不同形貌纳米氧化锌的水热法合成

不同形貌纳米氧化锌的水热法合成
不同形貌纳米氧化锌的水热法合成

纳米氧化锌制备法

氧化锌制备工艺 2008-06-04 12:21阅读(4)评 论(0) D0208、氧化锌制备工艺(本技术资料含国家发明专利、实用新型专利、科研成果、技术文献、技术说明书、技术配方、技术关键、工艺 流程等,全套价格26 0元) (氧化锌*制备氧化锌*制取氧化锌*生产氧化锌*开发氧化锌*研究) (氧化锌制备氧化锌制取氧化锌生产 氧化锌开发氧化锌研究) 1、氨法制取氧化锌方法 2、氨浸法生产低堆积密度纳米氧化锌的方法 3、氨水·碳铵联合浸取络合制备高纯度活性氧化锌的方法 4、氨水循环络合法生产高纯度活性氧化锌的工艺 5、表面包覆金属钛或铝化合物的纳米氧化锌粉体及制备方法 6、表面改性的纳米氧化锌水分散体及其制备方法和用途 7、超声波-微波联合法

从锌浮渣中制备活性氧化锌的方法 8、超微粒子氧化锌及其制造方法和使用其的化妆材料 9、超微氧化锌制取的工艺与装置 10、超细活性氧化锌的制备方法 11、超细氧化锌复合物及其制备方法 12、成核生长分步进行的液相制取超细氧化锌的方法 13、从低品位含锌物料制备纳米活性氧化锌的方法 14、从含锌烟道灰制取氧化锌的工艺 15、从菱锌矿制氧化锌技术 16、从铜--锌废催化剂中回收铜和氧化锌的方法 17、等离子法制取氧化锌工艺及设备 18、低温热分解法制备纳米氧化锌 19、低温易烧结的纳米级氧化锌粉末的制备方法 20、多功能纳米氧化锌悬浮液及其制备方法21、改进的碳酸氢铵全湿法制取高活性氧化锌22、改性的超细氧化锌

及其制备方法 23、高白色氧化锌微粒及其制造方法 24、高级氧化锌制备工艺 25、固相低温热分解合成晶态和非晶态超微氧化锌粉末的制备 26、过氧化锌的制备方法 27、回转窑冶炼生产氧化锌的工艺方法 28、活性氧化锌的生产工艺方法 29、活性氧化锌及高纯氧化锌制备工艺 30、活性氧化锌生产工艺 31、碱法生产活性氧化锌的工艺方法 32、颗粒氧化锌的生产工艺方法 33、颗粒状氧化锌生产装置 34、粒状高活性氧化锌的制造方法及其产品35、联合法矿粉直接生产高纯度氧化锌新工艺36、菱锌矿制取高纯氧化锌的方法 37、硫化锌精矿焙砂与氧化锌矿联合浸出工艺38、硫化锌矿与软锰矿同槽浸出制取氧化锌和碳酸锰的方法 39、纳米氧化锌材料的

水热法合成纳米氧化锌

水热法合成纳米氧化锌 一、引言 二、实验部分 2.1实验仪器 集热恒温磁力搅拌器山东鄄城永兴仪器厂2(加搅拌子2) X射线衍射仪(DX-2000型)丹东方圆仪器有限公 司 1 光学显微镜 1 恒温干燥箱 1 聚四氟乙烯高压反应釜编号100-25、100-44 2 马弗炉 1 量筒(50ml) 1 烧杯3个100ml、2个150ml 坩埚 1 玻璃棒 1 培养皿 2 抽滤瓶 1 载玻片 2 2.2实验药品 草酸天津市元立化工有限公司分析纯氢氧化钠天津市福晨化学试剂厂分析纯 硝酸锌天津市天大化工试剂厂分析纯 氨水天津市元立化工有限公司25% 无水乙醇天津市风船化学试剂有限公司分析纯

去离子水 2.3实验内容 2.3.1水热合成纳米氧化锌 称取8.9482gZn(NO3).6H2O固体溶解于20ml去离子水中,在充分搅拌条件下缓慢滴加2 5%的浓氨水,至生成的沉淀恰好消失为止( p H≈10 ),得到前驱体溶液(其浓度认为等于Zn的浓度)。将上述溶液转移到聚四氟乙烯内胆的高压釜中,保持其填充度为80%。在180℃下反应3h后,自然冷却至室温。抽滤并收集白色沉淀,然后用去离子水反复冲洗以除去吸附的多余离子,于90℃烘箱中干燥以备表征。 2.3.2草酸高温合成纳米氧化锌 称取3.111gZn(NO3).6H2O溶解于20ml去离子水,在充分搅拌情况下缓慢滴加滴加草酸溶液(1~2d每秒为宜),使之沉淀完毕,搅拌0.5h,进行抽滤,用去离子水和无水乙醇洗涤,放入90℃烘箱干燥2h,然后高温700℃灼烧2h。 2.3.3在玻璃基体上生长纳米氧化锌阵列 (1)晶种层的制备 载玻片衬底先后在稀氢氟酸、氢氧化钠溶液、去离子水和无水酒精中超声清洗,然后放入烘箱中烘干备用。 Z n O种子液配制如下:制备等量的0.001mol/L和0.002mol/L的硝酸锌溶液,于磁力搅拌下分别缓慢滴加稀氨水,直至沉淀消失,在60℃水浴30min获得均匀澄清溶液采用浸渍提拉法在清洁衬底上涂敷Z n O凝胶膜:浸人种子液的浸渍时间为1 min,提拉速度0 .8 5 m m/s,8 0℃烘箱烘干,重复以上操作3次,最后将涂有薄膜的衬底进行热处理5 5 0℃,保温 1.5h 。最终获得晶种膜。 (2)水溶液生长 一定量的硝酸锌和氨水( 2 5 %) 加入去离子水中。配制20ml的生长液。搅拌均匀并密封,锌浓度范围为0.001mol/L。氨水和硝酸锌的物质的量的比为4:1至11:1,将有晶种层的衬底放人装有生长液的密封反应釜中。于9 0℃水浴中保持6h。硝酸溶液( p H = 0.4 ) 和氨水(2 5 %) 被用来进行生长液p H值( 8.2~9.8) 的原位二次调整。最后合成的薄膜用去离子水清洗,空气中晾干。 三、结果与讨论 3.1纳米氧化锌的XRD表征谱图 两组纳米氧化锌粉末进行XRD测试,设置扫描范围20°~70°,扫描速度0.1,铜靶波长1.54184?。两者对照谱图如下:

