2016高三第一轮复习函数的图像学生版

2016高三第一轮复习函数的图像学生版
2016高三第一轮复习函数的图像学生版

学案10 函数的图象

自主梳理

1.应掌握的基本函数的图象有:一次函数、二次函数、幂函数、指数函数、对数函数等.

2.利用描点法作图:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质(__________、__________、__________);④画出函数的图象.

3.利用基本函数图象的变换作图:

(1)平移变换:函数y =f (x +a )的图象可由y =f (x )的图象向____(a >0)或向____(a <0)平移____个单位得到;函数y =f (x )+a 的图象可由函数y =f (x )的图象向____(a >0)或向____(a <0)平移____个单位得到.

(2)伸缩变换:函数y =f (ax ) (a >0)的图象可由y =f (x )的图象沿x 轴伸长(0

(____)到原来的1

a

倍得到;函数y =af (x ) (a >0)的图象可由函数y =f (x )的图象沿y 轴伸长(____)

或缩短(________)为原来的____倍得到.(可以结合三角函数中的图象变换加以理解)

(3)对称变换:①奇函数的图象关于________对称;偶函数的图象关于____轴对称; ②f (x )与f (-x )的图象关于____轴对称; ③f (x )与-f (x )的图象关于____轴对称; ④f (x )与-f (-x )的图象关于________对称;

⑤f (x )与f (2a -x )的图象关于直线________对称;

⑥曲线f (x ,y )=0与曲线f (2a -x,2b -y )=0关于点________对称;

⑦|f (x )|的图象先保留f (x )原来在x 轴________的图象,作出x 轴下方的图象关于x 轴的对称图形,然后擦去x 轴下方的图象得到;

⑧f (|x |)的图象先保留f (x )在y 轴________的图象,擦去y 轴左方的图象,然后作出y 轴右方的图象关于y 轴的对称图形得到.

自我检测

1.(2009·北京)为了得到函数y =lg x +3

10

的图象,只需把函数y =lg x 的图象上所有的点( )

A .向左平移3个单位长度,再向上平移1个单位长度

B .向右平移3个单位长度,再向上平移1个单位长度

C .向左平移3个单位长度,再向下平移1个单位长度

D .向右平移3个单位长度,再向下平移1个单位长度 2.(2011·烟台模拟)已知图1是函数y =f (x )的图象,则图2中的图象对应的函数可能是( )

A .y =f (|x |)

B .y =|f (x )|

C .y =f (-|x |)

D .y =-f (-|x |)

3.函数f (x )=1

x

-x 的图象关于 ( )

A .y 轴对称

B .直线y =-x 对称

C .坐标原点对称

D .直线y =x 对称 4.使log 2(-x )

5.(2011·潍坊模拟)已知f (x )=a x -

2,g (x )=log a |x |(a >0且a ≠1),若f (4)·g (-4)<0,则y =f (x ),y =g (x )在同一坐标系内的大致图象是 ( )

探究点一 作图

例1 (1)作函数y =|x -x 2|的图象; (2)作函数y =x 2-|x |的图象; (3)作函数x

y )

2

1( 的图象.

变式迁移1 作函数y =1

|x |-1

的图象.

探究点二 识图

例2 (1)函数y =f (x )与函数y =g (x )的图象如图,

则函数y =f (x )·g (x )的图象可能是 ( )

(2)已知y =f (x )的图象如图所示,则y =f (1-x )的图象为

( )

变式迁移2 (1)(2010·山东)函数y =2x -x 2的图象大致是 ( )

(2)函数f (x )的部分图象如图所示,则函数f (x )的解析式是 ( )

A .f (x )=x +sin x

B .f (x )=cos x x

C .f (x )=x cos x

D .f (x )=x ·(x -π2)·(x -3π

2

)

探究点三 图象的应用

例3 若关于x 的方程|x 2-4x +3|-a =x 至少有三个不相等的实数根,试求实数a 的取值范围.

变式迁移3 (2010·全国Ⅰ)直线y =1与曲线y =x 2-|x |+a 有四个交点,则a 的取值范围是________.

数形结合思想的应用

例 (5分)(2010·北京东城区一模)定义在R 上的函数y =f (x )是减函数,且函数y =f (x

-1)的图象关于(1,0)成中心对称,若s ,t 满足不等式f (s 2-2s )≤-f (2t -t 2).则当1≤s ≤4

时,t

s 的取值范围是

( )

A.????-14,1

B.????-14,1

C.????-12,1

D.???

?-12,1

一、选择题(每小题5分,共25分)

1.(2010·重庆)函数f (x )=4x +1

2

x 的图象 ( )

A .关于原点对称

B .关于直线y =x 对称

C .关于x 轴对称

D .关于y 轴对称 2.(2010·湖南)用min{a ,b }表示a ,b 两数中的最小值.若函数f (x )=min{|x |,|x +t |}

的图象关于直线x =-1

2

对称,则t 的值为 ( )

A .-2

B .2

C .-1

D .1 3.(2011·北京海淀区模拟)在同一坐标系中画出函数y =log a x ,y =a x ,y =x +a 的图象,可能正确的是 ( )

4.(2011·深圳模拟)若函数y =f (x )的图象如图所示,则函数y =-f (x +1)的图象大致为

( )

5.设b >0,二次函数y =ax 2

+bx +a 2

-1的图象为下列之一,则a 的值为 ( )

A .1

B .-1

C.-1-52

D.-1+52

二、填空题(每小题4分,共12分)

6.为了得到函数y =3×(13)x 的图象,可以把函数y =(1

3

)x 的图象向________平移________

个单位长度.

