基于图像分析的植物叶片识别技术综述

基于图像分析的植物叶片识别技术综述
基于图像分析的植物叶片识别技术综述

图像识别技术的研究现状论文

图像识别技术研究现状综述 简介: 图像识别是指图形刺激作用于感觉器官,人们辨认出它是经验过的某一图形的过程,也叫图像再认。在图像识别中,既要有当时进入感官的信息,也要有记忆中存储的信息。只有通过存储的信息与当前的信息进行比较的加工过程,才能实现对图像的再认。图像识别技术是以图像的主要特征为基础的,在图像识别过程中,知觉机制必须排除输入的多余信息,抽出关键的信息。在人类图像识别系统中,对复杂图像的识别往往要通过不同层次的信息加工才能实现。对于熟悉的图形,由于掌握了它的主要特征,就会把它当作一个单元来识别,而不再注意它的细节了。这种由孤立的单元材料组成的整体单位叫做组块,每一个组块是同时被感知的。图像在人类的感知中扮演着非常重要的角色,人类随时随处都要接触图像。随着数字图像技术的发展和实际应用的需要,出现了另一类问题,就是不要求其结果输出是一幅完整的图像,而是将经过图像处理后的图像,再经过分割和描述提取有效的特征,进而加以判决分类,这就是近20年来发展起来的一门新兴技术科学一图像识别。它以研究某些对象或过程的分类与描述为主要内容,以研制能够自动处理某些信息的机器视觉系统,代替传统的人工完成分类和辨识的任务为目的。 图像识别的发展大致经历了三个阶段:文字识别、图像处理和识别及物体识别:文字识别的研究是从1950年开始的,一般是识别字母、数字和符号,并从印刷文字识别到手写文字识别,应用非常广泛,并且已经研制了许多专用设备。图像处理和识别的研究,是从1965年开始的。过去人们主要是对照相技术、光学技术的研究,而现在则是利用计算技术、通过计算机来完成。计算机图像处理不但可以消除图像的失真、噪声,同时还可以进行图像的增强与复原,然后进行图像的判读、解析与识别,如航空照片的解析、遥感图像的处理与识别等,其用途之广,不胜枚举。物体识别也就是对三维世界的认识,它是和机器人研究有着密切关系的一个领域,在图像处理上没有特殊的难点,但必须知道距离信息,并且必须将环境模型化。在自动化技术已从体力劳动向部分智力劳动自动化发展的今天,尽管机器人的研究非常盛行,还只限于视觉能够观察到的场景。进入80年代,随着计算机和信息科学的发展,计算机视觉、人工智能的研究已成为新的动向 图像识别与图像处理的关系: 在研究图像时,首先要对获得的图像信息进行预处理(前处理)以滤去干扰、噪声,作几何、彩色校正等,以提供一个满足要求的图像。图像处理包括图像编码,图像增强、图像压缩、图像复原、图像分割等。对于图像处理来说,输入是图像,输出(即经过处理后的结果)也是图像。图像处理主要用来解决两个问题:一是判断图像中有无需要的信息;二是确定这些信息是什么。图像识别是指对上述处理后的图像进行分类,确定类别名称,它可以在分割的基础上选择需要提取的特征,并对某些参数进行测量,再提取这些特征,然后根据测量结果做出分类。为了更好地识别图像,还要对整个图像做结构上的分析,对图像进行描述,以便对图像的主要信息做一个好的解释,并通过许多对象相互间的结构关系对图像加深理解,以便更好帮助和识别。故图像识别是在上述分割后的每个部分中,找出它的形状及纹理特征,以便对图像进行分类,并对整个图像做结构上的分析。因而对图像识别环节来说,输入是图像(经过上述处理后的图像),输出是类别和图像的结构分析,而结构分析的结果则

基于数字图像处理技术测定植物叶片属性

基于数字图像处理技术测定植物叶片属性 一、实验名称:基于数字图像处理技术测定植物叶片属性。 二、实验目的 1.掌握并熟练使用matlab R2014b 软件; 2.采用合适的分割方法对原图片进行图像分割,获取目标叶片; 3.将分割后的图片进行去噪增强处理; 4.通过matlab 软件来测定目标叶片的属性; 5.通过手工网格法计算出目标叶片实际属性,并与实验结果对比修改。 三、实验原理 实验通过手动网格法测出叶片实际面积值,并与通过matlab 图像处理计算出的实验面积值对比,研究测试运用matlab 图像处理技术提取叶片面积的可行性。 实验中,将已知属性的小方格(1cm*1cm )作为参照物与所测叶片置于同一平面的白纸上,用手机相机获取图像。由于数字图像都是由一个个像素点组成,可以根据像素点比例和参照物属性求出植物叶片属性。 叶片面积计算公式如下: 式1:叶片面积 = 参照物面积× 叶片周长计算公式如下: 式2:叶片周长 = 参照物周长× 四、实验步骤 (1)网格测面积 手工制作网格纸一张(最小格边长5mm ),将叶片轮廓描于纸上,计算轮廓所占方格数(未占满格的均按半格计算),得出实际面积约为24cm 2。用一根细线围绕叶子一周,然后拉直,测其周长为22.2cm 。 叶片实验周长 参照物实验周长 叶片像素数 参照物像素数

