Q INGDAO 29(4):663~668  Oct.,1999  国家自然科学基金课题(69675005)资助 收稿日期:1998-09-23;修订日期:1999-05-11 陈 哲,男,1976年6月出生,硕士生。

小波神经网络及其应用

小波神经网络及其应用 1014202032 陆宇颖 摘要:小波神经网络是将小波理论和神经网络理论结合起来的一种神经网络,它避免了BP 神经网络结构设计的盲目性和局部最优等非线性优化问题,大大简化了训练,具有较强的函数学习能力和推广能力及广阔的应用前景。首先阐明了小波变换和多分辨分析理论,然后介绍小波神经网络数学模型和应用概况。 1.研究背景与意义 人工神经网络是基于生物神经系统研究而建立的模型,它具有大规模并行处理和分布式存储各类图像信息的功能,有很强的容错性、联想和记忆能力,因而被广泛地应用于故障诊断、模式识别、联想记忆、复杂优化、图像处理以及计算机领域。但是,人工神经网络模型建立的物理解释,网络激活函数采用的全局性函数,网络收敛性的保证,网络节点数的经验性确定等问题尚有待进一步探讨和改善. 小波理论自 Morlet 提出以来,由于小波函数具有良好的局部化性质,已经广泛渗透到各个领域。小波变换方法是一种窗口大小固定但其形状可以改变, 时间窗和频率窗都可以改变的时频局部化分析方法, 由于在低频部分具有较高的频率分辨率和较低的时间分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率,所以被誉为数学显微镜.正是这种特性, 使小波变换具有对信号的自适应性。基于多分辨分析的小波变换由于具有时频局部化特性而成为了信号处理的有效工具。实际应用时常采用Mallat快速算法,利用正交小波基将信号分解到不同尺度上.实现过程如同重复使用一组高通和低通滤波器把信号分解到不同的频带上,高通滤波器产生信号的高频细节分量,低通滤波器产生信号的低频近似分量。每分解一次信号的采样频率降低一倍,近似分量还可以通过高通滤波和低通滤波进一步地分解,得到下一层次上的两个分解分量。 而小波神经网络(Wavelet Neural Network, WNN)正是在近年来小波分析研究获得突破的基础上提出的一种人工神经网络.它是基于小波分析理论以及小波变换所构造的一种分层的、多分辨率的新型人工神经网络模型, 即用非线性小波基取代了通常的非线性Sigmoid 函数,其信号表述是通过将所选取的小波基进行线性叠加来表现的。 小波神经网络这方面的早期工作大约开始于1992 年,主要研究者是Zhang Q、Harold H S 和焦李成等。其中,焦李成在其代表作《神经网络的应用与实现》中从理论上对小波神经网络进行了较为详细的论述。近年来,人们在小波神经网络的理论和应用方面都开展了不少研究工作。 小波神经网络具有以下特点。首先,小波基元及整个网络结构的确定有可靠的理论根据,可避免BP 神经网络等结构设计上的盲目性;其次,网络权系数线性分布和学习目标函数的凸性,使网络训练过程从根本上避免了局部最优等非线性优化问题;第三,有较强的函数学习能力和推广能力. 2.数学模型与小波工具 2.1 小波变换及多分辨分析 L R(或更广泛的Hilbert 空间)中,选择一个母小波函数(又称为基本在函数空间2() ,使其满足允许条件: 小波函数)()x

基于某BP神经网络的故障诊断方法

《智能控制基础》 研究生课程设计报告 题目基于BP神经网络的故障诊断方法学院机械与汽车工程学院 专业班级车辆工程 学号221601852020 学生姓名李跃轩 指导教师武晓莉 完成日期2016年12月10日

目录 1 设计概述 (2) 1.1研究对象介绍 (2) 1.2设计内容及目标 (2) 2 设计原理、方法及步骤 (3) 2.1基于BP算法的神经网络模型 (3) 2.2 神经网络信息融合故障诊断步骤 (4) 3 结果及分析 (6) 3.1数据仿真 (6) 3.2 结果分析 (8) 4 设计小结 (9) 参考文献 (10) 附录程序 (11)