7.(2011·黄山月考)函数f (x )=

2x -1

x +1

的图象对称中心是________. 8.(2011·沈阳调研)如下图所示,向高为H 的水瓶A 、B 、C 、D 同时以等速注水,注满为止.

(1)若水量V 与水深h 函数图象是下图的(a),则水瓶的形状是________;

(2)若水深h 与注水时间t 的函数图象是下图的(b),则水瓶的形状是________. (3)若注水时间t 与水深h 的函数图象是下图的(c),则水瓶的形状是________; (4)若水深h 与注水时间t 的函数的图象是图中的(d),则水瓶的形状是________.

三、解答题(共38分)

9.(12分)已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0.

(1)求实数m 的值;(2)作出函数f (x )的图象; (3)根据图象指出f (x )的单调递减区间; (4)根据图象写出不等式f (x )>0的解集; (5)求当x ∈[1,5)时函数的值域.

10.(12分)(2011·三明模拟)当x ∈(1,2)时,不等式(x -1)2

11.(14分)已知函数f (x )=-x 2

+2e x +m -1,g (x )=x +e 2x

(x >0).

(1)若g (x )=m 有根,求m 的取值范围;

(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.

必修4正弦函数和余弦函数的图像与性质

必修4正弦函数和余弦函数的图像与性质 例1 用五点法做出下列函数的图像 11(1)2sin ,[0,2];(2)cos(),[,]666 y x x y x x ππππ=-∈=+∈- 例2 求下列函数的定义域和值域 (1)lgsin ;(2)y x y == 练:求函数sin ()log (12cos )x f x x =+的定义域。 例3 已知函数()y f x =的定义域是1 [0,]4 ,求下列函数的定义域 221(1)(cos );(2)(sin )2 f x f x - 例4 求下列函数的最大值与最小值 22(1)2sin();(2)2cos 5sin 4;42(3)3cos 4cos 1,[,]33 y x y x x y x x π ππ=--=+-=-+∈

例5 设1 sin sin 3x y +=,求2sin cos M x y =-的最小值和最大值 例6 求下列函数的值域 2cos 2sin cos (1);(2)2cos 11sin x x x y y x x ==++ 例7已知a 是实数,则函数f (x )=1+asinax 的图象不可能是( ) A . B . C . D . 例8 求下列函数的周期。 (1)|sin ||cos |;(2)cos |2|(3)cos()6y x x y x y x π =+==-- 例9 判断函数7())2f x x π =+的奇偶性 例10 判断函数()lg(sin f x x =+的奇偶性

例11求函数1sin 2 x y π-=的单调区间 提升训练题 1.下列四个函数的图像中关于y 轴对称的是( ) .sin ;.cos ;.1sin ;.cos()2 A y x B y x C y x D y x π ==-=-=- 2.函数sin 2x y =的单调增区间是( ) 3.[2,2]();.[2,2]()2222 .[2,2]();.[2,2]()A k k k Z B k k k Z C k k k Z D k k k Z π πππππππππππππ- +∈++∈-∈+∈ 3.下列函数中是奇函数的是( ) .|sin |;.sin(||);.sin ||;.sin ||A y x B y x C y x D y x x =-=-== 4.sin()3y x π =-的单调减区间是( ) 55.[,]();[2,2]()666677.[,]();.[2,2]();6666A k k k Z B k k k Z C k k k Z D k k k Z ππππππππππππππππ-+ ∈-+∈--∈--∈ 5.函数2cos 3cos 2y x =-+的最小值为______________________ 6.函数|sin |2x y =的最小正周期____________________ 7.cos1,cos2,cos3的大小关系____________________ 8.函数3cos 1cos 2 x y x += +的值域是____________________

(课标通用)北京市202x版高考数学大一轮复习 第二章 7 第七节 函数的图象夯基提能作业本

第七节函数的图象 A组基础题组 1.为了得到函数y=lg 的图象,只需把函数y=lg x的图象上所有的点( ) A.向左平移3个单位长度,再向上平移1个单位长度 B.向右平移3个单位长度,再向上平移1个单位长度 C.向左平移3个单位长度,再向下平移1个单位长度 D.向右平移3个单位长度,再向下平移1个单位长度 答案 C 由y=lg得y=lg(x+3)-1,把函数y=lg x的图象向左平移3个单位长度,得函数y=lg(x+3)的图象,再向下平移1个单位长度,得函数y=lg(x+3)-1的图象.故选C. 2.(2017北京西城一模)函数f(x)=-log2x的零点个数为( ) A.0 B.1 C.2 D.3 答案 B f(x)=-log 2x的零点个数就是函数y=与y=log2x的图象的交点个数. 如图: 由图知函数f(x)的零点个数为1.故选B. 3.函数y=的图象可能是( ) 答案 B 易知函数y=为奇函数,故排除A、C,当x>0时,y=ln x,只有B项符合,故选B. 4.下列y=f(x)的函数图象中,满足f>f(3)>f(2)的只可能是( )