图1:获取的原图片(黑方格为参照物) 图2:网格法求叶片实际面积 (2)matlab图像处理提取叶片属性 1、图像灰度处理

2、中值滤波 3、二值化

4、颜色反转 5、提取边缘

6、填补边缘空隙 7、图像切割 对分割后的图像进行图像切割,平均分为三份(如图6、7)。

手势识别技术综述

手势识别技术综述 作者单位:河北工业大学计算机科学与软件学院 内容摘要: 手势识别是属于计算机科学与语言学的一个将人类手势通过数学算法针对人们所要表达的意思进行分析、判断并整合的交互技术。一般来说,手势识别技术并非针对单纯的手势,还可以对其他肢体动作进行识别,比如头部、胳臂等。

但是这其中手势占大多数。本文通过对手势识别的发展过程、使用工具、目的与市场等进行综述,梳理出手势识别发展的思路,让读者对手势识别有一个总体上的认识,同时也可以让读者在此基础上进行合理想象,对手势识别的未来有一个大体印象。 Abstract: Gesture recognition is an interactive technology using mathematical arithmetic to the analysis,judge and assembly meaning that people want to convey which belongs to computer science and Linguistics.In general, gesture recognition technology is not for simple gestures expressed by hands ,it can also aim to other body movement recognition, such as the head, arm and so on. But the gesture accounted for most of the analysis. In this paper, by describing the development process, tools used , objective and market of gesture recognition , we can sort out the ideas of the development of gesture recognition, and let readers have an overall understanding of gesture recognition. At the same time, it can let the reader imagine that on hand gesture recognition based on reason ,and have a general impression of its future. 1.定义 说到手势识别,首先要对手势识别中的手势有一个清晰的认知。手势在不同的学科中有不同含义,而在交互设计方面,手势与依赖鼠标、键盘等进行操控的区别是显而易见的,那就是手势是人们更乐意接受的、舒适而受交互设备限制小的方式,而且手势可供挖掘的信息远比依赖键盘鼠标的交互模式多。在学术界,人们试图对手势定义一个抽象、明确而简洁的概念以为手势及其应用的研究提供依据。1990年Eric Hulteen和Gord Kurtenbach曾发表的题为“Gestures in Human-Computer Communication”中定义:“手势为身体运动的一部分,它包括一部分信息,而且是一种能被观察到的有意义的运动。挥手道别是一种手势,而敲击键盘不是一种手势,因为手指的运动没有被观察,也不重要,它只表示键盘

图像识别技术发展状况及前景

医学图像配准技术 罗述谦综述 首都医科大学生物医学工程系(100054) 吕维雪审 浙江大学生物医学工程研究所(310027) 摘要医学图像配准是医学图像分析的基本课题,具有重要理论研究和临床应用价 值。本文较全面地介绍了医学图像配准的概念、分类、配准原理、主要的配准技术及评 估方法。 关键词医学图像配准多模 1 医学图像配准的概念 在做医学图像分析时,经常要将同一患者的几幅图像放在一起分析,从而得到该患者的多方面的综合信息,提高医学诊断和治疗的水平。对几幅不同的图像作定量分析,首先要解决这几幅图像的严格对齐问题,这就是我们所说的图像的配准。 医学图像配准是指对于一幅医学图像寻求一种(或一系列)空间变换,使它与另一幅医学图像上的对应点达到空间上的一致。这种一致是指人体上的同一解剖点在两张匹配图像上有相的空间位置。配准的结果应使两幅图像上所有的解剖点,或至少是所有具有诊断意义的点及手术感兴趣的点都达到匹配。 医学图像配准技术是90年代才发展起来的医学图像处理的一个重要分支。涉及“配准”的技术名词除registration外,mapping、matching、co-registration、integration、align-ment和fusion 等说法也经常使用。从多数文章的内容看,mapping偏重于空间映射;fu-sion指图像融合,即不仅包括配准,而且包括数据集成后的图像显示。虽然在成像过程之前也可以采取一些措施减小由身体移动等因素引起的空间位置误差,提高配准精度(称作数据获取前的配准preacquisition),但医学图像配准技术主要讨论的是数据获取后的(post-acquisition)配准,也称作回顾式配准(retrospective registration)。当前,国际上关于医学图像配准的研究集中在断层扫描图像( tomographic images,例如CT、MRI、SPECT、PET等)及时序图像(time seriesimages,例如fMRI及4D心动图像)的配准问题。 2 医学图像基本变换 对于在不同时间或/和不同条件下获取的两幅图像I1(x1,y1,z1)和I2(x2,y2,z2)配准,就是寻找一个映射关系P:(x1,y1,z1) (x2,y2,z2),使I1的每一个点在I2上都有唯一的点与之相对应。并且这两点应对应同一解剖位置。映射关系P表现为一组连续的空间变换。常用的空间几何变换有刚体变换(Rigid body transformation)、仿射变换(Affine transformation)、投影变换(Projec-tive transformation)和非线性变换(Nonlin-ear transformation)。 (1)刚体变换: 所谓刚体,是指物体内部任意两点间的距离保持不变。例如,可将人脑看作是一个刚体。 处理人脑图像,对不同方向成像的图像配准常使用刚体变换。刚体变换可以分解为旋转和平移:P(x)=Ax+b(1) x=(x,y,z)是像素的空间位置;A是3×3的旋转矩阵,b是3×1的平移向量。

