超Gabor框架中的矩阵格变换算子

超Gabor框架中的矩阵格变换算子
超Gabor框架中的矩阵格变换算子

分块矩阵乘法的例子

分块矩阵乘法的例子 例 1 用分块法计算,AB 其中 00 51 2414 21,5 31001200 2 0-???? ? ?== ? ? ? ?-? ?? ? A B . 解 B A,如上分块, ???? ??=2221 1211 A A A A A , ??? ? ??=2322 21 131211 B B B B B B B , 其中 111221224 21(0,0),(5), ,,0 12????==== ? ?-?? ?? A A A A ()()()0,20,0,01,1342,51232221131211===??? ? ??-=???? ??=???? ??=B B B B B B ; 令==C AB ??? ? ??232221 131211 C C C C C C ,其中 =+=2112111111B A B A C )0()0)(5(51)00(=+??? ? ??, =+=2212121112B A B A C )00(()()()1002051342=+???? ??, =+=2312131113B A B A C )0()0)(5(01)00(=+???? ??-, =+=2122112121B A B A C ??? ? ??-=???? ??+???? ?????? ??-514)0(21511024, =+=2222122122B A B A C ???? ??-=???? ??+???? ?????? ??-332014)20(2113421024, =+=2322132123B A B A C ??? ? ??-=???? ??+???? ??-???? ??-04)0(21011024.

分块矩阵在行列式计算中的应用(1)

矩阵与行列式的关系 矩阵是一个有力的数学工具,有着广泛的应用,同时矩阵也是代数特别是线性代数的一个主要研究对象.矩阵的概念和性质都较易掌握,但是对于阶数较大的矩阵的运算则会是一个很繁琐的过程,甚至仅仅依靠矩阵的基本性质很难计算,为了更好的处理这个问题矩阵分块的思想应运而生[]1. 行列式在代数学中是一个非常重要、又应用广泛的概念.对行列式的研究重在计算,但由于行列式的计算灵活、技巧性强,尤其是计算高阶行列式往往较为困难.行列式的计算通常要根据行列式的具体特点采用相应的计算方法,有时甚至需要将几种方法交叉运用,而且一题多种解法的情况很多,好的方法能极大降低计算量,因此行列式计算方法往往灵活多变.在解决行列式的某些问题时,对于级数较高的行列式,常采用分块的方法,将行列式分成若干子块,往往可以使行列式的结构清晰,计算简化.本文在广泛阅读文献的基础上,从温习分块矩阵的定义和性质出发,给出了分块矩阵的一些重要结论并予以证明,在此基础上讨论利用分块矩阵计算行列式的方法,并与其他方法相互比较,以此说明分块矩阵在行列式计算中的优势. 1.1 矩阵的定义 有时候,我们将一个大矩阵看成是由一些小矩阵组成的,就如矩阵是由数组成的一样[]1.特别在运算中,把这些小矩阵当做数一样来处理.这就是所谓的矩阵的分块.把原矩阵分别按照横竖需要分割成若干小块,每一小块称为矩阵的一个子块或子矩阵,则原矩阵是以这些子块为元素的分块矩阵.这是处理级数较高的矩阵时常用的方法. 定义1[]2 设A 是n m ?矩阵,将A 的行分割为r 段,每段分别包含r m m m 21行,将 A 的列分割为s 段,每段包含s m m m 21列,则 ?? ? ? ? ? ? ??=rs r r s s A A A A A A A A A A 21 2222111211 , 就称为分块矩阵,其中ij A 是j i m m ?矩阵(,,,2,1r i =s j ,,2,1 =). 注:分块矩阵的每一行(列)的小矩阵有相同的行(列)数. 例如,对矩阵A 分块, = ?? ? ? ? ? ? ? ?-=21010301012102102301A ??? ? ??22211211 A A A A , 其中

