用迈克尔逊干涉仪测定钠光波长

用迈克尔逊干涉仪测定钠光波长
用迈克尔逊干涉仪测定钠光波长

实验题目 用迈克尔逊干涉仪测定钠光波长

【实验目的】

1、掌握迈克尔逊干涉仪的调节和使用方法.

2、用迈克尔逊干涉仪测定钠光波长.

【实验仪器】

1、迈克尔逊干涉仪(附望远镜)

2、钠灯

3、扩束透镜(附铁架)

【实验原理】

1、迈克尔逊干涉仪

迈克尔逊干涉仪是一种用分振幅法获得双光束干涉的精密仪器.其原理光路图、

仪器外形图如右图所示,结构示意图如左图所示.最下面的底座有三个调平螺钉支撑,调平后可以拧紧以保持底座稳定.1M 、2M 是两面互相垂直的平面反射镜,2M 是不能移动的,其方位的微调可以靠水平拉簧螺丝和垂直拉簧螺丝.1M 装在拖板上由精密丝杆控制.可沿臂轴前后移动.两面反射镜背后都有三个调节螺丝,用来调节镜面的方位.转动粗动手轮可改变1M 的位置.其移动的距离由读数窗口数字

和微动手轮读数决定. 迈克尔逊干涉仪的光路

粗动手轮的分度值为210mm -,右 侧微动手轮的分度值为410mm -,可

估读至510mm -,两读数手轮属于涡轮窝杆传动系统.分束板1G 和补偿板2G 是两块厚度一样的平行平面玻璃板.其与臂轴成45?,在1G 靠近2G 的

平面上镀有半透半反膜.以便入射光在该平面上分成振幅近似相等的反

射光1和透射光2.2G 的作用是补

迈克尔逊干涉仪结构示意图 偿1和2光路之间附加的 光程差. 迈克尔逊干涉仪外形图

从扩散光源S 射来的光,到达分光板 1G 的半透半反膜后被分成两路.反射光l 在1G 处反射后经1M 镜

面反射,再过1G 最后到达E .透射光2射向2G 后到达2M ,反射后逆着入射光线返回,最后也到达E 处.因两列光是同一光波分振幅得到的,是相干光,所以在E 处就可观察到两列光的干涉条纹.由于2路透射光到达E

处前要经分光板1G 的第二面反射,使得2M 在1M 附近形成一个平行于1M 的虚像'2M ,两列相干光相当于来自

1M 、'2M 的反射,其所产生的干涉与厚度为d 的空气薄膜所产生的干涉是等效的.

2、钠光波长的测量

如右图所示,当两反射镜严格垂直时,即1M 、'

2M 严格平行时,所产生的干涉为等倾干涉.这时,对于入射角θ

的光线,由1M 、'2M 反射后两束光的光程差?为

2cos nd θ?=

式中, d 为空气薄膜厚度, 1n =为空气折射率.可见对于相同倾角的入射光线,将处于同一级干涉条纹,用眼睛在E 处正对1G 观察,可看见一组明暗相间的同心圆 等倾干涉 环,其亮纹和暗纹所满足的条件是

(),2cos 0,1,2,3...21/2,k d k k λθλ???===?+??

亮条纹

暗条纹

当0θ=时,光程差?最大,说明等倾干涉条纹中心条纹级次最高,越偏离中心条纹的级次越低.若1M 、'

2M 间

距减小,对任一级干涉条纹,欲保持k 不变,即光程差不变,则必定以增大cos θ值,即减小θ角来满足.故干涉条纹向θ变小的方向移动,即向内陷入.这时观察者看到条纹好像一个一个地陷入中心. 根据2cos nd θ?=,在中心每当间距d 减小/2λ时,就有一个条纹陷入;反之当d 逐渐增大,可观察到条纹好像从中心向外涌出.由于光波长较小,实验时只需缓慢转动微动手轮,即缓慢移动1M 镜,使视场中有N 个条纹的冒出或陷入,就可知道1M 移动的距离为

2

d N

λ?=

d ?由迈克尔逊干涉仪上读出,故由此可测得光源波长为

2d

N

λ?=

【实验步骤】

1、放置好钠光灯,使光源和1G 、2G 分束板及2M 反射镜中心大致等高,且三者连线大致垂直于2M 镜,适当调节光源及扩束透镜的位置使得在E 处视野可看到均匀的亮斑.

2、等倾干涉条纹的调节

①用尺子测量1M 、2M 与分束板1G 之间的距离,调节粗动手轮,使两距离大致相等.

②在扩束透镜和分光板之间放置笔尖,用眼睛直接观察笔尖的多个投影,调整1M 或2M 反射镜后的螺丝,使两个笔尖重合,即可观察到等倾条纹.

③调节2M 反射镜微调螺丝,使条纹变粗、弯曲,直至成圆环形.若条纹衬比度下降,可略微调整丝杆,移动1M 反射镜,使条纹衬比度改善.

④上下左右晃动眼睛,反复细致地调整2M 反射镜拉簧微调螺丝,使圆环形等倾条纹大小不因观察位置而改变为止(几乎不吞吐条纹).

⑤测量前应转动微调手轮,移动1M 反射镜,观察等倾条纹的变化情况.选一段合适区间,以完成测量.

3、钠光双线平均波长的测量

①转动微动手轮观察干涉条纹的”冒出”或”陷入”现象,记录干涉条纹”冒出”或”陷入”50条相对应的d 值,连续测量10组数据.

②利用所测得的数据,用逐差法求出钠光双线的平均波长. 4、实验结束,收拾仪器.

【数据处理】

2、数据处理 利用逐差法得

5

1

0.075560.075460.075220.075550.07754

0.075875

5

i

i d

d mm =?++++?=

=

=∑,

4220.07587

6.0701060

7.0250

d mm nm N λ-???=

==?=, 441.14 4.2310 4.8210A U t mm --==??=?,()0.68P =

55.7710B U mm -=

=?,()0.68P =

44.8510d U mm -??,()0.68P =

2 1.6d

U U nm λλ

?=

=,()0.68P =

由此,所测钠光平均波长 ()607.0 1.6nm λ?=±,()0.68P =

百分误差

607.0589.3

100%3%589.3

η-=

?=.

【实验结论】

1、本次实验使用迈克尔逊干涉仪测量钠黄光双线平均波长,测得()607.0 1.6nm λ=±,与标准值589.3E nm λ=进行对比,百分误差3%η=.

2、本次使用迈克尔逊干涉仪测量钠光波长,发现等倾干涉条纹的衬比度随1M 、2M 之间距离的改变而不断改变,不断移动手轮,有时甚至几乎为零.判断是因为钠黄光双线光双线的波长不同,当一波的波峰与令一波波谷几乎重合时,衬比度极小.