植物冠层数字图像分析仪的功能特点及技术参数

植物冠层数字图像分析仪的功能特点及技术参数 在现代农业中使用植物冠层数字图像分析仪来测量冠层截取的光合有效辐射量,其实是因为植物的累积生物量与冠层截获光合有效辐射量有很紧密的联系,光合有效辐射是植物在生长发育过程中需要的能量基础,所以利用托普云农植物冠层数字图像分析仪测量和记录光合有效辐射,可以有利于科研人员更好的研究作物的生长发育、产量品质与光能利用间的关系,实现更好的光能利用,为高效农业生产提供依据。 托普云农植物冠层数字图像分析仪可广泛应用于农业生产和农业科研,为进行冠层光能资源调查,测量植物冠层中光线的拦截,研究作物的生长发育、产量品质与光能利用间的关系,本仪器用于400nm-700nm波段内的光合有效辐射(PAR)测量、记录,测量值的单位是平方米?秒上的微摩尔(μmols-1m-2)。 植物冠层数字图像分析仪特点: 1.具有自动休眠功能 2.测量方式分为自动和手动两种。自动测量时间间隔最小1分钟,自动测量次数最大99次,手动测量根据实际需要手动采集 3.仪器将显示屏、操作按键、存储SD卡及测量探杆一体化设计,操作简单,体积小,携带方便 4.存储介质采用SD卡,存储容量大,数据管理方便 植物冠层数字图像分析仪主要技术参数: 1、分辨率:1μmol m-2s-1 相对差度(谱响应):<10%(对植冠) 精度:<测量值的±0.5%±1个字 准确度:<测量值的±5%±1个字(相对于NIM标准) 自动采集间隔:可选1-99分钟 自动采集次数:1-99次 数据存储容量:2GB(标配SD卡) 仪器总长度:75cm

探杆长度:50cm 电源:2节5号电池 工作环境:0°C-60°C;100%相对湿度 稳定性:一年内变化<±2% 2、测量范围:0-2700μmol m-2s-1 植物生理其他仪器:植物营养测定仪、叶绿素测定仪、根系分析系统、叶面积测定仪、光合作用测定仪、果蔬呼吸测定仪、植物冠层数字图像分析仪、茎秆强度测定仪、植物病害检测仪、植物水势仪、树木无损检测探伤仪

基于matlab的图像预处理技术研究文献综述

毕业设计文献综述 题目:基于matlab的图像预处理技术研究 专业:电子信息工程 1前言部分 众所周知,MATLAB在数值计算、数据处理、自动控制、图像、信号处理、神经网络、优化计算、模糊逻辑、小波分析等众多领域有着广泛的用途,特别是MATLAB的图像处理和分析工具箱支持索引图像、RGB 图像、灰度图像、二进制图像,并能操作*.bmp、*.jpg、*.tif等多种图像格式文件如。果能灵活地运用MATLAB提供的图像处理分析函数及工具箱,会大大简化具体的编程工作,充分体现在图像处理和分析中的优越性。 图像就是用各种观测系统观测客观世界获得的且可以直接或间接作用与人眼而产生视觉的实体。视觉是人类从大自然中获取信息的最主要的手段。拒统计,在人类获取的信息中,视觉信息约占60%,听觉信息约占20%,其他方式加起来才约占20%。由此可见,视觉信息对人类非常重要。同时,图像又是人类获取视觉信息的主要途径,是人类能体验的最重要、最丰富、信息量最大的信息源。通常,客观事物在空间上都是三维的(3D)的,但是从客观景物获得的图像却是属于二维(2D)平面的。 图像存在方式多种多样,可以是可视的或者非可视的,抽象的或者实际的,适于计算机处理的和不适于计算机处理的。 图像处理它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在 1964 年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动

