遗传算法学习及其在迷宫问题的应用代码实现

遗传算法学习及其在迷宫问题的应用代码实现
遗传算法学习及其在迷宫问题的应用代码实现

目录

第一部分:遗传算法介绍 (2)

1.1遗传算法的产生和发展 (2)

1.2遗传算法的基本求解步骤 (2)

第二部分:遗传算法解决迷宫问题(代码在文件夹代码中,可执行程序在文件夹程序中) (4)

2.1问题概述(构建迷宫) (4)

2. 2为染色体编码 (6)

2.3Epoch(时代)方法 (10)

2.4参数值选择 (13)

2.5算子函数 (14)

2.6运行迷宫程序 (16)

参考文献 (17)

遗传算法学习及其在迷宫问题的应用

第一部分:遗传算法介绍

遗传算法(genetic algorithms,GA)是一种模拟自然选择和遗传机制的寻优方法,它是建立在达尔文的生物进化论和孟德尔的遗传学说基础上的算法。基因杂交和基因突变可能产生对环境适应性强的后代,通过优胜劣汰的自然选择,适应值高的基因结构就保存下来。遗传算法就是模仿了生物的遗传、进化原理,并引用了随机统计原理而形成的。

1.1遗传算法的产生和发展

50年代末60年代初,生物学家Fraser 试图通过计算的方法来模拟生物界"遗传与选择"的进化过程,这便是GA 的雏形。受此启发,Holland 教授认识到自然遗传可以转化为人工遗传算法。1967年Bagley 在其博士论文中首次提出了"遗传算法"这一术语。1975年,

Holland出版了《自然与人工系统中的适应性行为》。该书系统地阐述了遗传算法的基本理论和方法,提出了遗传算法的基本定理-模式定理,从而奠定了遗传算法的理论基础。20世纪80年代初,Holland

教授实现了第一个基于遗传算法的机器学习系统--分类器系统

(Classifier System 简称CS),开创了基于遗传算法的机器学习的新概念。l992年,John R.Koza出版了专著《遗传编程》,提出了遗传编程的概念,并成功地把遗传编程的方法应用于人工智能、机器学习、符号处理等方面。随着遗传算法的不断发展,关于遗传算法的国际学术活动越来越多,遗传算法已成为一个多学科、多领域的重要研究方向。

1.2遗传算法的基本求解步骤

1.2.1编码:确定用何种码制, 然后将问题参数编码形成基因码链,每一个码链代表一个个体, 表示优化问题的一个解。

1.2.2 初始化:随机产生一个规模为P的初始种群,其中每个个体为一定长度的

码链, 该群体代表优化问题的一些可能解的集合。

1.2.3 估计适应度:计算种群中每个个体的适应度,适应度为群体进化时的选择提供了依据。一般来说适应度越高, 解的素质越好。适应度函数可以根据目标函数而定。

1.2.4 再生(选择):根据每个个体的相对适应度,计算每个个体的再生次数,并进行再生操作, 产生新的个体加人下一代群体中,一般再生的概率与其适应度成正比。

1.2.5 交叉:从种群中随机选择两个染色体,按一定的概率进行基因交换,交换位置的选取是随机的。

1.2.6 变异:从种群中随机地选择一个染色体, 按一定的变异概率P进行基因变异,GA的搜索能力主要是由选择与交叉赋于的,变异算子则保证了算法能搜索到问题空间的每一点, 从而使算法具有全局最优性, 它进一步增强了GA的能力.

1.2.7 重复:若发现最优解,则算法停止,否则转3,对产生的新一代群体进行重新评价、选择、交叉、变异操作, 如此循环往复,使群体中最优个体的适应度和平均适应度不断提高。其流程图如下:

第二部分:遗传算法解决迷宫问题(代码在文件夹代码中,可执行程序在文件夹程序中)

2.1问题概述(构建迷宫)

寻找路径问题是游戏人工智能的一块“神圣基石”下面就来创建一个遗传算法用在一个非常简单的场景中解决寻找路径问题,首先创建一个迷宫,他的左边有一个路口,右边有一个出口,并且有一些障碍物布在其中,在出发点放置一个虚拟的人鲍勃,然后要为他解决如何寻找路径的问题,使他能找到出口,并且避免与所有的障碍物相碰撞,下面讲述如何产生鲍勃的染色体的编码,但首先要解释如何来表示迷宫

