Geometry Quantization from Supergravity the case of Bubbling AdS

Geometry Quantization from Supergravity the case of Bubbling AdS
Geometry Quantization from Supergravity the case of Bubbling AdS

a r X i v :h e p -t h /0508059v 4 30 S e p 2005Preprint typeset in JHEP style -HYPER VERSION

Liat Maoz,Vyacheslav S.Rychkov Institute for Theoretical Physics,University of Amsterdam Valckenierstraat 65,1018XE Amsterdam,The Netherlands E-mail:lmaoz@science.uva.nl ,rychkov@science.uva.nl Abstract:We consider the moduli space of 1/2BPS con?gurations of type IIB SUGRA found by Lin,Lunin and Maldacena (hep-th/0409174),and quantize it directly from the supergravity action,around any point in the moduli space.This quantization is done using the Crnkovi′c -Witten-Zuckerman covariant method.We make some remarks on the applicability and validity of this general on-shell quantization method.We then obtain an expression for the symplectic form on the moduli space of LLM con?gurations,and show that it exactly coincides with the one expected from the dual fermion picture.This equivalence is shown for any shape and topology of the droplets and for any number of

droplets.This work therefore generalizes the previous work (hep-th/0505079)and resolves the puzzle encountered there.

1.Introduction

One of the greatest achievements of string theory is the fact that it is able to explain gravity,or supergravity,in terms of a microscopic set of degrees of freedom—oscillation modes of strings with various boundary conditions.

Undoubtedly,if string theory is to be a quantum theory of gravity,then such a de-scription is essential.One particular application of having a microscopic set of degrees of freedom amenable to quantization is the ability to count the number of microstates cor-responding to a speci?c geometry,thus determining its microscopic entropy.One of the most fascinating applications of this is for geometries describing black holes.

In general a coherent state of string oscillations generates a supergravity background. However,there are very few such backgrounds for which we know the corresponding co-herent state of string oscillations.In most cases,given some supergravity background,it will be very hard to?nd the exact coherent state making it up.In some speci?c cases, when the spacetime is asymptotically AdS,one could use AdS/CFT[1]to obtain a di?erent description of the supergravity con?guration—in terms of microscopic degrees of freedom living in a conformal?eld theory,or in a deformation thereof.Such a description requires a good knowledge of the boundary theory and of the bulk/boundary dictionary,which is not necessarily available.

It is therefore clear that it would be very useful if one could quantize geometries directly from the supergravity picture,without recourse to a di?erent microscopic description of the system.In this paper,continuing the previous work done in collaboration with L.Grant, J.Marsano and K.Papadodimas in[2],we develop a method to do precisely that,which we propose to call on-shell quantization.

As the name suggests,on-shell quantization is not a method to quantize all possible ?uctuation modes of supergravity,but is used only to quantize a subspace of?uctuations all describing on-shell SUGRA con?gurations within a given moduli space.In this sense it is a special case of mini-superspace quantization[3].The method is only applicable when on the moduli space of solutions all?uxes are kept?xed.

When applicable,this method is used to quantize only the moduli space of solutions, freezing all other?uctuations of the?elds.Thus one might wonder how meaningful the results of such a quantization are in the general framework.In general indeed one should expect corrections to the results of the on-shell quantization,and one can try to estimate their size.It is only in particular cases where the moduli space of solutions is also protected by some symmetry,that this sector could completely decouple from the rest of the Hilbert space,and the energy spectrum computed by the on-shell quantization method would remain uncorrected.

In this paper we apply the on-shell quantization method to a certain moduli space of Type IIB SUGRA,which both has?xed?uxes and is also protected by supersymmetry,so that the results of the on-shell quantization remain uncorrected.This is the set of1/2BPS solutions found by Lin,Lunin and Maldacena in[4].The LLM solutions are in one-to-one correspondence with various2-colorings of a2-plane,usually referred to as‘droplets’.The deformations of the droplet shapes such that the areas of di?erent white and black regions

remain?xed are exactly the deformations which leave the?uxes?xed.Thus what we would like to do is to quantize the moduli space of such?uctuations around a general droplet con?guration1.

The LLM solutions have the feature that if the droplets are of?nite size,then the spacetime is asymptotically AdS5×S5.As we remarked before,this asymptotic behavior enables one to use AdS/CFT and get an equivalent description in terms of the N=4SYM ?eld theory.The speci?c sector of1/2BPS solutions considered by LLM turns out to be a subsector of SYM,admitting description in terms of free fermions in a harmonic oscillator potential[7,8].In fact the droplet describing the supergravity solution turned out to be the same droplet in the phase space describing the free fermions.Thus this is one of the special cases where string theory provides us with a dual description of the system where microscopic degrees of freedom are manifest.It is the Hilbert space of these free fermions in a harmonic oscillator,which we would like to derive entirely from the SUGRA picture using the on-shell quantization.

In a previous paper with L.Grant,J.Marsano and K.Papadodimas[2],we gave general expressions for the symplectic form on the moduli space of LLM solutions,and applied them to two speci?c backgrounds:AdS5×S5and the plane wave.In the case of AdS5×S5we completely reproduced the fermion symplectic form from the SUGRA symplectic currents. In the plane wave case we found the symplectic form of the same functional expression as we expect from the fermion analysis,however the numerical coe?cient was a factor of 2smaller than expected.In that paper we gave a few speculations on the source of that discrepancy.

In this paper we resolve the puzzle.We make the observation that one must work in a gauge where the variations of the SUGRA gauge?elds are everywhere regular.Di?erent gauge choices result in extra boundary terms in the symplectic current,and thus working in a singular gauge,as we did in[2]might result in missing terms in the symplectic form. In this paper we succeed in evaluating the SUGRA symplectic form around any of the LLM backgrounds,?nding the expected fermion symplectic form with exact numerical matching.

This paper is organized as follows.In section2we?rst discuss the general issue of quantizing geometries from the supergravity action.We explain the motivation and main ideas of the’on-shell quantization’method,and show how to apply it to pure gravity as well as to general Lagrangian theories.A central role in this discussion is played by the CWZ symplectic currents,introduced20years ago by Crnkovi′c and Witten[9]and by Zuckerman[10].We then turn to discuss when this method is applicable,and how one may expect it to be corrected by quantization of the full theory.

Then in section3we apply the general idea and expressions to the case of the”Bubbling AdS”geometries found by LLM[4].We?rst analyze the dual fermion system and?nd an expression for the symplectic form in the large N limit.This is the expression we aim to

independently derive from the supergravity analysis.Then we indeed turn to the moduli space of supergravity solutions,and show that using the CWZ currents we are able to reproduce this form,?rst in the speci?c case of the plane wave geometry,and then in the most general droplet case.We end in section4with conclusions and directions for future research.Some technical details are deferred to the appendix.

Results of this paper were reported in a talk presented by the second author at Strings 2005,Toronto.

2.Geometry quantization from supergravity

2.1Motivation

Given a continuous family of supergravity solutions,it is natural to ask how the moduli space of this family is going to be quantized.A well-understood special case of such quantization is the Dirac quantization condition imposed on the?uxes of gauge?elds present in the theory:typically,such?uxes F on closed cycles have to be quantized in units of an elementary?ux:F=F0n,n∈Z.

However,sometimes the moduli space will contain deformations corresponding to all ?uxes kept?xed.In this paper we are mostly concerned with how to quantize the moduli space in such a situation,which is in a sense complementary to the?ux quantization.

As a characteristic example,consider the family of D1-D5solutions with angular mo-mentum found in[11].The moduli space of solutions is parametrized by4-dimensional closed curves;there are no nontrivial?uxes.This family plays an important role in Mathur’s program of describing black hole microstates by regular geometries,providing microstates for the2-charge D1-D5black hole[12]2.

Another interesting recent example is the LLM family of Type IIB solutions with AdS5×S5asymptotics[4]3.The moduli space is parametrized by planar droplets of various shapes.There is an in?nite-dimensional family of deformations within the moduli space corresponding to keeping the?uxes?xed:these are the deformations keeping?xed areas of all black and white regions.We will discuss these solutions and their moduli space quantization in detail in Section3.

For both of the above families,there is a dual description—free fermions in the LLM case,chiral fundamental string excitations in the D1-D5case—which can be used to quantize the moduli space.These dual descriptions can be derived by using AdS/CFT or various other indirect methods(giant graviton picture for LLM,string dualities for D1-D5).However,as we will explain below,there exists a method to derive such quantization results directly from supergravity.In some cases this might be the only way to quantize SUGRA systems,since a dual microscopic description is not always known.