基于手势识别的智能电视交互专利技术综述

基于手势识别的智能电视交互专利技术综述 智能电视具有操作系统,支持第三方应用资源实现功能扩展,支持多网络接入功能,具备人机交互、与其他智能设备进行交互等。随着计算机视觉的发展和人机交互的需要,手势识别研究取得了蓬勃的发展,通过手势识别对智能电视进行控制和操作,能够更轻松、高效地使用电视设备。文章利用专利数据库对智能电视手势识别技术进行了数据统计和分析,对该领域的专利申请趋势等情况做了归纳总结。 标签:智能电视;手势识别;发展状况;专利 Abstract:Intelligent TV has the operating system,which supports the third party application resources to realize the function expansion,supports the multi-network access function,has the man-machine interaction,and carries on the interaction with other intelligent devices. With the development of computer vision and the need of human-computer interaction,the research of gesture recognition has made great progress. By controlling and operating intelligent TV through gesture recognition,one can more easily and more efficiently use TV equipment. This paper makes use of patent database to analyze the data of intelligent TV gesture recognition technology,and summarizes the trend of patent application in this field. Keywords:intelligent TV;gesture recognition;development status;patent 引言 电视是家庭娱乐休闲必不可少的家用电器。如今,电视依然是最为普及的信息传播载体,用户在观看普通节目的同时,还可以上网、娱乐等。从用户的角度出发,通过自然简单、人性化的方式完成交互,无疑是用户完成电视操作的最佳方式。而手势具有直观、自然、丰富的特点,是一种符合人们日常习惯的交互手段,是表達信息和特定意图的良好载体,由于手势具有上述特性,因此在对智能电视进行操控中得到了良好的运用,实现了对智能电视自然灵活地操作。 1 基于手势识别的智能电视控制技术发展状态分析 1.1 技术分解 本文通过检索获得的专利申请进行统计分析,对基于手势识别的智能电视控制所涉及的具体技术和应用领域进行分解。 根据手势采集设备可以将手势识别系统大致分为基于数据手套和基于视觉的两种手势识别系统。其中,数据手套通过多个传感器反馈各关节的数据,并通过位置跟踪器返回人手所在的三维坐标,从而获取手势在三维空间中的位置信息和手指的运动信息。通过数据手套可以直接获取人手在三维空间中的位置和运动

植物冠层图像分析仪(也称作物冠层分析仪)

植物的冠层是植物与外界发生互相作用的主要场所,而光合有效辐射和叶面积指数是评估植物健康状况和植物冠层结构的重要指标。光合有效辐射可以表示有多少光能可以被植物光合作用利用,叶面积指数指的是可用于估计冠层密度和生物量,是植物冠层结构的一项重要表征参数。传统的测量这些植物冠层参数的方法是手动测量,其原理非常简单,但是需要耗费大量的时间和人力,并且在测量时不仅会毁坏植物,还很容易因为人为因素而导致测量结果不准确。因此,现在多使用植物冠层图像分析仪测量各项植物冠层参数。 在植物生理研究中,植物冠层图像分析仪可以说是一款非常重要的设备,其用途也非常广,主要有以几点: 1、可测算植物冠层的太阳直射光透过率、天空散射光透过率、冠层的消光系数,叶面积指数和叶片平均倾角等。 2、可用于农作物、果树、森林内冠层受光状况的测量和分析。 3、可用于不同植物群体结构的比较。 4、可对农田作物群体生长过程进行动态监测。 植物冠层图像分析仪广泛的应用于作物、植物群体冠层受光状况的测量分析以及农林业科研工作。了解仪器的用途,下面我们再来了解一下仪器的测量原理:植物冠层图像分析仪采用国际上一致采用的原理(比尔定律以及冠层孔隙率与冠层结构相关的原理),通过专用鱼眼镜头成像和CCD图像传感器测量冠层数据和获取植物冠层图像,利用软件对所得图像和数据进行分析计算,得出冠层相关指标和参数。

而托普云农TOP-1300植物冠层图像分析仪可以无损测量叶面积指数、叶片平均倾角、散射辐射透过率、不同太阳高度角下的直射辐射透过率、不同太阳高度角下的消光系数、叶面积密度的方位分布、冠层内外的光合有效辐射(PAR)等。仪器探头体积小巧,装在测杠上可任意角度测量植物冠层结构。除此之外,仪器同时具有精确、省时省力、快捷方便的特点,并且可以野外工作和长时间测量。

图像处理技术的研究现状和发展趋势

图像处理技术的研究现状和发展趋势 庄振帅 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。在以后的宇航空间技术,如对火星、土星等星球的探测研究中,数字图像处理都发挥了巨大的作用。数字图像处理取得的另一个巨大成就是在医学上获得的成果。1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置,也就是我们通常所说的CT(Computer Tomograph)。CT的基本方法是根据人的头部截面的投影,经计算机处理来重建截面图像,称为图像重建。1975年EMI公司又成功研制出全身用的CT 装置,获得了人体各个部位鲜明清晰的断层图像。1979年,这项无损伤诊断技术获得了诺贝尔奖,说明它对人类作出了划时代的贡献。与此同时,图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学过程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使图像处理成为一门引人注目、前景远大的新型学科。随着图像处理技术的深入发展,从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向

