基于STM32的线阵CCD图像采集系统

基于STM32的线阵CCD图像采集系统
基于STM32的线阵CCD图像采集系统

基于STM32的线阵CCD图像采集系统

【摘要】本文采用STM32F103作为主控芯片,利用该芯片产生线阵CCD 驱动时序,通过USB技术进行数据传输,使用Qt+Libusb进行上位机软件开发,实现了一个驱动时序稳定,传输速率高、可即插即用,跨平台的USB线阵CCD 图像采集系统。

【关键词】STM32;线阵CCD;USB;Qt;多线程;Libusb

1.引言

电荷耦合器件,即CCD,具有尺寸小、精度高、功耗低、寿命长等优点,被广泛应用于图像传感和非接触测量等领域中。在CCD应用技术中,需要合适的时序驱动来使CCD工作,驱动时序的好坏直接影响CCD的转换效率、信噪比等特性。通常CCD驱动设计有四种方式:EPROM驱动、IC驱动、单片机驱动及PLD驱动,以上方式存在逻辑设计复杂、调试困难、驱动频率低、柔性较差等缺点[1]。另外传统的CCD采集系统与上位机的通信都是通过串口方式进行,该方式通信速度较慢、不可即插即用,并且绝大多数笔记本是没有串口的,需通过USB转串口芯片,稳定性较差。

本文采用ARM驱动方式,选用意法半导体公司的STM32F103作为主控芯片,该处理器具有高速性、实时性、成本低和丰富的片内资源,可以产生稳定、精确、高速的CCD驱动时序,并且带有USB通信功能,可以实现与上位机的USB通信。

2.系统框架

系统主要由ARM处理器、电平转换、线阵CCD、滤波放大电路、A/D转换及USB接口电路等组成。

系统工作过程如下:ARM处理器产生驱动脉冲,通过电平转换之后驱动线阵CCD工作,线阵CCD的光敏单元受光的激发产生电信号,并在驱动脉冲的作用下输出离散的模拟信号,经滤波放大后通过A/D转换,然后,ARM处理器读取A/D转换的结果并存入片内RAM中,在接收完一帧CCD数据之后,通过USB接口将一帧CCD数据送入上位机进行进一步处理。系统框架如图1所示。

3.系统硬件组成

3.1 ARM处理器STM32F103RB

STM32F103RB是意法半导体公司推出的一款基于Cortex-M3内核的32位微处理器,是一款高性能、实时、低功耗的微处理器。该处理器最大时钟频率可达到72MHz,具有20KB静态RAM,128KB闪存,完全满足系统对实时性以及