迷宫是一个二维整数数组:用0来表示开放的空间,1来表示墙壁或者障碍物,5为起始点,8为出口。因此,假设迷宫的二维数组如下:

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1,

8, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1,

1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1,

1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1,

1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1,

1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1,

1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 5,

1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

在屏幕中的显示效果如图1所示。

图1 迷宫实际显示效果图

这种地图的设计方法被封装在一个被称为CBobsMap的类中,并定义为class CBobsMap

{

private:

//保存地图用的存储器(一个二维整数数组)

static const int map[MAP_HEIGHT][MAP_WIDTH];

static const int m_iMapWidth;//地图宽读

static const int m_iMapHeight;//地图高度

/起始点在数组中的下标

static const int m_iStartX;

static const int m_iStartY;

//终点的数组下标

static const int m_iEndX;

遗传算法的c语言程序

一需求分析 1.本程序演示的是用简单遗传算法随机一个种群,然后根据所给的交叉率,变异率,世代数计算最大适应度所在的代数 2.演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的命令;相应的输入数据和运算结果显示在其后。3.测试数据 输入初始变量后用y=100*(x1*x1-x2)*(x1*x2-x2)+(1-x1)*(1-x1)其中-2.048<=x1,x2<=2.048作适应度函数求最大适应度即为函数的最大值 二概要设计 1.程序流程图 2.类型定义 int popsize; //种群大小 int maxgeneration; //最大世代数 double pc; //交叉率 double pm; //变异率 struct individual

{ char chrom[chromlength+1]; double value; double fitness; //适应度 }; int generation; //世代数 int best_index; int worst_index; struct individual bestindividual; //最佳个体 struct individual worstindividual; //最差个体 struct individual currentbest; struct individual population[POPSIZE]; 3.函数声明 void generateinitialpopulation(); void generatenextpopulation(); void evaluatepopulation(); long decodechromosome(char *,int,int); void calculateobjectvalue(); void calculatefitnessvalue(); void findbestandworstindividual(); void performevolution(); void selectoperator(); void crossoveroperator(); void mutationoperator(); void input(); void outputtextreport(); 4.程序的各函数的简单算法说明如下: (1).void generateinitialpopulation ()和void input ()初始化种群和遗传算法参数。 input() 函数输入种群大小,染色体长度,最大世代数,交叉率,变异率等参数。 (2)void calculateobjectvalue();计算适应度函数值。 根据给定的变量用适应度函数计算然后返回适度值。 (3)选择函数selectoperator() 在函数selectoperator()中首先用rand ()函数产生0~1间的选择算子,当适度累计值不为零时,比较各个体所占总的适应度百分比的累计和与选择算子,直到达到选择算子的值那个个体就被选出,即适应度为fi的个体以fi/∑fk的概率继续存在; 显然,个体适应度愈高,被选中的概率愈大。但是,适应度小的个体也有可能被选中,以便增加下一代群体的多样性。 (4)染色体交叉函数crossoveroperator() 这是遗传算法中的最重要的函数之一,它是对个体两个变量所合成的染色体进行交叉,而不是变量染色体的交叉,这要搞清楚。首先用rand ()函数产生随机概率,若小于交叉概率,则进行染色体交叉,同时交叉次数加1。这时又要用rand()函数随机产生一位交叉位,把染色

遗传算法经典MATLAB代码

遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法% % 求下列函数的最大值% % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10]% % 将x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈。% % 将变量域[0,10] 离散化为二值域[0,1023], x=0+10*b/1023, 其 中 b 是[0,1023] 中的一个二值数。% % % %--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程

%----------------------------------------------- % 初始化(编码) % 函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength 表示染色体的长度(二值数的长度), % 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元 为{0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 计算目标函数值 % 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: %产生[2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制

遗传算法MATLAB完整代码(不用工具箱)