关于计算机视觉的手势识别综述

关于计算机视觉的手势识别综述 蒋指挥 (江苏科技大学江苏镇江 213022) 摘要:计算机技术的高速发展也产生了许多新领域,在此对以计算机视觉为基础的手势检测识别技术展开综述。主要阐述该技术的发展历程、实现方法、研究现状以及其存在的不足之处和发展方向。结果表明简单的可穿戴设备的手势识别和深度视觉传感器的手势识别和多方法交叉融合的手势识别是未来该领域的发展方向。 关键词:计算机视觉;手势识别;人机交互 A survey of gesture recognition in computer vision//Jiang Zhi Hui Abstract;With the rapid development of computer technology, a lot of new fields have been developed. In this paper, the technology of gesture detection and recognition based on computer vision is reviewed. This paper describes the development of the technology, the realization method, the research status and its shortcomings and development direction. The results show that the simple wearable device for hand gesture recognition and depth vision sensor for hand gesture recognition and multi method cross fusion for gesture recognition is the future direction of the development of the field. Key words:Computer vision; gesture recognition; human-computer interaction 计算机在我们的生活中越来越不可或缺,我们同时也对计算机提出了更高的要求,计算机视觉的手势识别正是对计算机应用拓展的重要途径,例如现在的VR技术,就是应用了手势识别才实现的。ABIResearch公司高级分析师约书亚·弗拉德(JoshuaFlood)指出:“免提操作或手势识别很快将成为高端旗舰智能手机、媒体平板电脑和智能眼镜区别于其他同类产品的一个关键因素。三星电子最新推出银河S4已经将这项技术用于其手机中,并以其全新的用户体验获得用户交口称赞。此外,在一系列新型智能眼镜产品即将发布之时,不难想象这类技术将被采用。”其实手势识别技术涵盖了许多领域,比如物理学、生物学等,实现手势识别的方式有很多种从一开始的二维手型识别、二维手势识别到后来的三维手势识别,正是计算机视觉技术的发展使得手势识别的实现方式更加多样。但目前的技术仍然很繁琐,冗杂的可穿戴设备就直接影响了使用者的舒适感,其还有很大的发展空间。 1、手势识别的发展历程及其实现方法

LA-S全能型植物图像分析仪

杭州万深检测科技有限公司植物图像分析仪系统用于植物年轮分析、根系分析、叶面积分析、病斑面 积分析、虫损叶面积分析、叶片叶色分析、作物冠层分析、瓜果剖切面分析等。 LA-S全能型植物图像分析仪由成像装置、拍摄仪、扫描仪及附件、分析软件和电脑组成,电脑自己配置即可。它的主要性能指标如下: 1、配光学分辨率4800×9600、A4加长的双光源彩色扫描仪。扫描年轮、叶面积、根系的反射稿为A4加长幅面(35.6 cm×21.6 cm),正片为30 cm ×20 cm,最小像素尺寸0.0053mm ×0.0026 mm;配自动对焦的大景深800万像素拍摄仪(能微距拍摄)、10000mAH的12V移动电源的辅助背光源板,可野外辅助照明3小时。该野外成像背景板最大测量面积A4纸幅面,具有自 动图像校正与自动测量标定特性。 2、植物年轮测量分析:可自动判读年轮数、各年轮平均宽度、早材及晚材宽度、各年轮切向角度和面积。可自动划分出年轮边界、早材边界、晚材边界,以及识别出很窄的树轮,可交互删除伪年轮、插入断年轮,可自动生成分析年

杭州万深检测科技有限公司表。可直接分析达2亿像素高精度扫描的超大幅面年轮图像。具有【精细】分析选项,可自动分析出≤0.2mm宽度的年轮,分析获得的测量数据具备进一步做交叉定年、数据分析处理能力。可计算树盘总面积,分析木材的边材面积。 3、可一键化拍照和分析测量野外活体叶面积。可全自动地大批量分析计算叶面积,并以叶片目标边缘标记来核对其正确性。可同时分析多张叶片面积,及分析小至1mm2的叶片。可分析多片叶叶面积、病斑面积、虫损叶面积(含分析2/3以上叶片被严重虫损的虫损叶面积)、测量植物的叶绿素相对含量或“绿色程度”,分析叶片叶色(具有按英国皇家园林协会RHS比色卡的比色特性)、可分析作物冠层。可交互进行植物相关的各种尺寸、角度测量。 4、植物根系测量分析: (1)根总长、根平均直径、根总面积、根总体积、根尖计数、分叉计数、交叠计数、根直径等级分布参数、根尖段长分布,

数字图像处理技术的现状及其发展方向(笔记)

数字图像处理技术的现状及其发展方向 一、数字图像处理历史发展 数字图像处理(Digital Image Processing)将图像信号转换成数字信号并利用计算机对其进行处理。 1.起源于20世纪20年代。 2.数字图像处理作为一门学科形成于20世纪60年代初期,美国喷气推进实验室(JPL)推动了数字图像处理这门学科的诞生。 3.1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置即CT(Computer Tomograph),1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。 4.从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展,人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论。 二、数字图像处理的主要特点 1.目前数字图像处理的信息大多是二维信息,处理信息量很大,对计算机的计算速度、存储容量等要求较高。 2.数字图像处理占用的频带较宽,在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本也高,这就对频带压缩技术提出了更高的要求。 3.数字图像中各个像素是不独立的,其相关性大。因此,图像处理中信息压缩的潜力很大。 4.由于图像是三维景物的二维投影,一幅图像本身不具备复现三维景物的全部几何信息的能力,要分析和理解三维景物必须作合适的假定或附加新的测量。在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。 5.一方面,数字图像处理后的图像一般是给人观察和评价的,因此受人的因素影响较大,作为图像质量的评价还有待进一步深入的研究;另一方面,计算机视觉是模仿人的视觉,人的感知机理必然影响着计算机视觉的研究,这些都是心理学和神经心理学正在着力研究的课题。 三、数字图像处理的优点 1.再现性好;图像的存储、传输或复制等一系列变换操作不会导致图像质量的退化。 2.处理精度高;可将一幅模拟图像数字化为任意大小的二维数组,现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高。 3.适用面宽;图像可以来自多种信息源,图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像组合而成,因而均可用计算机来处理。 4.灵活性高;数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 四、数字图像处理过程及其主要进展 常见的数字图像处理有:图像的采集、数字化、编码、增强、恢复、变换、

