氨气排放清单的处理:当前的估计,评估工具,测量需要

Temporally resolved ammonia emission inventories:Current

estimates,evaluation tools,and measurement needs

Robert W.Pinder,1Peter J.Adams,1Spyros N.Pandis,2and Alice B.Gilliland,3,4

Received21August2005;revised16December2005;accepted18April2006;published25August2006.

[1]We evaluate the suitability of a three-dimensional chemical transport model(CTM)as

a tool for assessing ammonia emission inventories,calculate the improvement in CTM

performance owing to recent advances in temporally varying ammonia emission estimates,

and identify the observational data necessary to improve future ammonia emission

estimates.We evaluate two advanced approaches to estimating the temporal variation in

ammonia emissions:a process-based approach and an inverse-modeled approach.These

inventories are used as inputs to a three-dimensional CTM,PMCAM x.The model

predictions of aerosol NH4+concentration,NH x(NH x NH3+NH4+)concentration,wet-

deposited NH4+mass flux,and NH4+precipitation concentration are compared with

observations.However,it should be cautioned that errors in model inputs other than the

ammonia emissions may bias such comparisons.We estimate the robustness of each of

these amodel-measurement comparisons as the ratio of the sensitivity to changes in

emissions over the sensitivity to errors in the CTM inputs other than the ammonia

emission inventory.We find the NH x concentration to be the only indicator that is

sufficiently robust during all time https://www.360docs.net/doc/859197378.html,ing this as an indicator,the ammonia

emission inventories with diurnal and seasonal variation improve the PMCAM x

predictions in the summer and winter.In the United States,future efforts to improve the

spatial and temporal accuracy of ammonia emission inventories are limited by a lack of a

long-term,widespread network of highly time-resolved NH x measurements.

Citation:Pinder,R.W.,P.J.Adams,S.N.Pandis,and A.B.Gilliland(2006),Temporally resolved ammonia emission inventories: Current estimates,evaluation tools,and measurement needs,J.Geophys.Res.,111,D16310,doi:10.1029/2005JD006603.

1.Introduction

[2]Recent work has demonstrated the importance of atmospheric ammonia in contributing to fine particulate matter[West et al.,1999;Vayenas et al.,2005]and depos-iting to sensitive ecosystems[Rennenberg and Gessler, 1999;Howarth et al.,2002],yet ammonia emission inven-tories are thought to be one of the most uncertain aspects of air quality modeling[National Academy of Sciences,2003]. Since ammonia emissions are largely from nonpoint sources such as livestock operations and fertilized fields,all of these sources cannot be directly measured over a large domain such as the United States.These sources also have large temporal variability owing to variations in climate condi-tions and farming practices;hence,there is uncertainty in both the total amount of emissions and the monthly,daily,

and diurnal variation.In response to this need,the most

advanced seasonally varied ammonia emission inventories

have employed inverse methods[Gilliland et al.,2003],

process-based models[Pinder et al.,2004b],and hybrid

approaches[Ambelas Skj?th et al.,2004].The emissions

predicted by these approaches have important differences.

Inverse modeling methods generate‘‘top-down’’emission

estimates that provide model predictions of a related chem-

ical species that optimally agree with observations,while

process-based models generate‘‘bottom-up’’emission esti-

mates based on the most detailed spatial and temporal

information available about the emission sources and rates.

There is a pressing need for computational tools that can be

used to evaluate these inventories and identify key areas for

improvement.

[3]One strategy for evaluating an ammonia emission

inventory is to use the emissions as input to a chemical

transport model(CTM)and compare the model predictions

with measurable quantities,such as wet-deposited NH4+flux,

aerosol NH4+concentrations,and NH x(NH x NH3+NH4+) concentrations to corresponding measurements.However,

chemical transport models are imperfect,and not all of the

errors in the predictions should be attributed to the ammonia

emission inventory.The emission inventories of other

chemical species,meteorological inputs,reaction rate con-

stants,and deposition parameters also have errors.These

JOURNAL OF GEOPHYSICAL RESEARCH,VOL.111,D16310,doi:10.1029/2005JD006603,2006 1Department of Engineering and Public Policy and Department of Civil

and Environmental Engineering,Carnegie Mellon University,Pittsburgh,

Pennsylvania,USA.

2Department of Chemical Engineering,University of Patras,Patras,

Greece.

3Atmospheric Sciences Modeling Division,Air Resources Laboratory,

NOAA,Research Triangle Park,North Carolina,USA.

4In partnership with U.S.Environmental Protection Agency National

Exposure Research Laboratory,Research Triangle Park,North Carolina,

USA.

Copyright2006by the American Geophysical Union.

0148-0227/06/2005JD006603

errors cause a bias in the model predictions that can either compensate for errors in the inventory or cause a valid inventory to appear to have errors.Furthermore,the atmo-spheric ammonia system is complex.The concentration of aerosol ammonium,gas-phase ammonia,and wet-deposited ammonium each have different sensitivities to changes in emissions.Therefore it is critical to select model-measure-ment comparisons that have high sensitivity to changes in ammonia emissions and low sensitivity to other model input biases.We refer to such comparisons as‘‘robust.’’

[4]In this research,we first develop a method that can be used to evaluate the robustness of different model-measure-ment comparisons as tools for evaluating ammonia emission inventories.Then,we use the most robust model-measure-ment comparisons to evaluate the diurnal and monthly emission estimates in seasonally resolved ammonia emis-sion inventories derived from top-down and bottom-up approaches.

2.Methods

[5]To evaluate these ammonia emission inventories, we use the chemical transport model PMCAM x[ENVI-RON International Corporation,2005;T.M.Gaydos et al.,Development and application of a three-dimensional aerosol chemical transport model(PMCAM x+),submitted to Atmosphere and Environment,2005,hereinafter referred to as Gaydos et al.,submitted manuscript,2005](available at https://www.360docs.net/doc/859197378.html,/files/CAMxUsersGuide_v4_ 20.pdf)and observations to conduct four model-measure-ment comparisons frequently employed in the literature: aerosol NH4+concentration,NH x concentration,wet-depos-ited NH4+mass,and NH4+precipitation concentration. Available data sources that were compared with model predictions include observations from the Speciation Trends Network(STN),the National Atmospheric Deposition Program(NADP),and the Clean Air Status and Trends Network(CASTNet).These model-measurement compar-isons are used to evaluate the diurnal and monthly emission estimates from four test inventories.This section describes in further detail the different ammonia emission inventories, the chemical transport model,PMCAM x,and the observa-tional data.In section3we describe the method for calculating the robustness of each model-measurement comparison.

2.1.Ammonia Emission Inventories

[6]Ammonia emission inventories are both uncertain in the total annual emissions and the monthly,daily,and diurnal variation.As there are thousands of nonpoint ammonia emission sources,measuring the emission rates from each source is not feasible.A scarcity of detailed data often requires simplifying assumptions at different time resolutions.In this study,we use the process-based and inverse-modeled approaches to calculate explicitly the monthly total emissions.The emissions are evenly divided for each day of the month,which is a necessary assumption as there are no data available regarding day-of-week varia-tion in farming practices.We use a diurnal profile estimated using the process-based model to apportion the emissions to each hour of the day.Our objectives are to evaluate the monthly total emission estimates and to evaluate the impor-tance of the diurnal profile.Table1summarizes the four test inventories used in this study and lists the method used to estimate the emissions at each timescale(monthly,daily, and diurnal).Each inventory is described in more detail below.

2.1.1.Constant Emission Inventory

[7]The constant inventory has the same ammonia emis-sions in each month and no diurnal variation in emissions. The monthly total emissions are estimated using the con-stant emission factors from the CMU Ammonia Emission Inventory version 2.0[Strader et al.,2003](available athttps://www.360docs.net/doc/859197378.html,/ammonia).The emissions are divid-ed equally for each hour of the day.The seasonally constant inventory with diurnal variation has no monthly variation and the same total emissions as in the constant inventory, but it has the diurnal profile from the process-based inven-tory,described below.This inventory is used to estimate the importance of the diurnal temporal profile.

2.1.2.Process-Based Emission Inventory

[8]The process-based,bottom-up inventory contains monthly varied emissions from livestock operations and chemical fertilizer application.Livestock emissions are based on the temporally resolved dairy cattle inventory by Pinder et al.[2004b].Dairy cattle emissions are calculated

Table1.Summary of the Ammonia Emission Inventories Evaluated in This Study

Name Monthly Totals Day of Week Variation Diurnal Variation Total Emissions, 1012g NH3yrà1

Constant inventory CMU Inventory

v.2.0(constant)

constant constant 3.5

Constant with diurnal variation inventory CMU Inventory

v.2.0(constant)

constant livestock:process-based

[Pinder et al.,2004a,2004b]

fertilizer:process-based

[Pinder et al.,2004a]

mobile,industrial(NEI1999v.2.0)

3.5

Process-based inventory livestock:process-based

[Pinder et al.,2004a,2004b]

fertilizer[Goebes et al.,2003]

mobile,industrial(NEI1999v.2.0)

constant livestock:process-based

[Pinder et al.,2004a,2004b]

fertilizer:process-based

[Pinder et al.,2004a]

mobile,industrial(NEI1999v.2.0)

3.5

Inverse-modeled inventory inverse-modeled

(Gilliland et al.[2006])

constant livestock:process-based

[Pinder et al.,2004a,2004b]

fertilizer:process-based

[Pinder et al.,2004a]

mobile,industrial(NEI1999v.2.0)

4.0

by combining the Farm Emission Model [Pinder et al.,2004a],a mechanistic model of ammonia volatilization from a dairy farm,with a national database of farming practices and climate data.For other livestock types,a temporal profile derived using surrogate dairy farm types is applied to the annual average emission factor from the CMU Ammonia Emission Inventory.For example,the feedlot beef cattle temporal profile is derived from feedlot dairy cattle.A complete listing of the surrogate dairy types is available in Appendix A.Temporally varied chemical fertilizer emis-sions are from Goebes et al.[2003].These emissions are calculated based on crop calendars and fertilizer sales data.Mobile,nonroad,and industrial stationary sources come from the U.S.EPA’s National Emission Inventory (NEI)1999version 2.0[U.S.Environmental Protection Agency (U.S.EPA ),2002a](available at https://www.360docs.net/doc/859197378.html,/ttn/

chief/net/1999inventory.html).Emissions from other sources are from the CMU Ammonia Emission Inventory with updated emission factors for domestic pets and humans [Atkins and Lee ,1993;Sutton et al.,2000].Figure 1is a source-resolved chart of the monthly emissions.

[9]The process-based diurnal profile is the fraction of the total emissions for that day that occurs in each hour.For livestock sources,the diurnal emissions are calculated using the Farm Emission Model executed at a 1hour time resolution.The diurnal variation in the fertilizer is assumed to be the same as field applied manure in the Farm Emission Model.The diurnal profiles for mobile and industrial sources are from U.S.EPA’s MOBILE6and NEI 1999database,respectively.Other sources are assumed to be diurnally constant.Figure 2shows the source-resolved diurnal emission variation for July.This temporal

profile

Figure 1.Monthly ammonia emissions from the process-based inventory for the continental United

States.