遗传算法解决简单问题 %主程序:用遗传算法求解y=200*exp(-0.05*x).*sin(x)在区间[-2,2]上的最大值clc; clear all; close all; global BitLength global boundsbegin global boundsend bounds=[-2,2]; precision=0.0001; boundsbegin=bounds(:,1); boundsend=bounds(:,2); %计算如果满足求解精度至少需要多长的染色体 BitLength=ceil(log2((boundsend-boundsbegin)'./precision)); popsize=50; %初始种群大小 Generationmax=12; %最大代数 pcrossover=0.90; %交配概率 pmutation=0.09; %变异概率 %产生初始种群 population=round(rand(popsize,BitLength)); %计算适应度,返回适应度Fitvalue和累计概率cumsump [Fitvalue,cumsump]=fitnessfun(population); Generation=1; while Generation

MATLAB课程遗传算法实验报告及源代码

硕士生考查课程考试试卷 考试科目: 考生姓名:考生学号: 学院:专业: 考生成绩: 任课老师(签名) 考试日期:年月日午时至时

《MATLAB 教程》试题: A 、利用MATLA B 设计遗传算法程序,寻找下图11个端点最短路径,其中没有连接端点表示没有路径。要求设计遗传算法对该问题求解。 a e h k B 、设计遗传算法求解f (x)极小值,具体表达式如下: 321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =?=???-≤≤=? ∑ 要求必须使用m 函数方式设计程序。 C 、利用MATLAB 编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河? D 、结合自己的研究方向选择合适的问题,利用MATLAB 进行实验。 以上四题任选一题进行实验,并写出实验报告。

选择题目: B 、设计遗传算法求解f (x)极小值,具体表达式如下: 321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =?=???-≤≤=? ∑ 要求必须使用m 函数方式设计程序。 一、问题分析(10分) 这是一个简单的三元函数求最小值的函数优化问题,可以利用遗传算法来指导性搜索最小值。实验要求必须以matlab 为工具,利用遗传算法对问题进行求解。 在本实验中,要求我们用M 函数自行设计遗传算法,通过遗传算法基本原理,选择、交叉、变异等操作进行指导性邻域搜索,得到最优解。 二、实验原理与数学模型(20分) (1)试验原理: 用遗传算法求解函数优化问题,遗传算法是模拟生物在自然环境下的遗传和进化过程而形成的一种自适应全局优化概率搜索方法。其采纳了自然进化模型,从代表问题可能潜在解集的一个种群开始,种群由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体;初始种群产生后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的解:在每一代,概据问题域中个体的适应度大小挑选个体;并借助遗传算子进行组合交叉和主客观变异,产生出代表新的解集的种群。这一过程循环执行,直到满足优化准则为止。最后,末代个体经解码,生成近似最优解。基于种群进化机制的遗传算法如同自然界进化一样,后生代种群比前生代更加适应于环境,通过逐代进化,逼近最优解。 遗传算法是一种现代智能算法,实际上它的功能十分强大,能够用于求解一些难以用常规数学手段进行求解的问题,尤其适用于求解多目标、多约束,且目标函数形式非常复杂的优化问题。但是遗传算法也有一些缺点,最为关键的一点,即没有任何理论能够证明遗传算法一定能够找到最优解,算法主要是根据概率论的思想来寻找最优解。因此,遗传算法所得到的解只是一个近似解,而不一定是最优解。 (2)数学模型 对于求解该问题遗传算法的构造过程: (1)确定决策变量和约束条件;