答案 D 因为f>f(3)>f(2),所以函数f(x)有增有减,排除A,B.在C中, ff(0),所以 f0且b≠1)的图象如图所示,那么函数y=log b(x-a)的图象可能是( ) 答案 C 由y=a+sin(bx)的图象可得a>1,且最小正周期T=<π,所以b>2,所以y=log b(x-a)是增函数,排除A和B;当x=2时,y=log b(2-a)<0,排除D,故选C. 6.(2015北京朝阳期末,7)已知定义在R上的函数f(x)=若直线y=a与函数f(x)的图象恰有两个交点,则实数a的取值范围是( ) A.(0,2) B.[0,2) C.(0,2] D.[1,2] 答案 B 由题意得f(x)=在平面直角坐标系中作出函数f(x)的图象如图所示, 由图象易知,若直线y=a与函数f(x)的图象恰有两个交点,则a的取值范围是[0,2),故选B. 7.(2017北京朝阳二模,7)已知函数f(x)=(a>0且a≠1).若函数f(x)的图象上有且仅有两个点关于y轴对称,则a的取值范围是( )

正弦函数余弦函数的图像(附答案)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象? 答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线.

第二章 第七节 函数的图象

[课时作业·巩固练习] 实战演练 夯基提能 [A 组 基础保分练] 1.设x ∈R ,定义符号函数sgn(x )=???? ? 1,x >0,0,x =0, -1,x <0,则函数f (x )=|x |sgn(x )的图象大致是 ( ) 解析:由符号函数解析式和绝对值运算,可得f (x )=x ,选C. 答案:C 2.(2020·东北三校一模)函数f (x )=|x |+a x (其中a ∈R )的图象不可能是( ) 解析:当a =0时,f (x )=|x |,则其图象为A ;当x ∈(0,+∞)时,f (x )=x +a x ,f ′(x )=1 -a x 2=x 2 -a x 2,若a >0,函数f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增,选项B 满足;若a <0,函数f (x )在(0,+∞)上单调递增,选项D 满足,而选项C 中的图象都不满足,故选C. 答案:C 3.已知二次函数f (x )的图象如图所示,则函数g (x )=f (x )·e x 的图象为( )

解析:由图象知,当x <-1或x >1时,g (x )>0;当-1<x <1时,g (x )<0,由选项可知选A. 答案:A 4.(2020·辽宁大连测试)下列函数f (x )的图象中,满足f ???? 14>f (3)>f (2)的只可能是( ) 解析:因为f ????14>f (3)>f (2),所以函数f (x )有增有减,排除A ,B.在C 中,f ????14<f (0)=1,f (3)>f (0),即f ????14<f (3),排除C ,故选D. 答案:D 5.已知函数y =f (1-x )的图象如图所示,则y =f (1+x )的图象为( ) 解析:因为y =f (1-x )的图象过点(1,a ),故f (0)=a .所以y =f (1+x )的图象过点(-1,a ),选B. 答案:B 6.函数f (x )=5 x -x 的图象大致为( )

正余弦函数的图象

课题:正弦函数、余弦函数的图象 高( )班 组 姓名 教师评价: 编制人: 审核人: 【学习目标】 1.借助正弦线画出正弦函数的图象,并在此基础上由诱导公式画出余弦函数的图象.能熟练运用“五点法” 作图. 2.通过独立思考,合作探究,体会利用“几何法”作正弦函数、余弦函数图象的过程,提高动手能力,体会数形结合在解题中的应用. 3.通过作正弦函数、余弦函数的图象,培养学生认真负责、一丝不苟的学习精神,培养主动交流的合作精神,培养积极探索的思维品质;激情投入学习,享受成功的快乐. 重点:运用“五点法”作图 难点:借助于三角函数线画y=sinx 的图象 【预习案】 【使用说明与学法指导】 1.用20分钟左右的时间,阅读探究课本的内容,熟记基础知识。自主高效预习,提升自己的阅读理解能力. 2.完成教材助读设置的问题,然后结合课本的基础知识和例题,完成预习自测题. 3.将预习中不能解决的问题标出来,并写到后面“我的疑惑”处. 一、相关知识: 1、 函数的定义及其三要素是什么? 2、 请同学们回忆一下所学的指数函数图象怎么画? 二、教材助读: 1、 你能用自己的语言来描述正弦函数和余弦函数的定义吗? 2、 正弦函数的定义域和值域是什么? 3、 请你结合书本第30页中简谐运动的过程,你对正弦函数、余弦函数的图象是否有了一 个直观的印象? 4、 如何利用正弦线画出在0到π2内的正弦函数的图像? 5、 观察所得函数的图象,五个点在确定形状是起关键作用,哪五个点? 6、 如何作R x x y ∈=,sin 的图像? 7、 用以前学过的诱导公式,=x cos ________(用正弦式表示),那么x y cos =的图象怎样 作? 三、预习自测: 1、函数x y 2sin =的定义域为( )