Counting3-charge D1-D5-P black hole microstate geometries in the context of Mathur’s program could provide an example of a situation when our direct method may lead to progress which will otherwise be di?cult to achieve.So far only some speci?c families of regular3-charge geometries were constructed[17].It is conjectured that the general case can be understood in terms of supertubes[18],however a world-volume description of the3-charge supertube con?gurations,which could be used to quantize them,is not yet known4.In that case our direct method may be the only way to quantize and count these geometries,once they are fully described.

2.2General idea

The general idea of the method is simple.Every supergravity theory,as any Lagrangian theory,comes equipped with a symplectic form?,which is de?ned on the full phase space of this theory.The given moduli space of solutions M,which we would like to quantize, forms a subspace of the full phase space.All we have to do is to restrict?to M,which will give us the symplectic form on M:

ω=?|M.(2.1) Onceωis found,it can be quantized in the usual way.We will call this method on-shell quantization5.

This philosophy is completely general and applies to any Lagrangian theory.For example,let us quantize the chiral sector of a2-dimensional free boson using this method. The action is

1

S=

4There has also been some other work trying to identify CFT states with particular3-charge D1-D5-P geometries[19].

5We called it‘minisuperspace quantization’in[2],however this term is used in a slightly wider sense in the canonical gravity literature,implying a reduction of degrees of freedom(typically by imposing a symmetry),but not necessarily explicit knowledge of all solutions.

Now fromωwe can infer the Poisson bracket:

{f(u1),f′(u2)}=δ(u1?u2).(2.6) This Poisson bracket can then be promoted to a quantum commutator using the Dirac prescription:

[?f(u1),?f′(u2)]=i δ(u1?u2).(2.7) The Fock space representation of this commutator is then constructed in the usual way:

?f(u)= ∞0dp√

h(K ij?K l l h ij),(2.11)

1

K ij=

6In presence of horizons one would have to consider a Cauchy surface in the extended black hole space-time,which may or may not exist,and could contain additional causally disconnected asymptotic regions. The nature of degrees of freedom which are being quantized in this case is not clear to us.Alternatively, one could try to treat horizons as boundaries.Additional analysis is required to decide which approach is correct.For now we prefer to exclude this case from discussion.

In this formalism,the symplectic form is given by the natural expression:

?= Σd D?1xδΠij(t,x)∧δh ij(t,x).(2.13) To restrict this symplectic form to the moduli space of solutions M,one?rst has to put all metrics of the family in the ADM form,and evaluate the canonical momenta using(2.11). This is doable in principle,but can be rather cumbersome in practice.Fortunately,an equivalent method exists,which avoids using the ADM split.

2.4Covariant approach

In the equivalent covariant approach,which is computationally much simpler than the direct method outlined in the previous subsection,one expresses the symplectic form as an integral of a symplectic current over the Cauchy surfaceΣ:

?= dΣl J l.(2.14) The symplectic current of gravity was found by Crnkovi′c and Witten[9]and is given by the following covariant expression containing variations of the metric and the Christo?el symbols7:

J l=?δΓl mn∧δ(√?gg lm).(2.15) This current has a number of remarkable properties.First of all,it is conserved:?l J l=0, which makes?invariant under variations ofΣ(local variations in general,as well as global variations if the metric perturbations have fast enough decay at in?nity).Second, J l changes by a total derivative if the metric perturbation undergoes a linear gauge trans-formation:

δg mn→δg mn+?(mξn).(2.16) This property renders?de?ned by(2.14)gauge invariant(assuming thatξhas?nite sup-port or decays su?ciently fast at in?nity).It should be noted that both properties are true only if the metric is varied inside a moduli space of solutions,i.e.the background satis?es Einstein’s equations,whileδg mn solves the linearized equations.In general,evaluating the symplectic form away from the solution space would be meaningless.

2.5Generalization to any Lagrangian theory

The above strategy admits a natural generalization to any Lagrangian theory[9],[10] (see also[21]).For our purposes it will be enough to assume that the Lagrangian L= L(φA,?lφA)(where the index A numbers the?elds)does not contain second-and higher-order derivatives.Under these conditions,the Crnkovi′c-Witten-Zuckerman symplectic current is de?ned by

J l CW Z=δ ?L

7Notice that[9]de?nes the symplectic form as dΣl√

?g.

The symplectic form is de?ned by(2.14),as before.Both properties—Σ-independence and

gauge invariance—are still true,provided that the equations of motion are satis?ed.The

gravitational current(2.15)is obtained from the general formula(2.17),provided that one

drops the total second derivative term from the Einstein-Hilbert action,which is equivalent

to adding the Gibbons-Hawking boundary term[22]8.

Another important invariance property of the symplectic current(2.17)is that its

de?nition is independent of the choice of fundamental?eldsφA.For example,in the case

of pure gravity we may choose{φA}={g mn}or{φA}={g mn},the resulting symplectic currents being identical.The precise general statement is that the symplectic current

(2.17)is invariant under point transformations(i.e.transformations which do not involve

derivatives of the?elds)φ→φ′=Φ(φ).For a proof it is convenient to rewrite the

symplectic current as

?L

J l CW Z=δI l,I l=

.(2.19)

?φB

The derivatives?lφA also transform contravariantly.Thus?L/??lφA will transform co-

variantly,and the product I l is indeed invariant.

This invariance can be used to demonstrate the equivalence between the pure gravity

canonical symplectic form(2.13)and the covariant expression(2.15).We just have to show

that the gravitational symplectic form evaluated using(2.17)reduces to(2.13)if the ADM

variables N,N i,h ij are used as a set of?elds{φA}parametrizing the metric.In a sense, this is obvious,because theΠij given by(2.11)were in fact de?ned by ADM[20]exactly as the variation w.r.t.˙h ij of the gravitational Lagrangian,which written in these variables

takes the form

L ADM=N

8It is convenient to use the explicit form of the Gibbons-Hawking Lagrangian L GH=√

Figure1:An example of a3-dimensional moduli space M foliated by2-dimensional symplectic sheets corresponding to a?xed value of a gauge?eld?ux F.On-shell quantization can determine symplectic structure on the sheets,but cannot be used to quantize the?ux.

To see this in a simple example,suppose that we use the on-shell quantization method to quantize the Abelian gauge?eld on a4-manifold of nontrivial topology.From the action

S=?1

?gF mn F mn(2.21)

we derive the symplectic current using(2.17):

J l=?δ(

The symplectic form will be usually non-degenerate if some dynamics is present.For

example,the“Bubbling AdS”solutions considered in Section3below have nonzero angular

momentum:they are stationary but not static,and this will be enough to make the

symplectic form nondegenerate.The reason is that N i=0in(2.12)and the extrinsic curvatures no longer vanish identically.In[5],the appearance of a nontrivial symplectic

form on the moduli space was conjectured to be related to supersymmetry.However,it

is easy to see that supersymmetry is neither necessary nor su?cient for that:the moduli

spaces of cylindrical[25]or plane[26]gravitational waves have a nontrivial symplectic

structure in pure gravity;on the other hand,the symplectic form will vanish on any

moduli space of static supersymmetric solutions.Supersymmetry may be instrumental

though to control corrections to the on-shell quantization results(see Sections2.10)or to

obtain simpli?ed symplectic current expressions(see remarks at the end of Section3.7.3).

The above remarks are useful in order to understand the relation of our method to

the perhaps more familiar‘moduli space approximation’`a la Manton[27,28,29,30],

where one usually starts with a moduli space describing multi-centered static black hole

or soliton solutions.This moduli space is typically?nite-dimensional,parametrized by

the coordinates of the centers and possibly some extra parameters.For example,in the

multi-centered extremal black hole case[30]the moduli space is3n-dimensional,where n

is the number of black holes.Then one considers slow scattering of these black holes(or

solitons)and?nds that it can be described by the geodesics in a certain(calculable)metric

ds2=g ij(q)dq i dq j.(2.23) Then one can consider quantization of this system of slowly moving solitons.But notice that in the process of introducing slow motion we enlarged the phase space by adjoining canonical momenta(corresponding to velocities).So,in the black hole case,the phase space becomes6n-dimensional,twice the dimensionality of the original moduli space.Also,in order to construct these slowly moving black hole solutions(and derive metric(2.23)), one should go o?-shell,i.e.out of the original moduli space.If one were to recover the metric(2.23)using our method(which may or may not be possible in practice),one would have to compute the symplectic form on the extended6n-dimensional phase space.The symplectic form would be degenerate if restricted to the original3n-dimensional moduli space corresponding to the static con?gurations,in agreement with the above discussion. This means in particular that black hole center coordinates are not quantized by themselves.