基于遗传算法的matlab源代码

function youhuafun D=code; N=50;%Tunable maxgen=50;%Tunable crossrate=0.5;%Tunable muterate=0.08;%Tunable generation=1; num=length(D); fatherrand=randint(num,N,3); score=zeros(maxgen,N); while generation<=maxgen ind=randperm(N-2)+2;%随机配对交叉 A=fatherrand(:,ind(1:(N-2)/2)); B=fatherrand(:,ind((N-2)/2+1:end)); %多点交叉 rnd=rand(num,(N-2)/2); ind=rnd tmp=A(ind); A(ind)=B(ind); B(ind)=tmp; %%两点交叉 %for kk=1:(N-2)/2 %rndtmp=randint(1,1,num)+1; %tmp=A(1:rndtmp,kk); %A(1:rndtmp,kk)=B(1:rndtmp,kk); %B(1:rndtmp,kk)=tmp; %end fatherrand=[fatherrand(:,1:2),A,B]; %变异 rnd=rand(num,N); ind=rnd[m,n]=size(ind); tmp=randint(m,n,2)+1; tmp(:,1:2)=0; fatherrand=tmp+fatherrand; fatherrand=mod(fatherrand,3); %fatherrand(ind)=tmp; %评价、选择 scoreN=scorefun(fatherrand,D);%求得N个个体的评价函数 score(generation,:)=scoreN; [scoreSort,scoreind]=sort(scoreN); sumscore=cumsum(scoreSort); sumscore=sumscore./sumscore(end); childind(1:2)=scoreind(end-1:end); for k=3:N tmprnd=rand; tmpind=tmprnd difind=[0,diff(t mpind)]; if~any(difind) difind(1)=1; end childind(k)=scoreind(logical(difind)); end fatherrand=fatherrand(:,childind); generation=generation+1; end %score maxV=max(score,[],2); minV=11*300-maxV; plot(minV,'*');title('各代的目标函数值'); F4=D(:,4); FF4=F4-fatherrand(:,1); FF4=max(FF4,1); D(:,5)=FF4; save DData D function D=code load youhua.mat %properties F2and F3 F1=A(:,1); F2=A(:,2); F3=A(:,3); if(max(F2)>1450)||(min(F2)<=900) error('DATA property F2exceed it''s range (900,1450]') end %get group property F1of data,according to F2value F4=zeros(size(F1)); for ite=11:-1:1 index=find(F2<=900+ite*50); F4(index)=ite; end D=[F1,F2,F3,F4]; function ScoreN=scorefun(fatherrand,D) F3=D(:,3); F4=D(:,4); N=size(fatherrand,2); FF4=F4*ones(1,N); FF4rnd=FF4-fatherrand; FF4rnd=max(FF4rnd,1); ScoreN=ones(1,N)*300*11; %这里有待优化

遗传算法Matlab程序

% f(x)=11*sin(6x)+7*cos(5x),0<=x<=2*pi; %%初始化参数 L=16;%编码为16位二进制数 N=32;%初始种群规模 M=48;%M个中间体,运用算子选择出M/2对母体,进行交叉;对M个中间体进行变异 T=100;%进化代数 Pc=0.8;%交叉概率 Pm=0.03;%%变异概率 %%将十进制编码成16位的二进制,再将16位的二进制转成格雷码 for i=1:1:N x1(1,i)= rand()*2*pi; x2(1,i)= uint16(x1(1,i)/(2*pi)*65535); grayCode(i,:)=num2gray(x2(1,i),L); end %% 开始遗传算子操作 for t=1:1:T y1=11*sin(6*x1)+7*cos(5*x1); for i=1:1:M/2 [a,b]=min(y1);%找到y1中的最小值a,及其对应的编号b grayCodeNew(i,:)=grayCode(b,:);%将找到的最小数放到grayCodeNew中grayCodeNew(i+M/2,:)=grayCode(b,:);%与上面相同就可以有M/2对格雷码可以作为母体y1(1,b)=inf;%用来排除已找到的最小值 end for i=1:1:M/2 p=unidrnd(L);%生成一个大于零小于L的数,用于下面进行交叉的位置if rand()