第二讲 文本素材的采集与处理

第二讲文本素材的采集与处理 本讲目标: 1.明确文本素材的五种获取方法。 2.掌握扫描仪的使用方法,会用扫描仪获取大量文本,并能利用文字识别软件对获取的文本进行修改编辑。 重点:获取文本素材的方法。 难点:大量文本的采集—扫描仪扫描文字识别法。 一、五种文本素材的获取方法 文本素材的获取有直接获取与间接获取两种方式,直接获取是指通过多媒体教学制作工具软件的文字工具或在文字编辑处理软件中用键盘直接输入或复制,一般在文本内容不多的场合下使用该方式。间接获取是指用扫描仪或其他输入设备输入文本素材,常用于大量文本的获取。 文本素材的获取方法如下: (1)键盘输入方法 键盘输入方法是文本输入的主要方法,使用计算机输入汉字,需要对汉字进行编码,根据汉字的某种规律将汉字用数字或英文字符编码,然后由计算机键盘输入。汉字有音、形、义三个要素,根据汉字读音的编码叫音码,根据汉字字形的编码叫形码,兼顾汉字读音和字形的编码叫音形码或形音码。在常用的多媒体教学制作软件中,都带有文字工具,在文本内容不多的情况下,可以直接输入文字,对输入的文字可进行直接编辑处理。 (2)手写输入方法 使用“输入笔”设备,在写字板上书写文字,来完成文本输入,利用手写输入法获取文本的方式,类似于平时我们在纸上写字,但对在写字板上书写的文字要经选择。手写输入方法使用的输入笔有两种:一种是与写字板相连的有线笔,另一种是无线笔。无线笔携带和使用均很方便,是手写输入笔的发展方向。写字板也有两种,一种是电阻式,另一种是感应式。 (3)语音输入方法 将要输入的文字内容用规范的语音朗读出来,通过麦克风等输入设备送到计算机中,计算机的语音识别系统对语音进行识别,将语音转换为相应的文字,完成文字的输入。 语音输入方法目前开始使用,但识别率还不是很高,对发音的准确性要求比较高。 (4)扫描仪输入法 将印刷品中的文字以图像的方式扫描到计算机中,再用光学识别器(OCR)软件将图像中的文字识别出来,并转换为文本格式的文件。目前,OCR的英文识别率可达90%以上,中文识别率可达85%以上。 (5)从互联网上获取文本 从互联网上可以搜索到许多有用的文本素材,在不侵犯版权的情况下,可以从互联网上获取有用的文字。从互联网的html页面上获取部分文本的方法是:首先拖动鼠标选取有用的文本,或单击鼠标右键,在弹出的快捷菜单中,选择“全选”命令,将整个页面上文字全部选中,然后选择“复制”命令,打开文字处理软件(如Word),选择“编辑”/“粘贴”命令,就可以将复制的文字在文字处理软件中进行编辑处理了。如果将互联网上其他格式的文本文件(如:.pdf,.caj)格式的文件进行保存,然后使用部分有用文本,常用的方法是:选择“文件”菜单中的“另存为”命令,将文本文件进行保存,

LabVIEW应用于实时图像采集及处理系统

LabVIEW应用于实时图像采集及处理系统 2008-7-29 9:35:00于子江娄洪伟于晓闫丰隋永新杨怀江供稿 摘要:本文在LabVIEW和NI-IMAQ Vision软件平台下,利用通用图像采集卡开发一种图像实时采集处理虚拟仪器系统。通过调用动态链接库驱动通用图像采集卡完成图像采集,采集图像的帧速率达到25帧每秒。利用NI-IMAQ Vision视频处理模块,进行图像处理,以完成光电探测器的标定。该系统具有灵活性强、可靠性高、性价比高等优点。 主题词:虚拟仪器;图像处理;LabVIEW;动态链接库 1.引言 美国国家仪器(NI)公司的虚拟仪器开发平台LabVIEW,使用图形化编程语言编程,界面友好,简单易学,配套的图像处理软件包能提供丰富的图像处理与分析算法函数,极大地方便了用户,使构建图像处理与分析系统容易、灵活、程序移植性好,大大缩短了系统开发周期。在推出应用软件的基础上,NI公司又推出了图像采集卡,对于NI公司的图像采集卡,可以直接使用采集卡自带的驱动以及LabVIEW中的DAQ库直接对端口进行操作。 但由于NI公司的图像采集卡成本很高,大多用户难以接受,因此硬件平台往往采用通用图像采集卡,软件方面的图像处理程序仍采用LabVIEW以及视频处理模块编写。本文正是基于这样的目的,提出了一种在LabVIEW环境下驱动通用图像采集卡的方案,在TDS642EVM高速DSP视频处理板卡的平台下,完成实时图像采集及处理。 在图象处理的工作中主要完成对CCD光电探测器的辐射标定。由于探测器在自然环境下获取图像时,会受到来自大气干扰,自身暗电流,热噪声等影响,使CCD像元所输出信号的数值量化值与实际探测目标辐射亮度之间存在差异,所以要得到目标的精确图像就必须对探测器进行辐射标定。 2.图像采集卡简介 闻亭公司TDS642EVM(简称642)多路实时视频处理板卡是基于DSP TMS320DM642芯片设计的评估开发板。计算能力可达到4Gips,板上的视频接口和视频编解码芯片Philips SAA7115H相连,实现实时多路视频图像采集功能,支持多种PAL,NTSC和SECAM视频标准。本系统通过642的PCI接口与主机进行数据交换。PCI支持“即插即用(PnP)”自动配置功能,使图像采集板的配置变得更加方便,其一切资源需求的设置工作在系统初启时交由BIOS处理,无需用户进行繁琐的开关与跳线操作。PCI接口的海量数据吞吐,为其完成实时图像采集和处理提供保证。 3.系统组成及工作原理