水热法制备纳米材料

实验名称:水热法制备纳米TiO2 水热法属于液相反应的范畴,是指在特定的密闭反应器中采用水溶液作为反应体系,通过对反应体系加热、加压而进行无机合成与材料处理的一种有效方法。在水热条件下可以使反应得以实现。在水热反应中,水既可以作为一种化学组分起反应并参与反应,又可以是溶剂和膨化促进剂,同时又是一种压力传递介质,通过加速渗透反应和控制其过程的物理化学因素,实现无机化合物的形成和改进。 水热法在合成无机纳米功能材料方面具有如下优势:明显降低反应温度(100-240℃);能够以单一步骤完成产物的形成与晶化,流程简单;能够控制产物配比;制备单一相材料;成本相对较低;容易得到取向好、完美的晶体;在生长的晶体中,能均匀地掺杂;可调节晶体生成的环境气氛。 一.实验目的 1.了解水热法的基本概念及特点。 2.掌握高温高压下水热法合成纳米材料的方法和操作的注意事项。 3.熟悉XRD操作及纳米材料表征。 4.通过实验方案设计,提高分析问题和解决问题的能力。 二.实验原理 水热法的原理是:水热法制备粉体的化学反应过程是在流体参与的高压容器中进行,高温时,密封容器中有一定填充度的溶媒膨胀,充满整个容器,从而产生很高的压力。为使反应较快和较充分的进行,通常还需要在高压釜中加入各种矿化物。 水热法一般以氧化物或氢氧化物(新配置的凝胶)作为前驱物,他们在加热过程中溶解度随温度的升高而增加,最终导致溶液过饱和并逐步形成更稳定的氧化物新相。反应过程的驱动力是最后可溶的的前驱物或中间产物与稳定氧化物之间的溶解度差。 三.实验器材 实验仪器:10ml量筒;胶头滴管;50ml烧杯;高压反应釜;烘箱;恒温磁力搅拌器。 实验试剂:无水TiCl4;蒸馏水;无水乙醇。 四.实验过程 1.取10mL量筒, 50mL的烧杯洗净并彻底干燥。 2.取适量冰块放入烧杯中,并加入一定的蒸馏水形成20mL的冰水混合物,用恒温磁力搅拌器搅拌,速度适中。

纳米氧化锌的制备、表面改性及应用

纳米氧化锌的制备、表面改性及应用 纳米氧化锌是一种面向21世纪的新型高功能精细无机产品,其粒径介于1~100纳米,又称为超微细氧化锌。由于颗粒尺寸的细微化,比表面积急剧增加,使得纳米氧化锌产生了其本体块状材料所不具备的表面效应、小尺寸效应和宏观量子隧道效应等。因而,纳米氧化锌在磁、光、电、化学、物理学、敏感性等方面具有一般氧化锌产品无法比拟的特殊性能和新用途,在橡胶、涂料、油墨、颜填料、催化剂、高档化妆品以及医药等领域展示出广阔的应用前景。本文将对本公司生产的纳米氧化锌从制备方法、性能表征、表面改性以及目前所开发的应用领域方面进行较为详细的介绍。 一、纳米氧化锌的制备 氧化锌的制备方法分为三类:即直接法(亦称美国法)、间接法(亦称法国法)和湿化学法。目前许多市售氧化锌多为直接法或间接法产品,粒度为微米级,比表面积较小,这些性质大大制约了它们的应用领域及其在制品中的性能。我公司采用湿化学法(NPP-法)制备纳米级超细活性氧化锌,可用各种含锌物料为原料,采用酸浸浸出锌,经过多次净化除去原料中的杂质,然后沉淀获得碱式碳酸锌,最后焙解获得纳米氧化锌。与以往的制备纳米级超细氧化锌工艺技术相比,该新工艺具有以下技术方面的创新之处: 1.平衡条件下反应动力学原理与强化的传热技术结合,迅速完成碱式碳酸锌的焙解。 2.通过工艺参数的调整,可以制备不同纯度、粒度及颜色的各种型号的纳米氧化锌产品。 3.本工艺可以利用多种含锌物料为原料,将其转化为高附加值产品。 4.典型绿色化工工艺,属于环境友好过程。 二、纳米氧化锌的性能表征 纳米级氧化锌的突出特点在于产品粒子为纳米级,同时具有纳米材料和传统氧化锌的双重特性。与传统氧化锌产品相比,其比表面积大、化学活性高,产品细度、化学纯度和粒子形状可以根据需要进行调整,并且具有光化学效应和较好的遮蔽紫外线性能,其紫外线遮蔽率高达98%;同时,它还具有抗菌抑菌、祛味防酶等一系列独特性能。 清华大学分析测试中心用透射电镜对产品进行了分析,纳米氧化锌粒子为球形,粒径分布均匀,平均粒径20~30纳米,所有粒子的粒径均在50纳米以下。经ST-A表面和孔径测定仪测试,纳米氧化锌粉体的BET比表面积在35m2/g以上。此外,通过调整制备工艺参数,还可以生产出棒状纳米氧化锌。本产品经中国科学院微生物研究所检测鉴定,结果表明,在丰富细菌培养基中,加入0.5%~1%的纳米氧化锌,可有效抑制大肠杆菌的生长,抑菌率达99.9%以上。 三、纳米氧化锌的表面改性 由于纳米氧化锌具有比表面积大和比表面能大等特点,自身易团聚;另一方面,纳米氧化锌表面极性较强,在有机介质中不易均匀分散,这就极大地限制了其纳米效应的发挥。因此对纳米氧化锌粉体进行分散和表面改性成为纳米材料在基体中应用前必要的处理手段。 所谓纳米分散是指采用各种原理、方法和手段在特定的液体介质(如水)中,将干燥纳米粒子构成的各种形态的团聚体还原成一次粒子并使其稳定、均匀分布于介质中的技术。纳米粉体的表面改性则是在纳米分散技术基础上的扩展和延伸,即根据应用场合的需要,在已分散的纳米粒子表面包覆一层适当物质的薄膜或使纳米粒子分散在某种可溶性固相载体中。经过表面改性的纳米干粉体,其吸附、润湿、分散等一系列表面性质都会发生变化,一般可以自动或极易分散在特定的介质中,因此使用非常方便。一般来讲,纳米粒子的改性方法有三种:1.在粒子表面均匀包覆一层其他物质的膜,从而使粒子表面性质发生变化;2.利用电荷转移络合体(如硅烷、钛酸酯等偶联剂以及硬脂酸、有机硅等)作表面改性剂对纳米粒子表面进行化学吸附或化学反应;3.利用电晕放电、紫外线、等离子、放射线等高能量手段对纳米粒子表面进行改性。