Figure 2.Source-resolved diurnal emissions profile for July 2001derived using the process-based model.

and similarly derived profiles for other months are applied to the constant inventory with diurnal variation,the process-based inventory,and the inverse-modeled inventory.2.1.3.Inverse-Modeled Inventory

[10]The monthly emission estimates for the inverse-modeled inventory are calculated using wet deposition inverse-modeled estimates by Gilliland et al.[2006].The prior estimate for ammonia emissions in the inverse mod-eling uses an inventory based on NEI 2001.The seasonal profile from Pinder et al.[2004b]is applied to dairy cattle sources;the seasonal profile from Goebes et al.[2003]is applied to the chemical fertilizer sources.All other source categories use the seasonal profile derived using an inverse modeling study for 1990[Gilliland et al.,2003].Then the chemical transport model CMAQ was used to calculate the change in emissions necessary to minimize the difference between model predictions and measured NH 4+wet concen-tration at NADP monitoring locations.Model prediction uncertainties were accounted for in these inverse modeling estimates based on daily observed precipitation at the NADP monitors.These monthly estimates were applied to all emission sectors.The inverse model posterior monthly totals are then scaled to match the modeling domain used in this study.We then apply the same diurnal temporal profile used in the process-based inventory described https://www.360docs.net/doc/859197378.html,parison of Ammonia Emission Inventories [11]A comparison of the monthly ammonia emissions from the constant,process-based,and inverse-modeled inventories is displayed in Figure https://www.360docs.net/doc/859197378.html,pared to the constant inventory,both the process-based and inverse-modeled inventories show lower emissions in the winter and higher emissions in the summer.However,there are larger differences between the inventories in the spring and

fall,which are also the months where the two approaches have the greatest uncertainty.Uncertainties in the process-based emission inventory are largely from uncertainty in the national distribution of farming practices,especially the monthly calendar of manure application at livestock oper-ations.These uncertainties are largest in the spring and fall and are estimated as ±40%[Pinder et al.,2004b].Uncer-tainty in the inverse modeling approach is due to sparser measurement data sets during spring months and possible compensating errors from precipitation biases in the fall months.

2.1.5.Emissions for Species Other Than Ammonia [12]For species other than ammonia,we use the LADCO BaseE inventory,generated using EMS-2003[LADCO ,2003](available at https://www.360docs.net/doc/859197378.html,/tech/emis/).Emis-sions are derived primarily from the U.S.EPA’s NEI 1999version 2.0[U.S.EPA ,2002a].On-road transportation sources are from U.S.EPA’s MOBILE6[U.S.EPA ,2002b](available at https://www.360docs.net/doc/859197378.html,/otaq/m6.htm),non-road sources are from U.S.EPA’s NONROAD [U.S.EP A ,2002c](available at https://www.360docs.net/doc/859197378.html,/oms/nonrdmdl.htm).The temporal profiles for electric power utility point sources are from an analysis of Continuous Emission Monitors [Janssen ,2003].Biogenic emissions are from BIOME3[Wilkinson and Janssen ,2001].

2.2.PMCAM x

[13]PMCAM x is an Eulerian ozone and aerosol chemical transport model of regional air quality.PMCAM x models the change in species concentration due to emission,ad-vection,dispersion,gas-phase chemistry,aerosol processes (coagulation,condensation,and nucleation),aqueous chem-istry,and wet and dry deposition.For gas-phase

chemistry,

Figure https://www.360docs.net/doc/859197378.html,parison of the ammonia emission estimates from the process-based model [Pinder et al.,2004a,2004b]and the inverse model estimates from Gilliland et al.[2006].The solid bar denotes the emissions from the ‘‘constant inventory,’’which is derived from the emission factors in the CMU Ammonia Emission Inventory [Strader et al.,2003]without temporal variation.The seasonally resolved inventories predict large decreases in the winter and increases in the other periods relative to the constant inventory.

we use the Carbon Bond IV chemical mechanism [Gery et al.,1989].The inorganic aerosol evaporation/condensation equations employ a bulk equilibrium approach [Capaldo et al.,2000;Gaydos et al.,2003],and the aerosol thermody-namics model ISORROPIA [Nenes et al.,1998]is used to predict the gas-aerosol partitioning.Temperature,wind fields,rainfall and other meteorological inputs are from the MM5meteorological model [Grell et al.,1995](avail-able at https://www.360docs.net/doc/859197378.html,/mm5/documents/).The model domain is discretized into a 36km 2horizontal grid with 16vertical layers between the surface and 14km.The lowest model layer is slightly less than 30m thick vertically.A more detailed description of the model and its evaluation can be found in Gaydos et al.(submitted manuscript,2005)and the CAM x User’s Guide [ENVIRON International Corporation ,2005].

[14]The removal of gases and aerosols by precipitation is modeled as both in-cloud and below-cloud processes.All in-cloud aerosols are contained in cloud droplets and interstitial gases are in equilibrium with the cloud droplet water according to their Henry’s law constant.Species dissolved in cloud droplets are scavenged as precipitation is formed.The removal of below-cloud pollutants is calcu-lated using an explicit scavenging rate,which is a function of the size distribution for aerosols and a function of the mass transfer rate for gases.The details of these calculations are described by Seinfeld and Pandis [1998]and ENVIRON International Corporation [2005].

2.3.Description of Inorganic Aerosol in the Model Domain

[15]For this study,we have chosen a model domain consisting of the eastern and Midwestern United States,shown in Figure 4.This domain includes the large ammonia

source regions of the agricultural Midwest and Southeast,as well as the large combustion sources of SO 2and NO x present in the industrial Midwest and Northeast.In the summer,the inorganic aerosol is dominated by sulfate;in the winter,sulfate and nitrate can be found in approximately equal proportions [U.S.EP A ,1996].Since the aerosol life-times are on the order of 7–10days [Seinfeld and Pandis ,1998],the inorganic aerosol concentration has little vari-ability on a regional (100km)scale [Rao et al.,2002;Tang et al.,2004].In many locations and seasons,the NH x concentrations exceed what is necessary for neutralizing the anions.Under these conditions,the aerosol ammonium concentration is more sensitive to the sulfate and nitrate concentrations than the ammonia emissions.

2.4.Observational Data

[16]Model predictions are compared to observations from measurement networks to form four model-measure-ment comparisons:aerosol ammonium concentration,NH x concentration,wet-deposited ammonium mass flux,and ammonium precipitation concentration.The locations of the monitoring sites are shown in Figure 5.Monitoring stations are sited away from local plumes in order to best estimate the regional average.

[17]The aerosol ammonium observations are from STN monitoring stations that record 24hour,filter-based mea-surements taken at 3day and 6day intervals [U.S.EP A ,2001].While other monitoring networks also measure NH 4+,the 24hour duration of the STN measurements decreases opportunities for measurement bias.Most monitors are located in or around urban centers,and there are 44monitoring locations in the domain.Note that,while STN sites measure NH 4+,they do not provide

simultaneous

Figure 4.NH 3emission fluxes estimated by the process-based inventory for the eastern and Midwestern United States in kg ha à1for the month of July 2001.The spatial variation is identical for all test inventories,but the monthly emissions are different as in Figure 3.

measurement of NH 3or NH x ,a limitation we will discuss further below.

[18]Observations of NH x are from the Pittsburgh Air Quality Study (PAQS)[Wittig et al.,2004].The PAQS site is located approximately 6km east of downtown Pittsburgh and data were collected from July 2001to July 2002.

[19]NH x is measured using the steam sampler of Khlystov et al.[1995]and reported as 1hour or 2hour averages.Precipitation chemistry measurements are from NADP [National Atmospheric Deposition Program ,2005].The precipitation concentration measurements are reported at weekly intervals at 96sites in the modeling domain.Wet deposition values are then calculated by multiplying the precipitation concentration values in mg L à1by the weekly precipitation at that site and applying conversions to achieve the appropriate units kg ha à1.Locations are excluded from the analysis if 25%or more of the weeks are missing,flagged as compromised,or where the precipitation was snow rather than rain.

[20]Additionally,observations of aerosol sulfate from STN,filter-based total nitrate measurements (sum of gas-phase nitric acid and aerosol nitrate)from CASTNet [Clarke et al.,1997;MACTEC,Inc.,2004],and precipitation volume from NADP are compared with model predictions to characterize biases in other modeled quantities that affect our ammonia model-measurement comparisons (see

section 3.1below).The CASTNet observations are weekly average samples from rural locations;there are 55monitor-ing stations in the modeling domain.The STN network is selected for estimating the bias in sulfate since the STN network is also used for the NH 4+measurements,such that the sulfate bias is calculated at the same locations as the ammonia model-measurement comparisons.Observations from CASTNet are used to calculate the total nitrate bias since total nitrate is not measured by any other regional network.The aerosol nitrate can be biased by the sulfate and ammonia;therefore the total nitrate is necessary to deter-mine associated model input biases.While some spatial discrepancies in the bias may result from using two different networks,we expect these discrepancies to be small since both networks have a large number of locations and the aerosol tends to be regionally distributed.

2.5.Evaluating the Ammonia Emission Inventory Using PMCAM x

[21]Each of the four ammonia emission inventories described in section 2.1is used as input to PMCAM x and is tested for four 1month periods:July 2001,October 2001,January 2002,and April 2002.These time periods represent each of the seasons and are selected to overlap with the Pittsburgh Air Quality Study.The PMCAM x predictions are compared with wet deposition measurements from

NADP,

Figure 5.Monitoring sites in the model domain:S denotes STN sites,N denotes NADP sites,C denotes CASTNET,B denotes colocated CASTNET and NADP sites,and P denotes the location of the Pittsburgh Air Quality Study.

speciated aerosol measurements from STN,and NH x mea-sured during PAQS.

3.Estimating the Robustness of Each

Model-Measurement Comparison

[22]The chemical transport model can be used as a tool to evaluate the ammonia emission inventories;however,it is first necessary to characterize the robustness of the various metrics that can be used for the evaluation.In principle,one can evaluate an ammonia emission inventory simply by comparing model predictions to measurements.However, the atmospheric ammonia system is complex.The CTM is an imperfect representation,and there are errors in the meteorological inputs and the emissions of other species. An ammonia emission inventory that has large errors may have good model-measurement agreement,if errors in ammonia emissions are mitigated by compensating errors in the other CTM inputs or processes.Before using the CTM as a tool for ammonia emission inventory evaluation, it is necessary to characterize the magnitude of the bias.We use the bias as a statistical metric,rather than the root mean squared error,because it provides a measure of the direction of the error(over or under prediction).This is essential to differentiate errors in the ammonia emission inventory from errors in other model inputs.

[23]Here it is necessary to introduce three metrics which are useful for evaluating the CTM predictions:the model input bias sensitivity,the monthly emission sensitivity,and the robustness.These metrics are discussed in the following sections.