3、本次实验由于移动手轮时在某一段衬比度极小,以及后期条纹数多了眼花(如50.07754d ?=的粗差),给实验带来了一定的额外误差.

注意事项

1、测量过程中应保持手轮往同一方向运动,否则会出现回程差,给实验带来很大的影响.

2、观察过程中容易出现眼部不适的症状,此时可作适当放松,否则长时间观察容易产生测量偏差.

3、调节螺丝时需缓慢,一面损坏螺牙.

4、不得用手触摸分光板、补偿板以及反射镜.

【思考练习】

1、如何检验干涉条纹属于严格的等倾干涉条纹?

答:上下左右移动自己的眼睛观察干涉图样,若条纹不随眼睛的移动而出现吞吐现象,仅仅是随眼睛的移动而整体运动,则说明条纹已属于严格的等倾干涉条纹(实验时,在精度范围内,若条纹至多吞吐1~2根,则也可认为属于严格等倾干涉).

2、观察下列现象并加以理论解释:

①当d 增大或减小时,干涉圆环如何变化?

答:若间距d 增大,则条纹会变得密集且变细;反之,若d 减小,则条纹变稀疏且变粗. ②干涉条纹对比度随d 增大如何变化?为什么?

答:干涉条纹的衬比度随间距d 的增大呈周期性地变化,衬比度由大→ 小→ 大→ 小…(假设初始为最清晰).出现如此现象的原因,是因为钠黄光并不是严格的单线光源,钠黄光光源中存在589.0nm λ=,589.6nm λ= 的两条谱线,当两波的波峰几乎重合时,光的衬比度最大;而当一波的波峰与另一波的波谷几乎重合时,衬比度几乎为零.改变间距d 使得两波的位置不断发生改变,波峰与波谷不断发生重合与分离,故衬比度随d 的改变出现周期性变化.

③怎样判断D 镜和C 镜基本重合?

答: 当1M 靠的和2'M 较近时,条纹逐渐变得越来越稀疏.直到1M 和2'M 完全重合时,中心斑点扩大到整个视场,可判断D 、C 镜基本重合.

迈克尔逊干涉仪测He-Ne激光的波长

实验十 迈克尔逊干涉仪测He-Ne 激光的波长 迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作设计制作出来的精密光学仪器。它利用分振幅法产生双光束以实现光的干涉,可以用来观察光的等倾、等厚和多光束干涉现象,测定单色光的波长和光源的相干长度等。在近代物理和计量技术中有广泛的应用。 【实验目的】 1.了解迈克尔逊干涉仪的特点,学会调整和使用。 2.学习用迈克尔逊干涉仪测量单色光波长及薄玻璃片厚度的方法。 【实验仪器】 WSM-100型迈克尔逊干涉仪,HNL -55700型H e -N e 激光器、扩束镜,白赤灯,毛玻璃片,光具座,薄玻璃片。 【实验原理】 迈克尔逊干涉仪工作原理:如图10-1所示。在图中S 为光源,G 1是分束板,G 1的一面镀有半反射膜,使照在上面的光线一半反射另一半透射。G 2是补偿板,M 1、M 2为平面反射镜。 光源H e -N e 激光器S 发出的光经会聚透镜L 扩束后,射入G 1板,在半反射面上分成两束光:光束(1)经G 1板内部折向M 1镜,经M 1反射后返回,再次穿过G 1板,到达屏E ;光束(2)透过半反射面,穿过补偿板G 2射向M 2镜,经M 2反射后,再次穿过G 2,由G 1下表面反射到达屏E 。两束光相遇发生干涉。 补偿板G 2的材料和厚度都和G 1板相同,并且与G 1板平行放置。考虑到光束(1)两次穿过玻璃板,G 2的作用是使光束(2)也两次经过玻璃板,从而使两光路条件完全相同,这样,可以认为干涉现象仅仅是由于M 1镜与M 2镜之间的相对位置引起的。 为清楚起见,光路可简化为图10-2所示,观察者自E 处向G 1板看去,透过G 1板,除直接看到M 1镜之外,还可以看到M 2镜在G 1板的反射像M 2',M 1镜与M 2'构成空气薄膜。事实上M 1、M 2镜所引起的干涉,与M 1、M 2'之间的空气层所引起的干涉等效。 1.干涉法测光波波长原理: 考虑M 1、M 2'完全平行,相距d 时的情况。点光源S 在镜M 1、M 2'中所成的像s '、s ''构成相距d 2的相干光源,光路如图10-3所示。设s ''到0点的距离 为h 。这种情况下,干涉现象发生在两光相遇的所有空间中,因此干涉是非定域 的。对于屏幕上任意一点P 处,设s ''到0点的距离为h 。两像光源发出的光相 遇时的光程差为δ,P 点处发生相长干涉的条件为: λ=θ-θ+=δk h d 2h 2 1cos cos (10—1) 由(10-1)式,结合图3可以看出,保持h 与d 不变,令P 点向外移动时,1θ、2θ将增大,对应级次K 将伴随δ减小,所以中央条纹的级次高。 2E 图10-1 迈克尔逊干涉仪原理图 M M '图10-3干涉光程计算 2S 图10-2 迈克尔逊干涉仪简化光路

迈克尔逊干涉仪实验报告

迈克尔逊和法布里-珀罗干涉仪 摘要:迈克尔逊干涉仪是一种精密光学仪器,在近代物理和近代计量技术中都有着重要的应用。通过迈克尔逊干涉的实验,我们可以熟悉迈克尔逊干涉仪的结构并掌握其调整方法,了解电光源非定域干涉条纹的形成与特点和变化规律,并利用干涉条纹的变化测定光源的波长,测量空气折射率。本实验报告简述了迈克尔逊干涉仪实验原理,阐述了具体实验过程与结果以及实验过程中的心得体会,并尝试对实验过程中遇到的一些问题进行解释。 关键词: 迈克尔逊干涉仪;法布里-珀罗干涉仪;干涉;空气折射率; 一、引言 【实验背景】 迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹,主要用于长度和折射率的测量。法布里-珀罗干涉仪是珀罗于1897年所发明的一种能现多光束干涉的仪器,是长度计量和研究光谱超精细结构的有效工具; 它还是激光共振腔的基本构型,其理论也是研究干涉光片的基础,在光学中一直起着重要的作用。在光谱学中,应用精确的迈克尔逊干涉仪或法布里-珀罗干涉仪,可以准确而详细地测定谱线的波长及其精细结构。 【实验目的】 1.掌握迈克尔逊干涉仪和法布里-珀罗干涉仪的工作原理和调节方法; 2.了解各类型干涉条纹的形成条件、条纹特点和变化规律; 3.测量空气的折射率。 【实验原理】 (一) 迈克尔逊干涉仪 1M 、2M 是一对平面反射镜,1G 、2G 是厚度和折射率都完全相同的一对平行玻璃板,1G 称 为分光板,在其表面 A 镀有半反射半透射膜,2G 称为补偿片,与1G 平行。 当光照到1G 上时,在半透膜上分成两束光,透射光1射到1M ,经1M 反射后,透过2G ,在1G 的半透膜上反射到达E ;反射光2射到2M ,经2M 反射后,透过1G 射向E 。两束光在玻璃中的 光程相等。当观察者从E 处向1G 看去时,除直接看到2M 外还可以看到1M 的像1 M 。于是1、2