1 设计概述 1.1研究对象介绍 信息融合是多源信息综合处理的一项新技术,是将来自某一目标(或状态)的多源信息加以智能化合成,产生比单一信息源更精确、更完全的估计和判决。信息融合所处理的多传感器信息具有更为复杂的形式,可以在不同的信息层次上出现。多传感器信息融合的优点突出地表现在信息的冗余性、容错性、互补性、实时性和低成本性。 神经网络是由大量互联的处理单元连接而成,它是基于现代神经生物学以及认知科学在信息处理领域应用的研究成果。它具有大规模并行模拟处理、连续时间动力学和网络全局作用等特点,有很强的自适应学习和非线性拟合能力,从而可以替代复杂耗时的传统算法,使信号处理过程更接近人类思维活动。 柴油机故障具有相似性,故障与征兆的关系不明确,具有较强的模糊性,故障特征相互交织,柴油机故障诊断是一个复杂的问题。综合柴油机故障的特点以及神经网络的优势,采用基于BP神经网络的多传感器信息融合技术对柴油机机械故障进行诊断。 1.2设计内容及目标 设计内容:针对传统故障诊断方法存在的诊断准确性不高的问题,提出了BP神经网络信息融合的方法,实现对柴油机的机械故障诊断。由多个传感器采集信号,分别经过快速傅里叶变换后获得故障频域特征值,再经BP神经网络对柴油机进行故障局部诊断,能够对相应传感器的不同故障类型做出一个准确地分类,最终完成对汽轮机机械故障的准确诊断。实验结果表明,该方法克服了单个传感器的局限性和不确定性,是一种有效的故障诊断方法。 采用方法:通过BP神经网络进行局部诊断,最终判定故障及故障类型。基于BP神经网络多传感器信息融合,故障诊断方法是特征层状态属性融合,并利用MATLAB仿真。

小波神经网络预测的代码1

clc; clear all; %设定期望的误差最小值 err_goal=0.01; %设定最大循环次数 max_epoch=50; %设定修正权值的学习速率0.01-0.7 lr=0.7; epoch=0; x=0:0.01:0.3;%输入时间序列 %d=sin(8*pi*x)+sin(4*pi*x)+5*sin(pi*x);% d=[1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 10 9 8 7];%目标输出序列M=size(x,2);%输入节点的个数 N=M;%输出节点的个数 n=10;%隐形节点的个数 %这个地方需要改进,由于实际上隐形节点的个数可以通过小波的时频分析确定 Wjk=randn(n,M); Wij=randn(N,n); % a=randn(1,n); a=1:1:n; b=randn(1,n); % stepa=0.2*(x(M)-x(1)); % a=stepa:1n-1)+stepa; % step=(x(M)-x(1))/n; % b=x(1)+step:step:x(1)+n*step; % y=zeros(1,N);%输出节点初始化 y=zeros(1,N);%输出节点初始化 net=zeros(1,n);%隐形节点初始化 net_ab=zeros(1,n);%隐形节点初始化 %step2--------对网络进行训练------------------------------------------- for i=1:1:N for j=1:1:n for k=1:1:M net(j)=net(j)+Wjk(j,k)*x(k); net_ab(j)=(net(j)-b(j))/a(j); end y(i)=y(i)+Wij(i,j)*mymorlet(net_ab(j)); %mymorlet是judyever编写的小波函数,以后可以扩展成输入不同的小波名字即可 % y(i)=mysigmoid(2,y(i)); end end

基于人工神经网络的故障诊断

基于人工神经网络的故障诊断 基于人工神经网络的故障诊断 【摘要】随着高新技术的发展,人工神经网络的模式识别在设备的故障诊断上得以广泛地应用。机器设备或者系统的故障诊断实质是一个模式识别过程。把对经过处理后的信号数据的有效时、频特征值作为神经网络的输入层,利用Matlab软件,便可得到不同的模式输出,进而可以辨别设备是否有故障。 【关键词】人工神经网络;故障诊断;模式识别;Matlab软件 一、人工神经网络综述 BP神经网络是目前应用最为广泛和成功的神经网络之一,它是由一个输入层,一个或多个隐层以及一个输出层组成,上下层之间实现全连接,而每层神经元之间没有连接。网络的学习过程包括信号正向传播和误差反向传播。在正向传播进程中,输入信息从输入层经隐层加权处理传向输出层,经功能函数运算后得到的输出值与期望值进行比较,若有误差,则误差反向传播,沿原先的连接通道返回,通过逐层修改各层的权重系数,减小误差。随着这种误差逆向传播修正的不断进行,网络对输入模式响应的正确率也不断上升。 二、人工神经网络的识别、诊断过程 滚动轴承在设备中是比较典型的,本文以滚动轴承的故障识别、诊断为例。进行模式识别的大体步骤为:首先对经过零均值化后的振动信号数据进行时域、频域分析,将筛选后的有效时域、频域特征值作为人工神经网络输入层的输入,经Matlab软件进行神经网络的训练,最后可得出一个可以识别轴承工作状态的神经网络,进而可以对滚动轴承进行模式识别。可见采用振动信号检测法对机器设备进行故障诊断的过程包含信号采集、特征提取、状态识别、故障分析和决策干预等五个基本环节,在滚动轴承故障诊断中,振动信号的采集是关键,保证信号采集的准确性、合理性和实时性是正确实现故障诊断的前提。(1)信号采集。每台机器设备都有自身的固有频率,若设备发生故障,其频率变化,其振动信号也会发生变化。因此,振动信号可