2.8On-shell quantization vs e?ective action

In essence,the on-shell quantization method does nothing but quantizing?rst-order?uc-

tuations along the moduli space M(except that it provides a particularly e?cient way to

do this).This is particularly clear from the symplectic current expression(2.17),which

involves only?rst-order perturbations of the?elds and,moreover,depends only on the

quadratic part of the Lagrangian as expanded around a given background.To see this

explicitly,let us parametrize the?eldsφA in(2.17)by their deviationsψA from a given

backgroundφ0∈M:

φ=φ0+ψ,(2.24)

at the same time expanding the Lagrangian of the theory in terms ofψ:

L=

i=2L(i),(2.25)

where L(i)is degree i inψ.The part linear inψis absent,since we assume thatφ0is a solution.The coe?cients of L(i)may and will generically depend onφ0,but the precise form of this dependence is irrelevant for our argument.

Now,as we showed in Section2.5,the symplectic current is independent of the?eld choice.In particular,we can useψA to compute it.Thus we will have:

J l CW Z=

∞ i=2δ?L(i)

de?ning the geometry(e.g.the shape of the droplets in the LLM case).Quantizing the brackets,we?nd commutation relations between these functions.We can then?nd a Hilbert space on which these functions are de?ned as operators so that the commutation relations are satis?ed.

In principle,we will get a separate Hilbert space around each geometry from the moduli space.Low-lying states in this Hilbert space will not allow any semiclassical interpretation, they will be similar to states of a few?eld quanta(e.g.gravitons)propagating in Minkowski space.However,in the limit of large occupation numbers we can construct coherent states, which can be interpreted as describing a neighboring classical geometry.In this sense, neighboring geometries are contained in each other’s Hilbert spaces.This shows that all these Hilbert spaces will be isomorphic.

Let us now discuss the choice of a Hamiltonian operator on the Hilbert space.First of all,when we are dealing with a theory of gravity,it is by no means guaranteed that a preferred Hamiltonian will exist.For instance,this seems to be the situation for the plane gravitational wave case analyzed in[26].For the concept of energy to make sense,all spacetimes in the considered moduli space must have a common asymptotic in?nity with a timelike Killing vector.In this case the Hamiltonian can be de?ned by computing the classical energy of the considered solutions.For the LLM case,such a computation has been done in[4].

When a Hamiltonian is available,the process of quantization can be taken further by discussing the energy eigenstates.To avoid possible confusion we would like to stress again:the Hamiltonian is an independent piece of information which supplements the symplectic form computed by the on-shell quantization method.There are cases when it can be de?ned in the classical theory(and carried over to the quantum theory by the correspondence principle),but a separate computation is necessary in order to do that. 2.10Corrections

In which sense does on-shell quantization approximate the true picture attainable in the complete theory?And what are the corrections which should be included if one is to go beyond this approximation?These are interesting questions,which most likely have to be analyzed on a case-by-case basis.Here we will limit ourselves to a few general remarks10.

It will be convenient to phrase the discussion in the Hamiltonian language,which may not be the most general situation(see Section2.9),but is su?cient for the applications we have in mind.The full Hamiltonian can be schematically represented as

H=H0(φ )+H0(φ⊥)+H int.(2.27) Here H0(φ )is the quadratic Hamiltonian for the?uctuation modes along the moduli space M(around a given background);H0(φ⊥)is the quadratic Hamiltonian for the modes corresponding to?uctuations orthogonal to M;H int is the interaction Hamiltonian.

On the quadratic level there is a complete decoupling betweenφ andφ⊥.It is only theφ modes that we are quantizing using the on-shell quantization method,whileφ⊥are

e?ectively frozen.The result of this quantization will be a Hilbert space H and a spectrum of energy eigenstates11.

It is more or less clear how this picture will have to be modi?ed,if the corrections are to be considered.First of all,we will have to introduce a Hilbert space H⊥for the orthogonal modes,with its own free spectrum.The full Hilbert space is then the direct product H ?H⊥.On-shell quantization can be thought of as turning o?H int and putting allφ⊥in their vacuum state,so that the full state is a product

|φ ?|0⊥ .(2.28) Taking H int into account allows transitions,exciting the orthogonal modes and inducing mixings between various states.To be able to treat H int as a perturbation,a small expan-sion parameter should be available.In this case the new energy eigenstates will be small perturbations of the original product states(2.28),with slightly shifted energy levels.In theories of gravity,the role of such an expansion parameter can be played by?ΛPlanck,the characteristic curvature radius?of the background spacetime measured in Planck units.In the string theory context,this will correspond to theα′-expansion of the e?ective action.

In supersymmetric situations,the spectrum may be protected and energy shifts should not occur.For instance,we know from AdS/CFT that this should be the case for the LLM solutions.Indeed,the N=4SYM states dual to these geometries are1/2BPS,and their energies cannot depend on a continuous parameter.Notice that it would be wrong to conclude that the LLM geometries do not get modi?ed once theα′-corrections are taken into account—they will,except in the fully supersymmetric cases of AdS5×S5and the plane wave.It is only the energy eigenstates which should remain protected.It would be interesting to show this directly from the gravity side.

The discussion of corrections becomes increasingly subtle when loop e?ects are taken into account12.In the AdS/CFT context,the size of these e?ects is controlled by1/N.In this paper we mostly discuss the N=∞limit,corresponding to the classical SUGRA.In principle,it should be possible to consider N?1case as a perturbation over N=∞.This would require inclusion of massive string states needed for the UV completion of the theory. In the LLM case,we know that this should lead to a reduction in the number of states with energies above N(see Section3.3).It would be extremely interesting to understand how such a reduction can be achieved in a perturbative treatment,and to reproduce it from the gravity side.

2.11Summary of on-shell quantization method

To summarize,we have the following recipe for quantizing a moduli space of solutions of any supergravity theory.First of all,we have to?nd a general expression for the symplectic current of the theory.This is computed from the supergravity Lagrangian by

the general formula(2.17)and will contain the Crnkovi′c-Witten gravitational symplectic current(2.15),as well as additional terms for the other?elds of the theory.

Second,we have to evaluate the symplectic current on the moduli space of solutions. This is done by expressing the variations of all the?elds in the symplectic current via the variations of the arbitrary functions describing the moduli space.

Finally,we have to integrate the symplectic current on a Cauchy surfaceΣto obtain the symplectic form,which will be a closed2-form on the moduli space.This symplectic form can then be quantized in the standard way.

3.Quantization of“Bubbling AdS”

3.1Supergravity solutions

Having set up the general framework in the previous section,we will now apply the on-shell quantization method to quantize the“Bubbling AdS”family of supergravity solutions found by LLM[4].This family includes all regular1/2BPS solutions of Type IIB SUGRA with SO(4)×SO(4)×R symmetry.These solutions have constant dilaton and axion and vanishing3-form.The metric has the form:

ds2=?h?2(dt+V i dx i)2+h2(dy2+dx i dx i)+ye G d?23+ye?G d??23,(3.1) where i=1,2,d?23and d??23are the metrics on two unit3-spheres S3,?S3.The functions h and G are determined in terms of a single function z(x1,x2,y),y>0:

h?2=

y

1/4?z2

,e2G=

1/2+z

2

,and is also the boundary value of z on the y=https://www.360docs.net/doc/8910294607.html,ly,we have13:

z=1

(x2+y2)2?Z,

V i=εij

(x2+y2)2?Z.(3.3)

Apart from the metric,only the5-form is turned on:

F5=F∧d?3+?F∧d??3,

F=dB,?F=d?B,(3.4) d?3,d??3being the volume forms of the spheres.The one-forms B,?B are de?ned up to a gauge transformation.A convenient choice is the axial gauge B y=?B y=0,the remaining components being then given by

B t=?1

4

y2e?2G,(3.5)

B i=?

y2V i

2?z ?U i

4

δi,2,?B i=?

y2V i

2

+z ?U i4δi,2(3.6)

(see[2]),where

U i≡εij x2+y2?Z.(3.7) The following linear relations,evident from(3.3)and(3.7),will play an important role below:

?i z=?yεij?y V j,

?[i V j]≡12yεij?y z,(3.8)

?y U i=?2yV i.