迈克尔逊干涉仪测‘

实验四 用迈克尔逊干涉仪空气的折射率 一、实验目的 用分离的光学元件构建一个迈克尔逊干涉仪。 通过降低空气的压强测量其折射率。 二、仪器和光学元件 光学平台;HeNe 激光;调整架,35x35mm ;平面镜,30x30mm ;磁性基座;分束器50:50;透镜,f=+20mm ;白屏;玻璃容器,手持气压泵,组合夹具,T 形连接,适配器,软管,硅管 三、实验原理 借助迈克尔逊干涉仪装置中的两个镜,光线被引进干涉仪。通过改变光路中容器内气体的压强,推算出空气的折射率。 If two Waves having the same frequency ω , but different amplitudes and different phases are coincident at one location , they superimpose to ()()2211sin sin αα-?+-?=wt a wt a Y The resulting can be described by the followlng : ()α-?=wt A Y sin w ith the amplitude δ cos 22122212?++=a a a a A (1) and the phase difference 21ααδ-= In a Michelson interferometer , the light beam is split by a half-silvered glass plate into two partial beams ( amplitude splitting ) , reflected by two mirrors , and again brought to interference behind the glass plate . Since only large luminous spots can exhibit circular interference fringes , the Iight beam is expanded between the laser and the glass plate by a lens L . If one replaces the real mirror M3 with its virtual image M3 /, , Which is formed by reflection by the glass plate , a point P of the real light source appears as the points P / , and P " of the virtual light sources L l and L 2 · Due to the different light paths , using the designations in Fig . 2 , 图 2 the phase difference is given by : θλπδcos 22???=d (2) λis the wavelength of the laser ljght used . According to ( 1 ) , the intensity distribution for a a a ==21 is 2cos 4~2 22δ??=a A I (3) Maxima thus occur when δis equal to a multiple of π2,hence with ( 2 ) λθ?=??m d cos 2;m=1,2,….. ( 4 )

用迈克尔逊干涉仪测量激光波长

用迈克尔逊干涉仪测量激光波长 〔引课:〕 在大学物理中我们学习了光的薄膜干涉,知道薄膜干涉现象分为两种: 在物理课上,我们只是从理论上研究了薄膜干涉的原理,那么在实验课上我们通过什么方法获得等倾或等厚干涉的图像呢? ***************************** 迈克尔逊干涉仪 ***************************** ***注意*** 本实验只利用迈克尔逊干涉仪测量等倾干涉图像 〔正课:〕 实验目的与要求 迈克尔逊干涉仪的构造 迈克尔逊干涉仪的原理 迈克尔逊干涉仪的使用 实验原理 1.迈克尔逊干涉仪的构造 等厚干涉等倾干涉

2.迈克尔逊干涉仪的原理 (1) 光路图 图30—2 迈克尔逊干涉仪光路图 光源S发出的光到达分光板 1 G后,被分成振幅(强度)几乎相等的反射光(1)和透射光(2)。光束(1)向着 1 M前进,光束(2)经过 2 G后向着 2 M前进,这两束光分别在 1 M和2 M上反射后逆着各自的入射方向返回,最后到达光屏E。由于这两束光是来自同一光源S的同一束光,因此他们是两列相干光束,在E 处必有干涉图样形成。

(2) 光程差的计算 1M 和2M ˊ平行时(1M ⊥ 2M ),将观察屏垂直置于S 1和S 2ˊ连线处,就可以观察到等倾干涉圆环条纹。由于1M 和2M ˊ之间 为空气,折射率n =1,故光程差 θδcos 2d =。 并且有: θδcos 2d == ?? ? ? ?----+--------暗条纹明条纹λλ)2/1(k k ( k=0、1、2…) 对光程差δ作进一步的分析: 图30—4 非定域等倾干涉

实验8--迈克尔逊干涉仪测量He-Ne激光波长(306)

涉 2 θ M2 实验8 迈克尔逊干涉仪测量He-Ne激光波长(306) 一、实验目的: 1、了解迈克尔逊干涉仪的结构、原理和调节使用方法; 2、了解光的干涉现象;观察、认识、区别等倾干涉 3、掌握用迈克尔逊干涉仪测He-Ne激光的波长的方法。 二、实验仪器 迈克耳逊干涉仪;He-Ne激光器 三、实验原理 如图2示,从光源S发出的光束射向分光板G1, 被G 1底面的半透半反膜分成振幅大致相等的反射光1 和透射光2,光束1被动镜M2再次反射回并穿过G1到达 E;光束2穿过补偿片G2后被定镜M1反射回,二次穿过 G 2到达G 1 并被底层膜反射到达E;最后两束光是频率相 同、振动方向相同,光程差恒定即位相 差恒定的相干光,它们在相遇空间E产 生干涉条纹。 由M1反射回来的光波在分光板G1的 第二面上反射时,如同平面镜反射一样, 使M1在M2附近形成M1的虚像M1′,因而 光在迈克尔逊干涉仪中自M2和M1的反射 相当于自M2和M1′的反射。由此可见, 在迈克尔逊干涉仪中所产生的干涉与空 气薄膜(M2和M1′之间所夹)所产生的干 涉是等效的。 当M2和M1′平行时(此时M1和M2严格 互相垂直),将观察到环形的等倾干涉条 纹。一般情况下,M2和M1′形成一空气劈尖,因此将观察到近似平行的等厚干涉条纹。 1、单色光的等倾干涉