《纳米氧化锌制备法》word版

氧化锌制备工艺2008-06-04 12:21阅读(4)评论 (0) D0208、氧化锌制备工艺(本技术资料含国家发 明专利、实用新型专利、科研成果、技术文献、技术说明书、技术配方、技术关键、工艺流程等,全套价格260元) (氧化锌*制备 氧化锌*制取氧化锌*生产氧化锌*开发氧化锌*研究) (氧化锌制备氧化锌制取氧化锌生产 氧化锌开发氧化锌 研究) 1、氨法制取氧化锌方法 2、氨浸法生产低堆积密度纳米氧化锌的方法 3、氨水·碳铵联合浸取络合制备高纯度活性氧化锌的方法 4、氨水循环络合法生产高纯度活性氧化锌的工艺 5、表面包覆金属钛或铝化合物的纳米氧化锌粉体及制备方法 6、表面改性的纳米氧化锌水分散体及其制备方法和用途

7、超声波-微波联合法从锌浮渣中制备活性氧化锌的方法 8、超微粒子氧化锌及其制造方法和使用其的化妆材料 9、超微氧化锌制取的工艺与装置 10、超细活性氧化锌的制备方法 11、超细氧化锌复合物及其制备方法 12、成核生长分步进行的液相制取超细氧化锌的方法 13、从低品位含锌物料制备纳米活性氧化锌的方法 14、从含锌烟道灰制取氧化锌的工艺 15、从菱锌矿制氧化锌技术 16、从铜--锌废催化剂中回收铜和氧化锌的方法 17、等离子法制取氧化锌工艺及设备 18、低温热分解法制备纳米氧化锌 19、低温易烧结的纳米级氧化锌粉末的制备方法 20、多功能纳米氧化锌悬浮液及其制备方法21、改进的碳酸氢铵全湿法制取高活性氧化锌

22、改性的超细氧化锌及其制备方法 23、高白色氧化锌微粒及其制造方法 24、高级氧化锌制备工艺 25、固相低温热分解合成晶态和非晶态超微氧化锌粉末的制备 26、过氧化锌的制备方法 27、回转窑冶炼生产氧化锌的工艺方法 28、活性氧化锌的生产工艺方法 29、活性氧化锌及高纯氧化锌制备工艺 30、活性氧化锌生产工艺 31、碱法生产活性氧化锌的工艺方法 32、颗粒氧化锌的生产工艺方法 33、颗粒状氧化锌生产装置 34、粒状高活性氧化锌的制造方法及其产品35、联合法矿粉直接生产高纯度氧化锌新工艺36、菱锌矿制取高纯氧化锌的方法 37、硫化锌精矿焙砂与氧化锌矿联合浸出工艺38、硫化锌矿与软锰矿同槽浸出制取氧化锌和碳酸锰的方法

水热法制备ZnO纳米结构及其应用

水热法制备ZnO纳米结构及其应用 摘要纳米结构的ZnO由于具有优异的光、电、磁、声等性能,已经成为光电、化学、催化、压电等领域中聚焦的研究热点之一。不同纳米结构的ZnO其制备方法多种多样,本文着重综述了水热法制备ZnO纳米结构,并探讨了ZnO纳米结构的生长机理和调控,同时展望了ZnO纳米结构在各领域中的最新应用。 关键词ZnO纳米结构水热法生长机理生长调控应用 引言