3.1.Model Input Bias Sensitivity

[24]The model input bias refers to all biases in the model inputs and parameterizations other than the ammonia emis-sions.Qualitatively,we define the model input bias sensi-tivity(MIBS)as the change in the CTM predictions that results from the model input bias.The MIBS is used to differentiate between the change in model performance owing to the ammonia emissions and the change in the model performance owing to bias in the other CTM inputs and parameterizations.Formally,the model input bias sensitivity is calculated as

MIBS i?1

N

X N

j?1

P ijàP MIB

ij

P ij

;e1T

where P ij is the model prediction for parameter i with the contributing bias,P ij MIB is the model prediction for parameter i without the model input bias,and the subscript i refers to either the aerosol NH4+,NH x,wet-deposited NH4+ mass,or NH4+precipitation concentration,and N is the number comparisons.This section describes our methodol-ogy for determining P ij MIB and therefore the model input bias sensitivity.

[25]The MIBS can arise from several sources;Figure6 illustrates the processes that regulate the atmospheric am-monia system and are relevant to the model-measurement comparisons of interest in this study.Sources of ammonia include transport into the model domain and emissions.The total reduced-form nitrogen(NH x)is partitioned between gas-phase ammonia and aerosol ammonium,depending on the temperature,relative humidity,and the concentrations of total nitrate and sulfate.Ammonia and ammonium are subject to removal by dry deposition,wet deposition,and transport out of the model domain.Quantities measured by atmospheric monitors are shown in bold italics and include the wet-deposited NH4+mass,precipitation NH4+concentra-tion,aerosol NH4+concentration,and NH x concentration.

[26]Within this system,there are many opportunities for model input bias.The prediction of aerosol ammonium is sensitive to the concentration of total nitrate,sulfate,rate of deposition,temperature,and relative humidity.Yu et al. [2005]found that a large fraction of the error in CTM aerosol nitrate predictions can be attributed to errors in the sulfate and NH x concentrations.Similarly,where NH x concentrations are sufficient to neutralize aerosol anions as is common in the eastern United States,errors in the sulfate and total nitrate concentration bias the aerosol ammonium predictions.The wet-deposited NH4+is sensitive to errors in the precipitation amount and the scavenging parameterization.Metcalfe et al.[2005]have noted diffi-culties in evaluating deposition models due to variability in precipitation rates.The potential for model input bias is less for NH x,but it is still sensitive as its atmospheric lifetime and the deposition rate are dependent on gas-aerosol parti-tioning and the rate of wet deposition.

[27]The inputs and model-predicted values that control the processes in Figure6are the sulfate concentration,total nitrate concentration,temperature,relative humidity,precip-itation volume,the wet deposition scavenging rate,and the ammonia dry deposition rate.We refer to the bias in these predicted values as the contributing biases.

[28]A conventional method for calculating the contrib-uting biases would be to calculate the error in the model inputs,alter the model inputs by that amount,reexecute the CTM,and calculate the change in model predictions. However,these processes are controlled by thousands

of Figure 6.Atmospheric ammonia system including the gas-aerosol phase partitioning,which depends on the concentrations of nitrate and sulfate.Inputs include emissions(E)and mass advected into the domain(A in). Removal processes are dry deposition(D d),wet deposition (D w),and mass advected out of the domain(A out).The gray box indicates the total reduced-form nitrogen(NH x),which is less sensitive than aerosol ammonium to changes in the nitrate and sulfate concentrations.Bold italic terms are measured quantities.

nonlinearly related model inputs and parameters.Systemat-ically estimating the error in all of these values is not possible.Instead,we employ a more direct approach,where we calculate the normalized bias(NB)in the model pre-dictions of each contributing bias by comparing them to observed values:

NB?1

N

X N

i?1

C iàO i

O i

;e2T

where C is the model prediction of either the PM2.5sulfate concentration,total nitrate concentration,or precipitation volume,O is the corresponding observed value,and N is the number of model-measurement pairs.Table2shows the normalized biases when the PMCAM x predicted PM2.5 sulfate,total nitrate,and precipitation volume are compared with STN sulfate concentrations,CASTNet total nitrate concentration,and NADP precipitation amount.Not shown in Table2are the biases in temperature and relative humidity,which are less than0.5°C and less than2%, respectively,for all months when compared with meteor-ology measurements from the CASTNet monitoring loca-tions.These biases are sufficiently small that they are not included in the calculation of the MIBS.

[29]However,the scavenging rate and the dry deposition flux are not measured by monitoring networks.To estimate the bias in the scavenging rate,we examine the PAQS data and the literature.We observed that during precipitation events in Pittsburgh,when the model precipitation is ap-proximately equal to the measured precipitation,the rate of decrease in the ambient NH x concentration as predicted by PMCAM x is less than the rate of decline in the hourly PAQS observations.This suggests that the PMCAM x scavenging rate is biased low,but a more exact calculation is precluded by a lack of data.Previous studies have found a large uncertainty in the magnitude of the scavenging rate.Scott and Luecken[1992]estimated the uncertainty in wet depo-sition to range from30to60%owing to conservative assumptions about variation of cloud properties and precip-itation characteristics across a modeled grid cell.A literature survey by Kasper-Giebl et al.[1999]of NH x scavenging ratios calculated over3month periods found that these values differed by55%at different locations.Given these uncertainties,we use a conservative estimate of aà10% bias in the scavenging rate.While a larger scavenging rate bias may be justified by the literature,we find that even with a small scavenging rate bias,the wet deposition mass flux and wet deposition concentration model-measurement concentrations are not sufficiently robust for all time peri-ods.A larger scavenging rate bias would strengthen this result,as discussed later in section4.1.

[30]The ammonia dry deposition rate is not routinely measured,and therefore it is not possible to differentiate between an increase in dry deposition and a decrease in emissions.Since they cannot be separated,the results of the present work are not strictly for the ammonia emission inventory,but more precisely for the net flux of emissions minus dry deposition.

[31]We calculate the model prediction without the con-tributing bias(P i MIB)by iteratively perturbing selected model parameters until the model predicted sulfate,total nitrate,and precipitation has approximately zero bias in their respective values.For the sulfate concentration,total nitrate concentration,and precipitation amount contributing biases,the parameters in PMCAM x are adjusted to remove the biases in Table2.The adjusted parameters include the reaction rate constants for the gas-phase and aqueous-phase sulfate production reactions,the reaction rate constants for nitric acid production for the day and night reactions,and the precipitation rate.We perturb the reaction rate constants rather than the emissions or other parameters because the reaction rate constants introduce the model perturbation with the least impact on the other model processes. [32]To remove the model input bias,these parameters are scaled by a single factor which is constant across the domain and for the entire model time period.These factors are iteratively adjusted until the absolute value of normal-ized bias is less than0.5%.The scavenging rate is increased by10%.PMCAM x is then reexecuted with these altered parameters,and the resulting predictions(P i MIB)are without the contributing bias.The model in this perturbed state is only used for calculating the MIBS;it is not used for the ammonia model-measurement comparisons themselves, which are based on PMCAM x in its default biased state.

[33]As an example of this process,consider July,for which according to Table2,the sulfate,total nitrate,and precipitation amount are underpredicted.To calculate P MIB, the production rates for sulfate and nitrate and the precip-itation rate are first increased to match the observations with a minimized normalized bias,and the scavenging rate is increased by10%.The MIBS(equation(1))for aerosol NH4+,NH x,wet-deposited NH4+mass,or NH4+precipitation concentration is then calculated as the average percent change in the model predictions after these influencing factors have been optimally adjusted(Table3).Since the sulfate and nitrate are underpredicted in July,the MIBS NH4+ is negative.In other words,the underprediction in sulfate and total nitrate leads to an underprediction in aerosol ammonium.The underpredicted precipitation causes the MIBS for the wet deposition metrics to be negative also.

[34]After repeating this process for each season and candidate model-measurement comparison,the values of

Table2.Normalized Bias(NB)Calculated From the Comparisons of PMCAM x and MM5Results and Observations From Monitoring Networks a

Month STN PM2.5SO42à,%CASTNET Total Nitrate,%NADP Precipitation V olume,% Jan2002à19(338)37(232)32(201)

Apr2002à29(282)10(240)13(284)

Jul2001à30(297)à21(220)à43(384)

Oct200138(258)10(220)30(244)

a The size of the comparison data set is shown in parentheses.Positive values denote model overprediction.

MIBS that result from equation(1)are shown in Table3. For all of the months,we find that the NH x concentration is the least susceptible to model input bias,followed by the wet deposition mass flux.This is not surprising since the NH x captures the total budget of NH3and NH4+,so that partitioning errors are not as relevant for that metric.Mass deposition and precipitation concentrations of NH4+also account for NH x,since both NH3and NH4+are simulta-neously scavenged by precipitation.Therefore these results suggest that model wet deposition calculations are either sensitive to gas-phase/aerosol partitioning of NH3or the precipitation biases have a substantial effect on the model predicted mass deposition and an even larger effect on precipitation concentration budget of NH x.

3.2.Monthly Emission Sensitivity

[35]The monthly emission sensitivity(MES)is the nor-malized change in the model prediction due to a change in emissions relative to the constant inventory for a specific month:

MES i?

1X N

j?1P ijàP E ij

ij

;e3T

where i is either the aerosol NH4+,NH x,wet-deposited NH4+ flux,or NH4+precipitation concentration,P is the model prediction using the constant inventory,P E is the model prediction using a test inventory,N is the number of comparisons.The monthly emission sensitivity is small if the predicted value is not sensitive to changes in ammonia emissions or if the magnitude of the emission change is not small.

[36]Table4lists the calculated MES where P E are the predictions when using the process-based emission inven-tory.The magnitude of the emission change is different for each month(see Figure3)and should not be compared across months;for example,the MES is low in October for all metrics,because the difference in emissions between the process-based and seasonally constant inventories in Octo-ber is small.For all four simulated time periods,the NH x is more sensitive to emission changes than NH4+.This result is reasonable given that the temperature,relative humidity,or sulfate and nitrate concentrations may not always be favor-able for ammonium formation.However,these differences are small compared to the differences in the model input bias.The MES for the wet deposition mass flux and concentration vary each month such that neither of the precipitation metrics have greater sensitivity for all time periods.This variability can be attributed to different precipitation characteristics in each season and the impor-tance of when and where the precipitation occurs.

3.3.Robustness

[37]The robustness(R)of each model-measurement comparison is defined as the absolute value of the ratio of the monthly emission sensitivity to the model input bias sensitivity:

R?

MES

MIBS

:e4T

This ratio is large for model-measurement comparisons that are not susceptible to model input bias and have high sensitivity to emission changes.At a minimum,this ratio must exceed one for a valid comparison.If the MIBS exceeds the MES,then for the emission change in that month,it is not possible to differentiate the change in model performance owing to the ammonia emissions from the bias in the other CTM inputs and parameterizations.We repeat the robustness calculation for each model-measurement comparison,and retain those model-measurement compar-isons that are greater than one for all time periods.

3.4.Model-Measurement Comparison

[38]The MIBS is used to determine if the differences in the model predictions and the observations can be explained by other model errors or should be attributed to inaccurate ammonia emissions.Only when discrepancies between CTM predictions using a given inventory and measurements exceed a carefully characterized MIBS can one conclude that the inventory is not consistent with the observations. The range from the CTM prediction(P)to the prediction without contributing bias(P B)specifies the range of model predictions that can be attributed to model input errors.If this range overlaps the uncertainty range of the observa-

Table3.Model Input Bias Sensitivity(MIBS)a

Month Aerosol NH4+,%Total Ammonia(NH x),%Wet Deposition Mass Flux,%Wet Deposition Concentration,% Jan200246(338)13(298)15(201)39(201)

Apr2002à38(282)à6.8(195)17(284)21(284)

Jul2001à36(297)à4.2(348)à21(384)à39(384)

Oct2001 3.9(258) 3.5(219)13(244)40(244)

a The size of the comparison data set is shown in parentheses.Positive values denote overprediction.