激光器发出的光波长为λ,经凸透镜L 后会聚S 点。S 点可看做一点光源,经G 1、M 1、M 2′的反射,也等效于沿轴向分布的2个虚光源S 1′、S 2′所产生的干涉。因S 1′、S 2′发出的球面波在相遇空间处处相干,所以 观察屏E 放在不同位置上,均可看到干涉条纹, 故称为非定域干涉。 当E 垂直于轴线时(见图2), 调整M 1和M 2的方位使相互严格垂直,则可观察到 等倾干涉圆条纹。 迈克尔逊干涉仪所产生的环形等倾干涉圆条纹的位置取决于相干光束间的光 程差,而由M 2和M 1反射的两列相干光波的光程差为 δ=2dcos θ …… (1) 其中θ为反射光⑴在平面镜M 2上的入射角。 由干涉明纹条件有 2dcos θk=k λ …… (2) (考虑到θ较小,) (1) d 、λ一定时,若θ = 0,光程差δ = 2d 最大,即圆心所对应的干涉级次最高,从圆心向外的干涉级次依次降低; (2) k 、λ一定时,若d 增大,θ随之增大,可观察到干涉环纹从中心向外“涌出”, 干涉环纹逐渐变细,环纹半经逐渐变小;当d 增大至光源相干长度一半时,干涉环纹越来越细,图样越来越小,直至消失。 反之,当 d 减小时,可观察到干涉环纹向中心“缩入”。 当 d 逐渐减小至零时,干涉环纹逐渐变粗,干涉环纹直经逐渐变大,至光屏上观察到明暗相同的视场。 (3) 对θ = 0的明条纹,有:δ=2d = kλ可见每“涌出”或“缩入” 一个圆环,相当于S 1S 2的光程差改变了一个波长Δδ=λ。 当d 变化了Δd 时,相应地“涌出”(或“缩入”)的环数为 Δk,从迈克尔逊干涉仪 附图1 d 变化时,等倾干涉条纹的变化特征

实验40 用迈克尔逊干涉仪测量氦氖激光器波长

实验40 用迈克尔逊干涉仪测量氦氖激光器波长 一、实验目的 1.了解迈克尔逊干涉仪的结构及调整方法,并用它测光波波长 2.通过实验观察等倾干涉现象 二、实验仪器 氦氖激光器、迈克尔逊干涉仪(250nm)、透镜、毛玻璃等。 迈克尔逊干涉仪外形如图一所示。 其中反射镜M1是固定的,M2可以在导轨上前后移动,以改变光程差。反射镜M2的移动采用蜗轮蜗杆传动系统,转动粗调手轮(2)可以实现粗调。M2移动距离的毫米数可在机体侧面的毫米刻度尺(5)上读得。通过读数窗口,在刻度盘(3)上可读到0.01mm;转动微调手轮(1)可实现微调,微调手轮的分度值为1×10-4mm。可估读到10-5mm。M1、M2背面各有3个螺钉可以用来粗调M1和M2的倾度,倾度的微调是通过调节水平微调(15)和竖直微调螺丝(16)来实现的。 图一图二 三、实验原理 1.仪器基本原理 迈克尔逊干涉仪的光路和结构如图二所示。M1、M2是一对精密磨光的平面反射镜。P1、P2是厚度和折射率都完全相同的一对平行玻璃板,与M1、M2均成45°角。P1的一个表面镀有半反半透膜,使射到其上的光线分为光强度差不多相等的反射光和透射光;P1称为分光板。当光照到P1上时,在半透膜上分成相互垂直的两束光,透射光(1)射到M1,经M1反射后,透过P2,在P1的半透膜上反射后射向E;反射光(2)射到M2,经M2反射后,透过P1射向E。由于光线(2)前后共通过P1三次,而光线(1)只通过P1一次,有了P2,它

们在玻璃中的光程便相等了,于是计算这两束光的光程差时,只需计算两束光在空气中的光程差就可以了,所以P 2称为补偿板。当观察者从E 处向P 1看去时,除直接看到M 2外还看到M 1的像M 1ˊ。于是(1)、(2)两束光如同从M 2与M 1ˊ反射来的,因此迈克尔逊干涉仪中所产生的干涉和M 1′~M 2间“形成”的空气薄膜的干涉等效。 2.干涉条纹的图样 本实验用He-Ne 激光器作为光源(见图三),激光S 射向迈克尔逊干涉仪,点光源经平面镜M 1、M 2反射后,相当于由两个点光源S 1ˊ和S 2ˊ发出的相干光束。S ˊ是S 的等效光源,是经半反射面A 所成的虚像。S 1′是S ′经M 1′所成的虚像。S 2′是S ′经M 2所成的虚像。由图三可知,只要观察屏放在两点光源发出光波的重叠区域内,都能看到干涉现象。如果M 2与M 1′严格平行,且把观察屏放在垂直于S 1′和S 2′的连线上,就能看到一组明暗相间的同心圆干涉环,其圆心位于S 1′S 2′轴线与屏的交点P 0处,从图四可以看出P 0处的光程差ΔL =2d ,屏上其它任意点P ′或P ″的光程差近似为 ?cos 2d L =? (1) 式中?为S 2′射到P ″点的光线与M 2法线之间的夹角。当λ?k d =?cos 2时,为明纹;当 2/)12(cos 2λ?+=?k d 时,为暗纹。 由图四可以看出,以P 0为圆心的圆环是从虚光源发出的倾角相同的光线干涉的结果,因此,称为“等倾干涉条纹”。?=0时光程差最大,即圆心P 0处干涉环级次最高,越向边缘级次越低。当d 增加时,干涉环中心级次将增高,条纹沿半径向外移动,即可看到干涉环从中心“冒”出;反之当d 减小,干涉环向中心“缩”进去。 图三 图四 由明纹条件可知,当干涉环中心为明纹时,ΔL =2d=k λ。此时若移动M 2(改变d),环心处条纹的级次相应改变,当d 每改变λ/2距离,环心就冒出或缩进一条环纹。若M 2移动距离为Δd ,相应冒出或缩进的干涉环条纹数为N ,则有

迈克尔逊干涉仪实验与最佳测量区间的分析

迈克尔逊干涉仪实验与最佳测量区间的分析 摘要:用迈克尔逊干涉仪能观察到等倾干涉、等厚干涉条纹和白光干涉的彩色条纹。产生等倾干涉与等厚干涉不仅与M 1与2'M 之间的夹角α有关,还受其间空气 层厚度d 的影响。在测H e-N e 激光波长时,通过分析,在一定的测量区间内,测得的波长误差较小。本文主要对等倾干涉等厚干涉所遇到的现象、特点及仪器的调节图像的判断进行分析,接着分析白光干涉现象中央条纹的亮暗,最后对测波长的最佳区间分析,并经过实验得出最佳测量范围。 关键词:迈克尔逊干涉仪 等倾干涉 等厚干涉 白光干涉 最佳测量区间 Michelson interferometer experiment with the best measurement interval analysis Abstract: Such dumping intervention, uniform thickness interference, white stripe and color interference fringes as can be observed in the Michelson interferometer. Inclined to interfere in the formation and the thickness intervention with the M 1 and 2'M the angle, which is also affected by the air layer thickness d effects. The He – Ne laser wavelength measurement, after analysis, in a certain interval measurement, the measurement error of wavelength is smaller. In this paper, such as the dumping of interference encountered thick interference phenomena, characteristics and the regulatory apparatus judgment image analysis then analyzes white interference fringes of the central-darkness, in the final test ,after the best wavelength interval analysis, we carry out some experiments and make out the best measurement range Key words: Michelson interferometer dumping intervention uniform thickness interference the white light interference best sampling interval