氧化锌是一种宽禁带直接半导体材料,室温下其禁带宽度为3.37 eV,激子束缚能为60 meV,可以实现室温下的激子发射,产生近紫外的短波发光,被用来制备光电器件,如紫外探测器、紫外激光器等。另外ZnO还具有很好的导电、导热和化学稳定性能,在太阳能电池、传感器和光催化方面有广泛的应用前景。因此成为国际上半导体材料研究的热点之一。而一维半导体材料更由于其独特的物理特性及在光电子器件方面的巨大潜力,备受人们的关注[1, 2]。将纳米ZnO用于电致发光器件中对提高器件性能很有帮助[3]。在基底上高度有序生长的ZnO 纳米结构可制作短波激光器[2]和Graetzel太阳能电池电极[4],成为人们的研究热点。 目前国内外研究者已成功地合成了多种ZnO纳米结构:Huang等[5]制备出的ZnO纳米铅笔状结构具有尖端和高的比表面积,有望用于场发射微电子器件方面;杨培东[6]、Shingo Hirano[7]小组分别用气相传输法和水热法合成的ZnO纳米线阵列表现出室温紫外激光发射行为,可用来制备紫外纳米激光器;张立德[8]研究小组用简单的热蒸发方法得到了一种ZnO纳米薄片状结构,可用于纳米传感器方面。另外,研究者还制备出ZnO纳米环、纳米带、纳米花和多足状等结构。 合成ZnO纳米结构的方法多种多样,主要有气相沉积法、模板法及催化助溶法、电化学法,其它还有诸如沉淀法、溶胶-凝胶法、多羟基化合物水解法等。近年来水热法制备ZnO纳米结构成为了研究者关注的热点,与其它方法相比,水热法具有设备简单,反应条件温和,可大面积成膜,工艺可控等优点。 1.水热法制备ZnO纳米结构简介及研究新进展 1.1水热法制备ZnO纳米结构简介 水热法是指在特制的密闭反应器(高压釜)中,采用水溶液作为反应体系,通过对反应体系加热加压(或自生蒸汽压),创造一个相对高温、高压的反应环境,使通常难溶或不溶的物质溶解,并且重结晶而进行无机合成与材料处理的一种方法。经过十多年的发展,水热法逐步发展成为纳米材料制备最常用的方法之一。由于水热法自身的优点和特殊性,在科技高度交叉的21世纪,水热法已不再局限于晶体生长,而是跟纳米技术、地质技术、生物技术和先进材料技术息息相关,水热法的研究也向深度与广度发展。

纳米氧化锌的制备实验报告

纳米ZnO2的制备 实验报告 班级:应091-4 组号:第九组 指导老师:翁永根老师 成员:任晓洁 1428 邵凯 1429 孙希静 1432 【实验目的】 1.了解纳米氧化锌的基本性质及主要应用 2.通过本实验掌握纳米氧化锌的制备方法

3.对于纳米氧化锌的常见产品掌握制备原理和方法,并学会制备简易产 品。 4.通过本实验复习并掌握EDTA溶液的配制和标定,掌握配位滴定的原 理,方法,基准物质的选择依据以及指示剂的选择和pH的控制。 5.掌握基础常用的缓冲溶液的配制方法和原理。 6.加深对实验技能的掌握及提高查阅文献资料的能力。 【实验原理】 1. 超细氧化锌是一种近年来发展的新型高功能无机产品,晶体为六方结构,其颗粒大小约在1~100纳米。纳米氧化锌由于颗粒小、比表面积大而具有许多其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的特殊的性质,呈现表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点。近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。纳米氧化锌一系列的优异性和十分诱人的应用前景。 2. 纳米氧化锌的制备方法主要有:水热法,均相沉淀法,溶胶一凝胶法,微乳液法,直接沉淀法 3. 本工艺是将锌焙砂(主要成份是ZnO,主要伴生元素及杂质为铁,铜,铅,镍,铬,镍,此外,还含有其它微量杂质,因而用锌焙砂直接酸浸湿法生产活性氧化锌,必须利用合理的酸浸及除杂工艺,分离铅,脱铁、锰,除钙、镁等重金属)与硫酸反应,生产出粗制硫酸锌,加高锰酸钾、锌粉等,经过提纯得到精制硫酸锌溶液后,再经碳化母液沉淀,制得碱式碳酸锌,最后经烘干,煅烧制成活性氧化锌成品。 4. 氧化锌含量的测定采用配位滴定法测定,用NH3-NH4Cl缓冲溶液控 制溶液pH≈10,以铬黑T为指示剂,用EDTA标准溶液进行滴定,其主要反应如下: 在氨性溶液中: Zn2++4NH3?Zn(NH3)42+ 加入EBT(铬黑T)时: Zn(NH3)42++EBT(蓝色)?Zn-EBT(酒红色)+4NH3 滴定开始-计量点前: Zn(NH3)42++EDTA?Zn-EDTA+4NH3 计量点时: Zn-EBT(酒红色)+EDTA?Zn-EDTA+EBT(蓝色)