LAS植物图像分析仪系统根系分析增强版

LA-S植物图像分析仪系统(根系分析增强版)

1用途:用于对ROOT-700、CI-600、ET-100等硬件成像的原位根系图像进行交互引导分析,能自动拼接不同位置的2D根系图像;以及对洗净后的根系图像进行多参数、批量化的自动分析。 2系统组成:双光源扫描成像仪及根盘附件、分析软件和电脑(电脑另配)。 3 主要性能指标: 配光学分辨率4800×9600、A4加长的双光源彩色扫描仪。根系透扫幅面为30 cm×20 cm,最小像素尺寸0.0053mm ×0.0026 mm。可分析测量:1)根总长;2)根平均直径;3)根总面积;4)根总体积;5)根尖计数;6)分叉计数;7)交叠计数;8)根直径等级分布参数;9)根尖段长分布,10)可不等间距地自定义分段直径,自动测量各直径段长度、投影面积、表面积、体积等,及其分布参数;11)能进行根系的颜色分析,确定出根系存活数量,输出不同颜色根系的直径、长度、投影面积、表面积、体积。12)能进行根系的拓扑分析,自动确定根的连接数、关系角等,还能单独地自动分析主根或任意一支侧根的长度和分叉数等,可单独显示标记根系的任意直径段相应各参数(分档数、档直径范围任意可改,可不等间距地自定义),并能进行根的分叉裁剪、合并、连接等修正,修正操作能回退,以快速获得100%正确的结果。13)能用盒维数法自动测根系分形维数。14)大批量的全自动根系分析,对各分析结果图可编辑修正。15)可对原位根系图像进行交互引导分析、锁定编辑根系路径、修正根系的长短、粗细、位置等,具有鼠标编辑点的跟随放大镜,具有根系自动拼图功能。各分析图像、分布图、结果数据可保存,分析结果输出至Excel表,可输出分析标记图。 总价为:67000 +现场服务费(视按路途远近而定) 推荐选配电脑:联想一体机B325R2(双核CPU /2G内存/512M独立显卡/500G硬盘/ 20”彩显/DVD-RM /无线网卡)。

数字图像处理技术的研究现状与发展方向

数字图像处理技术的研究现状与发展方向 孔大力崔洋 (山东水利职业学院,山东日照276826) 摘要:随着计算机技术的不断发展,数字图像处理技术的应用领域越来越广泛。本文主要对数字图像处理技术的方法、优点、数字图像处理的传统领域及热门领域及其未来的发展等进行相关的讨论。 关键词:数字图像处理;特征提取;分割;检索 引言 图像是指物体的描述信息,数字图像是一个物体的数字表示,图像处理则是对图像信息进行加工以满足人的视觉心理和应用需求的行为。数字图像处理是指利用计算机或其他数字设备对图像信息进行各种加工和处理,它是一门新兴的应用学科,其发展速度异常迅速,应用领域极为广泛。 数字图像处理的早期应用是对宇宙飞船发回的图像所进行的各种处理。到了70年代,图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业,对经济、军事、文化及人们的日常生活产生重大的影响。 数字图像处理技术发展速度快、应用范围广的主要原因有两个。最初由于数字图像处理的数据量非常庞大,而计算机运行处理速度相对较慢,这就限制了数字图像处理的发展。现在计算机的计算能力迅速提高,运行速度大大提高,价格迅速下降,图像处理设备从中、小型计算机迅速过渡到个人计算机,为图像处理在各个领域的应用准备了条件。第二个原因是由于视觉是人类感知外部世界最重要的手段。据统计,在人类获取的信息中,视觉信息占60%,而图像正是人类获取信息的主要途径,因此,和视觉紧密相关的数字图像处理技术的潜在应用范围自然十分广阔。 1数字图像处理的目的 一般而言,对图像进行加工和分析主要有以下三方面的目的[1]: (1)提高图像的视感质量,以达到赏心悦目的目的。如去除图像中的噪声,改变图像中的亮度和颜色,增强图像中的某些成分与抑制某些成分,对图像进行几何变换等,从而改善图像的质量,以达到或真实的、或清晰的、或色彩丰富的、或意想不到的艺术效果。 (2)提取图像中所包含的某些特征或特殊信息,以便于计算机进行分析,例如,常用做模式识别和计算机视觉的预处理等。这些特征包含很多方面,如频域特性、灰度/颜色特性、边界/区域特性、纹理特性、形状/拓扑特性以及关系结构等。 (3)对图像数据进行变换、编码和压缩,以便于图像的存储和传输。 2数字图像处理的方法 数字图像处理按处理方法分,主要有以下三类,即图像到图像的处理、图像到数据的处理和数据到图像的处理[2]。 (1)图像到图像。图像到图像的处理,其输入和输出均为图像。这种处理技术主要有图像增强、图像复原和图像编码。 首先,各类图像系统中图像的传送和转换中,总要造成图像的某些降质。第一类解决方法不考虑图像降质的原因,只将图像中感兴趣的特征有选择地突出,衰减次要信息,提高图像的可读性,增强图像中某些特征,使处理后的图像更适合人眼观察和机器分析。这类方法就是图像增强。例如,对图像的灰度值进行修正,可以增强图像的对比度;对图像进行平滑,可以抑制混入图像的噪声;利用锐化技