Table4.Monthly Emission Sensitivity Calculated as the Percent Difference in Each Model-Measurement Comparison Due to Changes in Emissions From the Seasonally Constant Ammonia Emission Inventory to the Process-Based Ammonia Emission Inventory a Month Aerosol NH4+,%Total Ammonia(NH x),%Wet Deposition Mass Flux,%Wet Deposition Concentration,% Jan2002à38(338)à52(298)à60(201)à69(201)

Apr20028.6(282)34(195)29(284)28(284)

Jul20019.7(297)21(348)19(384)12(384)

Oct2001à4.1(258)à4.4(219)à4.8(244)à4.0(244)

a See Figure3for emission differences.The size of the comparison data set is shown in parentheses.

tions,then the given inventory is accepted.If this range does not overlap,then even accounting for the model input bias,the model predictions using a given inventory do not fall within the range of the observations,and the inventory should be rejected.

4.Results

4.1.NH x as a Robust Indicator of Ammonia Emissions [39]A robust model-measurement comparison has high sensitivity to the MES and low sensitivity to the MIBS.In Figure 7,the chart shows the robustness ratio for each time period and model-measurement comparison.The MIBS is listed in Table 3;the MES is calculated in Table 4.

[40]NH x concentrations are the most robust indicator and should be used for evaluating the inventory.Owing to errors in the modeled sulfate or nitrate concentrations,aerosol ammonium is a poor indicator for the performance of the ammonia emission inventory for all time periods.The mass deposition and precipitation concentration are robust model-measurement comparisons for some months but not for others.We selected a conservative scavenging rate bias;the mass deposition and precipitation concentration indica-tors would have an even lower robustness had we accounted for the larger scavenging rate bias.Since NH x is the only model-measurement comparison that is robust during all time periods,we restrict the remainder of our analysis to NH x model-measurement comparisons.

4.2.Importance of Diurnal Variation in Ammonia Emissions

[41]The diurnal pattern of the emissions is as important as the total emissions.During the night,vertical mixing is weak,and emitted pollutants remain closer to the surface;during the day,the mixing height is often much higher.As a

result,the surface-level concentration at night is more sensitive to the emissions than the daytime concentration.Figure 8compares the model predicted NH x concentration for the ammonia emissions without diurnal variation and ammonia emissions with diurnal variation derived from the process-based model.Both models have the same total daily emissions,but since the constant inventory has greater emissions at night,more ammonia accumulates near the surface.During the day,the difference between the two inventories is smaller,as the increased vertical mixing decreases the sensitivity to the emission differences.Since excluding the diurnal profile can significantly change the daily average concentration,the remaining comparisons use the seasonally constant inventory with the diurnal profile to isolate the effect of seasonal emissions variability.4.3.Seasonally Varied Ammonia Emissions Significantly Improve Model Performance in Winter and Summer

[42]Figure 9shows selected time series plots of NH x for each season.The seasonally varied ammonia emission inventories significantly improve model performance in the winter and summer,although they do not improve the model performance in spring and fall.The annually constant and seasonally varying process-based NH 3emis-sion inventories are very similar in July and August,so very little difference is anticipated in these cases.To determine if these differences are significant relative to the MIBS,Figure 10compares the monthly mean NH x and model input bias sensitivity listed in Table 3for each month with PAQS observations.The arrows for the observational data denote ±15%measurement errors [Takahama et al.,2004].The arrows for the model predictions are the estimated MIBS.If the arrows

from

Figure 7.Robustness ratio for each model-measurement comparison for each month.A value greater than 1denotes that the model prediction of that quantity is a robust indicator and should be used to

evaluate the ammonia emission inventory.The NH 4

+

mass wet deposited is a robust indicator for some months,but total ammonia (NH x )is robust for all months.

the observations and predictions overlap,the emission inventory is consistent with observations.

[43]The magnitude of the MIBS for NH x is a lower bound.As described in section 3.1,these calculations do not include error in the NH 3dry deposition,and the estimate of the error in the scavenging rate is conservative.If a more realistic estimate of these two errors were included,we would expect the MIBS to be larger.Unfortunately,this estimate is not possible without measurements of NH 3dry deposition and more highly time-resolved measurements of NH x wet deposition.

[44]In January,the constant inventory overestimates the total emissions.The reductions estimated by the process-based model improve the performance,and the further reductions in the inverse-modeled inventory move the predictions closer to the observations.While none of the inventories strictly overlap with the error range of the measurements,the model predictions are substantially closer to observations using the seasonally resolved inventory.In July,the seasonally varied inventories are more consistent with the observations,and the further emission increases in the inverse-modeled estimates cause the model predictions to overlap with the range of the observations.

[45]For April and October,the measured NH x is lower than the other seasons,while the seasonally resolved emis-sions are higher.This causes a decrease in the model performance for these months.To explain this difference,it is important to examine the details of the process-based and inverse-modeled approaches.Inaccuracies in the sea-sonally varied inventories can be explained by a scarcity of temporal data in the case of the process-based model,and compensating errors in the inverse-modeled inventory.Ow-ing to a scarcity of data,the process-based approach makes

assumptions regarding the seasonal calendar of manure application.These assumptions have been found to be one of the most significant drivers of the uncertainty in the emissions estimates,especially in the spring and fall [Pinder et al.,2004b].The results of this study further emphasize the importance of better data regarding temporal variation in manure management practices.The inverse-modeled ap-proach is susceptible to model input bias,and adjusts the emission inventory to compensate for those biases or for the specific conditions of the modeled time period.Gilliland et al.[2006]have shown that large amounts of missing data and compensating errors in the precipitation predictions are influencing the inverse-modeled results during the spring and fall,respectively.

5.Discussion and Conclusions

[46]In this study,we began by assessing systematically the robustness of four quantities as possible indicators of ammonia emission inventory performance:aerosol NH 4

+concentration,NH x concentration,wet-deposited NH 4+

mass flux,and precipitation NH 4+concentration.We first calculate the model input bias sensitivity as the change in model prediction due to the bias in the input values other than the ammonia emission inventory.We also calculate the monthly emission sensitivity,as the change in model predictions for a given change in emissions relative to the constant ammo-nia emission inventory for that month.A robust indicator has monthly emission sensitivity which exceeds the model input bias sensitivity.We find the NH x concentration to be the only robust indicator for all simulated time periods throughout the year.As an indicator of NH 3emissions,The NH 4+concentrations are sensitive to errors in

the

Figure https://www.360docs.net/doc/859197378.html,parison of PMCAM x predicted NH x for the constant ammonia emission inventory with and without diurnal variation for July 2001.The solid line denotes the constant ammonia emission inventory;the dotted line has the same total emissions but uses the diurnal profile derived using the process-based model [Pinder et al.,2004a,2004b].Vertical bars denote 2hour averaged observations from PAQS.The vertical bars immediately above the date labels correspond to the midnight and 0200LT time period.

concentrations of sulfate and total nitrate.While the precip-itation indicators have similar monthly emission sensitivity as the NH x concentration,they are susceptible to errors in the precipitation volume and the scavenging rate.

[47]We find that accurate diurnal variation in emissions is very important for predicting both the time-varying and daily average NH x concentrations.The diurnal profile is especially important for accurately predicting the concen-tration at night,since the decreased atmospheric mixing makes the night especially sensitive to emission changes. Without diurnal variation in the emissions,PMCAM x over-estimates the concentrations at night,which biases both the hourly and daily average NH x concentrations.

[48]Using NH x measurements from the Pittsburgh Air Quality Study,we find that in January and July,the seasonally varied inventories significantly improve the chemical transport model NH x predictions.The larger changes in the inverse-modeled inventory further im-proved the model performance over the process-based inventory.

[49]For the spring and fall,the increased emissions in the seasonally varied inventories relative to the seasonally constant inventory were not consistent with the NH x con-centrations in the observations at the PAQS site,which suggests that the constant inventory already overpredicted ammonia emissions during these seasons.For the process-based model,this can be attributed to a scarcity of important temporal data,especially knowledge of the monthly sched-ule of manure and fertilizer application.The inverse-mod-eled approach is susceptible to model input bias.An inverse-modeled result derived using NH x would be less subject to model input bias.

[50]Unfortunately,there are few NH x measurements. Measurements of NH3or NH4+alone do not sufficiently constrain the evaluation of ammonia emission inventories. Future improvements to ammonia emission

inventories, Figure9.Time series plots of PMCAM x predicted NH x concentrations using inverse-modeled inventory,process-based inventory,and the constant with diurnal variation inventory.Each ammonia emission inventory has the same diurnal variation derived using the process-based model.Vertical bars denote2hour averaged observations from PAQS.

氨气安全规程

氨气安全规程 一、一般要求 1.1 凡氨气生产、使用、充装、贮存、运输的单位和个人必须 遵守国家相关法律、法规的规定。 1.2 氨气生产、使用、贮存、运输单位的相关从业人员 过专业培训、考试合格, 方可上岗操作。 1.3 氨气生产、使用、贮存、运输车间、部门负责人(含技术 人员),应熟练掌握工艺过程和设备 性能,并具备氨气事故处置能力。 1.4 生产、使用氨气的车间、作业场所、及贮氨场所应设置氨 气泄漏检测报警仪。作业场所和贮氨场 所中氨气浓度应符合GBZ 2.1中的有关规定。 1.5 氨气生产、使用、贮存单位爆炸危险场所的电气设备的选 型、安装、使用、维护和检查应满足GB 50058(即2区)和AQ 3009中有关的要求。 1.6 氨气生产、使用、贮存单位的吊装、动火、动土、断路、 高处、设备检修、盲板抽堵、受限空间 作业应符合有关规定。 1.7 使用液氨钢瓶应执行TSG RF001和有关安全规定。 1.8 氨气生产、使用、贮存、运输单位应按AQ/T 9006和AQ 3013开展安全生产标准化工作,并达到有

关定级的要求。 二、充装安全 2.1 未经专业培训、取得资质的单位和个人,严禁私自冲充氨气。 2.2 气瓶有下列情况之一时,禁止充装: a无法辨认的; b GB 7144 气瓶颜色标志的规定(液氨气瓶瓶色为淡黄、字样为液氨、字色为黑色), 或严重污损脱落,难以辨认的; c; d; e安全附件不全、损坏或不符合规定的; f; g螺扣外露不足三扣; h40℃。 2.3 充装后的气瓶,应详细检查,不符合要求时应妥善处理。检 查内容应包括: a? b? c? 三、使用安全 3.1 瓶装液氨使用者应当购买已取得气瓶充装许可的单位充装