三角函数正余弦函数的图像及性质复习汇总

一、正弦函数和余弦函数的图象: 正弦函数sin y x =和余弦函数cos y x =图象的作图方法:五点法:先取横坐标分别为0,3,,,222ππ ππ 的五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。 二、正弦函数sin ()y x x R =∈、余弦函数cos ()y x x R =∈的性质: (1)定义域:都是R 。 (2)值域: 1、都是[]1,1-, 2、sin y x =,当()22 x k k Z π π=+ ∈时,y 取最大值1;当()322 x k k Z π π=+ ∈时,y 取最小值-1; 3、cos y x =,当()2x k k Z π=∈时,y 取最大值1,当()2x k k Z ππ=+∈时,y 取最小值-1。 例:(1)若函数sin(3)6 y a b x π=-+的最大值为23,最小值为21 -,则=a __,=b _

(答:,12 a b ==或1b =-); ⑵ 函数y=-2sinx+10取最小值时,自变量x 的集合是_________________________。 (3)周期性: ①sin y x =、cos y x =的最小正周期都是2π; ②()sin()f x A x ω?=+和()cos()f x A x ω?=+的最小正周期都是2|| T πω=。 例:(1)若3 sin )(x x f π=,则(1)(2)(3)(2003)f f f f ++++=___(答:0) ; ⑵.下列函数中,最小正周期为π的是( ) A.cos 4y x = B.sin 2y x = C.sin 2x y = D.cos 4x y = (4)奇偶性与对称性: 1、正弦函数sin ()y x x R =∈是奇函数,对称中心是()(),0k k Z π∈,对称轴是直线()2 x k k Z π π=+ ∈; 2、余弦函数cos ()y x x R =∈是偶函数,对称中心是(),02k k Z ππ? ?+∈ ???,对称轴是直线()x k k Z π=∈ (正(余)弦型函数的对称轴为过最高点或最低点且垂直于x 轴的直线,对称中心为图象与x 轴的交点)。 例:(1)函数522y sin x π?? =- ??? 的奇偶性是______(答:偶函数); (2)已知函数31f (x )ax b sin x (a,b =++为常数),且57f ()=,则5f ()-=______(答:-5); (5)单调性: ()sin 2,222y x k k k Z ππππ??=-+∈????在上单调递增,在()32,222k k k Z ππππ? ?++∈????单调递减; cos y x =在[]()2,2k k k Z πππ+∈上单调递减,在[]()2,22k k k Z ππππ++∈上单调递增。特别提醒,别忘了k Z ∈! ⑴函数y=sin2x 的单调减区间是( )

2022高三统考数学文北师大版一轮:第二章第七节 函数的图像

第七节 函数的图像 授课提示:对应学生用书第29页 [基础梳理] 1.利用描点法作函数图像的基本步骤及流程 (1)基本步骤:列表、描点、连线. (2)流程: ①确定函数的定义域; ②化简函数解析式; ③讨论函数的性质(奇偶性、单调性、周期性、对称性等); ④列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线. 2.平移变换 y =f (x )――――――――――――→a >0,右移a 个单位 a <0,左移|a |个单位y =f (x -a ); y =f (x )―――――――――――――→b >0,上移b 个单位 b <0,下移|b |个单位 y =f (x )+b . 3.伸缩变换 y =f (x )―――――――――――――――――――――→纵坐标不变 各点横坐标变为原来的1 a (a >0)倍 y =f (ax ). y =f (x )――――――――――――――――――→横坐标不变 各点纵坐标变为原来的A (A >0)倍y =Af (x ). 4.对称变换 y =f (x )―――――――――→关于x 轴对称 y =-f (x ); y =f (x )―――――――――→关于y 轴对称 y =f (-x ); y =f (x )―――――――――→关于原点对称 y =-f (-x ). 5.翻折变换 y =f (x )―――――――――――――――――――→去掉y 轴左边图,保留y 轴右边图 将y 轴右边的图像翻折到左边去y =f (|x |); y =f (x )―――――――――――→留下x 轴上方图 将x 轴下方图翻折上去 y =|f (x )|. 1.一个原则 在解决函数图像的变换问题时,要遵循“只能对函数关系式中的x ,y 变换”的原则. 2.函数对称的重要结论 (1)函数y =f (x )与y =f (2a -x )的图像关于直线x =a 对称. (2)若函数y =f (x )对定义域内任意自变量x 满足:f (a +x )=f (a -x ),则函数y =f (x )的图像关于直线x =a 对称. (3)函数y =f (x )与y =2b -f (2a -x )的图像关于点(a ,b )中心对称. (4)在函数y =f (x )中,将x 换为-x ,解析式不变,则此函数图像关于y 轴对称.