矩阵初等变换及应用

矩阵初等变换及应用 王法辉 摘要:矩阵初等变换是高等代数的重要组成部分。本文对初等变换进行了研究探讨,详细介绍了与矩阵初等变换有关的基础知识。在阐述矩阵初等变换方法及应用原理的基础上,首先重点讨论该方法在解决高等代数相关计算问题上的应用,如求多项式的最大公因式、求逆矩阵解矩阵方程、求解线性方程组、判定向量的线性相关性、化二次型为标准型、求空间的基等。尤其是利用矩阵初等变换法求空间的基(解空间、特征子空间、核、值域等)的问题的计算,以具体实例生动的展示出问题的内在关系,最后给出了该方法在解决实际问题中的应用。本文理论分析与实际相结合,凸现了矩阵初等变换法直接、便利、有效的威力与作用。 关键词:矩阵初等变换;最大公因式;线性相关性;二次型;空间的基 1 导言 在线性方程组的讨论中我们看到,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为变换这些矩阵的过程。在数学的学习和应用中,矩阵理论是高等代数的重要组成部分,矩阵初等变换方法更是贯穿高等代数理论的始终。应用初等变换证明命题过程容易被接受,同时也是解决高等代数相关计算问题最直接、便利、有效的方法。此外,还有大量的各种各样的,表面上看完全没有联系的问题的解决,都可以通过相同的方法实现:矩阵的初等变换。 因此,对矩阵初等变换方法及应用进行探讨,无疑是十分必要和重要的。 目前,有许多文献涉及到对矩阵初等变换方法该的讨论,但比较零散。在研读文献的基础上,对矩阵初等变换的内涵进一步挖掘,使矩阵初等变换方法的威力作用得以充分展示是重要也是必要的。 2 矩阵及其初等变换

2.1 矩阵 由n m ?个数)j ,,,2,1(==m i a ij (i =1,2, ,j =1,2,n , )排成m 行n 列 的数表 ? ? ??? ???????=mn m m n n a a a a a a a a a A 2 1 22221 11211 称为m 行n 列的矩阵,简称n m ?矩阵。 2.2 矩阵的初等变换及初等矩阵 矩阵有行列之分,因此有如下定义 定义1 矩阵的初等行(列)变换是指如下三种变换 (1)交换矩阵某两行(列)的位置,记为j i r r ? )(j i c c ?; (2)把某一行(列)的k 倍加到另一行(列)上,记为j i kr r + )(j i kc c +; (3)用一个非零常数k 乘以某一行(列),记为i kr )(i kc ,k ≠0; 矩阵的初等行变换及初等列变换统称为矩阵的初等变换。 定义2 由单位矩阵E 经过一次初等变换得到的方阵称为初等矩阵。有以下3种形式 (1)互换矩阵E 的i 行和j 行的位置,得 ? ???? ? ??? ?? ? ????? ???????????????? ?=1101111011),( j i P ; (2)用数域P 种非零数c 乘E 的i 行,得

矩阵的基本运算

矩阵的基本运算 (摘自:华东师范大学数学系;https://www.360docs.net/doc/839748127.html,/)§3.1 加和减 §3.2矩阵乘法 §3.2.1 矩阵的普通乘法 §3.2.2 矩阵的Kronecker乘法 §3.3 矩阵除法 §3.4矩阵乘方 §3.5 矩阵的超越函数 §3.6数组运算 §3.6.1数组的加和减 §3.6.2数组的乘和除 §3.6.3 数组乘方 §3.7 矩阵函数 §3.7.1三角分解 §3.7.2正交变换 §3.7.3奇异值分解 §3.7.4 特征值分解 §3.7.5秩 §3.1 加和减

如矩阵A和B的维数相同,则A+B与A-B表示矩阵A与B的和与差.如果矩阵A和B的维数不匹配,Matlab会给出相应的错误提示信息.如: A= B= 1 2 3 1 4 7 4 5 6 2 5 8 7 8 0 3 6 0 C =A+B返回: C = 2 6 10 6 10 14 10 14 0 如果运算对象是个标量(即1×1矩阵),可和其它矩阵进行加减运算.例如: x= -1 y=x-1= -2 0 -1 2 1 §3.2矩阵乘法 Matlab中的矩阵乘法有通常意义上的矩阵乘法,也有Kronecker乘法,以下分别介绍. §3.2.1 矩阵的普通乘法 矩阵乘法用“ * ”符号表示,当A矩阵列数与B矩阵的行数相等时,二者可以进行乘法运算,否则是错误的.计算方法和线性代数中所介绍的完全相同. 如:A=[1 2 ; 3 4]; B=[5 6 ; 7 8]; C=A*B, 结果为 C=×==