PCB图像采集系统研究背景意义及国内外现状

PCB图像采集系统研究背景意义及国内外现状 1 研究背景 2 AOI系统的研究和国内现状 3 研究意义 1 研究背景 印刷电路板(Printed Circuit Board,PCB)又称为印刷线路板或印制电路板。印刷电路板是各种电子产品的主要部件,有“电子产品之母”之称,它是任何电子设备及产品均需配备的,其性能的好坏在很大程度上影响到电子产品的质量。几乎每一种电子设备都离不开PCB,小到电子手表、计算器,大到航空航天、军用武器系统等,都包含各式各样,大小各异的PCB板。近年来,随着生产工艺的不断提高,PCB正在向超薄型、小元件、高密度、细间距方向快速发展。这种趋势必然给质量检测工作带来了很多挑战和困难。因此PCB故障的检测已经成为PCB制造过程中的一个核心问题,是电子产品制造厂商非常关注的问题。在生产线上,厂家为保证PCB板的质量,就得要求100%的合格率,对所有的部件、子过程和成品都是如此。在过去靠人工对其进行检测的过程中,存在以下几个不可避免的缺点: (1)容易漏检。由于是人眼检测,眼睛容易疲劳,会造成故障不能被发现的问题。并且人工检测主观性大,判断标准不统一,使检测质量变得不稳定。 (2)检测速度慢,检测时间长。比如对于图形复杂的印刷电路板,人工很难实现快速高效的检测,因此人工检测不能满足高速的生产效率。 (3)随着技术的发展,设备的成本降低,人工费用增加,仍然由人工进行产品质量控制,将难于实现优质高效,而且还会增加生产成本。 (4)在信息技术如此发达的今天人工检测有不可克服的劣势,例如:对检测结果实时地保存和远距离传输,对原始图像的保存和远距离传输等。 (5)有些在线检测系统是接触式检测,需要与产品进行接触测量,因此,有可能会损伤产品。 因此,人工检测的精确性和可靠性大打折扣,传统意义上的检测方法不再能适应现代电路板检测的要求。如果漏检的有错误的电路板进入下一道工序,随着每一项工艺步骤的增加,到最终经过贴装阶段后,仍然会被检测出来是有故障的,那时,制造厂商与其花费大量的人力和成本来检测、返修这块电路板,还不如选

基于Labview的图像采集与处理

目前工作成果: 一、USB图像获取 USB设备在正常工作以前,第一件要做的事就是枚举,所以在USB摄像头进行初始化之前,需要先枚举系统中的USB设备。 (1)基于USB的Snap采集图像 程序运行结果: 此程序只能采集一帧图像,不能连续采集。将采集图像函数放入循环中就可连续采集。

循环中的可以计算循环一次所用的时间,运行发现用Snap采集图像时它的采集速率比较低。运行程序时移动摄像头可以清楚的看到所采集的图像有时比较模糊。 (2)基于USB的Grab采集图像 运行程序之后发现摄像头采集图像的速率明显提高。

二、图像处理 1、图像灰度处理 (1)基本原理 将彩色图像转化成为灰度图像的过程成为图像的灰度化处理。彩色图像中的每个像素的颜色有R、G、B三个分量决定,而每个分量有255中值可取,这样一个像素点可以有1600多万(255*255*255)的颜色的变化范围。而灰度图像是R、G、B三个分量相同的一种特殊的彩色图像,其一个像素点的变化范围为255种,所以在数字图像处理种一般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少一些。灰度图像的描述与彩色图像一样仍然反映了整幅图像的整体和局部的色度和亮度等级的分布和特征。图像的灰度化处理可用两种方法来实现。 第一种方法使求出每个像素点的R、G、B三个分量的平均值,然后将这个平均值赋予给这个像素的三个分量。 第二种方法是根据YUV的颜色空间中,Y的分量的物理意义是点的亮度,由该值反映亮度等级,根据RGB和YUV颜色空间的变化关系可建立亮度Y与R、G、B三个颜色分量的对应:Y=0.3R+0.59G+0.11B,以这个亮度值表达图像的灰度值。 (2)labview中图像灰度处理程序框图 处理结果:

基于摄像头的图像采集与处理应用

基于摄像头得图像采集与处理应用 1、摄像头工作原理 图像传感器,就是组成数字摄像头得重要组成部分。根据元件得材料不同,可分为 CCD(Charge Coupled Device,电荷耦合元件)与CMOS(plementary MetalOxide Semiconductor,金属氧化物半导体元件)两大类。 电荷藕合器件图像传感器CCD(Charge Coupled Device),它使用一种高感光度得半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部得闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机,并借助于计算机得处理手段,根据需要与想像来修改图像。CCD由许多感光单位组成,通常以百万像素为单位。当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有得感光单位所产生得信号加在一起,就构成了一幅完整得画面。 互补性氧化金属半导体CMOS(plementary MetalOxide Semiconductor)与CCD一样同为在图像传感器中可记录光线变化得半导体。CMOS主要就是利用硅与锗这两种元素所做成得半导体,使其在CMOS上共存着带N(带–电)与P(带+电)级得半导体,这两个互补效应所产生得电流即可被处理芯片纪录与解读成影像。然而,CMOS得缺点就就是太容易出现杂点, 这主要就是因为早期得设计使CMOS在处理快速变化得影像时,由于电流变化过于频繁而会产生过热得现象。 CCD与CMOS在制造上得主要区别就是CCD就是集成在半导体单晶材料上,而CMOS就是集成在被称做金属氧化物得半导体材料上,工作原理没有本质得区别。CCD制造工艺较复杂,采用CCD得摄像头价格都会相对比较贵。事实上经过技术改造,目前CCD与CMOS得实际效果得差距已经减小了不少。而且CMOS得制造成本与功耗都要低于CCD不少,所以很多摄像头生产厂商采用得CMOS感光元件。成像方面:在相同像素下CCD得成像通透性、明锐度都很好,色彩还原、曝光可以保证基本准确。而CMOS得产品往往通透性一般,对实物得色彩还原能力偏弱,曝光也都不太好,由于自身物理特性得原因,CMOS得成像质量与CCD还就是有一定距离得。但由于低廉得价格以及高度得整合性,因此在摄像头领域还就是得到了广泛得应用 工作原理:为了方便大家理解,我们拿人得眼睛来打个比方。当光线照射景物,景物上得光线反射通过人得晶状体聚焦,在视网膜上就可以形成图像,然后视网膜得神经感知到图像将信息传到大脑,我们就能瞧见东西了。摄像头成像得原理与这个过程非常相似,光线照射景物,景物上得光线反射通过镜头聚焦,图像传感器就会感知到图像。 具体部分就是这样得,摄像头按一定得分辨率,以隔行扫描得方式采集图像上得点,当扫描到某点时,就通过图像传感芯片将该点处图像得灰度转换成与灰度一一对应得电压值,然后将此电压值通过视频信号端输出。如图1所示,摄像头连续地扫描图像上得一行,则输出就就是