正余弦函数的图象与性质

精心整理 正、余弦函数的图象与性质 [知识回顾] 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{}36036090,k k k αα?<

原点的距离是()0 r r=>,则sin y r α=,cos x r α=,() tan0 y x x α=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:sinα=MP,cosα=OM,tanα=AT. 12、同角三角函数的基本关系: 222222

[考点例题精讲] 考点一:正余弦函数图象的应用 例1 利用正弦函数和余弦函数的图象,求满足下列条件的x 的集合: 2 1 sin )1(≥ x 解:作出正弦函数y=sinx ,x ∈[0,2π]的图象: 由图形可以得到,满足条件的x 的集合为:Z k k k ∈?? ? ???++,265, 26 ππππ 2 1 cos )2(≤ x 解:作出余弦函数y=cos ,x ∈[0,2π]的图象: 由图形可以得到,满足条件的x 的集合为:Z k k k ∈?? ? ???++,235, 23 ππππ 考点二:求与正余弦函数有关的定义域问题 例2求下列函数的定义域: (1)y =1+ x sin 1 (2)y =x cos 解:(1)由1+sin x ≠0,得sin x ≠-1即x ≠2 3π +2k π(k ∈Z ) ∴原函数的定义域为{x |x ≠ 23π +2k π,k ∈Z } (2)由cos x ≥0得-2π +2k π≤x ≤2 π+2k π(k ∈Z ) ∴原函数的定义域为[-2π+2k π,2 π +2k π](k ∈Z ) 方法小结:求三角函数的定义域实质就是解三角不等式(组).一般可用三角函单调性 在2,22 2k k ππππ??-+??? ? ()k ∈Z 上是增函 数; 在32,22 2k k π πππ??++ ??? ? () k ∈Z 上是减函数. 在[]()2,2k k k πππ-∈Z 上是增函数; 在[]2,2k k πππ+()k ∈Z 上是减函 数. 对称性 对称中心()(),0k k π∈Z 对称轴()2 x k k π π=+∈Z 对称中心(),02 k k π π?? +∈Z ?? ? 对称轴()x k k π=∈Z

第七节 函数的图象

第七节函数的图象 会运用函数图象理解和研究函数的性质. 1.描点法作图 方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质(奇偶性、周期性、单调性、最值,甚至变化趋势);(4)描点连线,画出函数的图象. 2.图象变换 (1)平移变换: (2)伸缩变换: y=f(x)y=⑤f(ωx); y=f(x)y=⑥Af(x). (3)对称变换: y=f(x)y=⑦-f(x); y=f(x)y=⑧f(-x); y=f(x)y=⑨-f(-x). (4)翻折变换: y=f(x)y

=⑩f(|x|); y=f(x)y=|f(x)|. 函数图象对称变换的相关结论 (1)y=f(x)的图象关于直线y=x对称的图象是函数y=f-1(x)的图象. (2)y=f(x)的图象关于直线x=m对称的图象是函数y=f(2m-x)的图象. (3)y=f(x)的图象关于直线y=n对称的图象是函数y=2n-f(x)的图象. (4)y=f(x)的图象关于点(a,b)对称的图象是函数y=2b-f(2a-x)的图象. 1.判断正误(正确的打“√”,错误的打“?”). (1)将函数y=f(-x)的图象向右平移1个单位长度得到函数y=f(-x-1)的图象.() (2)函数y=f(x)与y=-f(-x)的图象关于原点对称.() (3)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图象关于直线x=1对称.() (4)函数y=f(|x|)的图象关于y轴对称.() (5)函数y=af(x)与y=f(ax)(a>0且a≠1)的图象相同.() 答案(1)?(2)√(3)√(4)√(5)? 2.函数y=x|x|的图象大致是() 答案A 3.(教材习题改编)已知图①中的图象是函数y=f(x)的图象,则图②中的图象对应的函数可能是() A.y=f(|x|) B.y=|f(x)| C.y=f(-|x|) D.y=-f(-|x|)

正弦函数余弦函数的图像(附)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象?

答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线. 根据诱导公式sin ????x +π2=cos x ,x ∈R .只需把正弦函数y =sin x ,x ∈R 的图象向左平移π2个单位长度即可得到余弦函数图象(如图). 要画出y =cos x ,x ∈[0,2π]的图象,可以通过描出(0,1),????π2,0,(π,-1),????3 2π,0,(2π,1)五个关键点,再用光滑曲线将它们连接起来,就可以得到余弦函数y =cos x ,x ∈[0,2π]的图象. 思考 在下面所给的坐标系中如何画出y =cos x ,x ∈[0,2π]的图象? 答案

正余弦函数的图像与性质(周期性)

第一课时 题目:正弦函数、余弦函数的图象 授课时间:3月25日,星期一 课型:新授课 教学目标: 理解借助单位圆中的三角函数线(正弦线)画出y sin x 的图象, 进而画出 y cosx 的图象;会用“五点法”画y sin x 和y cosx 在一个周期内的简图。 教学重点和难点: 重点:利用三角函数线画正弦函数x 0,2的图象,用“五点法”画y sin x 和 y cosx 在一个周期内的简图。 难点:正弦函数与余弦函数图象间的关系、图象变换。 学情分析: 学生在之前已经学了一次函数、二次函数、指数函数、对数函数和幂函数,已掌握了一些基础函数的图像和性质,并了解一些函数图像的画法。而且刚分班学生的学习动力很足,但学生分析、理解能力较差,对具体形象的事物比较感兴趣,但对学习抽象理论知识存在畏难情绪,缺乏学习主动性,因此在教学中要注意引导学生积极思考和多动手画图练习。 教学方法: 通过多媒体展示正弦函数的形成,是学生更直观形象的了解正弦函数的形成,加深印象增加兴趣。并配合适当讲授法。在五点法画图中要学生动手实践,加深印象和理解。 教具、学具的准备:多媒体、直尺、圆规 教学过程: (一)知识链接 1、正弦线的概念 2、诱导公式(六) (二)情景设置 在初中和必修一的函数学习中,我们知道函数的图像为我们解决相关的函数问题提供了重要的方法和工具,那么三角函数的图像是怎样的呢? 这节课让我们来共同探讨正、余弦函数的图像问题。 【设计意图】从原有知识出发,类比联想,引入问题情景,学生主动参与,积极思考 (三)课题导入 提问1、如何作正弦函数的图象? ①列表描点法: 步骤:列表、描点、连线 大家试着画出正弦函数sin y x =[]0,2x π∈的图像