即Matlab返回: C = 19 22 43 50 如果A或B是标量,则A*B返回标量A(或B)乘上矩阵B(或A)的每一个元素所得的矩阵. §3.2.2 矩阵的Kronecker乘法 对n×m阶矩阵A和p×q阶矩阵B,A和B的Kronecher乘法运算可定义为: 由上面的式子可以看出,Kronecker乘积A B表示矩阵A的所有元素与 B之间的乘积组合而成的较大的矩阵,B A则完全类似.A B和B A均为np ×mq矩阵,但一般情况下A B B A.和普通矩阵的乘法不同,Kronecker乘 法并不要求两个被乘矩阵满足任何维数匹配方面的要求.Kronecker乘法的Matlab命令为C=kron(A,B),例如给定两个矩阵A和B: A= B= 则由以下命令可以求出A和B的Kronecker乘积C: A=[1 2; 3 4]; B=[1 3 2; 2 4 6]; C=kron(A,B) C = 1 3 2 2 6 4 2 4 6 4 8 12 3 9 6 4 12 8

分块矩阵的初等变换及应用_百度文库.

十.研究创新题 解: 1.分块矩阵的初等变换 分块矩阵的初等变换与初等矩阵 吴云在1997年8月的《工科数学》上的《分块矩阵的初等变换》一文中提到定义1分块矩阵的行(列初等变换是指: (1)交换两行(列的位置; (2)第i行(列的各个元素分别左乘(右乘该行(列的一个阶左(右保秩因子H; (3)第i行(列的各个元素分别左乘(右乘一个阶矩阵K后加到第j行. 定义2 对应于分块矩阵的初等分块矩阵是指: (1)= 或=

(2)=或= 其中H为第i行(列的一个左(右保秩因子; (1 = (2 或= 初等分块矩阵与通常的初等矩阵类似,但由于矩阵乘法不满足交换律,故需要分为左、右两种.直接验算可得: 定理1(1交换的第i行与第j行,相当于左乘一个m阶初等分块矩阵,其中中的元素为h(i阶单位矩阵,为h(j阶单位矩阵, 当r≠i且r≠j时,为h(r阶单位矩阵;交换的第i列与第j列相当于右乘一个n阶初等分块矩阵,其中为l(i阶单位矩阵,为l(j阶单位矩阵,当r≠i且r≠j时,为l(r阶单位矩阵;

(2 的第i行的每一个元素左乘一个矩阵H相当于左乘一个m阶分块矩阵 中H为h(i阶方阵; 的第i列的每一个元素右乘一个矩阵H,相当于 右乘一个n阶初等到变换矩阵,其中H为l(i阶方阵; (3 的第j行的每个元素分别左乘一个h(i×h(j矩阵K后加到第i行,相当 于左乘一个初等分块矩阵;第j列的每一个元素分别右乘l(j×l(i矩阵K后加到第i列,相当于右乘. 定理2设A为方阵,则分块矩阵施行第一种行初等变换后,对应的行列式为 , 其中 h(i,j=h(ih(j-l+h(i+l]+…+h(j[h(i+h(i+j+…+h(j-l], l(i,j=l(ih(j-l+l(i+l]+…+l(j[l(i+l(i+j+…+l(j-l], 施行第二种初等变换后,对应的行列式为|H|·|A|;施行第三种初等变换后,对应的行列式的值不变. 证明: ,显然成立. 下证,所在的第1行逐次与它相邻的行交换,移至前,共进行h(i-1+h(i+1+…+h(j-1次交换两行,第2行逐次与它相邻的行交换,移至前,同样进行相同次交换两行,依此类推,把所在的行移至所在的行前,共进行 h(i[h(i-1+h(i+1+…+h(j-1]次交换两行,然后把移至适当的位置,同理共进行h(j[h(i+h(i+1+…+h(j-1]次交换两行,所以交换两行的总次数为h(i,j,故 ;同理. 所以有==(-1或==(-1) ==或= ==== 定理3 分块矩阵进行初等变换后,秩不变.