基于摄像头的图像采集与处理应用

基于摄像头的图像采集与处理应用 1、摄像头工作原理 图像传感器,是组成数字摄像头的重要组成部分。根据元件的材料不同,可分为CCD (Charge Coupled Device,电荷耦合元件)和CMOS(Complementary Metal-Oxide Semiconductor,金属氧化物半导体元件)两大类。 电荷藕合器件图像传感器CCD(Charge Coupled Device),它使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部的闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机,并借助于计算机的处理手段,根据需要和想像来修改图像。CCD由许多感光单位组成,通常以百万像素为单位。当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有的感光单位所产生的信号加在一起,就构成了一幅完整的画面。 互补性氧化金属半导体CMOS(Complementary Metal-Oxide Semiconductor)和CCD一样同为在图像传感器中可记录光线变化的半导体。CMOS主要是利用硅和锗这两种元素所做成的半导体,使其在CMOS上共存着带N(带–电)和P(带+电)级的半导体,这两个互补效应所产生的电流即可被处理芯片纪录和解读成影像。然而,CMOS的缺点就是太容易出现杂点, 这主要是因为早期的设计使CMOS在处理快速变化的影像时,由于电流变化过于频繁而会产生过热的现象。 CCD和CMOS在制造上的主要区别是CCD是集成在半导体单晶材料上,而CMOS是集成在被称做金属氧化物的半导体材料上,工作原理没有本质的区别。CCD制造工艺较复杂,采用CCD的摄像头价格都会相对比较贵。事实上经过技术改造,目前CCD和CMOS的实际效果的差距已经减小了不少。而且CMOS的制造成本和功耗都要低于CCD不少,所以很多摄像头生产厂商采用的CMOS感光元件。成像方面:在相同像素下CCD的成像通透性、明锐度都很好,色彩还原、曝光可以保证基本准确。而CMOS的产品往往通透性一般,对实物的色彩还原能力偏弱,曝光也都不太好,由于自身物理特性的原因,CMOS的成像质量和CCD还是有一定距离的。但由于低廉的价格以及高度的整合性,因此在摄像头领域还是得到了广泛的应用 工作原理:为了方便大家理解,我们拿人的眼睛来打个比方。当光线照射景物,景物上的光线反射通过人的晶状体聚焦,在视网膜上就可以形成图像,然后视网膜的神经感知到图像将信息传到大脑,我们就能看见东西了。摄像头成像的原理和这个过程非常相似,光线照射景物,景物上的光线反射通过镜头聚焦,图像传感器就会感知到图像。 具体部分是这样的,摄像头按一定的分辨率,以隔行扫描的方式采集图像上的点,当扫描到某点时,就通过图像传感芯片将该点处图像的灰度转换成与灰度一一对应的电压值,然后将此电压值通过视频信号端输出。如图1所示,摄像头连续地扫描图像上的一行,则输出

数字图像采集与处理

1. 图像处理过程:摄像机产生一个对应于物体的光学图像,显影后的胶片上形成对应于 光学图像的负像。胶片在数字化器的光敏面上形成一个光学图像,由它形成输入数字图像,再经过6次转换得到输出图像。每一步都可能产生退化。 2. 图像采集:利用采集装置获取数字图像。采集装置包括:光敏感器件、扫描系统和模/数转换装置。 3. 采样:图像在空间上的离散化称为采样(或:图像数字化设备把图像划分为若干图像元素(像素)并给出它们的地址)量化:把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化(或:度量每一像素的灰度,并把连续的度量结果量化为整数) 4. 数字化设备:(1)采样孔:使数字化设备能够单独地观测特定的图像元素而不受图像其他部分的影响。(2)图像扫描机构:使采样孔按照预先确定的方式在图像上移动,从而按顺序观测每一个像素。(3)光传感器:通过采样检测图像的每一像素的亮度,通常采用CCD阵列。(4)量化器:将传感器输出的连续量转化为整数值。典型的量化器是A/D转换电路,它产生一个与输入电压或电流成比例的数值。(5)输出存储装置:将量化器产生的灰度值按适当格式存储起来,以用于计算机后续处理。 5. 采样孔的大小和相邻像素的间距(采样间隔)是两个重要的性能指标 6. 位图与矢量图区别:(1)位图由像素构成,矢量图由对象构成(2)

点位图受到像素和分辨率的制约,而矢量图形不存在这些制约(3)位图修改麻烦,矢量图形修改随心所欲(4)位图难以重复使用,矢量图形可以随意重复使用(5)位图效果丰富,矢量图形效果单调机械 7. 位图文件常见的文件扩展名为BMP、GIF(图形交换文件格式)、PCX、PSD、PCD、TIF(标记图像文件格式)、JPG(联合图像专家组)等。矢量图文件的扩展名为CDR、AI 或3DS 8. 辐射照度:如果某一表面被辐射体辐射,为表示B点辐射的强弱,在B点取微小面积元dA,它所接收的辐射通量为dΦe,则dΦe与dA之比就称为辐射照度。即表面上一点的辐射照度是入射在该面积元上的辐射通量dΦe除以该面面积元dA之商。单位为瓦特每平方米(W/m2)。 9. 光照度:单位受照面积接受的光通量,定义为光照面的光照度,用E表示。即光照度表示为:E=dφ/dA。光照度的单位为勒克斯(lx) 10. CIEl931—XYZ色度系统:XYZ色度系统是建立在RGB色度系统基础之上的.由三个虚设的三刺激值X、Y、Z来代替R,G,B,而组成一个新的色度系统。1931CIE色度系统使用了三个假想的三原色,记为X,Y,Z。对其要求是:用该假想三原色匹配任何颜色时,三刺激值X,Y,Z均为正;颜色的亮度仅由Y表示,而色度由X,Y,Z共同决定。 11. 图形是指由外部轮廓线条构成的矢量图(FROM Baidu) 12. 色差就是两种颜色之间的差别。显色指数是衡量一光源性能好坏