正、余弦函数的图象与性质

正、余弦函数的图象与性质 [知识回顾] 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{}36036090,k k k αα?<,则sin y r α= ,cos x r α=,()tan 0y x x α=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正, 第三象限正切为正,第四象限余弦为正. 11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 12、同角三角函数的基本关系: ()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-; () sin 2tan cos α αα =sin sin tan cos ,cos tan αααααα? ?== ??? .

正弦函数和余弦函数图像与性质

6.1正弦函数和余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T . 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α====; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定 的角和它的正弦值(或余弦值)之间是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法

高三数学 正余弦函数的图象2

第三十教时 教材:正弦函数、余弦函数的图象及其性质习题课; 目的:复习正弦函数、余弦函数的图象及其性质,使学生对上述概念的理解、认 识更深刻。 过程:一、复习:1.y=sinx y=cosx 的图象 当x ∈R 时,当x ∈[0,2π]时 2.y=sinx y=cosx 的性质 定义域、值域(有界性)最值、 周期性、奇偶性、单调性 二、1.已知函数f (x )=x 2cos 12-,试作出该函数的图象,并讨论它的奇偶性、周期性以及区间[0,2 π ]上的单调性。 解:f (x )=|sin2x| f (-x )=|sin(-2x)|=|sin2x|=f (x ) ∴f (x )为偶函数 T=2 π 在[0,4 π]上f (x )单调递增;在[4π, 2 π ]上单调递减 注意:若无“区间[0,2 π ]”的条件,则增区间为[ 4 2,2πππ+k k ] k ∈Z 减区间为[ 2 )1(,42πππ++k k ] k ∈Z 2.设x ∈[0,2 π], f (x )=sin(cosx), g (x )=cos(sinx) 求f (x )和g (x )的最大值和最小值,并将它们按大小顺序排列起来。 解:∵在[0,2 π]上y=cosx 单调递减, 且cosx ∈[0,1] 在此区间内y=sinx 单 调递增且sinx ∈[0,1] ∴f (x )=sin(cosx)∈[0,sin1] 最小值为0, 最大 值为sin1 g (x )=cos(sinx)∈[cos1,1] 最小值为cos1, 最大值为1 ∵cos1=sin( 2π -1)

2019版同步优化探究文数(北师大版)练习:第二章 第七节 函数的图像 Word版含解析

课时作业 A 组——基础对点练 1.(2018·广州市模拟)已知函数f (x )=????? x 2,x ≥01x ,x <0,g (x )=-f (-x ),则函数g (x )的图像是( ) 解析:g (x )=-f (-x )=????? -x 2,x ≤01x ,x >0,∴g (x )的图像是选项D 中的图像. 答案:D 2.如图,在不规则图形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把四边形ABCD 分成两 部分,设AE =x ,左侧部分面积为y ,则y 关于x 的大致图像为( ) 解析:直线l 在AD 圆弧段时,面积y 的变化率逐渐增大,l 在DC 段时,y 随x 的变化率不变;l 在CB 段时,y 随x 的变化率逐渐变小,故选D. 答案:D 3.(2018·惠州市调研)函数f (x )=(x -1x )cos x (-π≤x ≤π且x ≠0)的图像可能为( ) 解析:函数f (x )=(x -1x )cos x (-π≤x ≤π且x ≠0)为奇函数,排除选项A ,B ;当 x =π时,f (x )=(π-1π)cos π=1π -π<0,排除选项C ,故选D.

答案:D 4.(2018·长沙市一模)函数y =ln|x |-x 2的图像大致为( ) 解析:令f (x )=ln|x |-x 2,定义域为(-∞,0)∪(0,+∞)且f (-x )=ln |x |-x 2=f (x ),故函数y =ln |x |-x 2为偶函数,其图像关于y 轴对称,排除B ,D ;当x >0时,y =ln x -x 2,则y ′=1x -2x ,当x ∈(0,22)时,y ′=1x -2x >0,y =ln x -x 2单调递增,排除C.选A. 答案:A 5.(2018·武昌调研)已知函数f (x )的部分图像如图所示,则f (x )的解析式可以是( ) A .f (x )=2-x 2 2x B .f (x )=cos x x 2 C .f (x )=-cos 2x x D .f (x )=cos x x 解析:A 中,当x →+∞时,f (x )→-∞,与题图不符,故不成立;B 为偶函数,与题图不符,故不成立;C 中,当x →0+时,f (x )<0,与题图不符,故不成立.选D. 答案:D 6.函数f (x )的图像向右平移1个单位长度,所得图像与曲线y =e x 关于y 轴对称,则f (x )=( ) A .e x +1 B .e x - 1 C .e -x +1 D .e -x -1 解析:与曲线y =e x 关于y 轴对称的图像对应的函数为y =e -x ,将函数y =e -x 的图像向左平移1个单位长度即得y =f (x )的图像,∴f (x )=e -(x +1)=e -x -1,故选D. 答案:D 7.函数f (x )=2ln x 的图像与函数g (x )=x 2-4x +5的图像的交点个数为( ) A .3 B .2