关于人工智能中的图像识别技术的研究

191 关于人工智能中的图像识别技术的研究 翁和王 (武夷学院数学与计算机学院,福建武夷山354300) 摘要:图像识别技术作为在信息时代发展起来的一项信息技术,其主要是利用计算机对人工进行替代,实现对众多的物 理信息进行处理。计算机技术快速发展也推动了图像识别技术得以迅猛的发展。文章就图像识别的技术原理、模式识别进行图像识别技术概述,并对其识别过程进行一定的分析,重点对神经网络以及非线性降维两个形式的图像识别技术加以分析。以期对图像识别有关的研究人员与应用人士有所参考。关键词:人工智能;原理与过程;图像识别技术;非线性;神经网络中图分类号:TP18文献标识码:A 文章编号:1673-1131(2016)10-0191-02 0引言 图像识别技术作为人工智能内的重要领域之一,在计算机技术和信息技术快速发展的背景下,其也得到了愈发广泛的使用,其在医疗诊断、指纹识别、面部识别以及卫星云图识别等方面具有着很好的应用。图像识别技术通常是指利用计算机对系统前端捕获的图片根据既定的目标对其进行处理。图像识别在人们日常的生活中也得到普遍的应用,诸如条码识别、车牌捕捉以及手写识别等。随着其不断的发展与完善,其今后的应用领域也会更加的广泛。 1图像识别技术的概述1.1图像识别的技术原理 事实上,图像识别具有的原理并非很深奥,主要是图像识别所需处理的信息非常的复杂。计算机中的所有处理技术均不能随意出现,是众多学者通过实践获得的启示,通过程序使其得到模拟与实现。计算机实现图像识别所需的原理与人类进行图像识别所需的原理基本上是一致的,仅仅是计算机不存在人类视觉和感觉方面的影响。人类在进行图像识别过程中并非仅是利用这一图像存在于脑海内的记忆加以识别,而是通过图像自身拥有的特征对其进行相应的分类,之后利用各个类别拥有的特征使图片被识别出来。当我们看到图片时,大脑便会快速感知出以前见过这张或与之相类似的图片与否。事实上在看到和感知间已经实现了快速的识别,这一识别与搜索存在一定的相似性[1]。在识别过程中,大脑将会按照存储记忆内被分好类的图片展开识别,检查其是否和这一图像存在相同或者是类似特征记忆存储,便识别出以往时候看见过这一图片。计算机进行图像识别的原理也是这样,利用分类和提取出图像的重要特征,并对多余的无用特征加以有效地排除,以此实现对图像的识别。计算机所能提取出来的上述特征有时会较为明显,而有时也会非常的普通,这在极大程度上对计算机识别效率造成一定的影响。总而言之,利用计算机进行视觉识别时,图像中的内容一般是通过图像特征对其加以描述的[2]。 1.2模式识别 模式识别作为信息科学与人工智能中的重要组成,其通 常是对现象和事物处于不同形式中信息实现处理与分析,以便能够达到对现象与事物进行分类、描述以及辨认等目标。而计算机能够实现图像识别便是对人类进行图像识别时的一种模拟,在实现图像识别时,能够展开模式识别是不可或缺的。以往的模式识别仅仅是人类所掌握基本智能之一,伴随人工智能以及计算机技术得到兴起与发展,人类自身具有的识别 模式便无法再满足人类的生活需求,对此人们便需要利用计算机来对人类脑力劳动进行一定程度的替代与扩展。这也就产生了计算机形式的模式识别。简而言之,模式识别便是对数据实现分类,其是一门和数学有着密切联系的科学,其所运 用的大量思想便是数学中的统计和概率[3] 。可以将模式识别分成统计模糊模式、识别模式识别以及句法模式识别三类。 2图像识别技术的识别过程 由于计算机进行图像识别和人类进行图像识别所采用的是一样的原理,因此上述两种识别过程也会存在一定的相似性。可以将图像识别技术划分为如下几步:第一步,信息的获取,其是指利用传感器将声音和光等信息装换为电信号,简而言之便是获取识别对象具有的基本信息,同时将其装换成为计算机可以识别的信息。第二步,预处理,其是指对图像进行去噪、变换以及平滑等处理操作,以此来提升图像所具有的重要特点。第三步,特征抽取与选择,其是在模式识别过程中,要对图像进行特征的抽取与选择,简而言之便是识别的图像是多种多样的,若想通过一定的方式将其分离开,便要对图像中拥有的自身特征进行识别,在特征的获取时便称为特征抽取[4]。在进行特征抽取过程中,获取的特征并非一定对本次识别有所价值,此时便要对所获取的特征进行一定的提取,这便是特征选择。对于图像识别整个过程而言,特征抽取与选择时期中最为关键的步骤之一,因此,这一步使进行图像识别理解时的重点内容。第四步,分类器设计与分类决策,其中分类器设计即利用训练来制定出一个识别规则,借此识别规则便能够获得一个特征种类,从而让图像识别可以达到更高的辨识率。而分类决策则是对特征空间内的被识别对象实现分类的最佳识别方法。 3图像识别技术的研究分析 3.1神经网络形式的图像识别技术 神经网络形式的图像识别是目前较为新型的技术,其是基于以往的图像识别方式,并将神经网络算法进行有效的融合。这里所说的神经网络指的是人工神经网络,换句话说便是该神经网络并非是动物体所拥有的神经网络,而是人类根据动物神经网络进行人工模拟的一种神经网络。对于神经网络形式的图像识别技术而言,遗传算法和BP 神经网络进行有效的结合是目前基于神经网络形式的图像识别技术内最为经典的模型,其在诸多的领域之中均有所应用。对图像识别系统运用神经网络系统,通常先对图像特征进行提取,之后将图像特征向神经网络中加以映射,以此实现对图像的识别与分类。例如,对于智能汽车监控中拍照识别技术而言, 2016 (Sum.No 166) 信息通信 INFORMATION &COMMUNICATIONS 2016年第10期(总第166期)