基本遗传算法及应用举例

基本遗传算法及应用举例 遗传算法(Genetic Algorithms)是一种借鉴生物界自然选择和自然遗传机制的随机、高度并行、自适应搜索算法。遗传算法是多学科相互结合与渗透的产物。目前它已发展成一种自组织、自适应的多学科技术。 针对各种不同类型的问题,借鉴自然界中生物遗传与进化的机理,学者们设计了不同的编码方法来表示问题的可行解,开发出了许多不同环境下的生物遗传特征。这样由不同的编码方法和不同的遗传操作方法就构成了各种不同的遗传算法。但这些遗传算法有共同的特点,即通过对生物的遗传和进化过程中的选择、交叉、变异机理的模仿来完成对最优解的自适应搜索过程。基于此共同点,人们总结出了最基本的遗传算法——基本遗传算法。基本遗传算法只使用选择、交叉、变异三种基本遗传操作。遗传操作的过程也比较简单、容易理解。同时,基本遗传算法也是其他一些遗传算法的基础与雏形。 1.1.1 编码方法 用遗传算法求解问题时,不是对所求解问题的实际决策变量直接进行操作,而是对表示可行解的个体编码的操作,不断搜索出适应度较高的个体,并在群体中增加其数量,最终寻找到问题的最优解或近似最优解。因此,必须建立问题的可行解的实际表示和遗传算法的染色体位串结构之间的联系。在遗传算法中,把一个问题的可行解从其解空间转换到遗传算法所能处理的搜索空间的转换方法称之为编码。反之,个体从搜索空间的基因型变换到解空间的表现型的方法称之为解码方法。 编码是应用遗传算法是需要解决的首要问题,也是一个关键步骤。迄今为止人们已经设计出了许多种不同的编码方法。基本遗传算法使用的是二进制符号0和1所组成的二进制符号集{0,1},也就是说,把问题空间的参数表示为基于字符集{0,1}构成的染色体位串。每个个体的染色体中所包含的数字的个数L 称为染色体的长度或称为符号串的长度。一般染色体的长度L 为一固定的数,如 X=1010100 表示一个个体,该个体的染色体长度L=20。 二进制编码符号串的长度与问题所要求的求解精度有关。假设某一参数的取值范围是[a ,b],我们用长度为L 的二进制编码符号串来表示该参数,总共能产生L 2种不同的编码,若参数与编码的对应关系为 00000000000……00000000=0 →a 00000000000……00000001=1 →a+δ ? ? ? ……=L 2-1→b 则二进制编码的编码精度1 2--= L a b δ 假设某一个个体的编码是kl k k k a a a x 21=,则对应的解码公式为 )2(121 ∑=---+=L j j L kj L k a a b a x 例如,对于x ∈[0,1023],若用长度为10的二进制编码来表示该参数的话,则下述符号串:

一个简单实用的遗传算法c程序完整版

一个简单实用的遗传算 法c程序 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

一个简单实用的遗传算法c程序(转载) 2009-07-28 23:09:03 阅读418 评论0 字号:大中小 这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita (University of North Carolina at Charlotte)修正。代码保证尽可能少,实际上也不必查错。对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用Gaussian变异替换均匀变异,可能得到更好的效果。代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。读者可以从,目录 coe/evol中的文件中获得。要求输入的文件应该命名为‘’;系统产生的输出文件为‘’。输入的文件由几行组成:数目对应于变量数。且每一行提供次序——对应于变量的上下界。如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。 /**************************************************************************/ /* This is a simple genetic algorithm implementation where the */ /* evaluation function takes positive values only and the */ /* fitness of an individual is the same as the value of the */ /* objective function */ /**************************************************************************/ #include <> #include <> #include <> /* Change any of these parameters to match your needs */ #define POPSIZE 50 /* population size */

遗传算法经典MATLAB代码资料讲解

遗传算法经典学习Matlab代码 遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法% % 求下列函数的最大值% % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10]% % 将x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01。% % 将变量域[0,10] 离散化为二值域[0,1023], x=0+10*b/1023, 其 中 b 是[0,1023] 中的一个二值数。% % % %--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程 %----------------------------------------------- % 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),

% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元 为{0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 2.2 计算目标函数值 % 2.2.1 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: decodebinary.m %产生[2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2); %求pop1的每行之和 % 2.2.2 将二进制编码转化为十进制数(2) % decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