分块矩阵的应用论文

分块矩阵的应用 引言 矩阵作为数学工具之一有其重要的实用价值,它常见于很多学科中,如:线性代数、线性规划、统计分析,以及组合数学等,在实际生活中,很多问题都可以借用矩阵抽象出来进行表述并进行运算,如在各循环赛中常用的赛格表格等,矩阵的概念和性质相对矩阵的运算较容易理解和掌握,对于矩阵的运算和应用,则有很多的问题值得我们去研究,其中当矩阵的行数和列数都相当大时,矩阵的计算和证明中会是很烦琐的过程,因此这时我们得有一个新的矩阵处理工具,来使这些问题得到更好的解释,矩阵分块的思想由此产生. 矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理.把矩阵分块运算有许多方便之处.因为在分块之后,矩阵间的相互关系可以看得更清楚,在实际操作中与其他方法相比,一般来说,不仅非常简洁,而且方法也很统一,具有较大的优越性,是在处理级数较高的矩阵时常用的方法.比如,从行列式的性质出发,可以推导出分块矩阵的若干性质,并可以利用这些性质在行列式计算和证明中的应用分块矩阵;也可以借助分块矩阵的初等变换求逆矩阵及矩阵的秩等;再如利用分块矩阵求高阶行列式,如设A 、C 都是n 阶矩阵,其中0A ≠,并且AC CA =,则可求得A B AD BC C D =-;分块矩阵也可以在求解线性 方程组应用. 本文将通过对分块矩阵性质的研究,比较系统的总结讨论分块矩阵在计算和证明方面的应用,从而确认分块矩阵为处理很多代数问题带来很大的便利.

1 分块矩阵的定义及相关运算性质 1.1分块矩阵的定义 矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理. 定义1设A 是一个m n ?矩阵,若用若干横线条将它分成r 块,再用若干纵线条将它 分成s 块,于是有rs 块的分块矩阵,即1111...............s r rs A A A A A ???? =?????? ,其中ij A 表示的是一个矩阵. 1.2分块矩阵的相关运算性质 1. 2.1加法 设() ij m n A a ?=() ij m n B b ?=,用同样的方法对,A B 进行分块 () ij r s A A ?=,() ij r s B B ?=, 其中ij A ,ij B 的级数相同, 则 ()ij ij r s A B A B ?+=+. 1.2.2数乘 设是任() () ,ij ij m n r s A a A k ??==为任意数,定义分块矩阵() ij r s A A ?=与k 的数乘为 () ij r s kA kA ?= 1.2.3乘法 设() () ,ij ij s n n m A a B b ??==分块为()(),ij ij r l l r A A B B ??==,其中ij A 是i j s n ?矩阵,ij B 是 i j n m ?矩阵,定义分块矩阵() ij r l A A ?=和()ij l r B B ?=的乘积为 () 1122...,1,2,...;1,2,3,...,ij i j i j il lj C A B A B A B i t j l =+++==.、 1.2.4转置 设() ij s n A a ?=分块为() ij r s A A ?=,定义分块矩阵() ij r s A A ?=的转置为 () ji s r A A ?''= 1.2.5分块矩阵的初等变换 分块矩阵A 的下列三种变换称为初等行变换:

用矩阵初等变换逆矩阵

用矩阵初等变换逆矩阵

————————————————————————————————作者:————————————————————————————————日期:

2007年11月16日至18日,有幸参加了由李尚志教授主讲的国家精品课程线性代数(非数学专业)培训班,使我受益匪浅,在培训中,我见识了一种全新的教学理念。李老师的“随风潜入夜,润物细无声”“化抽象为自然”“饿了再吃”等教学理念很值得我学习。作为刚参加工作的年轻教师,我应该在以后的教学中,慢慢向这种教学理念靠拢,使学生在不知不觉中掌握较为抽象的知识。下面这个教案是根据李老师的教学理念为“三本”学生写的,不知是否能达要求,请李老师指教。 用矩阵的初等变换求逆矩阵 一、问题提出 在前面我们以学习了用公式 求逆矩阵,但当矩阵A 的阶数较大时,求A*很繁琐,此方法不实用,因此必须找一种更简单的方法求逆矩阵,那么如何找到一种简单的方法呢? (饿了再吃) 二、求逆矩阵方法的推导 (“润物细无声”“化抽象为自然”) 我们已学习了矩阵初等变换的性质,如 1.定理 2.4 对mxn 矩阵A ,施行一次初等行变换,相当于在A 的左边乘以相应m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵。 2.初等矩阵都是可逆矩阵,其逆矩阵还是初等矩阵。 3.定理2.5的推论 A 可逆的充要条件为A 可表为若干初等矩阵之积。即 4.推论 A 可逆,则A 可由初等行变换化为单位矩阵。 (1) 由矩阵初等变换的这些性质可知,若A 可逆,构造分块矩阵(A ︱E ),其中E 为与A 同阶的单位矩阵,那么 (2) 由(1)式 代入(2)式左边, 上式说明分块矩阵(A ︱E )经过初等行变换,原来A 的位置变换为单位阵E ,原来E 的位置 变换为我们所要求的1 A -,即 21121111111112112112s t s s t t m P P P AQ Q Q E A P P P P EQ Q Q Q R R R ----------=?=?L L L L L 111 21m R R R A E ---=L 111121m R R R A ----=L () () 1 22n n n n A E E A -???????→ 1* 1A A A -=( )()() 1111A A E A A A E E A ----==1111 21m A R R R ----=L ( )() 1 111 21m R R R A E E A ----=L