ZnS纳米球的水热法制备及其光催化性能研究_刘海瑞

收稿日期:2014-06-19。收修改稿日期:2015-01-05。国家自然科学基金(NO.50432030、U1304110)资助项目。 * 通讯联系人。E -mail :liuhairui1@https://www.360docs.net/doc/857279071.html, ZnS 纳米球的水热法制备及其光催化性能研究 刘海瑞*,1,2 方力宇2 贾 伟2 贾虎生2 (1河南师范大学物理与电子工程学院,新乡453007)(2太原理工大学材料科学与工程学院,太原 030024) 摘要:在表面活性剂十六烷基三甲基溴化铵(CTAB)的辅助下,以乙酸锌为锌源,硫脲(NH 2)2CS 为硫源,使用水热法通过改变反应时间,成功制备了不同粒径的ZnS 球状颗粒。利用X 射线衍射(XRD)、扫描电子显微镜(SEM)、X -射线能谱,高分辨透射电子显微镜(HRTEM))、紫外可见分光光谱和光致发光谱(PL)等测试手段对样品的晶体结构、形貌、光学性质进行了分析。通过对不同粒径的ZnS 纳米颗粒对亚甲基蓝的光催化降解的催化活性进行了评估。实验结果表明:在表面活性剂CTAB 的作用下,随着反应时间的增加,生成的ZnS 晶核生长成纳米颗粒,然后ZnS 纳米颗粒将进一步发生团聚从而形成平均粒径超过500nm 的ZnS 纳米球,但制备的ZnS 产物的晶体结构均为立方纤锌矿结构。随着ZnS 粒径的增加,样品的紫外吸收峰从418nm 逐渐蓝移到 362nm ,而PL 发射峰位的峰强随着粒径的增大而增强。光催化结果显示,反应12h 制备的ZnS 纳米球的光催化性能最佳。 关键词:ZnS ;球状结构;水热法;光催化中图分类号:O643.3 文献标识码:A 文章编号:1001-4861(2015)03-0459-06 DOI :10.11862/CJIC.2015.074 Fabrication of ZnS Nanoparticles with Enhanced Photocatalytic Activity by Hydrothermal Method LIU Hai -Rui *,1,2FANG Li -Yu 2JIA Wei 2JIA Hu -Sheng 2 (1College of Physics and Electronics Engineering,Henan Normal University,Xinxiang,Henan 453007,China )(2College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China ) Abstract:Under the role of CTAB,different size ZnS spherical -like particles were fabricated by hydrothermal method.The crystal structure,morphology,composition and optical property of the samples were characterized by X -ray diffraction (XRD),scanning electron microscopy (SEM),high resolution transmission electron microscopy (HRTEM),X -ray energy spectrum (EDS),UV -Vis absorption spectrum and photoluminescence spectrum (PL).Photocatalytic activities were evaluated by degradation of MB solution.The results show that ZnS nanoparticles were formed by aggregation of crystal nucleus under the role of CTAB.With the increase of reaction time,the size of ZnS particles increased to 500nm,however,the crystal structure of product has no change.With the increase of particle size,the UV -Vis absorption peak of samples shifted from 418to 362nm and the PL intensity further increased.Finally,the photocatalytic activity presented that fabricated ZnS nanoparticles with reaction time 12h showed best photcatalytic performance. Key words:ZnS;spherical structure;hydrothermal method;photocatalysis 第31卷第3期2015年3月 Vol .31No .3459-464 无机化学学报 CHINESE JOURNAL OF INORGANIC CHEMISTRY

水热法制备纳米氧化锌及其光催化性质的研究

水热法制备纳米氧化锌及其光催化性质的研究 纳米氧化锌因其很小的微粒尺寸,其比表面积较一般氧化锌粒子要大很多,具有其块状物料没有的表面与界面效应,小尺寸效应,量子尺寸效应,宏观量子隧道效应等。使其在很多领域都有非常重要的应用价值。本文通过水热法加入不同配比和不同类别的表面活性剂和掺杂钠钾离子,和对反应体系的某些条件来控制合成纳米氧化锌的微观形貌,并且对改变条件和表面活性剂的不同的纳米氧化锌对次甲基蓝的水溶液的光催化活性进行了初步的研究和探讨。在实验中我们发现,添加不同表面活性剂、掺杂有不同金属离子的纳米氧化锌的光催化的活性不同。 本文主要内容如下:首先简单介绍了纳米材料及纳米氧化锌的性能,制备,应用和表征的手段,并且对表面活性剂的类别和应用做了概述。 二、以尿素、乙酸锌、草酸钠和草酸钾为原料,用水热法通过改变不同的焙烧温度制备纳米氧化锌。所得的样品使用X射线粉末衍射仪(XRD)、傅里叶红外光谱仪(FT-IR)、扫描电子显微镜(SEM)、高分辨率透射电镜(HRTEM)、透射电子显微镜(TEM)对其进行了表征,得出结果,掺杂不同主族金属钠、钾离子的纳米氧化锌其形貌和粒径分布大不相同。其中,焙烧温度为600℃制备的掺杂有金属钠、钾离子的纳米氧化锌具有较小的粒径和分散性。 三、以尿素和乙酸锌为原料,通过水热法成功制备了只添加单一表面活性剂SDS(十二烷基硫酸钠),非离子表面活性剂:PEG6000(聚乙二醇6000)表面改性的纳米氧化锌和通过添加比例不同的两种表面活性剂表面改性的纳米氧化锌。发现使用不同比例以及不同种类的表面活性剂合成的纳米氧化锌具有不同的形貌和粒径,并用XRD、FT-IR、SEM、TEM、HRTEM对产品进行了表征。根据其表征结果发现,应用不同种类和不同配比的表面活性剂合成的纳米氧化锌对产品的尺寸和形貌有较大的影响。 四、自制的上述纳米氧化锌对水溶性有机染料次甲基蓝作为模拟污染物的水溶液进行了光的催化降解实验,并根据实验结果探讨了制备的纳米氧化锌的结构和形貌对其光催化活性的影响。其中,掺杂有钠或钾金属离子的纳米氧化锌600℃焙烧的样品比在400℃和800℃焙烧的样品的光催化活性更好。通过加入不同种类和配比的表面活性剂制备的纳米氧化锌的所有产品中,加入PEG6000和SDS(十二烷基硫酸钠)比例为1:3的光催化性能最好。通过实验数据发现光催化活性是与产品的形貌,粒子的尺寸大小等多种因素有关。