用迈克尔逊干涉仪测水的折射率

物理实验设计性实验 实验题目:用迈克尔逊干涉仪测水的折射率班级: 实验日期:年月日

用迈克尔逊干涉仪测量液体的折射率 实验课题及任务 《用迈克尔逊干涉仪测量液体的折射率》实验课题任务是:根据液体的折射率比空气大,当一个光路中加有液体时,其光程差'l 会发生改变,根据这一的光学现象和给定的仪器,设计出实验方案,测定水的折射率。 学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《用迈克尔逊干涉仪测量液体的折射率》的整体方案,内容包括:写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤,然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,写出完整的实验报告,也可按书写科学论文的格式书写实验报告。 设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵根据实验用的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶用最小二乘法求出水的折射率n。 ⑷实验结果用标准形式表达,即用不确定度来表征测量结果的可信赖程度。 实验仪器 改装过迈克尔逊干涉仪、专用水槽及配件、激光器。 学时分配 教师指导(开放实验室)和开题报告1学时;实验验收,在4学时内完成实验; 提交整体设计方案时间 学生自选题后2~3周内完成实验整体设计方案并提交。提交整体设计方案,要求用纸质版(电子版用电子邮件发送到指导教师的电子邮箱里)供教师修改。

原始数据记录:实验台号:

用迈克尔逊干涉仪测水的折射率 实验题目: 用迈克尔逊干涉仪测水的折射率 总体设计方案思路或说明: 本实验介绍了用迈克逊干涉仪测量液体折射率的方法,原理简单。在干涉仪导轨上平放一方形玻璃容器,内装待测液体,动镜铅垂地浸没在液体中。通过测出动镜在液体内的移动量及其相应的干涉条纹变化数,就能计算液体的折射率,有较高的测量精度。本实验分析了干涉仪上分光板的反射光通过空气、玻璃、液体,由反射镜反射后出现的多个反射光点,只有通过对这些反射光点的调节,才能得出干涉条纹并符合计算公式的要求。 实验目的: 1、了解改装过的迈克尔逊干涉仪的原理,结构及调整方法。 2 、学会用改装过的迈克尔逊干涉仪测量水的折射率。 实验仪器: 迈克尔逊干涉仪、专用水槽及配件、激光器。 实验原理: 1、仪器介绍 图中1M 和2M 为两平面反射镜,1M 可在精密导轨上前后移动,而2M 是固定的。分光板1G 是一块平行平面板,板的第二面(近补偿板2G )涂以半反射膜,它和反射镜1M 图1 成45°角。2G 是一块补尝板,其厚度及折 射率1G 完全相同,且与1G 完全相同,它的作用是使光束(2)和光束(1)一样以相同的入射状态,分别经过厚度和折射率相同的玻璃板三次。从而1G 和 2P 对两束光的折射影响抵消,白光实验时,光路(1)分光镜色散的影响可消除。单色光实验时,条纹形

“迈克尔逊干涉仪”实验报告

“迈克尔逊干涉仪”实验报告 【引言】 迈克尔逊干涉仪是美国物理学家迈克尔逊(A.A.Michelson)发明的。1887年迈克尔逊和莫雷(Morley)否定了“以太”的存在,为爱因斯坦的狭义相对论提供了实验依据。迈克尔逊用镉红光波长作为干涉仪光源来测量标准米尺的长度,建立了以光波长为基准的绝对长度标准,即1m=1 553 164.13个镉红线的波长。在光谱学方面,迈克尔逊发现了氢光谱的精细结构以及水银和铊光谱的超精细结构,这一发现在现代原子理论中起了重大作用。迈克尔逊还用该干涉仪测量出太阳系以外星球的大小。 因创造精密的光学仪器,和用以进行光谱学和度量学的研究,并精密测出光速,迈克尔逊于1907年获得了诺贝尔物理学奖。 【实验目的】 (1)了解迈克尔逊干涉仪的原理和调整方法。 (2)测量光波的波长和钠双线波长差。 【实验仪器】 迈克尔逊干涉仪、He-Ne激光器、钠光灯、扩束镜 【实验原理】 1.迈克尔逊干涉仪结构原理 图1是迈克尔逊干涉仪光路图,点光源 S发出的光射在分光镜G1,G1右表面镀有半 透半反射膜,使入射光分成强度相等的两束。 反射光和透射光分别垂直入射到全反射镜M1 和M2,它们经反射后再回到G1的半透半反射 膜处,再分别经过透射和反射后,来到观察区 域E。如到达E处的两束光满足相干条件,可 发生干涉现象。 G2为补偿扳,它与G1为相同材料,有 相同的厚度,且平行安装,目的是要使参加干 涉的两光束经过玻璃板的次数相等,波阵面不会发生横向平移。 M1为可动全反射镜,背部有三个粗调螺丝。 M2为固定全反射镜,背部有三个粗调螺丝,侧面和下面有两个微调螺丝。 2.可动全反镜移动及读数 可动全反镜在导轨上可由粗动手轮和微动手轮的转动而前后移动。可动全反镜位置的读数为: ××.□□△△△ (mm) (1)××在mm刻度尺上读出。

《用迈克尔逊干涉仪测量玻璃折射率》

评分:大学物理实验设计性实验实验报告 实验题目:用迈克尔逊干涉仪测量玻璃的折射率 班级:电信06-1 姓名:林清伟学号:21 指导教师:方运良 茂名学院技术物理系大学物理实验室 实验日期:2007年11月29 日

《用迈克尔逊干涉仪测玻璃片折射率》实验提要 实验课题及任务 《用迈克尔逊干涉仪测玻璃片厚度》实验课题任务是:根据玻璃的折射率比空气大,当玻璃片加到一个光路中时,必产生一光程差l ?,这个光程差会造成中央条纹会发生位移的现象,根据这一特定的光学现象和给定的仪器,设计出实验方案,测定玻璃的折射率。 学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《用迈克尔逊干涉仪测玻璃片的折射率》的整体方案,内容包括:写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤,然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,按撰写科学论文的要求写出完整的实验报告。 设计要求 ⑴ 通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵ 选择实验的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶ 测量5组数据,测量玻璃的折射率n 。 ⑷ 应该用什么方法处理数据,说明原因。 ⑸ 实验结果用标准形式表达,即用不确定度来表征测量结果的可信赖程度。 有关提示 若用白光作光源,在一般情况下,不出现干涉条纹。进一步分析还可看出,在2M 、1'M 两面相交时,交线上0=d ,但是由于1、2两束光在半反射膜面上的反射情况不同,引起不同的附加光程差,故各种波长的光在交线附近可能有不同的光程差。因此,用白光作光源时,在2M 、1'M ,两面的交线附近的中央条纹可能是白色明条纹,也可能是暗条纹。在它的两旁还大致对称的有几条彩色的