3.2Moduli space

The moduli space is parametrized by collections of droplets of arbitrary shape in the x1,x2 plane,de?ned by the condition that Z=?1/2on the union of all droplets(which we denote D)and Z=1/2in the remaining part of the plane,D c.We will assume that the boundaries of all droplets in D are smooth curves,so that the corresponding solution has a smooth

geometry[4].We would like to discuss the quantization of this moduli space.As discussed in Section2,there are two aspects to the moduli space quantization.First we must detect all nontrivial?uxes.These can be quantized using an appropriate Dirac quantization condition.On the other hand,deformations within the moduli space corresponding to keeping all the?uxes?xed should be quantized using the on-shell quantization method.

The topology of the“Bubbling AdS”spacetimes and the corresponding?uxes have been already determined in[4].It turns out that for every black or white region in the droplet plane there is a non-contractible5-cycle supporting an F5?ux proportional to the area of the corresponding region.For example,for each droplet(i.e.a black region)the corresponding5-manifold is constructed by?bering the sphere?S3over a surfaceΣ2capping the droplet as shown in Fig.2.This5-manifold is nonsingular,since the?S3shrinks to zero size on the y=0plane outside of the droplets in an appropriate way.Analogously,the 5-manifolds corresponding to the white regions are constructed by?bering the S3over surfaces capping these white‘holes’inside the https://www.360docs.net/doc/8910294607.html,ing?ux quantization,one shows that the area of each black or white region must be quantized[4]14:

κ10

A i=

14The relationκ10=8π7/2?4

is useful in comparing some of our equations to[4].

P

Figure2:The surfaceΣ2caps the droplet in the x1,x2plane by extending into y>0.Fibering the?S3overΣ,we get a closed5-manifold supporting an F5?ux proportional to the area of the droplet[4].

3.3Dual description in terms of free fermions

The“Bubbling AdS”solutions corresponding to a collection of?nite-size droplets are asymptotically AdS5×S5.The AdS/CFT correspondence[1]can be used to relate these Type IIB supergravity solutions to states of the N=4supersymmetric Yang-Mills theory on S3×R.Since the geometries are1/2BPS,the dual operators on the Yang-Mills side are chiral primaries with conformal weight equal to their U(1)R-charge:?=J.As is well known[7,8],this sector of N=4super Yang-Mills admits a very simple description as a system of N non-relativistic free fermions moving in a harmonic oscillator potential. In the large N limit(which is what we are mostly concerned with in this paper)the states of the many-fermion system are well described as droplets in the one-particle phase space. In fact,these droplets are the same droplets which characterize the gravity solutions.For example,it was checked in[4]that the excitation energy of the“Bubbling AdS”solutions over AdS5×S5is equal to

?=J=1

D d2x 2 ,(3.10)

which is precisely the excitation energy of the fermionic state described by the droplet D over the ground state described by the circular droplet of the same area centered at the origin.The one-dimensional Planck constant here can be?xed by comparing the area quantization condition(3.9)valid on the supergravity side with the semiclassical phase space quantization condition A=2π n,which should be true on the fermion side.This gives[4]:

=

κ10

solving the individual Hamilton equations 15

˙p =??q H,˙q =?p H,H =p 2+q 2

2π p 2+q 2

16π 2 ?D

dφr 4(φ),(3.15)while the Poisson bracket {,}is to be determined from consistency of the two pictures.As we showed in

[2](see

also

[36],and especially [37],Eq.(4.3)),the appropriate Poisson bracket which generates the correct equation is

{r 2(φ),r 2(?φ

)}=8π δ′(φ??φ).(3.16)

The symplectic form corresponding to these Poisson brackets can be written as 16:

ωferm =115

This normalization of the Hamiltonian has to be chosen so that the energy levels become integer-spaced and can be in one-to-one correspondence with the integer dimensions of ?eld theory chiral primaries.16The Poisson brackets are encoded by the symplectic form in the following schematic way:{q i ,q j }P.B.=A ij corresponds to ω=1

2Sign(φ??φ).

function of the form g 1(φ)+g 2(?φ)without changing the answer.If desired,one can consider adding (?φ

?φ)/π,which will make the kernel explicitly periodic.It is interesting to note that although the symplectic form (3.17)is easiest to derive

for

the

particular

case

of the

harmonic oscillator one-fermion Hamiltonian,it is in fact completely general and will describe the motion of droplets of noninteracting fermions described by an arbitrary one-particle Hamiltonian H (p,q )[36],[2],[37].

Let us rewrite (3.17)in a slightly di?erent form,introducing instead of φa natural parameter s measuring arc length along ?D .From elementary geometry we have

ds

δγ⊥,(3.19)

where by δγ⊥we denote the variation of ?D in the outside normal direction.Thus (3.17)can be equivalently written as

ωferm =1

B b =1 γ(b )ds d ?s Sign(s ??s )δγ(b )⊥(s )∧δγ(b )⊥(?s ).(3.23)Each δγ(b )⊥(s )has to satisfy its own constraint

γ(b )δγ(b )⊥(s )ds =0.

(3.24)

This means that,semiclassically,di?erent droplet boundaries are completely decoupled,and it is impossible for a fermion to move from one boundary to another,even though such

a transition would keep the total area of the droplet ?xed.Technically,condition (3.24)speci?es symplectic sheets in the moduli space of fermion droplets.

The symplectic form (3.23)on variations satisfying (3.24)is all we need for future comparison with the supergravity side,since as we discussed in the previous subsection,only variations keeping both black and white areas ?xed can be quantized by the on-shell quantization method,due to the ?xed ?ux restriction.

Knowing the Poisson brackets,it is trivial to quantize the system.We will do this around the circular droplet,the general case being identical.We start by expanding r 2(φ)in Fourier series:

r 2(φ)= αn e inφ,α?n =α?n .(3.25)

The zero mode is ?xed in terms of the droplet area:

α0=A

4 2 n>0

α?n αn +Const.(3.29)

It is interesting to compare the partition function of this theory

Z (β)=∞ n =1

1

1?e ?βn .(3.31)

Writing the partition functions in the form

Z (β)= E i

g (E i )e ?βE i ,(3.32)

we can read o?the degeneracy g (E i )of the energy state E i .We see that the in?nite N computation correctly predicts the ?nite N energy levels E i =1,2,3,...However,it reproduces their degeneracies only up to energies E i

≤N,overestimating the degeneracy of higher energy levels 17.

控制软件说明书

控制软件说明书 PC端软件FTM 安装及应用 系统运行环境: 操作系统中英文Windows 98/2000/ NT/XP/WIN7/ Vista, 最低配置 CPU:奔腾133Mhz 内存:128MB 显示卡:标准VGA,256色显示模式以上 硬盘:典型安装 10M 串行通讯口:标准RS232通讯接口或其兼容型号。 其它设备:鼠标器 开始系统 系统运行前,确保下列连线正常: 1:运行本软件的计算机的RS232线已正确连接至控制器。 2:相关控制器的信号线,电源线已连接正确; 系统运行步骤: 1:打开控制器电源,控制电源指示灯将亮起。 绿色,代表处于开机运行状态;橙色代表待机状态。 2. 运行本软件 找到控制软件文件夹,点击FWM.exe运行。出现程序操作界面:

根据安装软件版本不同,上图示例中的界面及其内容可能会存在某些差别,可咨询我们的相关的售后服务人员。 上图中用红色字体标出操作界面的各部分的功能说明: 1. 菜单区:一些相关的菜单功能选择执行区。 2. 操作区:每一个方格单元代表对应的控制屏幕,可以通过鼠标或键盘的点选,拖拉的方式选择相应控制单元。 3.功能区:包含常用的功能按钮。 4.用户标题区:用户可根据本身要求,更改界面上的标题显示 5.用户图片区:用户可根据本身要求,更改界面上的图片显示,比如公司或工程相关LOGO图片。 6.附加功能区:根据版本不同有不同的附加项目。 7.状态区:显示通讯口状态,操作权限状态,和当前的本机时间,日期等。 如何开始使用 1. 通讯设置 单击主菜单中“系统配置”――》“通讯配置” 选择正确的通讯端口号,系统才能正常工作。 可以设置打开程序时自动打开串口。 2.系统配置

(精选文档)公司组织架构图及岗位职责

黄金珠宝公司组织架构图及岗位职责 一、组织架构图设计说明 组织架构在企业十分重要,企业的经营和管理是围绕组织架构开展的,而组织架构又是以公司的规模、经营的项目、业务关系而定的。组织架构清晰,使其工作职责明确,工作目标性强。 从人力资源管理的角度讲,组织架构是排在第一位的,这说明其重要性。如果组织架构设置不合理,就会导致责权不清,工作混乱。 从企业管理学的角度讲,企业的组织架构分五种形式:(1)直线制;(2)直线职能制能;(3)事业部制;(4)矩阵组织形式;(5)多维组织形式。此组织架构设计的理由是: 1、根据公司目前状况,按职线职能制设计比较合适。所以, 此图按直线职能制的组织架构形式设计。 2、根据公司发展,和现代企业的管理特点,设置了营销策划 部,和行政部。此组织架构设计,使工作职能和责权划分清楚。 3、在人员配置上,使其一人多职的原则。