图像采集与处理在智能车系统中的应用

图像采集与处理在智能车系统中的应用 摘要:在智能车系统的设计中,路径识别的准确性直接影响到智能车能否正确地行驶。以摄像头作为路径识别的传感器能够有效地提高智能车的前瞻性,但原始图像的数据量相对单片机来说是比较庞大的。本文采用了硬件分频的方法对图像数据进行了有效的压缩,并对图像对进行二值化和去除噪声的预处理。大量的实验结果表明,该方案能够实现路径识别的正确性与快速性。 关键词:智能车;图像采集;图像二值化;SAA7111系统概述 智能小车系统主要由路径识别、速度采集、转向控制及车速控制等功能模块组成。路径识别功能采用CMOS摄像头,将其模拟量的视频信号进行视频解码后,经过二值化处理并转化为18×90pix的图像数据后送入MCU进行处理:转向控制采用基于模糊控制算法进行调节;而车速控制采用的是经典PID算法,通过对赛道不同形状的判断结果,设定不同的给定速度。该系统以50Hz的频率通过不断地采集实时路况信息和速度,实现对整个系统的闭环控制,如图1所示。

智能小车的图像采集与存储 图像采集模块设计 CMOS摄像头正常供电后,便可输出原始图像的信号波形,它是PAL制式的模拟信号,包含行同步、行消隐、场同步、场消隐等信号如图2所示。但该形式的信号并不能被CPU 直接使用,需要加入视频解码芯片如SAA7111,它的功能是将摄像头输出的模拟信号转化为数字信号,同时产生各种同步信号,CPU利用此同步信号将图像的数字信号存储在一个外部FIFO芯片AL422中,这便构成了基本的路径检测模块,如图3所示。 图像数据存储 SAA7111是飞利浦公司一款增强型视频输入处理器芯片,常应用在嵌入式视频应用的高度集成的电路中。工作时,模拟视频图像从SAA7111的4个输入端口中的一个端口输入,经模拟处理后,一路通过缓冲器从模拟输出端输出用于监视,另一路经A/D后产生数字色度信号、亮度信号,分别进行亮度信号处理、色度信号处理。亮度信号处理的结果,一路送到色度信号处理器进行综合处理,产生Y、U、V信号,经格式化后从VPO输出,输出的信号格式有422YUV