迈克尔逊干涉仪测量空气折射率

空气折射率的测量 学习要点和重点: 1、迈克尔逊干涉仪原理, 2、利用迈克尔逊干涉原理测量气体折射率的方法。 学习难点: 1、 光路的调整, 2、 干涉条纹变化数目的读取。 迈克尔逊干涉仪中的两束相干光各有一段光路在空间上是分开的,在其中一支光路上放进被研究对象不会影响另一支光路。本实验利用迈克尔逊原理测量空气折射率。 一、 实验目的与要求 1、 学习一种测量气体折射率的方法; 2、 进一步了解光的干涉现象及其形成条件; 3、 学习调整光路的方法。 二、 实验仪器 He-Ne 激光器、反射镜2个、分束镜、扩束镜、气室、打气球、气压表、毛玻璃等。 三、 实验原理 迈克尔逊干涉仪光路示意图如图1所示。其中,G 为平板玻璃,称为分束镜,它的一个表面镀有半反射金属膜,使光在金属膜处的反射光束与透射光束的光强基本相等。 M 1、M 2为互相垂直的平面反射镜,M 1、M 2镜面与分束镜G 均成450角;M 1可以移动,M 2固定。2M '表示M 2对G 金属膜的虚像。 从光源S 发出的一束光,在分束镜G 的半反射面上被分成反射光束1和透射光束2。光束1从G 反射出后投向M 1镜,反射回来再穿过G ;光束2投向M 2镜,经M 2镜反射回来再通过G 膜面上反射。于是,反射光束1与透射光束2在空间相遇,发生干涉。 由图1可知,迈克尔逊干涉仪中,当光束垂直入射至M 1、M 2镜时,两束光的光程差δ为 M 2M 图1 迈克尔逊干涉仪光路示意图

)(22211L n L n -=δ (1) 式中,1n 和2n 分别是路程1L 、2L 上介质的折射率。 设单色光在真空中的波长为λ,当 ,3 ,2 ,1 ,0 ,==K K λδ (2) 时干涉相长,相应地在接收屏中心的总光强为极大。由式(1)知,两束相干光的光程差不但与几何路程有关,还与路程上介质的折射率有关。 当1L 支路上介质折射率改变1n ?时,因光程的相应改变而引起的干涉条纹的变化数为N 。由(1)式和(2)式可知 1 12L N n λ = ? (3) 例如:取nm 0.633=λ和mm L 1001=,若条纹变化10=N ,则可以测得0003.0=?n 。可见,测出接收屏上某一处干涉条纹的变化数N ,就能测出光路中折射率的微小变化。 正常状态(Pa P C t 501001325.1,15?==)下,空气对在真空中波长为nm 0.633的光的折射率 00027652.1=n ,它与真空折射率之差为410765.2)1(-?=-n 。用一般方法不易测出这个折射率差, 而用干涉法能很方便地测量,且准确度高。 四、 实验内容及步骤 (一)实验装置 实验装置如图2所示。用He-Ne 激光作光源(He-Ne 激光的真空波长为nm 0.633=λ),并附加小孔光栏H 及扩束镜T 。扩束镜T 可以使激光束扩束。小孔光栏H 是为调节光束使之垂直入射在M 1、M 2镜上时用的。另外,为了测量空气折射率,在一支光路中加入一个玻璃气室,其长度为L 。气压表用来测量气室内气压。在O 处用毛玻璃作接收屏,在它上面可看到干涉条纹。 (二)测量方法 图2 测量空气折射率实验装置示意图 气压表

迈克尔逊干涉仪测量空气折射率实验报告

测量空气折射率实验报告 一、 实验目的: 1.进一步了解光的干涉现象及其形成条件,掌握迈克耳孙干涉光路的原理和调节方法。 2.利用迈克耳孙干涉光路测量常温下空气的折射率。 二、 实验仪器: 迈克耳孙干涉仪、气室组件、激光器、光阑。 三、 实验原理: 迈克尔逊干涉仪光路示意图如图1所示。其中,G 为平板玻璃,称为分束镜,它的一个表面镀有半反射金属膜,使光在金属膜处的反射光束与透射光束的光强基本相等。 M1、M2为互相垂直的平面反射镜,M1、M2镜面与分束镜G 均成450角; M1可以移动,M2固定。2 M '表示M2对G 金属膜的虚像。 从光源S 发出的一束光,在分束镜G 的半反射面上被分成反射光束1和透射光束2。光束1从G 反射出后投向M1镜,反射回来再穿过G ;光束2投向M2镜,经M2镜反射回来再通过G 膜面上反射。于是,反射光束1与透射光束2在空间相遇,发生干涉。 由图1可知,迈克尔逊干涉仪中,当光束垂直入射至M1、M2镜时,两束光的光程差δ为 )(22211L n L n -=δ (1) 式中,1n 和2n 分别是路程1L 、2L 上介质的折射率。 M 2M 图1 迈克尔逊干涉仪光路示意图

设单色光在真空中的波长为λ,当 ,3 ,2 ,1 ,0 ,==K K λδ (2) 时干涉相长,相应地在接收屏中心的总光强为极大。由式(1)知,两束相 干光的光程差不但与几何路程有关,还与路程上介质的折射率有关。 当1L 支路上介质折射率改变1n ?时,因光程的相应改变而引起的干涉条纹的 变化数为N 。由(1)式和(2)式可知 1 12L N n λ = ? (3) 例如:取nm 0.633=λ和mm L 1001=,若条纹变化10=N ,则可以测得 0003.0=?n 。可见,测出接收屏上某一处干涉条纹的变化数N ,就能测出光路 中折射率的微小变化。 正常状态(Pa P C t 501001325.1,15?==)下,空气对在真空中波长为 nm 0.633的光的折射率00027652.1=n ,它与真空折射率之差为 410765.2)1(-?=-n 。用一般方法不易测出这个折射率差,而用干涉法能很方便地测量,且准确度高。 四、 实验装置: 实验装置如图2所示。用He-Ne 激光作光源(He-Ne 激光的真空波长为 nm 0.633=λ),并附加小孔光栏H 及扩束镜T 。扩束镜T 可以使激光束扩束。小孔光栏H 是为调节光束使之垂直入射在M1、M2镜上时用的。另外,为了测量空气折射率,在一支光路中加入一个玻璃气室,其长度为L 。气压表用来测量气室内气压。在O 处用毛玻璃作接收屏,在它上面可看到干涉条纹。 图2 测量空气折射率实验装置示意图 气压表