分块矩阵及其应用汇总

分块矩阵及其应用 徐健,数学计算机科学学院 摘要:在高等代数中,分块矩阵是矩阵内容的推广. 一般矩阵元素是数量, 而分块矩阵则是将大矩阵分割成小矩形矩阵,它的元素是每个矩阵块.分块矩阵的引进使得矩阵工具的利用更加便利,解决相关问题更加强有力,所以其应用也更广泛. 本文主要研究分块矩阵及其应用,主要应用于计算行列式、解决线性方程组、求矩阵的逆、证明与矩阵秩有关的定理. 关键词:分块矩阵;行列式;方程组;矩阵的秩 On Block Matrixes and its Applications Xu Jian, School of Mathematics and Computer Science Abstract In the higher algebra, block matrix is a generalization of matrix content. In general, matrix elements are numbers. However, the block matrix is a large matrix which is divided into some small rectangular matricies, whose elements are matrix blocks. The introduction of the block matrix makes it more convenient to use matrix, and more powerful to solve relevant problems. So the application of the block matrix is much wider. This paper mainly studies the block matrix and its application in the calculation of determinant, such as solving linear equations, calculating inverse matrix, proving theorem related to the rank of matrix , etc. Keywords Block matrix; Determinant; System of equations; Rank of a matrix

Drazin谱和算子矩阵的Weyl定理

263Vol.26,No.3 20068JOURNAL OF MATHEMATICAL RESEARCH AND EXPOSITION Aug.,2006 Article ID:1000-341X(2006)03-0413-10Document code:A Drazin Spectrum and Weyl’s Theorem for Operator Matrices CAO Xiao-hong1,2,GUO Mao-zheng1,MENG Bin1 (1.LMAM,School of Mathematical Sciences,Peking University,Beijing100871,China; 2.College of Math.&Info.Sci.,Shaanxi Normal University,Xi’an710062,China) (E-mail:xiaohongcao@https://www.360docs.net/doc/839748127.html,) Abstract:A∈B(H)is called Drazin invertible if A has?nite ascent and descent.Let σD(A)={λ∈C:A?λI is not Drazin invertible}be the Drazin spectrum.This paper shows that if M C= A C0B is a2×2upper triangular operator matrix acting on the Hilbert space H⊕K,then the passage fromσD(A)∪σD(B)toσD(M C)is accomplished by removing certain open subsets ofσD(A)∩σD(B)from the former,that is,there is equality σD(A)∪σD(B)=σD(M C)∪G, where G is the union of certain holes inσD(M C)which happen to be subsets ofσD(A)∩σD(B). Weyl’s theorem and Browder’s theorem are liable to fail for2×2operator matrices.By using Drazin spectrum,it also explores how Weyl’s theorem,Browder’s theorem,a-Weyl’s theorem and a-Browder’s theorem survive for2×2upper triangular operator matrices on the Hilbert space. Key words:Weyl’s theorem;a-Weyl’s theorem;Browder’s theorem;a-Browder’s theorem; Drazin spectrum. MSC(2000):47A53,47A55 CLC number:O177.2 1.Introduction Let H and K be in?nite dimensional Hilbert spaces,let B(H,K)denote the set of bounded linear operators from H to K,and abbreviate B(H,H)to B(H).If A∈B(H),writeσ(A)for the spectrum of A andσa(A)for the approximate point spectrum of A,ρ(A)=C\σ(A).If A∈B(H), we use N(A)for the null space of A and R(A)for the range of A.For A∈B(H),if R(A)is closed and dim N(A)<∞,we call A upper semi-Fredholm operator,and if dim H/R(A)<∞,then A is called lower semi-Fredholm operator.LetΦ+(H)(Φ?(H))be the set of all upper(lower) semi-Fredholm operators.A is called Fredholm operator if dim N(A)<∞and dim H/R(A)<∞. Let A be semi-Fredholm and let n(A)=dim N(A)and d(A)=dim H/R(A),then we de?ne the index of A by ind(A)=n(A)?d(A).An operator A is called Weyl if it is a Fredholm operator of index zero,and is called Browder if it is Fredholm“of?nite ascent and descent”.We write α(A)andβ(A)for the ascent and the descent for A∈B(H)respectively.The essential spectrum