二、组织架构图

三、各部门岗位职责: (一)董事会职责 根据《公司法》规定和公司章程,公司董事会是公司经营决策机构,也是股东会的常设权力机构。董事会向股东会负责。 1、负责召集股东会;执行股东会决议并向股东会报告工作; 2、决定公司的生产经营计划和投资方案; 3、决定公司内部管理机构的设置; 4、批准公司的基本管理制度; 5、听取执行董事及总经理的工作报告并作出决议; 6、制订公司年度财务预、决算方案和利润分配方案、弥补亏损 方案; 7、对公司增加或减少注册资本、分立、合并、终止和清算等重 大事项提出方案; 8、聘任或解聘公司总经理、副总经理、财务部门负责人,并决 定其奖惩。 (二)执行董事职责 1、主持召开股东大会、董事会议,并负责上述会议决议的贯彻落实。

用友T软件软件操作手册

用友T6管理软件操作手册总账日常业务处理 日常业务流程 1、进入用友企业应用平台。 T6 双击桌面上的 如设置有密码,输入密码。没有密码就直接确定。 2、填制凭证进入系统之后打开总账菜单下面的填制凭证。如下图 丄总账[演示版】国B设畫 -二疑证 i :卜0 直接双击填制凭证,然后在弹出凭证框里点增 制单日期可以根据业务情况直接修改,输入附单据数数(可以不输),凭证摘要(在后面的匝可以选择常用摘要),选择科目直接选择(不知道可以选按F2或点击后面的一), 输入借贷方金额,凭证完后如需继续作按增加自动保存,按保存也可,再按增加 3.修改凭证 填制凭证 证 证 证 总 £ ■ 凭 汇 汇 流

没有审核的凭证直接在填制凭证上面直接修改,改完之后按保存。(审核、记帐了凭 证不可以修改,如需修改必须先取消记帐、取消审核)。 4.作废删除凭证只有没有审核、记帐的凭证才可以删除。在“填制凭证”第二个菜单“制单” 下面有 一个“作废恢复”,先作废,然后再到“制单”下面“整理凭证”,这样这张凭证才被彻底删除。 5.审核凭证 双击凭证里的审核凭证菜单,需用具有审核权限而且不是制单人进入审核凭证才能审核(制单单人不能审核自己做的凭证) 选择月份,确定。 再确定。 直接点击“审核”或在第二个“审核”菜单下的“成批审核” 6.取消审核 如上所述,在“成批审核”下面有一个“成批取消审核”,只有没有记帐的凭证才可 以取消审核

7.凭证记账 所有审核过的凭证才可以记帐,未审核的凭证不能记账,在“总帐——凭证——记账” 然后按照提示一步一步往下按,最后提示记帐完成。 8.取消记帐 在“总帐”—“期末”—“对帐”菜单按“ Ctrl+H ” 系统会提示“恢复记帐前状态已被激活”。然后按“总帐”——“凭证”——“恢复 记帐前状态”。最后选“月初状态”,按确定,有密码则输入密码,再确定。 10、月末结转收支 当本月所有的业务凭证全部做完,并且记账后,我们就要进行当月的期间损益结转。 点击:月末转账并选择期间损益结转。 选择要结转的月份,然后单击“全选”。点击确定后

智能窗户控制系统软件说明

智能窗户控制系统软件V1.0设计说明 目录 前言 (1) 第一章软件总体设计 (1) 1.1. 软件需求概括 (1) 1.2. 定义 (1) 1.3. 功能概述 (1) 1.4. 总体结构和模块接口设计 (2) 第二章控制系统的总体设计 (3) 2.1. 功能设计 (3) 第三章软件控制系统的设计与实现 (5) 3.1. RF解码过程程序设计介绍 (5) 3.2. RF对码过程设计 (6) 3.3. 通信程序设计 (8) 3.4. IIC程序设计介绍 (9) 3.5. 接近开关程序设计 (12) 3.6. 震动开关检测程序设计 (13) 3.7. 墙面按键程序设计 (15) 第四章智能窗户控制系统的设计 (17) 第五章实测与结果说明 (18) 第六章结论 (18)

前言 目的 编写详细设计说明书是软件开发过程必不可少的部分,其目的是为了使开发人员在完成概要设计说明书的基础上完成概要设计规定的各项模块的具体实现的设计工作。 第一章软件总体设计 1.1.软件需求概括 本软件采用传统的软件开发生命周期的方法,采用自顶向下,逐步细化,模块化编程的软件设计方法。 本软件主要有以下几方面的功能 (1)RF遥控解码 (2)键盘扫描 (3)通信 (4)安全检测 (5)电机驱动 1.2.定义 本项目定义为智能遥控窗户系统软件。它将实现人机互动的无缝对接,实现智能关窗,遥控开关窗户,防雨报警等功能。 1.3.功能概述 1.墙体面板按键控制窗户的开/关 2.RF遥控器控制窗户的开/关 3.具有限位,童锁等检测功能 4.实时检测大气中的温湿度,下雨关窗 5.具有防盗,防夹手等安全性能的检测

用友NC财务信息系统操作手册全

NC系统培训手册 编制单位:用友软件股份有限公司 中央大客户事业部 目录 一、NC系统登陆 .................................... 二、消息中心管理................................... 三、NC系统会计科目设置 ............................ 四、权限管理....................................... 五、打印模板设置................................... 六、打印模板分配................................... 七、财务制单....................................... 八、NC系统账簿查询 ................................ 九、辅助余额表查询................................. 十、辅助明细账查询................................. 十一、固定资产基础信息设置......................... 十二、卡片管理..................................... 十三、固定资产增加................................. 十四、固定资产变动................................. 十五、折旧计提..................................... 十六、折旧计算明细表...............................

软件操作说明书

门禁考勤管理软件 使 用 说 明 书

软件使用基本步骤

一.系统介绍―――――――――――――――――――――――――――――2二.软件的安装――――――――――――――――――――――――――――2 三.基本信息设置―――――――――――――――――――――――――――2 1)部门班组设置―――――――――――――――――――――――――3 2)人员资料管理―――――――――――――――――――――――――3 3)数据库维护――――――――――――――――――――――――――3 4)用户管理―――――――――――――――――――――――――――3 四.门禁管理―――――――――――――――――――――――――――――4 1)通迅端口设置―――――――――――――――――――――――――42)控制器管理――――――――――――――――――――――――――43)控制器设置――――――――――――――――――――――――――64)卡片资料管理―――――――――――――――――――――――――11 5)卡片领用注册―――――――――――――――――――――――――126)实时监控―――――――――――――――――――――――――――13 五.数据采集与事件查询――――――――――――――――――――――――13 六.考勤管理―――――――――――――――――――――――――――――14 1)班次信息设置――――――――――――――――――――――――――14 2)考勤参数设置――――――――――――――――――――――――――15 3)考勤排班――――――――――――――――――――――――――――15 4)节假日登记―――――――――――――――――――――――――――16 5)调休日期登记――――――――――――――――――――――――――16 6)请假/待料登记―――――――――――――――――――――――――17 7)原始数据修改――――――――――――――――――――――――――17 8)考勤数据处理分析――――――――――――――――――――――――17 9)考勤数据汇总―――――――—――――――――――――――――――18 10)考勤明细表—―――――――――――――――――――――――――18 11)考勤汇总表――――――――――――――――――――――――――18 12)日打卡查询――――――――――――――――――――――――――18 13)补卡记录查询—――――――――――――――――――――――――19