正弦、余弦函数的图象

1.3.2 三角函数的图象与性质 第1课时 正弦、余弦函数的图象 正弦曲线、余弦曲线 (1)正弦曲线、余弦曲线 正弦函数y =sin x (x ∈R )和余弦函数y =cos x (x ∈R )的图象分别叫正弦曲线和余弦曲线(如图). (2)“五点法”画图 画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是(0,0),? ???? π2,1,(π, 0),? ?? ?? 3π2,-1,(2π,0). 画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是(0,1),? ???? π2,0,(π, -1),? ?? ?? 3π2,0,(2π,1).

(3)正弦、余弦曲线的联系 依据诱导公式cos x =sin ? ???? x +π2,要得到y =cos x 的图象,只需把y =sin x 的 图象向左平移π 2个单位长度即可. 思考:作正、余弦函数的图象时,函数自变量能用角度 制吗? [提示] 作图象时,函数自变量要用弧度制,自变量与函数值均为实数,因此在x 轴、y 轴上可以统一单位,这样作出的图象正规便于应用. 1.思考辨析 (1)正弦曲线的图象向左右无限延展.( ) (2)y =sin x 与y =cos x 的图象形状相同,只是位置不同.( ) (3)函数y =cos x 的图象与y 轴只有一个交点.( ) [答案] (1)√ (2)√ (3)√ 2.用“五点法”作y =2sin 2x 的图象时,首先描出的五个点的横坐标是________. [答案] 0,π4,π2,3π 4,π 3.不等式cos x <0,x ∈[0,2π]的解集为________. [答案] ? ?? ?? π2,3π2 利用“五点法”作简图 【例1】 用“五点法”作出下列函数的图象. (1)y =sin x -1,x ∈[0,2π]; (2)y =2+cos x ,x ∈[0,2π]; (3)y =-1-cos x ,x ∈[0,2π]. 思路点拨:先分别取出相应函数在[0,2π]上的五个关键点,再描点连线.

正、余弦函数的图象和性质检测题

正、余弦函数的图象和性质检测题 一、选择题(每小题5分,共50分,请将正确答案填在题后的括号内) 1.函数) 3 2sin(2π+=x y 的图象 ( ) A .关于原点对称 B .关于点(-6 π,0)对称 C .关于y 轴对称 D .关于直线x =6 π对称 2.函数]),0[)(26 sin(2ππ ∈-=x x y 为增函数的区间是 ( ) A .]3, 0[π B .] 127,12[ππ C .]6 5,3[ππ D .],6 5[ ππ 3.设a 为常数,且π20,1≤≤>x a ,则函数1sin 2cos )(2-+=x a x x f 的最大值为( ) A .12+a B .12-a C .12--a D .2 a 4.函数)2 5 2sin(π+=x y 的图象的一条对称轴方程是 ( ) A .2π-=x B .4 π-=x C .8 π = x D .π4 5=x 5.若函数)sin()(?ω+=x x f 的图象(部分)如图所示,则?ω和的取值是 ( ) A .3,1π?ω== B .3 ,1π ?ω-== C .6,21π?ω== D .6 ,21π ?ω-== 6.下列函数中,以π为周期的偶函数是 ( ) A .|sin |x y = B .||sin x y = C .)32sin(π + =x y D .)2 sin(π +=x y 7.如果函数y=sin2x +αcos2x 的图象关于直线x=-8 π 对称,那么α的值为 ( ) A .2 B .-2 C .1 D .-1 8.函数y=2cos 2x +1(x ∈R )的最小正周期为 ( ) A . 2 π B .π C .π2 D .π4 9.已知函数1)2 sin()(--=π πx x f ,则下列命题正确的是 ( ) A .)(x f 是周期为1的奇函数 B .)(x f 是周期为2的偶函数 C .)(x f 是周期为1的非奇非偶函数 D .)(x f 是周期为2的非奇非偶函数 10.函数x x y cot cos +-=的定义域是 ( ) A .]2 3 ,[ππππ+ +k k B .]2 32,2[ππππ+ +k k 1 y x