各种测量仪器的使用方法

各种测量仪器的使用方法 水准仪及其使用方法 高程测量就是测绘地形图的基本工作之一,另外大量的工程、建筑施工也必须量测地面高程,利用水准仪进行水准测量就是精密测量高程的主要方法。 一、水准仪器组合: 1、望远镜 2、调整手轮 3、圆水准器 4、微调手轮 5、水平制动手轮 6、管水准器 7、水平微调手轮 8、脚架 二、操作要点: 在未知两点间,摆开三脚架,从仪器箱取出水准仪安放在三脚架上,利用三个机座 螺丝调平,使圆气泡居中,跟着调平管水准器。水平制动手轮就是调平的,在水平镜内通过三角棱镜反射,水平重合,就就是平水。将望远镜对准未知点(1)上的塔尺,再次调平管水平器重合,读出塔尺的读数(后视),把望远镜旋转到未知点(2)的塔尺,调整管水平器,读出塔尺的读数(前视),记到记录本上。 计算公式:两点高差=后视-前视。 三、校正方法: 将仪器摆在两固定点中间,标出两点的水平线,称为a、b线,移动仪器到固定点一端,标出两点的水平线,称为a’、b ’。计算如果a-b≠a’-b’时,将望远镜横丝对准偏差一半的数值。用校针将水准仪的上下螺钉调整,使管水平泡吻合为止。重复以上做法,直到相等为止。

四、水准仪的使用方法 水准仪的使用包括:水准仪的安置、粗平、瞄准、精平、读数五个步骤。 1、安置 安置就是将仪器安装在可以伸缩的三脚架上并置于两观测点之间。首先打开三脚架并使高度适中,用目估法使架头大致水平并检查脚架就是否牢固,然后打开仪器箱,用连接螺旋将水准仪器连接在三脚架上。 2、粗平 粗平就是使仪器的视线粗略水平,利用脚螺旋置园水准气泡居于园指标圈之中。具体方法用仪器练习。在整平过程中,气泡移动的方向与大姆指运动的方向一致。 3、瞄准 瞄准就是用望远镜准确地瞄准目标。首先就是把望远镜对向远处明亮的背景,转动目镜调焦螺旋,使十字丝最清晰。再松开固定螺旋,旋转望远镜,使照门与准星的连接对准水准尺,拧紧固定螺旋。最后转动物镜对光螺旋,使水准尺的清晰地落在十字丝平面上,再转动微动螺旋,使水准尺的像靠于十字竖丝的一侧。 4、精平 精平就是使望远镜的视线精确水平。微倾水准仪,在水准管上部装有一组棱镜,可将水准管气泡两端,折射到镜管旁的符合水准观察窗内,若气泡居中时,气泡两端的象将符合成一抛物线型,说明视线水平。若气泡两端的象不相符合,说明视线不水平。这时可用右手转动微倾螺旋使气泡两端的象完全符合,仪器便可提供一条水平视线,以满足水准测量基本原理的要求。注意?气泡左半部份的移动方向,总与右手大拇指的方向不一致。 5、读数 用十字丝,截读水准尺上的读数。现在的水准仪多就是倒象望远镜,读数时应由上而下进行。先估读毫米级读数,后报出全部读数。 注意,水准仪使用步骤一定要按上面顺序进行,不能颠倒,特别就是读数前的符合水泡调整,一定要在读数前进行。 五、水准仪的测量 测定地面点高程的工作,称为高程测量。高程测量就是测量的基本工作之一。高程测量按所使用的仪器与施测方法的不同,可以分为水准测量、三角高程测量、GPS高程测量与气压高程测量。水准测量就是目前精度最高的一种高程测量方法,它广泛应用于国家高程控制测量、工程勘测与施工测量中。 水准测量的原理就是利用水准仪提供的水平视线,读取竖立于两个点上的水准尺上的读数,来测定两点间的高差,再根据已知点高程计算待定点高程。 如下图所示,在地面上有A、B两点,已知A点的高程为HA、为求B点的高程HB,在A、B两点之间安置水准仪,A、B两点各竖立一把水准尺,通过水准仪的望远镜读取水平视线分别在A、B两点水准尺上截取的读数为a与b,可以求出A、B两点问的高差为:

液氨应急处理

液氨应急处理 液氨,又称为无水氨,是一种无色液体。氨作为一种重要的化工原料,应用广泛,为运输及储存便利,通常将气态的氨气通过加压或冷却得到液态氨。氨易溶于水,溶于水后形成氢氧化铵的碱性溶液。氨在20℃水中的溶解度为34%。 液氨在工业上应用广泛,而且具有腐蚀性,且容易挥发,所以其化学事故发生率相当高。为了促进对液氨危害和处置措施的了解,本文特介绍液氨的理化特性、中毒处置、泄漏处置和燃烧爆炸处置4个方面的基础知识。 一、氨的理化性质 分子式:NH3气氨相对密度(空气=1):0.59 分子量:17.04液氨相对密度(水=1):0.7067(25℃) CAS编号:7664-41-7自燃点:651.11℃ 熔点(℃):-77.7爆炸极限:16%~25% 沸点(℃):-33.4 1%水溶液PH值:11.7 蒸气压:882kPa(200℃) 二、中毒处置 (一)毒性及中毒机理 液氨人类经口TDLo:0.15 ml/kg 液氨人类吸入LCLo:5000 ppm/5m 氨进入人体后会阻碍三羧酸循环,降低细胞色素氧化酶的作用。致使脑氨增加,可产生神经毒作用。高浓度氨可引起组织溶解坏死作用。 (二)接触途径及中毒症状 1.吸入 吸入是接触的主要途径。氨的刺激性是可靠的有害浓度报警信号。但由于嗅觉疲劳,长期接触后对低浓度的氨会难以察觉。 (1)轻度吸入氨中毒表现有鼻炎、咽炎、气管炎、支气管炎。患者有咽灼痛、咳嗽、咳痰或咯血、胸闷和胸骨后疼痛等。 (2)急性吸入氨中毒的发生多由意外事故如管道破裂、阀门爆裂等造成。急性氨中毒主要表现为呼吸道粘膜刺激和灼伤。其症状根据氨的浓度、吸入时间以及个人感受性等而轻重不同。 (3)严重吸人中毒可出现喉头水肿、声门狭窄以及呼吸道粘膜脱落,可造成气管阻塞,引起窒息。吸入高浓度可直接影响肺毛细血管通透性而引起肺水肿。 2.皮肤和眼睛接触 低浓度的氨对眼和潮湿的皮肤能迅速产生刺激作用。潮湿的皮肤或眼睛接触高浓度的氨气能引起严重的化学烧伤。 皮肤接触可引起严重疼痛和烧伤,并能发生咖啡样着色。被腐蚀部位呈胶状并发软,可发生深度组织破坏。 高浓度蒸气对眼睛有强刺激性,可引起疼痛和烧伤,导致明显的炎症并可能发生水肿、上皮组织破坏、角膜混浊和虹膜发炎。轻度病例一般会缓解,严重病例可能会长期持续,并

浅谈机动车尾气污染物排放和控制

浅谈机动车尾气污染物排放和控制 发表时间:2010-01-21T13:50:50.543Z 来源:《现代经济信息》2009年9月下供稿作者:石明辉 [导读] CO是一种化学反应能力低的无色无味的窒息性有毒气体,对空气的相对密度为0.9670,它的溶解度很小 石明辉(邢台市环保局河北邢台054000) [摘要]机动车业的发展和普及,为人们的生活带来许多方便。但是,随着机动车数量的不断增加,排气污染对城市环境的影响越来越明显。对机动车污染现状的分析,探讨如何控制机动车排放物的措施和方法。 [关键词]机动车尾气污染危害控制措施 随着我国社会的快速发展,人们的生活水平不断提高,各类机动车的使用数量在不断增加,这对我国的空气环境质量带来很大的影响,如何让人们即享受到经济发展后的交通便利,又能有效地降低机动车污染物排放对环境的危害,越来越成为摆在各级环境保护工作者面前的严峻问题。 一、机动车尾气排放中的主要污染物的危害及产生机理 机动车尾气成分非常复杂,有一百种以上,其主要污染物包括:一氧化碳(CO)、氮氧化物(NOx)、碳氢化合物(HC)、铅(Pb)、苯并芘(B8P)等,这些污染物不仅污染环境,对人体也有巨大危害。 1、一氧化碳(CO) CO是一种化学反应能力低的无色无味的窒息性有毒气体,对空气的相对密度为0.9670,它的溶解度很小。吸入过量的CO会使人发生气急、嘴唇发紫、呼吸困难甚至死亡。长期吸入CO对城市居民身体健康是一个潜在威胁。其生成主要受混合气浓度的影响,在局部缺氧或低温条件下,燃烧中的碳不能完全氧化生成C02,而CO作为中间产物生成。 2、氮氧化物(NOx) NOx是在内燃机汽缸内大部分气体中生成的,NOx的排放量取决于燃烧温度、时间和空燃比等因素。氮氧化合物进人肺泡后,能形成亚硝酸和硝酸,对肺组织产生剧烈的刺激作用,增加肺毛细管的通透性,最后造成肺气肿。 3、碳氢化合物 碳氢化合物尽管在汽车尾气中含量不多,但其构成成分中含有一种已被世界公认的强致癌物质。 4、铅 汽车主要靠燃烧汽油(柴油)行驶.而汽油是一种易燃易爆的液体,为了防止爆炸,人们往往在汽油里添加一种抗爆剂——四乙基铅。汽车尾气中的铅很容易通过血液长期蓄积于人的肝、肾、脾、肺和大脑中,进而产生慢性危害,尤其是铅,一旦进入人的大脑组织,便紧紧粘附在脑细胞的关键部位,从而导致人的智能发育障碍和血红素制造障碍等后果。 二、控制机动车尾气污染物排放的措施和方法 1、使用清洁能源型交通工具进行替代 (1)使用电力或太阳能动力来机车代替机动车。近几年来,电动自行车的兴起,部分减少了城市摩托车的使用量,使很多城市的机动车尾气排放量有所降低。但电力机车存在一次充电行驶公里短,载货量小的不便,使电力汽车在使用上并不普及。如果在一定的活动区域内,发展使用电力汽车,或通过增加电动公交车以及电动出租车的使用会对机动车尾气对大气环境的影响具有很大的改善; (2)开辟地铁,施行电力牵引行驶,尤其在大城市人口稠密的地区,开辟地下通道,同时可解决乘车难问题以及减少大气环境污染; (3)建立无车区,建立永久性的行人专用区和禁止汽车行驶的住宅区; (4)使用具有高速、安全、平稳、无震动、不污染环境、节省能源等诸多性能的磁悬浮列车。 2、加强行政管理,减少和消除汽车尾气对大气环境的污染 (1)不断提高我国的汽车排放标准,强化新车准入制度对不符合排放标准的新车采取“三不’措施:不准出厂、不准销售和不准上牌:促使各汽车企业加紧对节能减排汽车的开发。 (2)完善机动车的尾气检测体系,促进机动车的维护保养 机动车尾气排放检查和机动车的定期维护保养对于减少汽车污染非常重要。通过建立严格合理的机动车的尾气检测管理体系,发挥其应有的功效,监督在用机动车的实际尾气排放情况。如《河北省实行机动车环保检验合格标志分标管理实施方案》规定装用点燃式发动机汽车到达国Ⅰ及以上标准的、装用压燃式发动机汽车达到国Ⅲ及以上标准的,核发绿色环保检验合格标志。摩托车和轻便摩托车达到国Ⅲ及以上标准的,核发绿色环保检验合格标志。未达到上述标准的机动车,核发黄色环保检验合格标志,其中5年以内的营运载客汽车,有效期为1年;超过5年的,有效期为6个月; 10年以内的载货汽车和大型、中型非营运载客汽车,有效期为一年;超过10年的,有效期为6个月; 6年以内的小型、微型非营运载客汽车,有效期为2年;超过6年的,有效期为1年;超过15年的,有效期为6个月;摩托车、轻便摩托车、三轮汽车和低速货车有效期为1年;环保检验合格标志正面年份为下次环保定期检验的年份,被打孔的月份为下次环保定期检验的月份。就是对在用机动车进行定期检测,以保证在用机动车尾气达标排放。 3、提高燃油质量 燃油质量是影响汽车尾气污染的关键因素,应尽快建立清洁油品质量标准和有效监管体系。要鼓励兼并或关闭小的炼油企业,防止不合格的燃油流向市场。因此,应当全面提高燃油质量,研制清洁油品、加强监管体系,有效控制机动车尾气污染。 三、机动车尾气净化措施 发动机尾气净化措施是指将汽车尾气由原有毒气体变成为无毒气体,再排放到大气中,从而减少对大气环境的污染。 机动车车尾气净化措施有很多种,其中汽车尾气净化催化剂是控制汽车尾气排放,减少污染的有效手段。现如今,三效(元)催化剂已在全球范围内得到了普遍应用。三效(元)催化净化器起着对发动机做功产生的废气进行净化的作用,它是利用其滤芯中的钯、铂、铑3种元素,通过氧化法或氧化还原法过滤废气中的碳氢化合物、一氧化碳和氮氧化物等3种污染物,使尾气排放合乎要求。 三元催化净化器安装在汽车发动机的排气装置上,当汽车废气通过净化器的通道时,元催化器中的净化剂将增强CO、HC和NOx三种气体的活性,促使其进行一定的氧化-还原化学反应,其中CO在高温下氧化成为无色、无毒的二氧化碳气体;HC化合物在高温下氧化成水