公司组织架构图和岗位说明书

广西建设有限公司 部门职能及岗位职责 (汇编) 2010年3月 目录 一、组织架构

-----------------------------------------------------------------------------------------2 1、公司行政组织架构---------------------------------------------------------------------------------2 2、工程项目部组织架构----------------------------------------------------------------------------3 二、总经理-----------------------------------------------------------------------------------------4 三、副总经理-----------------------------------------------------------------------------------------5 四、总工程师-----------------------------------------------------------------------------------------6 五、人力总监--------------------------------------------------------------------------------------7 六、财务总监--------------------------------------------------------------------------------------8 七、行政人事部--------------------------------------------------------------------------------------------9 1、人事主管---------------------------------------------------------------------------------------10 2、行政后勤主管------------------------------------------------------------------------------------11 3、文员-----------------------------------------------------------------------------------------12 八、财务部----------------------------------------------------------------------------------------13 1、部门经理-----------------------------------------------------------14 2、会计----------------------------------------------------------------------------------15 3、出纳--------------------------------------------------------------------------------------16 九、总工程师办公室-------------------------------------------------------------------------17 1、副总工程师--------------------------------------------------------18 2、预决算员---------------------------------------------------------19 3、质检员----------------------------------------------------------20 4、土建工程师--------------------------------------------------------21 十、采购部------------------------------------------------------------------------22 1、部门经理---------------------------------------------------------23 2、材料员-----------------------------------------------------24十一、设备部-------------------------------------------------------------------------------------------------- 25 1、部门经理-----------------------------------------------------------26 2、操作员----------------------------------------------------------------------------27十一、项目部----------------------------------------------------------------------------------------------- 28 3、部门经理-----------------------------------------------------------29 4、工长---------------------------------------------------------29 5、资料员------------------------------------------------------------30 6、试验员----------------------------------------------------------31 7、水电工 ---------------------------------------------------------------32 8、项目作业班长 ---------------------------------------------------------33 9、门卫-------------------------------------------------------34 一、建设公司行政组织机构:

博思软件操作步骤

开票端操作说明 双击桌面“博思开票”图标,单击“确定”,进入开票界面: 一、开票: 日常业务——开票——选择票据类型——增加——核对票号无误后——单击“请核对票据号”——输入“缴款人或缴款单位”——选择”收费项目”、“收入标准”——单击“收费金额”。 (如需增加收费项目,可单击“增一行”) (如需加入备注栏(仅限于收款收据)),则在右侧“备注”栏内输入即可) 确认无误后,单击“打印”——“打印” 二、代收缴款书: 日常业务——代收缴款书——生成——生成缴款书——关闭——缴款——输入“专用票据号”——保存——缴款书左上角出现“已缴款”三个红字即可。 三、上报核销: 日常业务——上报核销——选择或输入核销日期的截止日期——刷新——核销。 (注意:“欠缴金额”处无论为正或为负均不可核销,解决方法见后“常见问题”)

常见问题 一、如何作废“代收缴款书” 日常业务——代收缴款书——缴款——删除“专用票据号”和“缴款日期”——保存——作废。 二、上报核销时出现欠缴金额,无法完成核销,或提示多缴。 1、首先检查有没有选择好截止日期,选择好后有没有点击“刷新”。 2、其次检查有没有做代收缴款书。注意:最后一张缴款书的日期不得晚于选择上报核 销日期。 3、若上述方法仍无效,则可能是由于以前作废过票据而未作废缴款书。解决方法: 首先作废若干张缴款书(直到不能作废为止),然后重新做一张新的缴款书。再核销。 三、打开“博思开票”时,出现“windows socket error:由于目标机器积极拒绝,无法连接。 (10061),on API’connect’” 单击“确定”,将最下面一行的连接类型“SOCKET”更换为“DCOM”,再点“连接” 即可。 四、如何设置密码 双击桌面“博思开票”,单击登录界面的右下方“改口令”输入用户编号、新密码和确认密码,单击“确认”即可。 五、更换开票人名称或增加开票人 进入开票系统——系统维护——权限管理 1、更换开票人名称:单击“用户编码”——删除“用户名”——输入新的开票人名称 ——单击“保存用户”即可。 2、增加开票人:单击“新增用户”——输入“用户编码”和“用户名”——单击“保 存用户”——单击新增的用户编码——将右边的“权限列表如下”下面的“所有”前的小方框勾上——单击右侧“保存用户权限”。 六、重装电脑系统 1、由于博思开票软件安装在D盘,所以重装电脑系统前无需做任何备份。 2、重装系统后,打开我的电脑—D盘,将“博思软件”文件夹复制到桌面上(或U盘)。 3、将安装时预留的安装光盘放入主机,打开后找到“票据核销及管理_开票端(江西欠 缴不能上报版)”(或者进入D盘----开票软件备份目录勿删文件夹里也可找到)。双 击,按提示点击“下一步”,直到“完成”。 4、双击桌面任务栏右下角“博思开票服务器”,将其关闭(或右键点击“博思开票服 务器”——“关闭服务器”)。 (这一步若找不到“博思开票服务器”,也可以用重启电脑来代替) 5、将刚才复制到桌面(或U盘)的“博思软件”再复制粘贴回D盘,若提示“此文 件夹已包含名为博思软件的文件夹”,点击下面的“全部”。 6、双击桌面“博思开票”——输入用户编码(001)——确定。 7、确认原来的票据数据没有丢失后,将桌面(或U盘)的“博思软件”文件夹删除。

控制系统使用说明

控制系统使用说明 系统针对轴流风机而设计的控制系统, 系统分为上位监视及下位控制两部分 本操作为上位监控软件的使用说明: 1: 启动计算机: 按下计算机电源开关约2秒, 计算机启动指示灯点亮, 稍过大约20秒钟屏幕出现操作系统选择菜单, 通过键盘的“↑↓”键选择“windows NT 4.0”菜单,这时系统进入WINDOWS NT 4.0操作系统,进入系统的操作画面。 2:系统操作 系统共分:开机画面、停机画面、趋势画面、报警画面、主机流程画面、轴系监测画面、润滑油站画面、动力油站画面、运行工况画面、运行记录画面等十幅画面,下面就十幅画面的作用及操作进行说明 A、开机画面: 开机: 当风机开始运转前,需对各项条件进行检查,在本画面中主要对如下指标进行检查,红色为有效: 1、静叶关闭:静叶角度在14度

2、放空阀全开:放空阀指示为0% 3、润滑油压正常 4、润滑油温正常 5、动力油压正常 6、逆止阀全关 7、存储器复位:按下存储器复位按钮,即可复位,若复位不成 需查看停机画面。 8、试验开关复位:按下试验开关按钮即可,试验开关按钮在风 机启动后,将自动消失,同时试验开关也自动复位。 当以上条件达到时,按下“允许机组启动”按钮,这时机组允许启动指示变为红色,PLC机柜里的“1KA”继电器将导通。机组允许启动信号传到高压柜,等待电机启动。开始进行高压合闸操作,主电机运转,主电机运转稳定后,屏幕上主电机运行指示变红。这时静叶释放按钮变红,按下静叶释放按钮后,静叶从14度开到22度,静叶释放成功指示变红。 应继续观察风机已平稳运行后,按下自动操作按钮,启机过程结束。 B、停机画面: 停机是指极有可能对风机产生巨大危害的下列条件成立时,PLC 会让电机停止运转: 1、风机轴位移过大

XX科技公司组织结构及岗位说明书

XX科技公司组织结构及岗位说明书 北京XXX科技开发有限公司组织结构及岗位说明书

目录 法人治理结构: (5) 董事会职责: (5) 执委会职责: (6) 经营层职责: (7) 技术委员会职责: (7) 薪酬考核委员会职责: (8) 预算审计委员会职责: (8) 战略投资委员会职责: (8) 公司组织结构: (9) 总经理岗位说明书 (10) 营销副总岗位说明书 (13) 研发副总岗位说明书 (16) 首席设计师岗位说明书 (19) 副总工程师岗位说明书 (22) 副总工程师岗位说明书 (25) 生产副总岗位说明书 (27) 部门结构、部门职责和岗位职责 (30) 企划部 (30) 企划部部门结构: (30) 企划部部门职责: (30) 企划部岗位职责: (32) 企划部经理岗位说明书 (32) 综合计划岗位说明书 (36) 综合统计岗位说明书 (39) 企划岗位说明书 (42) 人力资源部 (45) 人力资源部部门结构: (45) 人力资源部部门职责: (45) 人力资源部岗位职责: (46) 人力资源部经理岗位说明书 (46) 人事管理岗位说明书 (50) 培训岗位说明书 (53) 薪酬考核岗位说明书 (56) 办公室 (59) 办公室部门结构: (59) 办公室部门职责: (59) 办公室岗位职责: (60) 办公室主任岗位说明书 (60) 秘书岗位说明书 (64) 外事岗位说明书 (66) IT岗位说明书 (68) 行政内勤岗位说明书 (71)