水热法制备纳米线阵列

水热法制备锥状ZnO纳米线阵列及其光电性研究水热法制备锥状ZnO纳米线阵列及其光电性研究 摘要 ZnO是一种在光电领域中具有重要地位的半导体材料。采用聚乙二醇(PEG(2000))辅助的水热合成法制备出了粒径较为均匀的锥状氧化锌纳团线阵列, 并用SEM、XRD对其进行了表征。实验结果表明,表面活性剂(PEG22000)和氨水的加入量对ZnO纳米线阵列的形貌有直接的影响;分析出了不同体系中的化学反应过程及生长行为,研究了衬底状态、生长溶液浓度、生长时间、pH值等工艺参数对薄膜生长的影响,并对薄膜柱晶等特殊形貌晶体的生长机理进行了探讨。研究表明:薄膜的晶粒成核方式主要为异质成核,柱晶的生长方式为层-层生长。生长的ZnO柱晶的尺寸和尺寸分布与晶种层ZnO晶粒有着相同的变化趋势。随着生长液浓度的增加,ZnO棒晶的平均直径明显增大。生长体系长时间放置,会导致二次生长,形成板状晶粒。NH3·H2O生长系统,可以调节pH值来控制薄膜的生长。对于碱性溶液体系,ZnO合适的生长温度为70~90℃,通过调节温度,可以改变纳米棒的生长速率。 关键词:ZnO薄膜,低温,水热法,薄膜生长

HYDROTHERMAL SYNTHESIS OF ZnO NANOWIRE ARRAYSCONE AND OPTOELECTRONIC RESEARCH ABSTRACT ZnO is an important area in the status of photovoltaic semiconductor material.Polyethylene glycol (PEG (2000)) assisted hydrothermal synthesis were prepared by a more uniform particle size of zinc oxide nano cone line array group and use SEM, XRD characterization was carried out. The results show that surfactant (PEG22000) and ammonia addition on the morphology of ZnO nanowire arrays have a direct impact; analyze the different systems of chemical reactions and growth behavior of the state of the substrate, growth concentration, growth time, pH, and other process parameters on film growth, and morphology of thin film transistors and other special column crystal growth mechanism was discussed. The results show that: the film grain nucleation is mainly heterogeneous nucleation, crystal growth patterns column for the layer - layer growth. The growth of ZnO crystal size and column size distribution of ZnO grain and seed layer have the same trend. With the increase in the growth of concentration, ZnO rods significantly increased the average diameter of crystal.Growth system extended period of time will lead to secondary growth, the formation of tabular grains. NH3 ? H2O growth system, you can adjust the pH value to control the film growth. The alkaline solution system, ZnO is a suitable growth temperature 70 ~ 90 ℃, by adjusting the temperature, can change the growth rate of nanorods. Key words:ZnO films, low temperature, hydrothermal method, thin film growth

水热法合成二氧化钛及研究进展

水热法合成二氧化钛及研究进展 摘要:水热法合成了不同晶型、形貌、大小和研定形貌的二氧化钛。究了pH值、水热反应温度和水热反应时间对纳米二氧化钛晶型、形貌和晶粒尺寸的影响,对TiO2晶形影响光催化活性的原因进行了探讨。同时从二氧化钛水解制氢、废水处理、空气净化、抗菌、除臭方面介绍了纳米二氧化钛在环境治理方面的应用和发展趋势,并对纳米二氧化钛的制备方法与应用作出展望。 关键词:二氧化钛;晶型;水热法;光催化;制备;应用 纳米二氧化钛(TiO2)具有比表面积大、磁性强、光吸收性好、表面活性大、热导性好、分散性好等性能。纳米TiO2是一种重要的无机功能材料, 可应用于随角异色涂料、屏蔽紫外线、光电转换、光催化等领域,在光催化领域环境治理方面具有举足轻重的地位,可应用在环保中的各个领域,它在环境污染治理中将日益受到人们的重视,具有广阔的应用前景,因此制备高光催化性能的纳米TiO2,拓展纳米二氧化钛的应用也是学者研究的重点。水热法合成纳米TiO2粉体具有晶粒发育完整、粒径分布均匀、不需作高温煅烧处理、颗粒团聚程度较轻的特点。 1.TiO2的制备方法、材料的性能 1.1不同晶型纳米二氧化钛的水热合成 1.1.1实验方法 边搅拌边将2mol·L- 1的四氯化钛水溶液缓慢滴加到115mol·L- 1的氢氧化钠水溶液中,保持30℃反应,生成纳米TiO2前驱体,反应终点的pH值分别控制为110、310、510、810、1110、1210。把纳米TiO2前驱体装入内衬聚四氟乙烯的不锈钢反应釜中进行水热反应,120℃~200℃反应1h~48h,反应结束后,冷却至室温,产物经过滤和蒸馏水洗至滤液中无Cl-,在100℃下鼓风干燥10h,粉碎后得到不同结构的纳米TiO2 粉体。选择不同的特征峰(金红石型选110面、锐钛矿型选101面,板钛矿型选121面),根据特征衍射峰的半高宽,利用Scherrer 公式展宽法估算出其晶粒尺寸。 1.1.2研究与开发 1.1. 2.1pH值对纳米TiO2晶型和形貌的影响 在水热反应温度为200 ℃和水热反应时间24 h的条件下。当pH = 1.0时,产