第七章遗传算法应用举例

第七章 遗传算法应用举例 遗传算法提供了一种求解非线性、多模型、多目标等复杂系统优化问题的通用框架,它不依赖于问题具体的领域。随着对遗传算法技术的不断研究,人们对遗传算法的实际应用越来越重视,它已经广泛地应用于函数优化、组合优化、自动控制、机器人学、图象处理、人工生命、遗传编码、机器学习等科技领域。遗传算法已经在求解旅行商问题、背包问题、装箱问题、图形划分问题等多方面的应用取得了成功。本章通过一些例子,介绍如何利用第五章提供的遗传算法通用函数,编写MATLAB 程序,解决实际问题。 7.1 简单一元函数优化实例 利用遗传算法计算下面函数的最大值: ()sin(10) 2.0[1,2]f x x x x π=?+∈-, 选择二进制编码,种群中个体数目为40,每个种群的长度为20,使用代沟为0.9,最大遗传代数为25。 下面为一元函数优化问题的MA TLAB 代码。 figure(1); fplot ('variable.*sin(10*pi*variable)+2.0',[-1,2]); %画出函数曲线 % 定义遗传算法参数 NIND= 40; % 个体数目(Number of individuals) MAXGEN = 25; % 最大遗传代数(Maximum number of generations) PRECI = 20; % 变量的二进制位数(Precision of variables) GGAP = 0.9; % 代沟(Generation gap) trace=zeros (2, MAXGEN); % 寻优结果的初始值 FieldD = [20;-1;2;1;0;1;1]; % 区域描述器(Build field descriptor) Chrom = crtbp(NIND, PRECI); % 初始种群 gen = 0; % 代计数器 variable=bs2rv(Chrom,FieldD); % 计算初始种群的十进制转换 ObjV = variable.*sin (10*pi*variable)+2.0; % 计算目标函数值 while gen < MAXGEN, FitnV = ranking (-ObjV); % 分配适应度值(Assign fitness values) SelCh = select ('sus', Chrom, FitnV , GGAP); % 选择 SelCh = recombin ('xovsp',SelCh,0.7); % 重组 SelCh = mut(SelCh); % 变异 variable=bs2rv(SelCh,FieldD); % 子代个体的十进制转换 ObjVSel =variable.*sin(10*pi*variable)+2.0; % 计算子代的目标函数值 [Chrom ObjV]=reins(Chrom,SelCh,1,1,ObjV ,ObjVSel); % 重插入子代的新种群 gen = gen+1; % 代计数器增加 % 输出最优解及其序号,并在目标函数图象中标出,Y 为最优解,I 为种群的序号 [Y,I]=max(ObjV),hold on; plot (variable (I),Y , 'bo'); trace (1,gen)=max (ObjV); %遗传算法性能跟踪

使用MATLAB遗传算法工具实例(详细) (1)【精品毕业设计】(完整版)

最新发布的MA TLAB 7.0 Release 14已经包含了一个专门设计的遗传算法与直接搜索工具箱(Genetic Algorithm and Direct Search Toolbox,GADS)。使用遗传算法与直接搜索工具箱,可以扩展MATLAB及其优化工具箱在处理优化问题方面的能力,可以处理传统的优化技术难以解决的问题,包括那些难以定义或不便于数学建模的问题,可以解决目标函数较复杂的问题,比如目标函数不连续、或具有高度非线性、随机性以及目标函数没有导数的情况。 本章8.1节首先介绍这个遗传算法与直接搜索工具箱,其余各节分别介绍该工具箱中的遗传算法工具及其使用方法。 8.1 遗传算法与直接搜索工具箱概述 本节介绍MATLAB的GADS(遗传算法与直接搜索)工具箱的特点、图形用户界面及运行要求,解释如何编写待优化函数的M文件,且通过举例加以阐明。 8.1.1 工具箱的特点 GADS工具箱是一系列函数的集合,它们扩展了优化工具箱和MA TLAB数值计算环境的性能。遗传算法与直接搜索工具箱包含了要使用遗传算法和直接搜索算法来求解优化问题的一些例程。这些算法使我们能够求解那些标准优化工具箱范围之外的各种优化问题。所有工具箱函数都是MATLAB的M文件,这些文件由实现特定优化算法的MATLAB语句所写成。 使用语句 type function_name 就可以看到这些函数的MATLAB代码。我们也可以通过编写自己的M文件来实现来扩展遗传算法和直接搜索工具箱的性能,也可以将该工具箱与MATLAB的其他工具箱或Simulink结合使用,来求解优化问题。 工具箱函数可以通过图形界面或MA TLAB命令行来访问,它们是用MATLAB语言编写的,对用户开放,因此可以查看算法、修改源代码或生成用户函数。 遗传算法与直接搜索工具箱可以帮助我们求解那些不易用传统方法解决的问题,譬如表查找问题等。 遗传算法与直接搜索工具箱有一个精心设计的图形用户界面,可以帮助我们直观、方便、快速地求解最优化问题。 8.1.1.1 功能特点 遗传算法与直接搜索工具箱的功能特点如下: 图形用户界面和命令行函数可用来快速地描述问题、设置算法选项以及监控进程。 具有多个选项的遗传算法工具可用于问题创建、适应度计算、选择、交叉和变异。 直接搜索工具实现了一种模式搜索方法,其选项可用于定义网格尺寸、表决方法和搜索方法。 遗传算法与直接搜索工具箱函数可与MATLAB的优化工具箱或其他的MATLAB程序结合使用。 支持自动的M代码生成。 8.1.1.2 图形用户界面和命令行函数 遗传算法工具函数可以通过命令行和图形用户界面来使用遗传算法。直接搜索工具函数也可以通过命令行和图形用户界面来进行访问。图形用户界面可用来快速地定义问题、设置算法选项、对优化问题进行详细定义。 133