氨区相关设计规范大全完整版

氨区相关设计规范大全 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

氨区相关设计规范大全

相关设计规范大全 一、液氨特性【1】 标识:分子式:NH3,分子量:17.03,UN编号【2】:1005,CAS号【2】:7664-41-7,,CN号:23003。 1、理化特性【1】 主要成分:纯品 外观与性状:无色、有刺激性恶臭的气体。 液氨为无色液体,有强烈刺激性气味,极易气化为气氨。 熔点(℃):-77.7(标态), 沸点(℃):-33.5(标态), 引燃温度(℃):651 相对密度(水=1):0.82(-79℃) 相对蒸气密度(空气=1):0.6 饱和蒸气压(kPa):506.62(4.7℃)) 临界温度:-132.5℃, 临界压力(mpa):11.4,

闪点:无意义 爆炸上限%(V/V):27.4 爆炸下限%(V/V):15.7 溶解性:易溶于水、乙醇、乙醚。 主要用途:用作致冷剂及制取铵盐和氮肥。 2、危险性概述 健康危害【1】:低浓度氨对粘膜有刺激作用,高浓度可造成组织溶解坏死。急性中毒:轻度者出现流泪、咽痛、声音嘶哑、咳嗽、咯痰等;眼结膜、鼻粘膜、咽部充血、水肿;胸部 X线征象符合支气管炎或支气管周围炎。中度中毒上述症状加剧,出现呼吸困难、紫绀;胸部 X线征象符合肺炎或间质性肺炎。严重者可发生中毒性肺水肿,或有呼吸窘迫综合征,患者剧烈咳嗽、咯大量粉红色泡沫痰、呼吸窘迫、谵妄、昏迷、休克等。可发生喉头水肿或支气管粘膜坏死脱落窒息。高浓度氨可引起反射性呼吸停止。液氨或高浓度氨可致眼灼伤;液氨可致皮肤灼伤。 环境危害【1】:对环境有严重危害,对水体、土壤和大气可造成污染。 根据GB5044-85 《职业性接触毒物危害程度分级》,氨属于IV(轻度危害)。

我国发布四项汽车排放标准通用版

管理制度编号:YTO-FS-PD198 我国发布四项汽车排放标准通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

我国发布四项汽车排放标准通用版 使用提示:本管理制度文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 我国正式发布四项汽车排放国家标准,并将于2000年1月1日起实施。至此,我国新车排放要求达到欧洲90年代初期水平,比现行国家标准尺度加严80%。 这四项标准分别是《汽车排放污染物限值及测试方法》(GB14761-1999)、《压燃式发动机和装用压燃式发动机的车辆排气污染物排放限值及测试方法》(GB17691-1999)、〈压燃式发动机和装用压燃式发动机的车辆排气可见污染物排放限值及测试方法》(GB3847—1999)、《汽车用发动机净功率测试方法》(GMW692-1999〉。 目前的轻型车排放污染物限值国家标准是在1989年首次提出的,1993年标准编号作了调整,限值末作改动。然而从1989年至今我国汽车的保有量增长了一倍半,在不少城市汽车的污染已成为主要污染源之一,而且汽车污染所占的分担率正在逐年上升,首都北京的污染已严重影响到我国的国际声誉。 1998年7月1日国家机械工业局加严了新车的污

氨水浓度测定方法

氨水浓度测定方法 一、原理 利用酸碱滴定反应原理,氨水和盐酸生成氯化铵和水。 二、试剂 盐酸(AR,分析纯):c(HCL)=0.5mol/L标准溶液; 甲基红(AR,分析纯); 亚甲基蓝(AR,分析纯); 95%乙醇(AR,分析纯); 混合指示液配置: 在100 mL的烧杯中溶解0.1 g甲基红于50 mL乙醇中,再加亚甲基蓝0.05 g,溶解后转入100 mL容量瓶中,用乙醇稀释定容至100 mL,混匀后转入100 mL带滴管的棕色瓶中储存; 三、实验方法 3.1 实验步骤 (1)取干燥的100 mL量筒,称重并记录质量m1,向称重后的量筒中倒入100 mL氨水试样,再称重并记录质量m2,根据重量和体积计算氨水密度(准确至0.002),即氨水密度=(m2-m1)g/ 100mL;日常操作中,氨水密度视为同水密度。 (2)用针筒从原取样瓶中吸取1 mL左右试样,减量法称准至0.1mg,放入事先加有50 mL蒸馏水的250 mL 锥形瓶中。加2-3 滴混合指示液,用1 mol/L硫酸标准溶液滴定至至灰绿色为终点。 3.2计算方法 氨含量X1(%)按式(1)计算 X1=[(c*V*0.01703)/(m*d)]*100 (1) 式中c——盐酸标准溶液的摩尔浓度; V——滴定用去盐酸标准溶液的体积,ml; 0.01703——氨的毫摩尔质量; m——样品质量,g; d——试样相对密度,相对密度=氨水密度/水密度。

四、其他事宜 1、取样和分析的原则:即取即分析,样品瓶及时盖好盖子; 2、取样时,需戴好橡胶手套和呼吸口罩; 3、取样后,关好取样口,将取样瓶拧紧,马上进行化验分析,在通风橱中操作。本规程作为分析检测手册的补充规程,在分析手册修订时纳入。

GB 汽车排放标准

轻型汽车污染物排放限值及测量方法(中国Ⅲ、Ⅳ阶段)Limits and measurement methods for emissions from light-duty vehicles (Ⅲ, Ⅳ) (GB 18352.3—20052007-07-01实施) 为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,防治机动车污染物排放对环境的污染,改善环境空气质量,制订本标准。本标准规定了装用点燃式发动机的轻型汽车,在常温和低温下排气污染物、曲轴箱污染物、蒸发污染物的排放限值及测量方法,污染控制装置的耐久性要求,以及车载诊断(OBD)系统的技术要求及测量方法。本标准规定了装用压燃式发动机的轻型汽车,在常温下排气污染物的排放限值及测量方法,污染控制装置的耐久性要求,以及车载诊断(OBD)系统的技术要求及测量方法。本标准也规定了轻型汽车型式核准的要求,生产一致性和在用车符合性的检查与判定方法。本标准也规定了燃用LPG或NG轻型汽车的特殊要求。本标准也规定了作为独立技术总成、拟安装在轻型汽车上的替代用催化转化器,在污染物排放方面的型式核准规程。本标准适用于以点燃式发动机或压燃式发动机为动力、最大设计车速大于或等于50km/h的轻型汽车。本标准不适用于已根据GB 17691(第Ⅲ阶段或第Ⅳ阶段)规定得到型式核准的N1类汽车。 解读中国轻型汽车第Ⅲ、IV阶段排放标准GB18352.3-2005 https://www.360docs.net/doc/859197378.html, [ 2005-8-30 11:28:29 ] 来源:中国汽车动态网? 李怀斌 [推荐] [大中小] [关闭窗口] 今年4月27日,国家环保总局公布了五项机动车污染物排放新标准。其 中与广大汽车生产企业最为密切的是GB18352.3-2005《轻型汽车污染物排放限 值及测量方法(中国Ⅲ、Ⅳ阶段)》(即中国轻型汽车第Ⅲ、Ⅳ号排放标准),轻 型汽车第Ⅲ号排放标准自2007年7月1日起实施,第Ⅳ号排放标准自2010年

氨气检测标准

氨气检测报警仪技术条件和检验方法Technical Requirements and Performance Test for Ammonia Detection Instruments 标准编制说明 中国石油化工股份有限公司青岛安全工程研究院 2009年6月

目录 1 任务来源 (2) 2 起草工作简要过程 (3) 3 编写原则和确定标准主要内容的依据 (4) 3. 1考察国内外产品,确定技术指标 (4) 3.2开展量传研究,保证溯源可靠 (5) 3.3符合应用实际,制定编制原则 (7) 3.4参照国标要求,设计框架结构 (7) 4 技术经济分析论证和预期的经济效益 (9) 5 采用国际标准和国外先进标准情况及水平对比 (10) 6 与现行法略、法规、政策及相关标准的协调性 (10) 7 贯彻实施标准的措施和建议 (11) 8 其他应予说明的事项 (11) 9 附件:氨气检测仪检验不确定度评定 (12)

1 任务来源 氨气报警仪是新一代高科技电子产品,它采用高精度传感器作为检测元件,当报警仪探测到环境中气体的浓度达到或超过预置报警值时,报警仪通过屏蔽电缆线将信号传到控制器,控制器立即发出声光报警,同时可启动排风装置或关闭电磁阀切断气源,以达到安全之目的。 此种仪器广泛应用于各类型冷库机房、储库、应用到氨气的工业场所,能有效地防止中毒事故、爆炸发生,从而保障人的生命、财产的安全。 课题组调研了部分企业的在用有毒气体报警仪的使用情况,调查所涉及到的14家企业在用的2214台有毒气体报警仪中,氨报警仪所占比例约为5%,主要分布在石油、化工、啤酒行业等。 图1 有毒气体报警器种类分布情况