几种人工神经网络在化工故障诊断中的应用 -王波-201420120310

几种人工神经网络在化工故障诊断中的应用 摘要:人工神经网络是由大量同时也是很简单的处理单元广泛连接构成的复杂网络系统。它具有自学习、高容错和高度非线性描述能力等优点,使其在化工领域得到了广泛的应用。本文简要介绍了几种人工神经网络在化工故障检测与诊断中的应用 关键字:神经网络化工故障诊断 The application of several artificial neural network in fault diagnosis in chemical (School of Chem & Energy Eng, South China Univ of Technol, Canton 510640, China) Abstract: Artificial neural network is a complicated network system with large amount but simple units. It has the ability of self-learning fault diagnosis and high description of non-linear problem. So it was widely used in the field of chemical industry. This paper report the application of several artificial neural network in fault detection and diagnosis in chemical. Keywords: artificial neural network chemical fault diagnosis 1.人工神经网络 人工神经网络(Artificial Neural Network ,ANN),亦称为神经网络

基于某RBF神经网络地故障诊断 - 副本

基于RBF神经网络的故障诊断 摘要: RBF 神经网络即径向基函数神经网络(Radical Basis Function)。径向基函数神经网络是一种高效的前馈式神经网络,它具有其他前向网络所不具有的最佳逼近性能和全局最优特性,并且结构简单,训练速度快。同时,它也是一种可以广泛应用于模式识别、非线性函数逼近等领域的神经网络模型。利用Matlab 神经网络工具箱对变速箱齿轮进行故障诊断仿真,并创建RBF神经网络与BP神经网络来进行故障诊断。通过对比诊断结果,证明RBF网络在诊断精度,诊断速度上均优于BP网络,说明RBF网络应用于齿轮的故障诊断准确、可靠,在机械故障诊断方面具有广泛的应用前景。 关键词:神经网络;故障诊断;Matlab神经网络工具箱;RBF网络; 引言 由于汽车的特殊运行条件和运行环境,以及汽车行驶过程中经常性换档,使得变速箱常发生故障.具体有: 1.(1)异响的原因:①齿轮间隙过大;②轴承磨损松旷,③挂挡齿轮滑键槽与滑键轴磨损松旷;④轴承漏油或壳体漏油以致滑油减少,或变速箱底部放油堵脱落,以致滑油全部漏完,⑤金属小铁件混入变速箱体;⑥滑油粘度不适当或品质不佳,⑦齿轮与轴的间隙过大以致松旷,⑧变速器与飞轮壳连接螺栓松动;⑨发动机与飞轮壳连接螺栓松动。 2. ①挂挡齿轮与被挂齿轮、套牙同套齿都在齿长方向磨成锥形或短缺;②闸叉锁止螺钉松脱,闸叉变形,叉部磨损;③闸轨凹槽磨损,定位钢球磨损,弹簧弹力减弱或折断,④轴承磨损松旷,⑤齿轮间隙过大。 3. ①滑油不够或不适当,致使齿轮磨损,②变速箱混有泥砂污物,致使齿轮磨损,③中间轴变形;④中间轴轴承松旷,致使啮合各齿发生拢击,⑥第二轴常啮合齿轮滚针轴承碎裂或定位圈卡簧破碎,甚至被轧入两啮合齿轮之间。 据统计由齿轮失效引起的汽车变速箱故障占全部原因的10%。在这里齿轮失效的主要形式有齿根裂痕和弯曲疲劳引起的断齿等,因而随着汽车技术的发展,对变速箱实施故障诊断、特别是对齿轮的诊断变得尤为重要。 齿轮是汽车行业主要的基础传动元件,通常每辆汽车中有18~30个齿部,齿

相关文档
最新文档