遗传算法C语言源代码(一元函数和二元函数)

C语言遗传算法代码 以下为遗传算法的源代码,计算一元代函数的代码和二元函数的代码以+++++++++++++++++++++++++++++++++++++为分割线分割开来,请自行选择适合的代码,使用时请略看完代码的注释,在需要更改的地方更改为自己需要的代码。 +++++++++++++++++++++++++++++++一元函数代码++++++++++++++++++++++++++++ #include #include #include #include #define POPSIZE 1000 #define maximization 1 #define minimization 2 #define cmax 100 #define cmin 0 #define length1 20 #define chromlength length1 //染色体长度 //注意,你是求最大值还是求最小值 int functionmode=minimization; //变量的上下限的修改开始 float min_x1=-2;//变量的下界 float max_x1=-1;//变量的上界 //变量的上下限的修改结束 int popsize; //种群大小 int maxgeneration; //最大世代数 double pc; //交叉率 double pm; //变异率 struct individual { char chrom[chromlength+1]; double value; double fitness; //适应度 }; int generation; //世代数 int best_index; int worst_index;

遗传算法的C语言程序案例

遗传算法的C语言程序案例 一、说明 1.本程序演示的是用简单遗传算法随机一个种群,然后根据所给的交叉率,变异率,世代数计算最大适应度所在的代数 2.演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的命令;相应的输入数据和运算结果显示在其后。3.举个例子,输入初始变量后,用y= (x1*x1)+(x2*x2),其中-2.048<=x1,x2<=2.048作适应度函数求最大适应度即为函数的最大值 4.程序流程图

5.类型定义 int popsize; //种群大小 int maxgeneration; //最大世代数 double pc; //交叉率 double pm; //变异率 struct individual { char chrom[chromlength+1]; double value; double fitness; //适应度 }; int generation; //世代数 int best_index; int worst_index; struct individual bestindividual; //最佳个体 struct individual worstindividual; //最差个体 struct individual currentbest; struct individual population[POPSIZE]; 3.函数声明 void generateinitialpopulation(); void generatenextpopulation(); void evaluatepopulation(); long decodechromosome(char *,int,int); void calculateobjectvalue(); void calculatefitnessvalue(); void findbestandworstindividual(); void performevolution(); void selectoperator(); void crossoveroperator(); void mutationoperator(); void input(); void outputtextreport(); 6.程序的各函数的简单算法说明如下: (1).void generateinitialpopulation ()和void input ()初始化种群和遗传算法参数。 input() 函数输入种群大小,染色体长度,最大世代数,交叉率,变异率等参数。 (2)void calculateobjectvalue();计算适应度函数值。 根据给定的变量用适应度函数计算然后返回适度值。 (3)选择函数selectoperator() 在函数selectoperator()中首先用rand ()函数产生0~1间的选择算子,当适度累计值不为零时,比较各个体所占总的适应度百分比的累计和与选择算子,直到达到选择算子的值那个个

遗传算法的MATLAB程序实例

遗传算法的程序实例 如求下列函数的最大值 f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] 一、初始化(编码) initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度), 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 代码: %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 二、计算目标函数值 1、将二进制数转化为十进制数(1) 代码: %Name: decodebinary.m %产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和例数 for i=1:py pop1(:,i)=2.^(py-1).*pop(:,i); py=py-1; end pop2=sum(pop1,2); %求pop1的每行之和 2、将二进制编码转化为十进制数(2) decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置。(对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),参数1ength表示所截取的长度(本例为10)。 代码: %Name: decodechrom.m %将二进制编码转换成十进制 function pop2=decodechrom(pop,spoint,length) pop1=pop(:,spoint:spoint+length-1); pop2=decodebinary(pop1); 3、计算目标函数值 calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。