氨气急救处理及危害预防措施示范文本

氨气急救处理及危害预防措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

氨气急救处理及危害预防措施示范文本使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 氨(ammonia,NH3)为无色有特殊刺激性臭味的气 体,极易溶于水成为氨水(又称氢氧化铵),常温下加压 可液化成液氨。急性氨中毒以呼吸系统损害为主要表现。 严重者可出现成人呼吸窘迫综合征,乃至猝死,为常见职 业中毒之一。 【致病原因】 1. 短时间内吸入高浓度氨气,常见于冷库、化肥、制 药、塑料、合成纤维、石油精炼等作业。运输或检修过程 中氨水盛器或液氨罐、管道、阀门等意外破损爆裂致氨大 量逸放引起中毒,常有居民、路人受害。少见喷洒氨水时 不戴口罩吸入多量氨气而中毒者。人吸入700mg/m3持续 30min即可中毒,吸入1750~4000mg/ m3可危及生

命。 2. 误服、误吸氨水至胃肠道导致中毒,一次咽下10ml 浓氨水即可致死。 【急救处理】 临床抢救治疗过程分为两个阶段: 1. 抢救治疗阶段: 1.1 合理吸氧,解除支气管痉挛,保持呼吸道通畅。可应用氨茶碱250mg+20%葡萄糖注射液20ml静脉注射。如有呼吸抑制,可给予呼吸中枢兴奋剂。 1.2 立即应用2%硼酸液或清水彻底冲洗被污染的眼和皮肤,同时注意保暖。 1.3 防治中毒性肺水肿是治疗的关键。严密观察24~48h。根据病情需要做血气分析监护。应合理吸氧,及早给予糖皮质激素,必要时给予654-2及快速利尿剂,可以选用消泡剂,如二甲基硅油气雾剂(但不宜长时间应用)。

我国发布四项汽车排放标准

编号:SM-ZD-15932 我国发布四项汽车排放标 准 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

我国发布四项汽车排放标准 简介:该制度资料适用于公司或组织通过程序化、标准化的流程约定,达成上下级或不 同的人员之间形成统一的行动方针,从而协调行动,增强主动性,减少盲目性,使工作 有条不紊地进行。文档可直接下载或修改,使用时请详细阅读内容。 我国正式发布四项汽车排放国家标准,并将于2000年1月1日起实施。至此,我国新车排放要求达到欧洲90年代初期水平,比现行国家标准尺度加严80%。 这四项标准分别是《汽车排放污染物限值及测试方法》(GB14761-1999)、《压燃式发动机和装用压燃式发动机的车辆排气污染物排放限值及测试方法》(GB17691-1999)、〈压燃式发动机和装用压燃式发动机的车辆排气可见污染物排放限值及测试方法》(GB3847—1999)、《汽车用发动机净功率测试方法》(GMW692-1999〉。 目前的轻型车排放污染物限值国家标准是在1989年首次提出的,1993年标准编号作了调整,限值末作改动。然而从1989年至今我国汽车的保有量增长了一倍半,在不少城市汽车的污染已成为主要污染源之一,而且汽车污染所占的分担率正在逐年上升,首都北京的污染已严重影响

氨气的特性

氨气的特性 氨是无色有强烈刺激性气味的气体。密度克/升(标准状况),熔点°C,沸点°C,临界温度℃,临界压力大气压)。氨在常温下很容易加压成为无色液体,也易凝固为雪状固体。极易溶于水,在标准情况下1体积水可溶解1200体积氨,在20°C时,1体积水可溶解700体积氨。溶液显碱性。易溶于乙醇和乙醚。液氨是良好的极性溶剂。液氨有微弱的电离作用。 氨气与空气混合物爆炸极限16~25%(最易引燃浓度17%),氨和空气混合物达到上述浓度范围遇明火会燃烧和爆炸,如有油类或其它可燃性物质存在,则危险性更高。与硫酸或其它无机酸反应放热,混合物可达到沸腾。 粘膜和皮肤有碱性刺激及腐蚀作用,可造成组织溶解性坏死。高浓度时可引起反射性呼吸停止和心脏停搏。 使用主要预防措施: 1、注意生产过程中的密闭化和自动化,防止跑、冒、滴、漏。 2、注意通排风,进入高浓度环境必须佩带防毒面具。 3、使用、运输和贮存时应注意安全,防止容器破裂和冒气。 4、现场安装氨气检测仪及时报警装置。 氨气中毒常见特征:

急性中毒:短期内吸入大量氨气后可出现流泪、咽痛、声音嘶哑、咳嗽、痰可带血丝、胸闷、呼吸困难,可伴有头晕、头疼、恶心、呕吐、乏力等,可出现紫绀、眼结膜及咽部充血及水肿、呼吸率快、肺部罗音等。 严重者可发生肺水肿、成人呼吸窘迫综合症,喉水肿痉挛或支气管粘膜坏死脱落窒息,还可并发气胸、纵膈气肿。胸部X线检查呈支气管炎、支气管周围炎、肺炎或肺水肿表现。血气分析显示动脉血氧分压降低。 误服氨水可致消化道灼伤,有口腔、胸、腹部疼痛,呕血、虚脱,可发生食道、胃穿孔。同时可能发生呼吸道刺激症状。吸入极高浓度可迅速死亡。 眼接触液氨或高浓度氨气可引起灼伤,严重者可发生角膜穿孔。 皮肤接触液氨可致灼伤。 急救处理及医疗措施: 吸入者应迅速脱离现场,至空气新鲜处,呼吸停止应做人工呼吸(注意:发现有肺水肿者,不准做人工呼吸),呼吸困难应输氧、维持呼吸功能、卧床静息。及时观察血气分析及胸部X线片变化。给对症、支持治疗。防治肺水肿、喉痉挛、水肿或支气管粘膜脱落造成窒息,合理氧辽; 对由气管粘膜脱落引起的窒息或自发性气胸应做好应急处理的

氨泄漏应急处置措施_工作报告

氨泄漏应急处置措施 近年来,氨泄漏事故在国内时有发生,做好氨泄漏应急措施尤重要。下面就由橙子为大家推荐氨泄漏应急处置措施的范文,欢迎阅读。氨泄漏应急处置措施篇1 (1)少量泄漏。 撤退区域内所有人员。防止吸入蒸气,防止接触液体或气体。处置人员应使用呼吸器。禁止进入氨气可能汇集的局限空间,并加强通风。只能在保证安全的情况下堵漏。泄漏的容器应转移到安全地带,并且仅在确保安全的情况下才能打开阀门泄压。可用砂土、蛭石等惰性吸收材料收集和吸附泄漏物。收集的泄漏物应放在贴有相应标签的密闭容器中,以便废弃处理。 (2)大量泄漏。 疏散场所内所有未防护人员,并向上风向转移。泄漏处置人员应穿上全封闭重型防化服,佩戴好空气呼吸器,在做好个人防护措施后,用喷雾水流对泄漏区域进行稀释。通过水枪的稀释,使现场的氨气渐渐散去,利用无火花工具对泄漏点进行封堵。 向当地政府和“119”及当地环保部门、公安交警部门报警,报警内容应包括事故单位;事故发生的时间、地点、化学品名称和泄漏量、危险程度;有无人员伤亡以及报警人姓名、电话。 禁止接触或跨越泄漏的液氨,防止泄漏物进入阴沟和排水道,增强通风。场所内禁止吸烟和明火。在保证安全的情况下,要堵漏或翻1 / 5

转泄漏的容器以避免液氨漏出。要喷雾状水,以抑制蒸气或改变蒸气云的流向,但禁止用水直接冲击泄漏的液氨或泄漏源。防止泄漏物进入水体、下水道、地下室或密闭性空间。禁止进入氨气可能汇集的受限空间。清洗以后,在储存和再使用前要将所有的保护性服装和设备洗消。 氨泄漏应急处置措施篇2 一、发生少量泄漏 撤退区域内所有人员。防止吸入蒸气,防止接触液体或气体。处置人员应使用呼吸器。禁止进入氨气可能汇集的局限空间,并加强通风。只能在保证安全的情况下堵漏。泄漏的容器应转移到安全地带,并且仅在确保安全的情况下才能打开阀门泄压。可用砂土、蛭石等惰性吸收材料收集和吸附泄漏物。收集的泄漏物应放在贴有相应标签的密闭容器中,以便废弃处理。 二、发生大量泄漏 疏散场所内所有未防护人员,并向上风向转移。泄漏处置人员应穿上全封闭重型防化服,佩戴好空气呼吸器,在做好个人防护措施后,用喷雾水流对泄漏区域进行稀释。通过水枪的稀释,使现场的氨气渐渐散去,利用无火花工具对泄漏点进行封堵。 向当地政府和“119”及当地环保部门、公安交警部门报警,报警内容应包括事故单位;事故发生的时间、地点、化学品名称和泄漏量、危险程度;有无人员伤亡以及报警人姓名、电话。 禁止接触或跨越泄漏的液氨,防止泄漏物进入阴沟和排水道,增2 / 5

氨气排放标准

恶臭污染物排放标准---GB14554-93 1 主题内容 本标准分年限规定了八种恶臭污染物的一次最大排放限值、复合恶臭物质的臭气浓度限值及无组织排 放原的厂界浓度限值。 2适用范围 本标准适用于全国所有向大气排放恶臭气体单位及垃圾堆放场的排放管理以及建设项目的环境影响评 价、设计、竣工验收及其建成后的排放管理。 3 引用标准 GB 3095 大气环境质量标准 GB/T 14679 空气质量氨的测定次氯酸钠-水杨酸分光光度 4标准分级 本标准恶臭污染物厂界标准值分三级。 4.1排入GB 3095中一类区的执行一级标准,一类区中不得建新的排污单位。 4.2排入GB 3095中二类区的执行二级标准。 4.3排入GB 3095中三类区的执行三级标准。 5标准值 恶臭污染物厂界标准值是对无组织排放源的限值,见表1 表1 染物排 放标准 值,见 表2。 表2 5 标准 的实施 5.1排 污单位 排放 (包括泄漏和无组织排放)的恶臭污染物,在排污单位边界上规定监测点(无其他干扰因素)的一次最大 监督值(包括臭气浓度)都必须低于或等于恶臭污染物厂界标准值。 5.2 排污单位经烟、气排气筒(高度在15m以上)排放的恶臭污染物的排放量和臭气浓度都必须低于或等于恶臭污染物排放标准。 5.3 排污单位经排水排出并散发的恶臭污染物和臭气浓度必须低于或等于恶臭污染物厂界标准值。 6 监测 6.1 有组织排放源监测 6.1.1 排气筒的最低高度不得低于15m。