第八讲 矩阵的分块法

第八讲 矩阵的分块法 一、矩阵的分块法 用处:(1)将高阶矩阵用低阶矩阵表示 (2)把每一小块看成元素一样按矩阵的运算来进行运算 (3)分块之后使得矩阵的一些运算简化 分块的标准:(1)能分出一些零子块 (2)能分出一些单位矩阵 (3)分成数量矩阵 二、分块矩阵的运算 简单解释一下即可,不做要求 三、分块对角矩阵 1、定义 2、对应的行列式的求法 3、逆矩阵的求法 例题1、设???? ? ??--=320210002A ,求A ,1-A 四、线性方程组的矩阵表示 1、一般表示 ?????=++=++m n mn m n n b x a x a b x a x a 1 111111 系数矩阵n m m m n a a a a A ?????? ??=11111

未知量矩阵???? ? ??=n x x X 1 常数项矩阵???? ? ??=m b b b 1 2、线性方程组的矩阵表示 将上面的方程组用矩阵表示: ???? ? ??=????? ??????? ??m n m m n b b x x a a a a 1111111 b AX = 例题:设?????=--=-+-=+-02212321 321321x x x x x x x x x ,写出矩阵表达式。 对角矩阵的行列式值和逆矩阵的求法要求必须会。 练习题 1、 求逆矩阵101210002A ?? ?= ? ??? 2、 求逆矩阵1200250000620032A ?? ? ?= ? ??? 3、求x 和y ,使2180341x y -??????+= ??? ?-?????? . 4、 求x ,y 和z ,使110101************x y z --?????? ??? ?-= ??? ? ??? ?-??????

分块矩阵的方法,技巧与应用

分块矩阵的方法、技巧与应用 内容摘要有时候,我们把一个大矩阵看成是由一些小矩阵组成的,就如矩阵是由数组成的 一样。特别在运算中,把这些小矩阵当作数一样处理。这就是矩阵的分块。设A 是一个m*n 矩阵 11 121212221 2 n n m m mn a a a a a a A a a a ?????? =???? ?? 用若干横线将它分成s 块,若干竖线将它分成r 块,于是有*r s 的分块矩阵 1112121 2121 2 s s r r rs A A A A A A A A A A ?????? =???? ?? 其中 ij A 表示一个矩阵。 关键词矩阵,分块矩阵,逆矩阵,准对角矩阵 1. 导言 在理论研究及一些实际问题中,经常遇到阶数很高或结构特殊的矩阵。对于这些矩阵,在运算时常常采用分块法,使大矩阵的运算化成小矩阵的运算。分块矩阵可以用来降低较高级数的矩阵级数,使矩阵的结构更清晰明朗,从而使矩阵的相关计算简单化,而且还可以用于证明一些与矩阵有关的问题。本文将主要介绍分块矩阵的一些初等变换的方法技巧,就分块矩阵的加法与数量乘法、乘法、转置、初等变换等运算性质,以及分块矩阵在矩阵求逆、行列式展开等方面进行一些基本研究。 2. 1.分块矩阵的简介 矩阵分块为矩阵运算带来便利,最常用的矩阵分块是2*2块

A B C D ?? ??? , 其中A 为*m m 矩阵块,D 为*n n 矩阵块。 例:在矩阵 2 1210000010012101 10 1E A A E ?? ? ?? ?== ? ?-?? ??? 中,2E 代表2级单位矩阵,而 11211A -??= ???,0000O ??= ??? 在矩阵 11 1221221032120124111 15 3B B B B B ?? ? -?? ?== ? ?-?? ?-?? 中, 111012B ?? = ?-?? ,123201B ??= ???, 211011B ??= ?--?? ,224120B ?? = ??? . 在计算AB 时,把A ,B 都看成事由这些小矩阵组成的,即按2阶矩阵来运算,于是 2 11 1211 12 12212211121 112220E B B B B AB A E B B A B B A B B ??????== ??? ? ++??????

相关文档
最新文档