图像采集及处理方法简

图像采集传感器可分为CCD型和CMOS型,其中CMOS型摄像头工艺简单,价格便宜,对于识别智能车赛道这样的黑白二值图像能力足够; 假设每场采样40行图像数据,为了方便软件程序的编写,可以均匀地采样288行视频信号中的40行,即每隔7个有效行采集一行。例如采样其中的第7行、第14行、第21行、…、第273行、第280行,即采样该场信号的第29行、第36行、第43行、…、第295行、第302行(每场开始的前22行视频为场消隐信号)。法1、二值化算法的思路是:设定一个阈值valve,对于视频信号矩阵中的每一行,从左至右比较各像素值和阈值的大小,若像素值大于或等于阈值,则判定该像素对应的是白色赛道;反之,则判定对应的是黑色的目标引导线。记下第一次和最后一次出现像素值小于阈值时的像素点的列号,算出两者的平均值,以此作为该行上目标引导线的位置。 该算法的思想简单,但是这种提取算法的鲁棒性较差,当拍摄图像中只有目标引导线一条黑线时,尚能准确提取出该目标引导线,但当光强有大幅度变化或图像中出现其他黑色图像的干扰时,该算法提取的位置就有可能与目标引导线的实际位置偏离较大。 法2、采用逐行搜索的算法,首先找到从白色像素到黑色像素的下降沿和从黑色像素到白色像素的上升沿,然后计算上升沿和下降沿的位置差,如果大于一定的标准值,即认为找到了黑线,并可求平均值算出黑线的中心点。 至于上升沿、下降沿的检测,可以通过上上次采样数与这次采样数的差值的绝对值是否大于一个阈值来判断,如果“是”且差值为负,则为上升沿;如果“是”且差值为正,则为下降沿。 这里,阀值可以根据经验设定,基本上介于30~46之间(当A/D模块的参考电压为2.5 V时),也可以采用全局自适应法设定,每次采样后首先都遍历一次图像,得到图像灰度值的平均值,然后用这个平均值乘以一个调试系数即可得到所要的阈值。 法3、第一次发帖说得不对的地方请谅解! 此贴发表的目的是希望大家能够互相讨论下赛道的数据识别与处理和控制,本人没啥能力,就会写写程序而已,第一次玩智能车,好多地方都做得不是很好,我加了几个群,发了半天,没一个人闹句话,可能大家都忙,希望在这里大家能够积极探讨。 我先发表一下我前几天对图像处理,赛道分析和舵机控制的心得,效果一般所以想和大家好好探讨有没有一种更有效的处理方法。我用的方法比较笨,就是大家通常所说的两点求斜率的办法,处理赛道数据的基本方法是,一行从左往右扫描通过连

摄像头图像采集及处理

摄像头采集赛道黑线信息是本系统赛道信息获取的主要途径,本章将从摄像头工作原理、图像采样电路设计、和采样程序流程图三个方面进行介绍。 8.1 摄像头工作原理摄像头常分为彩色和黑白两种摄像头,主要工作原理是:按一定的分辨率,以隔行扫描的方式采样图像上的点,当扫描到某点时,就通过图像传感芯片将该点处图像的灰度转换成与灰度成一一对应关系的电压值,然后将此电压值通过视频信号端输出。 在示波器上观察可知摄像头信号如图8.1所示。摄像头连续地扫描图像上的一行,就输出一段连续的电压视频信号,该电压信号的高低起伏正反映了该行图像的灰度变化情况。当扫描完一行,视频信号端就输出一低于最低视频信号电压的电平(如0.3V),并保持一段时间。这样相当于,紧接着每行图像对应的电压信号之后会有一个电压“凹槽”,此“凹槽”叫做行同步脉冲,它是扫描换行的标志。然后,跳过一行后(因为摄像头是隔行扫描的方式),开始扫描新的一行,如此下去,直到扫描完该场的视频信号,接着就会出现一段场消隐区。此区中有若干个复合消隐脉冲(简称消隐脉冲),在这些消隐脉冲中,有个脉冲,它远宽于(即持续时间长于)其他的消隐脉冲,该消隐脉冲又称为场同步脉冲,它是扫描换场的标志。场同步脉冲标志着新的一场的到来,不过,场消隐区恰好跨在上一场的结尾部分和下一场的开始部分,得等场消隐区过去,下一场的视频信号才真正到来。摄像头每秒扫描25 幅图像,每幅又分奇、偶两场,先奇场后偶场,故每秒扫描50 场图像。奇场时只扫描图像中的奇数行,偶场时则只扫描偶数行。 8.2 图像采样电路设计在本次比赛中赛道仅由黑白两色组成,为了获得赛道特征,只需提取探测画面的灰度信息,而不必提取其色彩信息,所以本设计中采用黑白摄像头。型号为: XB-2001B,分辨率为320*240。为了有效地获取摄像头的视频信号,我们采用LM1881提取行同步脉冲,消隐脉冲和场同步脉冲,电路原理图8.2所示。将视频信号通过一个电容接至LM1881的2脚,即可得到控制单片机进行A/D采样的控制信号行同步HS与奇偶场同步号 ODD/EVEN。

相关文档
最新文档