用迈克尔逊干涉仪测杨氏模量

大学物理实验设计性实验 实 验 报 告 实验题目: 用迈克尔逊干涉仪测杨氏模量 茂名学院 物理系 大学物理实验室 实验日期:200 年 月 日 实验提要 班 级: 姓 名: 学号: 指导教师: 方运良

实验课题及任务 《用迈克尔逊干涉仪测量金属丝的杨氏模量》实验课题任务是:利用迈克尔逊干涉仪能精密测量微小变量的特点,测量出钢丝在拉力作用下的微小伸长量,用特制的测力计测量拉力大小。设计实验方案,测定钢丝的杨氏模量。 学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《用迈克尔逊干涉仪测量金属丝的杨氏模量》的整体方案,内容包括:写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤,然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,写出完整的实验报告,也可按书写科学论文的格式书写实验报告。设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵根据实验用的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶用最小二乘法求出杨氏模量。 ⑷实验结果用标准形式表达,即用不确定度来表征测量结果的可信赖程度。 实验仪器 迈克尔逊干涉仪、测力计、激光器。 教师指导(开放实验室)和开题报告1学时;实验验收,在4学时内完成实验; 提交整体设计方案时间 学生自选题后2~3周内完成实验整体设计方案并提交。提交整体设计方案,要求用纸质版(电子版用电子邮件发送到指导教师的电子邮箱里)供教师修改。 参考文献 (1)金正宇一个经典力学实验测量方法的改进——霍尔传感器测杨氏模量 [J] 实验室研究与探索,2000 (2)张帮利用迈克耳孙干涉原理测杨氏模量 [J] 大学物理实验2007 (3)陈水波,乐雄军测量杨氏模量的智能光电系统【J】物理实验,2001 原始数据 实验日期:12月16日

迈克耳逊干涉仪的调整和使用及测空气折射率.

迈克耳逊干涉仪的调整和使用及测空气折射率 迈克耳逊干涉仪是1883年迈克耳逊设计制成的用分振幅法产生双光束干涉的仪器,它是一种可以进行精密测量的,有着广泛应用的干涉仪。迈克耳逊干涉仪的基本结构是许多干涉仪的基础。目前根据迈克耳逊的基本原理研制的各种精密仪器广泛用于生产和科研领域。由于创制了精密的光学仪器和利用这些仪器所完成的光谱学和基本度量学研究,迈克耳逊于1907年获诺贝尔物理学奖。 1.实验目的 (1) 了解迈克耳逊干涉仪的构造、原理,掌握调节方法。 (2) 学会用迈克耳逊干涉仪测定光波波长。 (3)学习一种测量气体折射率的方法 2. 实验仪器 迈克耳逊干涉仪,He-Ne 激光器,气室组建,数字气压计。 3. 实验原理 迈克耳逊干涉仪的光路图如图6-24所示。M 1和M 2是经精细磨光的平面反射镜,分别安装在相互垂直的两臂上,M 2是固定的(称为定镜),M 1可通过精密丝杆的带动,在导轨上移动(称为动镜)。在两臂相交处装有与两臂成45?角的平行平面玻璃板G 1,G 1后表面镀有一层半透明半反射的薄银膜(A ),这一层薄银膜(A )将入射光分成两束光强近似相等的反射光(1)和透射光(2)。因此,G 1称为分束板。另外,G 2为补偿板。G 2与G 1是两块材料(折射率)和厚度均相同的平行平面的玻璃板,并且G 2和G 1彼此间严格平行。G 2的作用是使光束(2)在玻璃中的光程与光束(1)在玻璃中的光程相同。 从光源发出的光束,被分束板G 1后表面镀有一层薄银膜(A )分成两束光强近似相等的反射光(1)和透射光(2)。光束(1)射到 M 1上被反射回来,再透过G 1到达观测者E 处(或接收屏);光束(2)透过G 2射到M 2上被反射回来,再透过 G 2后又经A 反射而到达观测者E 处(或接收屏)。这两条光线是相干光,相遇发生干涉。因此,在E 处可观测到干涉条纹。 图6-24中的M’2是定镜M 2相对半反半透膜(A )反射而形成的虚像。在观察者看来,两束相干光(1)、(2)好象是分别经M 1和M’2反射而来。因此在研究干涉时,M 2与M’2是等效的。 在迈克耳逊干涉仪中,由M 1和M 2反射出来的光是两束相干光,M 1和M 2可看作两个相干光源,因此在迈克耳逊干涉仪中可观察到: ① 点光源产生的非定域干涉条纹。 ② 点、面光源等倾干涉条纹。 ③ 面光源等厚干涉条纹。 本实验主要观察到第1种干涉条纹,并利用这种条纹测量He-Ne 激光器输出激光的波 E 图6-24 迈克耳逊干涉仪的光路图

迈克尔逊干涉仪的原理与应用

迈克尔逊干涉仪的原理与应用 在大学物理实验中,使用的是传统迈克尔逊干涉仪,其常见的实验内容是:观察等倾干涉条纹,观察等厚干涉条纹,测量激光或钠光的波长,测量钠光的双线波长差,测量玻璃的厚度或折射率等。 由于迈克尔逊干涉仪的调节具有一定的难度,人工计数又比较枯燥,所以为了激发学生的实验兴趣,增加学生的科学知识,开阔其思路,建议在课时允许的条件下,向学生多介绍一些迈克尔逊干涉仪的应用知识。这也是绝大多数学生的要求。下面就向大家介绍一些利用迈克尔逊干涉仪及其原理进行的测量。 一、传统迈克尔逊干涉仪的测量应用 1. 微小位移量和微振动的测量[11-14];采用迈克尔逊干涉技术,通过测量KDP晶体生长的法向速率和台阶斜率来研究其台阶生长的动力学系数、台阶自由能、溶质在边界层内的扩散特征以及激发晶体生长台阶的位错活性。He-Ne激光器的激光通过扩束和准直后射向分束镜,参考光和物光分别由反射镜和晶体表面反射,两束光在重叠区的干涉条纹通过物镜成像,该像用摄像机和录像机进行观察和记录.滤膜用于平衡参考光和物光的强度. 纳米量级位移的测量:将迈克尔逊型激光干涉测量技术应用于环规的测量中。采用633nm稳频的He-Ne激光波长作为测量基准,采用干涉条纹计数,用静态光电显微镜作为环规端面瞄准装置,对环