6.1.2 凡在表2所列两种高度之间的排气筒,采用四舍五入方法计算其排气筒的高度。表2中所列的排气筒高度系指从地面(零地面)起至排气口的垂直高度。 6.1.3 采样点:有组织排放源的监测采样点应为臭气进入大气的排气口,也可以在水平排气道和排气筒下部采样监测,测得臭气浓度或进行换算求得实际排放量。经过治理的污染源监测点设在治理装置的排气口,并应设置永久性标志。 6.1.4 有组织排放源采样频率应按生产周期确定监测频率,生产周期在8h以内的,每2h采集一次,生产周期大于8h的,每4h采集一次,取其最低测定值。 6.2 无组织排放源监测 6.2.1 采样点 厂界的监测采样点,设置在工厂厂界的下风向侧,或有臭气方位的边界线上。 6.2.2 采样频率 连续排放源相隔2h采一次,共采集4次,取其最大测定值。 间歇排放源选择在气味最大时间内采样,样品采集次数不少于3次,取其最大测定值。 6.3测定 标志中各单项恶臭污染物与臭气浓度的测定方法,见表3。 表3

氨气泄漏应急处理预案

氨气泄露应急处理预案 一、总则 (一)编制目的 为了规范氨气房突发氨气泄露事故灾难的应急管理和应急响应程序,及时有效地实施应急救援工作,最大程度地减少人员伤亡、财产损失,维护全体员工的生命安全。 (二)适用范围 储液器车间。 二、氨气危害 外观:无色、有刺激性恶臭的气体。 危险性类别:有毒气体 侵入途径:吸入 健康危害:低浓度氨对粘膜有刺激作用,高浓度可造成组织溶解坏死。 急性中毒:轻度者出现流泪、咽痛、声音嘶哑、咳嗽、咯痰等;眼结膜、鼻粘膜、咽部充血、水肿;胸部X线征象符合支气管炎或支气管周围炎。中度中毒上述症状加剧,出现呼吸困难、紫绀;胸部X线征象符合肺炎或间质性肺炎。严重者可发生中毒性肺水肿,或有呼吸窘迫综合症,患者剧烈咳嗽、咯大量粉红色泡沫痰、呼吸窘迫、昏迷、休克等。可发生喉头水肿或支气管粘膜坏死脱落窒息,高浓度氨可引起反射性呼吸停止,液氨或高浓度氨可致眼灼伤;液氨可致皮肤灼伤。 环境危害:对环境有严重危害,对水体、土壤和大气可造成污染。 燃爆危险:易燃,有毒,具刺激性。 危险特性:与空气混合能形成爆炸混合物,遇明火、高热能引起燃烧爆炸;与氟、氯等接触会发生剧烈的化学反应;若遇高热,容器内压增大,有开裂和爆炸的危险。 灭火方法:消防人员必须穿全身防火防毒服,在上风向灭火;切断气源,若部能切断气源,则部允许熄灭泄漏处的火焰,喷水冷却容器,可能的话将容器从火场移动至空旷处。 防护措施: 1、空气中浓度超标时,佩戴过滤式防毒面具,紧急事态抢救或者撤离时,必 须佩戴空气呼吸器。 2、穿防静电工作服。 3、工作现场禁止吸烟、进食和饮水。 4、提供充分的局部排风和全面通风。 三、组织机构 出现氨气泄露事故后,由车间现场负责人员进行紧急抢险、员工疏散以及事故第一时间汇报等工作。由安全5S领导小组进行事故指挥以及事故分析、总结等工作。

氨水浓度测定方法

氨水浓度测定方法Prepared on 22 November 2020

氨水浓度测定方法 一、原理 利用酸碱滴定反应原理.氨水和盐酸生成氯化铉和水。 二、试剤 盐酸(AR分析纯):c(HCL)二L标准溶液; 甲基红(AR,分析纯); 亚甲基蓝(AR,分析纯); 95%乙醇(AR.分析纯); 混合指示液配置: 在100 mL的烧杯中溶解g甲基红于50 mL乙醇中,再加亚甲基蓝g,溶解后转入100 mL容量瓶中,用乙醇稀释定容至100 mL,混匀后转入100 mL带滴管的棕色瓶中储存;三、实验方法 实验步骤 (1)取干燥的100 mL量筒,称重并记录质量mi,向称重后的量筒中倒入100 mL 氨水试样,再称重并记录质量根据重量和体积计算氨水密度(准确至),即氨水密度二(mz-in.) g/ lOOmL ;日常操作中,氨水密度视为同水密度。 (2)用针筒从原取样瓶中吸取ImL左右试样,减量法称准至,放入事先加有 50mL 蒸僵水的250 mL锥形瓶中。加2-3滴混合指示液,用1 mol/L硫酸标准溶液滴定至至灰绿色为终点。 计算方法

氨含量X, (%)按式(1)计算 Xi = [(c*V*/(m*d)]*100 (1) 式中c——盐酸标准溶液的摩尔浓度; V——滴定用去盐酸标准溶液的体积,ml; ——氨的毫摩尔质量; m ---- 样品质量,g ; d——试样相对密度,相对密度=氨水密度/水密度。 四、其他事宜 1、取样和分析的原则:即取即分析.样品瓶及时盖好盖子; 2、取样时,需戴好橡胶手套和呼吸口罩; 3、取样后,关好取样口,将取样瓶拧紧,马上进行化验分析' 在通风橱中操作。本规程作为分析检测手册的补充规程,在分析手册修订时纳入。

氨气的应急处理措施

氨气的应急处理措施 一般介绍 产品名称: 氨 化学分子式:NH3 别名: 氨无水的 产品用途:一般工业 泄露位置与处理方法{处理泄露时应该佩戴正压式呼吸器} 气瓶阀口损坏泄露:应该急时把气瓶从气柜中拿出,放到远离危险品的区域,撤离 人员通知厂家 管道连接位置泄露:发现管道泄露应该急时停止供气,找出泄露点保持通风并修复。 气瓶与面板连接处泄露:发现泄露应该快速关闭气瓶阀门保持通风,并且更换损坏 位置 换瓶时误操作把瓶口打开造成泄露:应该快速关闭气瓶阀,并保持通风. 应急概要 易燃。 蒸气可能与空气形成爆炸性混合物。 当以超过燃烧下限(LFL)的浓度与空气混合时,有直接的火灾和爆炸危险。 戴自给式呼吸器,穿防护服。 直接与液体接触能引起冻伤。 与水可能剧烈反应。 避免吸入气体。 对眼睛、呼吸系统和皮肤有腐蚀性。 压缩液化气体。 潜在健康危害: 吸入:对呼吸道有腐蚀性。对呼吸系统有刺激作用。对呼吸系统有刺激作用。 能引起严重的肺损伤。若吸入可能致命。不利影响可能延迟。长期接触 少量浓度可能导致肺水肿。致命的肺水肿可能延迟 眼睛接触:引起眼睛灼伤。引起眼睛刺激。对眼睛有刺激作用。引起严重的眼睛灼伤。可能引起永久性眼睛损伤。 皮肤接触:引起皮肤灼伤。对皮肤有刺激作用。与液体接触可能引起冷灼伤/冻伤刺痛。引起皮肤刺激。引起皮肤灼伤。 暴露指南 主要侵入途径:吸入。 眼睛和皮肤接触 靶器官:眼睛。 呼吸道。 皮肤 加重已患疾病:哮喘

皮肤紊乱和过敏 眼病 环境影响:对环境有害。 急救措施 一般建议:穿戴自给式呼吸器将患者移到非污染区。为患者保暖和休息。就医。 如果呼吸停止,使用人工呼吸。使用化学防护服。 皮肤接触:立即用大量水清洗至少20分钟。用消过毒的包扎用品包扎伤口。如果皮肤刺激持续,就医。用大量水冲洗,直到有效。由于皮肤受腐蚀的 未经治疗的伤口愈合缓慢和恶化,需要立即治疗。 眼睛接触:立即用大量水清洗至少20分钟。用消过毒的包扎用品包扎伤口。如果皮肤刺激持续,就医。用大量水冲洗,直到有效。由于皮肤受腐蚀的 未经治疗的伤口愈合缓慢和恶化,需要立即治疗。 摄取:不认为食入是潜在的接触途径。 吸入:移至空气新鲜处。如果气短,输氧气。如果症状持续存在,就医。让病人保暖和休息。移至空气新鲜处。如果呼吸停止或困难,给予人工 呼吸。可能需要补充氧气。如果心跳停止,应立即由受过培训的人员 实施心肺复苏术。不推荐使用嘴对嘴的复苏术。如果意识不清,使其 侧卧并就医。如果气短,输氧气。就医。 消防措施 适用的灭火剂:所有已知的灭火剂都可以使用。 特殊危害:仅在气流被阻止时灭火。用大量水冷却相邻的钢瓶,直至火焰燃烧尽。如有可能,切断气源,使火焰燃烧尽。暴露于高热或火焰时,钢 瓶会快速排放和/或猛烈爆炸。水的使用可能导致极毒的水溶液的产 生。远离钢瓶,从有保护的位置喷水冷却它。用大量水冷却相邻的钢 瓶,直至火焰燃烧尽。如果可能,停止产品的输送。当接触高温时, 大部分气缸被用来排出内容物。 消防人员的特殊防护设备:佩戴自给式呼吸器,穿化学防护服。 其他信息:水的使用可能导致极毒的水溶液的产生。燃烧副产物可能有毒。如果火焰意外的被扑灭,可能发生爆炸性复燃。因此,应采取适当的防护 措施(例如,完全撤离以防止人员受到破裂后的钢瓶碎片和有毒烟雾 的伤害)。

浅谈液氨泄漏的危害性及预防措施

浅谈液氨泄漏的危害性及预防措施 一、液氨的主要危害分析 液氨是一种无色液体,有强烈刺激性气味,其沸点为-33.5℃,在常温下氨为气态,易溶于水、乙醇等,具有毒害性、燃爆性的特点。 1、毒害性 氨气具有强刺激性,对人体有毒害作用。吸入人体后主要与血红蛋白结合,破坏血液运氧功能。短期内吸入大量氨气后会出现流泪、咽痛、咳嗽、胸闷、呼吸困难、头晕、呕吐、乏力等。若吸入的氨气过多,导致血液中氨浓度过高,就会通过三叉神经末梢的反射作用而引起心脏的停搏和呼吸停止,危及生命。国家规定短时间接触容许浓度(PC-STEL)为30 mg/m3,时间加权平均容许浓度(PC-TWA)为20mg/m3。 举例说明:由于液氨泄漏后会迅速气化,向周围空间蔓延,所以在封闭的车间内危害更大,假如车间内存在的一个液氨罐上出现直径1cm的圆口泄漏,在内部压力为0.5MPa(常用的储罐压力一般不会大于0.5MPa)的情况下,液氨的泄漏速度约为1.49kg/s,在一座3600m3(30m×15m×8m)的车间内达到接触容许浓度的时间为0.072s,不到一秒。 根据氨的毒理特性,人暴露于氨浓度大于3500mg/m3下会立即死亡,3600m3的车间内达到死亡浓度的时间仅为8.45s,也就说不到10秒的时间内泄漏的量就可以在3600m3的大车间内达到人死亡浓度,可以说是非常快。 2、燃爆性 氨气具有燃爆性,与空气混合能形成爆炸性的气体,遇火源能发生爆炸,其爆炸下限体积浓度为15.7%,质量浓度为119.2g/ m3。 举例说明:同样是上面的例子,经过计算,只需要429kg氨充满在车间内就达到爆炸下限,泄漏时间需要288s,不到5分钟。爆炸性的氨混合气遇到火源就会发生燃爆。

相关文档
最新文档