基于遗传算法的BP神经网络MATLAB代码

用遗传算法优化BP神经网络的Matlab编程实例(转) 由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。 程序一:GA训练BP权值的主函数 function net=GABPNET(XX,YY) %-------------------------------------------------------------------------- % GABPNET.m % 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络 %-------------------------------------------------------------------------- %数据归一化预处理 nntwarn off XX=[1:19;2:20;3:21;4:22]'; YY=[1:4]; XX=premnmx(XX); YY=premnmx(YY); YY %创建网络 net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'tra inlm'); %下面使用遗传算法对网络进行优化 P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 aa=ones(S,1)*[-1,1]; popu=50;%种群规模 save data2 XX YY % 是将 xx,yy 二个变数的数值存入 data2 这个MAT-file,initPpp=initializega(popu,aa,'gabpEval');%初始化种群 gen=100;%遗传代数

遗传算法

湖南理工学院 人工智能课程论文 题目:遗传算法及其应用 课程名称:人工智能及其应用 院系:计算机学院 专业班级:计科13 - 2 BJ 姓名:李中文 学号: 14132404129 课程论文成绩: 指导教师:廖军 2015 年 6 月30 日

遗传算法及其应用 摘要:遗传算法(genetic algorithms,GA)是一类借鉴生物界自然选择和自然遗传机制的随机搜索算法,非常适用于处理传统搜索方法难以解决的复杂和非线性问题。遗传算法是基于达尔文进化论,在计算机上模拟生命进化机制而发展起来的一门新学科。它根据适者生存,优胜劣汰等自然进化规则来进行搜索计算和问题求解。遗传算法具有通用、并行、稳健、简单与全局优化能力强等突出优点,适用于解决复杂、困难的全局优化问题。遗产算法以其广泛的适应性渗透到研究与工程的各个领域,例如:组合优化、机器学习、自适应控制、规划设计和人工生命等,是21世纪有关智能计算中的重要技术之一。 文章的第一部分介绍了遗传算法的基本概念。第二部分介绍了遗传算法的原理。第三部分着重介绍具体实现,以及简单实例,主要体现遗传算法的实现过程。第四部分介绍了一个具体问题,如何用遗传算法来解决,以及实现时的一些基本问题。 文章在介绍遗传算法的原理以及各种运算的同时,还分析了一些应用中出现的基本问题,对于我们的解题实践有一定的指导意义。 关键词:遗传算法,遗传,群体

Genetic algorithm and its application Abstract: genetic algorithm genetic algorithms (GA) is a kind of reference biology natural selection and genetic mechanism of random search algorithm, is very suitable for the complex and non-linear problems that are difficult for traditional search methods. Genetic algorithm is a new subject based on Darwin's theory of evolution, which is developed on the computer simulation of life evolution. It is based on the survival of the fittest, the survival of the fittest natural evolution rule to search algorithm and solve problems. Genetic algorithm has the advantages of general, parallel, robust, simple and global optimization, which is suitable for solving complex and difficult global optimization problems. Inheritance algorithm with its extensive adaptability penetrated into various fields of research and engineering, for example: combinatorial optimization, machine learning, adaptive control, planning and design and artificial life, is one of the most important technologies in the 21st century the intelligent calculation. The first part of the article introduces the basic concepts of genetic algorithm. The second part introduces the principle of genetic algorithm and three kinds of operations: selection, exchange, variation. The third part focuses on the specific implementation of the three operations, as well as a simple example, the main embodiment of the genetic algorithm to achieve the process. In the fourth part, the two parts are introduced, which are all the problems of NP-, how to use genetic algorithms to solve the problems, and some basic problems in the implementation of the problem. In the introduction of the principle of genetic algorithm and various operations, it also analyzes the basic problems that arise in some applications. Key words: genetic algorithm, genetic variation, population

相关文档
最新文档