纳米材料氧化锌的制备与应用

纳米材料氧化锌的制备与应用 摘要:目的介绍纳米氧化锌的制备方法及其性能应用新进展。方法对近年来关于纳米氧化锌的制备方法及其性能应用的相关文献进行系统性查阅,对其制备方法的优缺点进行分析,并对纳米氧化锌的几种应用、生产提出了展望。结果氧化锌是一种高效、无毒性、价格低廉的重要光催化剂。结论随着环境污染的日益 它具有小尺寸效应、表面与界面效应、宏观量子隧道效应、量子尺寸效应等宏观材料所不具备的特殊的性能,使其在力学、磁学、热力学光学、催化、生物活性等方面表现出许多奇异的物理和化学性能,在生物、化工、医药、催化、信息技术、环境科学等领域发挥着重要作用。 纳米ZnO 由于粒子尺寸小,比表面大,具有表面效应、量子尺寸效应等,表现出许多优于普通氧化锌的特殊性能,如无毒和非迁移性、荧光性、压电性、吸收和散射紫外线能力等,在橡胶、陶瓷、日用化工、涂料、磁性材料等方面具有广泛的用途,可以制造气体传感器、荧光体、紫外线遮蔽材料、变阻器、图像记录材料、压敏材料、压电材料、高效催化剂等,备受人们重视 1纳米氧化锌的主要制备技术及特点 纳米ZnO 的制备方法有多种,可分为物理法和化学法。物理方法有熔融骤冷、溅射沉积、重离子轰击和机械粉碎等,但因所需设备相对昂贵,并且得到粉体的粒径大等局限,应用范围相对狭小。在工业生产和研究领域常用的方法为化学法,包括固相法、液相法和气相法。液相法由于制备形式的多样性、操作简便、粒度可控等特点而备受关注 液相法 直接沉淀法 在锌的可溶性盐溶液中加入一种沉淀剂(如Na2CO3 、NH3·H2O、(NH4) 2C2O4 等) ,首先制成另一种不溶于水的锌盐或锌的碱式盐、氢氧化锌等,然后再通过加热分解的方式制得氧化锌粉体。此法的操作较为简单易行,对设备要求不高,成本较低,但粒径分布较宽,分散性差,洗除阴离子较为困难。 固相法 固相化学反应法 固相法制备纳米氧化锌的原理是将两种物质分别研磨、混合后,再充分研磨得到前驱物,加热分解得纳米氧化锌粉体。无需溶剂、转化率高、工艺简单、能耗低、反应条件易掌握的优点,但是反应过程往往进行不完全或者过程中可能出现液化现象。 均匀沉淀法 利用某一化学反应使溶液中的构晶离子由溶液中缓慢地、均匀地释放出来,加入的沉淀剂通过化学反应使沉淀剂在整个溶液中缓慢地生成。均匀沉淀法得到的微粒粒径分布较窄,分散性好,工业化前景好。

室温固相合成纳米硫化锌及其性能研究

文章编号:1007-967X(2004)06-0034-04 室温固相合成纳米硫化锌及其性能研究Ξ 马国峰,邵忠宝,姜 涛 (东北大学化学系,辽宁沈阳110004) 摘 要:用醋酸锌和硫化钠为原料,室温固相法合成纳米ZnS,用紫外吸收光谱,红外光谱,X-ray 衍射分析(XRD),透射电镜(TE M)对产物结构、组成、大小、形貌进行表征。结果表明在加 入一定量的分散剂后,制备的纳米硫化锌粒子的平均粒径约20nm,分散性好,晶相单一, 属于立方晶系。在紫外吸收光谱中纳米硫化锌吸收峰蓝移,吸收峰从340nm减少到265 nm。从红外光谱可知,该粉体无红外吸收峰,具有红外透明性。讨论了不同的分散剂,煅 烧温度等条件对硫化锌粒度的影响。少量硫化锌作为助燃剂添加到重油-煤-水三元混 合流体燃料中,明显提高了重油-煤-水三元混合流体燃料燃烧性能。 关键词:固相反应;纳米硫化锌;助燃剂 中图分类号:TF123.23 文献标识码:A 纳米材料及技术是材料科学领域一个非常重要的研究方向,现已成为国际科学前沿和世界性的研究热潮[1,2]。已有研究表明,纳米材料具有独特的表面效应、体积效应及宏观量子隧道效应等,在电学、磁学、光学、力学、催化等领域呈现出许多优异的性能,有着广阔的应用前景[3]。合成纳米材料的有多种方法,但反应均需要高温,并使用大量的有机溶剂,,设备费用高,颗粒均匀性差,粒子易粘结或团聚等[4],室温、近室温固相反应合成纳米材料近年来取得很大的进展[5]。它的突出特点是操作方便,合成工艺简单,转化率高,粒径均匀,且粒度可控污染少,可避免或减少液相中易出现的硬团聚现象,以及由中间步骤和高温反应引起的粒子团聚现象。ZnS是一种非常重要且应用广泛的半导体材料,主要应用于电子工业、国防军工、化学化工等诸多领域[6]。目前纳米ZnS的制备方法主要有元素直接反应、离子交换反应、微乳液法、水热法、溶剂热合成等[7~9]。本文利用室温固相合成法合成纳米硫化锌,并探讨了反应物反应前的处理,加入不同的分散剂和不同煅烧温度对ZnS粒径及分散性的影响,以及在重油-煤-水三元混合流体燃料中加入少量的纳米ZnS可以提高其燃烧性能,从而表明纳米ZnS 作为助燃剂有研究价值。 1 实验部分1.1 实验试剂 醋酸锌、硫化钠、氯化钠、乙二醇、无水乙醇、氨水均为分析纯。其中醋酸锌带2个结晶水,硫化钠带9个结晶水,重油取自葫芦岛市炼油五厂。各种盐在使用前,用化学法对金属含量进行标定。 1.2 实验内容 1.2.1 醋酸锌的处理 配置一定量的醋酸锌饱和溶液,加热蒸发掉一部分水,立即放入冰水中使其重结晶,然后抽滤。1.2.2 纳米硫化锌粉体的制备 按化学计量比称取一定量处理过的醋酸锌和研磨过的硫化钠放入玛瑙研钵中混合均匀,充分研磨30min,使其完全反应,用去离子水和无水乙醇分别洗涤两次,并放入稀氨水中洗涤一次,抽干,放在干燥箱中800℃干燥10h后,研磨,得到白色产物,放入马沸炉煅烧。 在反应中掺入适量的氯化钠或溶剂如乙二醇作为分散剂制备纳米硫化锌,其余过程与上述相同。1.2.3 重油-煤-水三元混合燃料的制备 向稳定性较好的乳化重油中加入适量的煤粉、分散剂、助燃剂,得到新型重油-煤-水三元混合流体燃料。 1.3 纳米材料的表征 物相分析在Philips analyti-cal X-Ray Service 第20卷第6期2004年12月 有 色 矿 冶 N ON-FERR OUS MINING AN D METALLURG Y V ol.20.№6 December2004 Ξ收稿日期:2004-05-10 作者简介:马国峰(1979—),男,东北大学硕士研究生。