《正弦函数、余弦函数的图像》教案设计

正弦函数、余弦函数的图像 一、内容和内容解析: 本节课是高中新教材《数学》必修4§1.4《正弦函数、余弦函数的图象和性质》的第一节,是学生在已掌握了一些基本函数的图象及其画法的基础上,进一步研究三角函数图象的画法。.为今后学习正弦型函数y=Asin (ωx+φ)的图象及运用数形结合思想研究正、余弦函数的性质打下坚实的知识基础.因此,本节课的内容是至关重要的,它对知识的掌握起到了承上启下的作用。 二、教学目标 (1)了解如何利用正弦线画出正弦函数的图像,并在此基础上由诱导公式画出余弦函数的图像。 (2)掌握“五点法”画正弦函数、余弦函数的简图。 (3)探究利用“五点法”画与正弦函数、余弦函数有关的某些简单函数在长度为一个周期的闭区间上的简图。 (4)体验利用图象变换作图的方法,体会数形结合的思想。 三、教学支持条件分析: 1.资料的收集 “简谐运动”的实验装置. 2.课件的制作 采用flash软件辅助设计“简谐运动”动画,用flash软件或“几何画板”制作正弦函数图像的几何画法过程. 3.活动的准备: 利用多媒体、实物教具等手段可帮助学生更直观地认识正、余弦函数曲线,以及它们之间的图像变换,并且通过教师的讲解法、谈话法、发现法、启发式教学法,使学生通过一定的观察、思考、分析以及动手操作,更有利学生的自主探索,使学生在学习活动中获得成功感,整堂课在师生的合作学习氛围中进行数学思维,使学生更好的发现数学规律。 四、教学过程 课题导入: 以前,我们已经学习过一次函数、二次函数、反比例函数、指数函数、对数函数等,对于各种函数,我们都可以通过它的图像研究它的一些相关性质,那么,我们今天学习的正、余弦函数的图像是什么样子的呢? 探索新知: 1、情景设置:

正余弦函数的图像与性质

正余弦函数的图像与性质 例题1.值域最值: 三角函数最值问题的解题技巧 三角函数的最值问题,是三角函数基础知识的综合应用,它与二次函数、三角函数的单调性、三角函数的图像等知识联系在一起,该问题综合性强,解题方法也多样化.解这类问题是运算能力、分析问题和解决问题能力的综合体现,有一定的难度,要注意灵活选用方法.下面介绍解三角函数最值问题的常见方法. 1、形如sin y a x b =+型的函数的最值 例题:1)求函数2sin3y x =-的最 x 的集合 2)函数32sin(2),,334y x x πππ?? =-∈???? 的值域是____

练习:1)求函数1)3 2sin(2++ =π x y 的最值,并求出相应自变量x 的取值范围 2)已知函数)32sin(2)(π- =x x f ,若]2 ,4[π π∈x ,求函数)(x f y =的最值以及相应自变量x 的值. 2、形如x b x a y cos sin +=型的函数的最值. 例题: 1)求函数x x x x f sin )cos (sin )(?-=的最值 2)已知(1,2sin )a x = ,,cos )b x x =- ,设函数()f x =a ·b .若[],0x ∈-π,求)(x f y =的 最大值、最小值并求出对应的x 值 3) 当- ≤≤ =+π π 2 2 3x y x x 时,函数的()sin cos A.最大值为1,最小值为-1 B.最大值为1,最小值为- 1 2 C.最大值为2,最小值为-2 D.最大值为2,最小值为-1 4)已知函数x x x f 2cos 3)4(sin 2)(2 -+=π ,若不等式2)(≥-m x f 在]2 ,4[π π∈x 上恒成立.求m 的取值范围.)2|)((|≤-m x f 2、形如c x b x a y ++=sin sin 2)0(≠a 型的函数的最值. 这类问题最后化为二次函数的三角最值问题,利用三角函数的有界性1)(cos sin 1≤≤-x x ,并结 合二次函数的性质求得结论.闭区间上的二次函数一定存在最大值、最小值,并且最大值、最小值又一定在极值点或区间端点处获得. 例题:求函数1sin sin 2++=x x y ,6sin 4cos 42+--=x x y 的最值. 练习:1)函数22sin 2cos 3y x x =+-的最值 2)求函数x x y sin cos 2+=在区间[,]44 ππ - 上的最小值. 3)求函数6sin 42cos 4+--=x x y 的最值. 4)已知函数(x)f 2 2cos 2sin 4cos x x x =+-。求(x)f 的最大值和最小值。 3、含有x x x x cos sin ,cos sin +的函数的最值问题. 通常方法是换元法:令)22(cos sin ≤≤-+=t x x t ,将x x cos sin 转化为t 的关系式,从而使问题转化为二次函数的最值问题.但要注意换元后变量的取值范围. 例题:求函数x x x x y cos sin cos sin ++=的最大值. 练习:函数x x x x x f cos sin 1cos sin )(++= 的值域为______________. 由以上几种形式,可以归纳出解三角函数最值问题的基本方法:一是应用正弦、余弦函数的有界性来求;二是利用二次函数闭区间内求最大值、最小值的方法;三是利用重要不等式或利用数形结合的方法来解决. 4、形如d x c b x a y ++= sin sin 或b x a y +=sin (了解内容) 例题:求函数x x y sin 2cos 2+-=练习:1)求函数x x y cos 232sin -+=求函数2sin sin +=x x y 的最值 说明: 个定点与动点的直线斜率的最值问题. 例题2.周期性

相关文档
最新文档