规进行非接触、绝对测量,配以高精度的数字细分电路,使仪器分辨力达到5nm;静态光电显微镜作为传统的瞄准定位技术在该装置中得以充分利用,使其瞄准不确定度达到30nm;精密定位技术在该装置中也得到了很好的应用,利用压电陶瓷微小变动原理,配以高精度的控制系统,使其驱动步距达到5nm。 测振结构的设计原理用半导体激光器干涉仪对微振动进行测量时,用一弹性体与被测量(力或加速度)相互作用,使之产生微位移。将这一变化引到动镜上来,就可以在屏上得到变化的干涉条纹,对等倾干涉来讲,也就是不断产生的条纹或不断消失的条纹。由光敏元件将条纹变化转变为光电流的变化,经过电路处理可得到微振动的振幅和频率。 压电材料的逆压电效应研究:压电陶瓷材料在电场作用下会产生伸缩效应,这就是所谓压电材料的逆压电现象,其伸缩量极微小。将迈克尔逊干涉仪的动镜粘在压电陶瓷片上,当压电陶瓷片受到电激励产生机械伸缩时就带动动镜移动。而动镜每移动λ/2的距离,就会到导致产生或消失一个干涉环条纹,根据干涉环条纹变化的个数就可以计算出压电陶瓷片伸缩的距离。 2. 角度测量[15-16]:刘雯等人依照正弦原理改型设计了迈克尔逊干涉仪,可以完成小角度测量。仪器的两个反射镜由三棱镜代替,反射镜组安装在标准被测转动器件的转动台上。被测转角依照正弦原理转化成反射镜组两个立体棱镜的相应线位移,而后进行干涉测量,小角度干涉仪测角分辨率达到10-3角秒量级。

迈克尔逊干涉仪测量光波的波长实验报告

迈克尔逊干涉仪测量光波的波长实验报告

迈克尔逊干涉仪测量光波的波长 班级:姓名:学号:实验日期: 一、实验目的 1.了解迈克尔逊干涉仪的结构和原理,掌握调节方法; 2.利用点光源产生的同心圆干涉条纹测定单色光的波长。 二、仪器及用具(名称、型号及主要参数) 迈克尔逊干涉仪,He-Ne激光器,透镜等 三、实验原理 迈克尔逊干涉仪原 理如图所示。两平面反 射镜M1、M2、光源S 和观察点E(或接收 屏)四者北东西南各据 一方。M1、M2相互垂 直,M2是固定的,M1 可沿导轨做精密移动。 G1和G2是两块材料 相同薄厚均匀相等的平行玻璃片。G1的一个表面上镀有半透明的薄银层或铝层,形成半反半透膜,可使入射光分成强度基本相等的两束光,称G1为分光板。G2与G1平行,以保证两束光在玻璃中所走的光程完全相等且与入射光的波长无关,保证仪器能够观察

单、复色光的干涉。可见G 2作为补偿光程用,故称之为补偿板。G 1、G 2与平面镜M 1、M 2倾斜成45°角。 如上图所示一束光入射到G 1上,被G 1分为反射光和透射光,这两束光分别经M 1和M 2’反射后又沿原路返回,在分化板后表面分别被透射和反射,于E 处相遇后成为相干光,可以产生干涉现象。图中M 2’是平面镜M 2由半反膜形成的虚像。观察者从E 处去看,经M 2反射的光好像是从M 2’来的。因此干涉仪所产生的干涉和由平面M 1与M 2’之间的空气薄膜所产生的干涉是完全一样的,在讨论干涉条纹的形成时,只需考察M 1和M 2两个面所形成的空气薄膜即可。两面相互平行可到面光源在无穷远处产生的等倾干涉,两面有小的夹角可得到面光源在空气膜近处形成的等厚干涉。若光源是点光源,则上述两种情况均可在空间形成非定域干涉。设M 1和M 2’之间的距离为d ,则它们所形成的空气薄膜造成的相干光的光程差近似用下式表示 若 M 1与M 2平行,则各处d 相同,可得等倾干涉。系统具有轴对称不变性,故屏E 上的干涉条纹应为一组同心圆环,圆心处对应的光程差最大且等于2d,d 越大圆环越密。反之中心圆斑变大、圆环变疏。若d 增加,则中心“冒出”一个条纹,反之d 减小,则中心“缩进”一个条纹。故干涉条纹在中心处“冒出”或“缩进”的个数N 与d 的变化量△d 之间有下列关系 2cos d i δ=

实验6-5 迈克尔逊干涉仪的原理与使用

实验6—5 迈克尔逊干涉仪的原理与使用 一.实验目的 (1).了解迈克尔逊干涉仪的基本构造,学习其调节和使用方法。 (2).观察各种干涉条纹,加深对薄膜干涉原理的理解。 (3).学会用迈克尔逊干涉仪测量物理量。 二.实验原理 1.迈克尔逊干涉仪光路 如图所示,从光源S 发出的光线经半射镜 的反射和透射后分为两束光线,一束向上 一束向右,向上的光线又经M1 反射回来, 向右的光线经补偿板后被反射镜M2反射回来 在半反射镜处被再次反射向下,最后两束光线在 观察屏上相遇,产生干涉。 2.干涉条纹 (1).点光源照射——非定域干涉 如图所示,为非定域干涉的原理图。点S1是光源 相对于M1的虚像,点S2’是光源相对于M2所成 的虚像。则S1、S2`所发出的光线会在观察屏上形 成干涉。 当M1和M2相互垂直时,有S1各S2`到点A 的 光程差可近似为: i d L cos 2=? ① 当A 点的光程差满足下式时 λk i d L ==?c o s 2 ② A 点为第k 级亮条纹。 由公式②知当i 增大时cosi 减小,则k 也减小,即条纹级数变高,所以中心的干涉条纹的级次是最高的 (2)扩展光源照明——定域干涉在点光源之前加一毛玻璃,则形成扩展光源,此时形 成的干涉为定域干涉,定域干涉只有在特定的位置才能看到。 ①.M1与M2严格垂直时,这时由于d 是恒定的,条纹只与入射角i 在关,故是等倾干涉 ②.M1与M2并不严格垂直时,即有一微小夹角,这种干涉为等厚干涉。当M1与M2夹角很小,且入射角也很小时,光程差可近似为 )21(2)2sin 1(2cos 222 i d i d i d L -≈-=≈?③ 在M1与M2`的相交处,d =0,应出现直线条纹,称中央条纹。 3.定量测量 (1).长度及波长的测量 由公式②可知,在圆心处i=0 0, cosi=1,这时 λk d L ==?2 ④ 从数量上看如d 减小或增大N 个半波长时,光程差L ?就减小或增大N 个整波长,对

相关文档
最新文档