胺型离子液体形貌可控水热法合成微纳米氧化锌

巨蕾———————————————————————一姜勇等:胺型离子液体形貌可控水热法合成微纳米氧化锌/20loa=lli2ill a.b.硝酸三乙胺c.d.硝酸正丁胺e.f.无离子液体 图l添加不同离子液体后所得微纳米ZnO的SEM图 Fig.1SEMimagesofmicro/nanoZnOpreparedinthepresenceofdifferentILs 约为10“m的三维花状结构微纳米ZnO生成;而高倍的SEM图(图1b)则更好地观察到每个花状结构都是由许多形貌均一的直径约400am、长约5肚ITI的六面体纳米棒构成。由图1c可以看出,添加硝酸正丁胺后制备的微纳米ZnO形貌均一,为平均直径约800D.m、长度约80"m的纳米棒;单个ZnO纳米棒的形貌为末端为六棱锥六方柱,且表面光滑(图1d)。由图1e和图1f可以看出,未添加离子液体所得微纳米Zn0形貌很不规则,既有不均匀的纳米棒,又有一些碎片,未见生长完整的花状或棒状纳米结构ZnO。由此可见,离子液体在不同形貌的微纳米ZnO形成过程中起着十分重要的作用。 硝酸三乙胺用量对微纳米ZnO的结构与形貌的影响见图2。 图2硝酸三乙胺用量不同时所得微纳米ZnO的SEM图 Fig.2 SEMimagesofmicro/nanoZnOpreparedbyaddingdifferentamountoftriethylaminenitrate 由图2可看出,当硝酸三乙胺用量为0.5%、1.5%、2.0%、3.0%时,均没有三维花状结构的微纳米ZnO生成。 为了说明三维花状结构的微纳米ZnO的演变过程,在硝酸三乙胺用量为1.0%、180℃条件下,考察了反应时间对微纳米ZnO形貌的影响,结果见图3。 由图3可看出,水热反应5h,没有产物生成;水热反应10h,得到不均匀的棒状结构微纳米ZnO,局部区域伴有结构碎片(图3a);反应15h,似有花状形貌的结构轮廓出现(图3b);反应24h,出现了较为完整的三维花状结构微纳米ZnO(图1b)。 2.2XRD分析(图4) 由图4可看出,实验所得微纳米ZnO的衍射峰位置与ZnO标准卡(JCPDSNo.36—1451)的数据相吻合,表明产物是六方纤锌矿结构。衍射峰强度大,峰形 明锐,说明晶体结晶完整。

纳米ZnO的制备

纳米ZnO的制备、表征及应用 摘要:本文比较和综述了纳米ZnO的各种制备方法,并对纳米ZnO的广泛应用进 行了分析和阐述。使用热重分析、扫描电镜分析(SEM)、透射电镜分析(TEM)、粒度分析、X射线衍射仪(XRD)、对所制得纳米ZnO的成分、晶型和形貌进行了表征, 并举例说明了纳米ZnO的一些实际应用。 关键词:ZnO 制备表征应用 纳米ZnO是一种新型的多功能的精细无机材料,出于其颗粒尺寸细小,比表面积较大,所以具有普通ZnO所无法比拟的特殊性能,如表面效应、量子尺寸效应和宏观量子隧道效应等。同时纳米ZnO也是一种自激活的半导体材料,室温下禁带宽度为3.27eV,激子束缚能为60meV,这就使得纳米ZnO材料从理论上具备了从紫外光至可见光稳定的发射本领。因此,纳米ZnO材料在光电转换、光催化及气体传感器等领域有着广阔的应用前景。 1 纳米ZnO的结构与性质 氧化锌晶体有三种结构:六边纤锌矿结构、立方闪锌矿结构,以及比较罕见的氯化钠式八面体结构。纤锌矿结构在三者中稳定性最高,因而最常见。立方闪锌矿结构可由逐渐在表面生成氧化锌的方式获得。在两种晶体中,每个锌或氧原子都与相邻原子组成以其为中心的正四面体结构。八面体结构则只曾在100亿帕斯卡的高压条件下被观察到。纤锌矿结构、闪锌矿结构有中心对称性,但都没有轴对称性。晶体的对称性质使得纤锌矿结构具有压电效应和焦热点效应,闪锌矿结构具有压电效应。纤锌矿结构的点群为6mm(国际符号表示),空间群是P63mc。晶格常量中,a = 3.25 埃,c = 5.2 埃;c/a比率约为1.60,接近1.633的理想六边形比例。在半导体材料中,锌、氧多以离子键结合,是其压电性高的原因之一。 由于纳米材料晶粒极小,表面积特大,在晶粒表面无序排列的原子分数远远大于晶态材料表面原子所占的百分数,导致了纳米材料具有传统固体所不具备的许多特殊。基本性质,如体积效应、表面效应、量子尺寸效应、宏观量子隧道效应和介电限域效应等,从而使纳米材料具有微波吸收性能、高表面活性、强氧化性、超顺磁性及吸收光谱表现明显的蓝移或红移现象等。除上述的基本特性,纳米材料还具有特殊的光学性质、催化性质、光催化性质、光电化学性质、化学反应性质、化学反应动力学性质和特殊的物理机械性质。 2纳米zno的制备方法 纳米ZnO的制备方法随着对ZnO性能研究的深入应运而生,概括起来一般分直接法和间接法。 2.1直接法 反应方程式: C+O2=CO2

相关文档
最新文档