物业管理员岗位说明书 (77) 行政主管岗位说明书 (79) 市场营销部 (82) 市场营销部组织结构: (82) 市场营销部部门职责: (82) 市场营销部岗位职责: (83) 市场营销部经理岗位说明书 (83) 产品规划岗位说明书 (86) 市场推广岗位说明书 (88) 客户经理岗位说明书 (90) 订单管理岗位说明书 (92) 营销管理岗位说明书 (94) 客户服务部 (98) 客户服务部组织结构: (98) 客户服务部部门职责: (98) 客户服务部岗位职责: (99) 客户服务部经理岗位说明书 (99) 客户服务岗位说明书 (102) 技术支持岗位说明书 (105) 备品备件管理岗位说明书 (107) 维修管理岗位说明书 (109) 维修工岗位说明书 (111) 财务部 (113) 财务部部门结构: (113) 财务部部门职责: (113) 财务部岗位职责: (114) 财务部经理岗位说明书 (114) 应付会计岗位说明书 (118) 应收会计岗位说明书 (120) 成本会计岗位说明书 (123) 总账会计岗位说明书 (125) 预算管理岗位说明书 (127) 出纳岗位说明书 (129) 质量部 (132) 质量部部门结构: (132) 质量部部门职责: (132) 质量部岗位职责: (133) 质量部经理岗位说明书 (133) 体系管理工程师岗位说明书 (137) 质量管理工程师岗位说明书 (140) 质检主管岗位说明书 (143) 进货检验岗位说明书 (146) 过程检验岗位说明书 (148)

用友T+软件系统操作手册范本

用 友 T+ 软 件 系 统 操 作 手 册版本号:v1.0

目录 一、系统登录 (3) 1.1、下载T+浏览器 (3) 1.2、软件登陆 (3) 二、基础档案设置 (5) 2.1、部门、人员档案设置 (5) 2.2、往来单位设置 (6) 2.3、会计科目及结算方式设置 (6) 三、软件操作 (9) 3.1、凭证处理 (9) 3.1.1、凭证填制 (9) 3.1.2、凭证修改 (10) 3.1.3、凭证审核 (11) 3.1.4、凭证记账 (12) 3.2、月末结转 (13) 四、日常帐表查询与统计 (14) 4.1、余额表 (14) 4.2、明细账 (15) 4.3、辅助账 (16) 五、月末结账、出报表处理 (17) 5.1、总账结账 (17) 5.2、财务报表 (20)

一、系统登录 1.1、下载T+浏览器 首次登陆需要用浏览器打开软件地址,即:127.0.0.1:8000(一般服务器默认设置,具体登陆地址请参考实际配置),第一次登陆会提示下载T+浏览器,按照提示下载安装T+浏览器,然后打开T+浏览器,输入软件登陆地址。 ,T+浏览器, 1.2、软件登陆 按键盘上的“回车键(enter)”打开软件登陆页面,如下: 选择选择“普通用户”,输入软件工程师分配的用户名和密码,选择对应的账套,以下以demo 为例,如下图:

点击登陆,进入软件,

二、基础档案设置 2.1、部门、人员档案设置 新增的部门或者人员在系统中可按照如下方法进行维护,

2.2、往来单位设置 供应商客户档案的添加方法如下: 添加往来单位分类: 2.3、会计科目及结算方式设置会计科目:

威利普LEDESC控制系统操作说明书

LED-ECS编辑控制系统V5.2 用 户 手 册 目录 第一章概述 (3) 1.1LED-ECS编辑控制系统介绍 (3) 1.2运行环境 (3) 第二章安装卸载 (3) 2.1安装 (3) 2.2卸载 (5) 第三章软件介绍 (5) 3.1界面介绍 (5) 3.2操作流程介绍 (13) 3.3基本概念介绍 (21) 第四章其他功能 (25) 4.1区域对齐工具栏 (25) 4.2节目对象复制、粘贴 (26) 4.3亮度调整 (26) 第五章发送 (27) 5.1发送数据 (27) 第六章常见问题解决 (28) 6.1计算机和控制卡通讯不上 (28) 6.2显示屏区域反色或亮度不够 (29)

6.3显示屏出现拖尾现象,显示屏的后面出现闪烁不稳定 (29) 6.4注意事项 (31) 6.5显示屏花屏 (31) 6.6错列现象 (32) 6.7杂点现象 (32) 第一章概述 1.1LED-ECS编辑控制系统介绍 LED-ECS编辑控制系统,是一款专门用于LED图文控制卡的配套软件。其具有功能齐全,界面直观,操作简单、方便等优点。自发布以来,受到了广大用户的一致好评。 1.2运行环境 ?操作系统 中英文Windows/2000/NT/XP ?硬件配置 CPU:奔腾600MHz以上 内存:128M 第二章安装卸载 2.1LED-ECS编辑控制系统》软件安装很简单,操作如下:双击“LED-ECS编辑控制系统”安装程序,即可弹出安装界面,如图2-1开始安装。如图所示 图2-1 单击“下一步”进入选择安装路径界面,如图2-2,如果对此不了解使用默认安装路径即可 图2-2 图2-3 单击“完成”,完成安装过程。 2.2软件卸载如图2-2 《LED-ECS编辑控制系统V5.2》提供了自动卸载功能,使您可以方便的删除《LED-ECS编辑控制系统V5.2》的所有文件、程序组件和快捷方式。用户可以在“LED-ECS编辑控制系统V5.2”组中选择“卸载LED-ECS编辑控制系统V5.2”卸载程序。也可以在“控制面板”中选择“添加/删除程序”快速卸载。卸载程序界面如图2-4,此时选择自动选项即可卸载所有文件、程序组和快捷方式。 图2-4 第三章、软件介绍

公司组织架构图及岗位职责说明书

XX公司组织架构及部门岗位职责 说明书 一、总经理职责 总经理是公司经营管理的领导核心,是经营管理的最高决策人。 1.1职能 ①组织制订公司经营方针、经营目标、经营计划,分解到各部门并组织实施。 ②负责制订并落实公司各项规章制度、改革方案、改革措施。 ③提出公司组织机构设置方案。 ④提出公司经营理念,主导企业文化建设的基本方向,创造良好的工作环境、生活环境,培养员工归属感,提升企业的向心力、凝聚力、战斗力。 ⑤负责处理部门相互之间事务矛盾和问题。 ⑥负责公司投资项目选定。 ⑦负责审核公司经营费用支出。 ⑧决定公司各部门人员的聘用任免。对公司的经济效益负责,拥有经营指挥权和各种资源分配权 1.2权力 ①有权根据公司经营目标、经营方针、制订经营计划; ②有权实施公司改革方案、改革措施,制订公司制度。 ③有权提出公司机构设置建议。 ④有权聘用或解聘公司各部门经理、员工,并决定其薪酬待遇,有权对各部门员工进行工作调配。 ⑤有权审核公司经营费用支出与报销。 ⑥有权对公司员工作出奖惩决定 1.3 工作流程 ①依据公司各类信息,如财务报表、汇总的信息、各部门报告等,向各部门经理发出指令,提出工作安排。 ②接受指令人员,根据总经理要求,制订出相应制度、方案、政策、措施,做出决议报总经理。 ③总经理对提供的制度、方案、政策、决议等进行审阅,同意则签批给职能部门实施;不同意,则指令有关部门修订完善后,再审核、签批、下发、实施。 ④有关部门定期将各类制度、方案、政策、措施的执行情况,检查、落实后汇总上报总经理。 ⑤依据执行情况,总经理发出新指令。 二、总经办部门职能 1、项目工作的监督、管理:协助、监督公司重大项目工作的组织、实施、落实和绩效评估工作,部门工作重大问题的监控工作; 2、法律事务:依据公司工作开展的需要,全面负责公司内外法律事务,监管重大合同谈判,以确保公司的权益不受损害; 3、对外关系:代表公司参加有关会议,保持与政府部门、同行业机构等的联系,树立公司良好形象; 4、重大活动组织:协助、监管有关部门组织重大活动,企业文化建设,企业形象提升活动时,提供后勤保证;

财政票据 网络版 电子化系统开票端操作手册

财政票据(网络版)电子化系统 开票端 操 作 说 明 福建博思软件股份有限公司

目录 1.概述 业务流程 流程说明:

1.单位到财政部门申请电子票据,由财政把单位的基本信息设置好并审核完后,财政部门给用票单位发放票据,单位进行领票确认并入库。 2.在规定时间内,单位要把开据的发票带到财政核销,然后由财政进行审核。 系统登录 登入系统界面如图: 登录日期:自动读取主服务器的日期。 所属区划:选择单位所属区划编码。【00安徽省非税收入征收管理局】 所属单位:输入单位编码。 用户编码:登录单位的用户编码【002】 用户密码:默认单位密码为【123456】 验证码:当输入错误时,会自动换一张验证码图片; 记录用户编码:勾选系统自动把用户编码保存在本地,第二次登录不需要重新输入。 填写完正确信息,点【确定】即可登入系统。 进入系统 进入系统界面如图: 当单位端票据出现变动的时候,如财政或上级直管下发票据时,才会出现此界面:

出现此界面后点击最下方的确认按钮,入库完成。 当单位端票据无变动时,直接进入界面: 2.基本编码人员管理 功能说明:对单位开票人员维护,修改开票人名称。 密码管理 修改开票人员密码,重置等操作。 收发信息 查看财政部门相关通知等。

3.日常业务 电脑开票 功能说明:是用于开票据类型为电子化的票据。 在电脑开票操作界面,点击工具栏中的【增加】按钮,系统会弹出核对票号提示框,如图: 注意:必须核对放入打印机中的票据类型、号码是否和电脑中显示的一致,如果不一致打印出来的票据为无效票据,核对完后,输入缴款人或缴款单位和收费项目等信息,全部输入完后,点【增加】按钮进行保存当前票据信息或点【打印】按钮进行保存当前票据信息并把当前的票据信息打印出来;点电脑开票操作界面工具栏中的【退出】则不保存。 在票据类型下拉单框中选择所要开票的票据类型,再点【增加】进行开票。

用友T软件系统操作手册

用友T软件系统操作手 册 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

用 友 T+ 软 件 系 统 操 作 手 册 版本号:目录

一、系统登录 、下载T+浏览器 首次登陆需要用浏览器打开软件地址,即:(一般服务器默认设置,具体登陆地址请参考实际配置),第一次登陆会提示下载T+浏览器,按照提示下载安装T+浏览器,然后打开T+浏览器,输入软件登陆地址。 ,T+浏览器, 、软件登陆 按键盘上的“回车键(enter)”打开软件登陆页面,如下: 选择选择“普通用户”,输入软件工程师分配的用户名和密码,选择对应的账套,以下以demo为例,如下图: 点击登陆,进入软件, 二、基础档案设置 、部门、人员档案设置 新增的部门或者人员在系统中可按照如下方法进行维护, 、往来单位设置 供应商客户档案的添加方法如下: 添加往来单位分类: 、会计科目及结算方式设置 会计科目: 系统预置170个《2013小企业会计准则》科目,如下:

结算方式,如下: 三、软件操作 、凭证处理 填制 进入总账填制凭证菜单,增加凭证,填制摘要和科目,注意有辅助核算的会计科目, 以下为点开总账的处理流程图: 如若现金流量系统指定错误,可按照以下步骤修改: 凭证在没有审核时,可以直接在当前凭证上修改,然后点击“保存”完成修改; 凭证审核 进入总审核凭证菜单下,如下图: 选择审核凭证的会计期间: 、凭证记账 进入凭证菜单下的记账菜单, 、月末结转 期间损益结转 四、日常帐表查询与统计 、余额表 用于查询统计各级科目的本期发生额、累计发生额和余额等。传统的总账,是以总账科目分页设账,而余额表则可输出某月或某几个月的所有总账科目或明细科目的期初余额、本期发生额、累计发生额、期末余额,在实行计算机记账后,我们建议用户用余额表代替总账。

控制软件操作说明书

创维液晶拼接控制系统 软件操作指南 【LCD-CONTROLLER12】 请在使用本产品前仔细阅读该用户指导书

温馨提示:: 温馨提示 ◆为了您和设备的安全,请您在使用设备前务必仔细阅读产品说明书。 ◆如果在使用过程中遇到疑问,请首先阅读本说明书。 正文中有设备操作的详细描述,请按书中介绍规范操作。 如仍有疑问,请联系我们,我们尽快给您满意的答复。 ◆本说明书如有版本变动,恕不另行通知,敬请见谅!

一、功能特点 二、技术参数 三、控制系统连接示意图 四、基本操作 五、故障排除 六、安全注意事项

一、功能特点创维创维--液晶液晶拼接拼接拼接控制器特点控制器特点 ★采用创维第四代V12数字阵列高速图像处理技术 视频带宽高达500MHZ,应用先进的数字高速图像处理算实时分割放大输入图像信号,在多倍分割放大处理的单屏画面上,彻底解决模/数之间转换带来的锯齿及马赛克现象,拼接画面清晰流畅,色彩鲜艳逼真。 ★具有开窗具有开窗、、漫游漫游、、叠加等功能 以屏为单元单位的前提下,真正实现图像的跨屏、开窗、画中画、缩放、叠加、漫游等个性化功能。 ★采用基于LVDS 差分传送技术差分传送技术,,增强抗干扰能力 采用并行高速总线连接技术,上位控制端发出命令后,系统能快速切换信号到命令指定的通道,实现快速响应。 采用基于LVDS 差分传送技术,提高系统抗干扰能力,外部干扰对信号的影响降到了最低,并且,抗干扰能力随频率提高而提升。★最新高速数字阵列矩阵通道切换技术 输入信号小于64路时,用户不需要再另外增加矩阵,便可以实现通道之间的任意换及显示。 ★断电前状态记忆功能 通过控制软件的提前设置,能在现场断电的情况下,重启系统后,能自动记忆设备关机前的工作模式状态。 ★全面支持全高清信号 处理器采用先进的去隔行和运动补偿算法,使得隔行信号在大屏幕拼接墙上显示更加清晰细腻,最大限度的消除了大屏幕显示的锯齿现象,图像实现了完全真正高清实时处理。纯硬件架构的视频处理模块设计,使得高清视频和高分辨率计算机信号能得到实时采样,确保了高清信号的最高视频质量,使客户看到的是高质量的完美画质。

工会经费收入专用收据(1)

工会经费收入专用收据(1) 福州博思软件开发有限公司 2010年6月 目录 第一部分初始安 装 ....................................................... (1) 1.1系统 安装 (1) 1.2系统登录 ............................................................ (4) 第二部分组成模块介 绍 ................................................... (4) 2.1模块组 成 (4) 2.1.1票据资料 .......................................................... (5) 2.1.2用户管 理 .......................................................... (5) 2.1.3 票据领用 (6) 2.1.4电脑开票 .......................................................... (6) 2.1.5手工开 票 .......................................................... (7) 2.1.6 手工批开票 (7) 2.1.7票据查询 .......................................................... (8) 第三部分软件操 作 ....................................................... (9) 3.2用户 管理 (10)

大屏幕控制系统软件详解说明V6.(完整)

大屏幕控制系统软件详解说明 一软件安装 安装注意事项: 非专业人事安装:安装前请先关闭防火墙(如360安全卫士,瑞星,诺盾等),等安装完并且成功启动本软件后可重新开启防火墙; 专业人事安装:先把防火墙拦截自动处理功能改为询问后处理,第一次打开本软件时会提示一个拦截信息; 安装前请校对系统时间,安装后不能在错误的系统时间下运行/启动软件,否则会使软件注册失效,这种情况下需要重新注册; Windows 7,注意以下设置 0.1)打开控制面板 0.2) 选择系统和安全 0.3) 选择操作中心 0.4) 选择更换用户帐户控制设置 0.5)级别设置,选择成从不通知 1.软件解压后,请选择双击,进入安装界面如图1,图2 图1

图2 2.选择键,进入下一界面如图3 图3 3.选中项,再按键,进入下一界面如图4

图4 4.选择键,进入下一界面如图5 图5 5.选中项,再选择键,进入下一界面如图6

图6 6.选择键,进入下一界面如图7 图8 7.选择键,软件安装完成 二软件操作 选择WINDOWS 下开始按钮,选择程序,选择Wall Control项, 点击Wall Control软件进入大屏幕控制系统软件主界面如图9所示,整个软件分为3个区,标题区,设置区,功能区

图9 1.1标题区 大屏幕控制系统软件(只有管理员才可设置此项目) 1.2设置区 1.2.1系统 高级功能:管理员登录。 产品选型:选择拼接盒型号。 定时系统:设置定时时间。 幕墙开机:开机 幕墙关机:关机 退出:退出软件系统。 1.2.2设置 串口设置:设置使用的串口参数。 矩阵设置:设置矩阵的相关参数。 幕墙设置:幕墙设置参数。 幕墙颜色:幕墙颜色设置。 标志设置:更改幕墙名称。 系统设置:控制软件系统设置。 1.2.3工具 虚拟键盘:虚拟键盘设置。 硬件注册:可以通过时钟IC注册处理器的使用权限。 1.2.4语言 中文选择:选择软件语言类型为中文。 English:选择软件语言类型为英语。

相关文档
最新文档