人脸检测和识别技术的文献综述

人脸识别技术综述 摘要:在阅读关于人脸检测识别技术方面文献后,本文主要讨论了人脸识别技术的基本介绍、研究历史,人脸检测和人脸识别的主要研究方法,人脸识别技术的应用前景,并且总结了人脸识别技术的优越性和当下研究存在的困难。 关键词:人脸识别;人脸检测;几何特征方法;模板匹配方法;神经网络方法;统计方法;模板匹配;基于外观方法; 随着社会的发展,信息化程度的不断提高,人们对身份鉴别的准确性和实用性提出了更高的要求,传统的身份识别方式已经不能满足这些要求。人脸识别技术(FRT)是当今模式识别和人工智能领域的一个重要研究方向.虽然人脸识别的研究已有很长的历史,各种人脸识别的技术也很多,但由于人脸属于复杂模式而且容易受表情、肤色和衣着的影响,目前还没有一种人脸识别技术是公认快速有效的[1]基于生物特征的身份认证技术是一项新兴的安全技术,也是本世纪最有发展潜力的技术之一[2]。 1. 人脸识别技术基本介绍 人脸识别技术是基于人的脸部特征,一个完整的人脸识别过程一般包括人脸检测和人脸识别两大部分,人脸检测是指计算机在包含有人脸的图像中检测出人脸,并给出人脸所在区域的位置和大小等信息的过程[3],人脸识别就是将待识别的人脸与已知人脸进行比较,得

出相似程度的相关信息。 计算机人脸识别技术也就是利用计算机分析人脸图象, 进而从中出有效的识别信息, 用来“辨认”身份的一门技术.人脸自动识别系统包括三个主要技术环节[4]。首先是图像预处理,由于实际成像系统多少存在不完善的地方以及外界光照条件等因素的影响,在一定程度上增加了图像的噪声,使图像变得模糊、对比度低、区域灰度不平衡等。为了提高图像的质量,保证提取特征的有有效性,进而提高识别系统的识别率,在提取特征之前,有必要对图像进行预处理操作;人脸的检测和定位,即从输入图像中找出人脸及人脸所在的位置,并将人脸从背景中分割出来,对库中所有的人脸图像大小和各器官的位置归一化;最后是对归一化的人脸图像应用人脸识别技术进行特征提取与识别。 2. 人脸识别技术的研究历史 国内关于人脸自动识别的研究始于二十世纪80年代,由于人脸识别系统和视频解码的大量运用,人脸检测的研究才得到了新的发展利用运动、颜色和综合信息等更具有鲁棒性的方法被提出来变形模板,弹性曲线等在特征提取方面的许多进展使得人脸特征的定位变得更为准确。 人脸识别的研究大致可分为四个阶段。第一个阶段以Bertillon,Allen和Parke为代表,主要研究人脸识别所需要的面部特征;第二个阶段是人机交互识别阶段;第三个阶段是真正的机器自动识别阶段;第四个阶段是鲁棒的人脸识别技术的研究阶段。目前,国外多所

相关文档
最新文档