单效降膜式蒸发器的设计

单效降膜式蒸发器的设计
单效降膜式蒸发器的设计

食品工程原理

课程设计说明书单效降膜式蒸发器的设计

姓名:

学号:

班级:

指导老师:

年月日

目录

1.前言

1.1 概述

1.2蒸发器选型

2.单效蒸发工艺计算

2.1 物料衡算

2.2 热量衡算

2.3 传热面积计算

2.4 计算结果列表

3.蒸发器主体工艺设计

3.1 加热管的选择和管数的初步估计

3.1.1 加热管的选择和管数的初步估计

3.1.2 循环管的选择

3.1.3 加热室直径的确定

3.1.4 分离室直径与高度的确定

3.2 接管尺寸的确定

3.3 进料方式及加热管排布方式的确定

3.3.1进料方式的确定

3.3.2加热管排布方式的确定

3.4 仪表、视镜与人孔的确定

3.5 蒸发器主要部件规格列表

4.蒸发装置的辅助设备

4.1 气液分离器

4.2 蒸汽冷凝器

5.结语

致谢

附表

参考文献

任务书一、设计意义

二、蒸发工艺设计计算

(1)蒸浓液浓度计算

多效蒸发的工艺计算的主要依据是物料衡算和、热量衡算及传热速率方程。计算的主要项目有:加热蒸气(生蒸气)的消耗量、各效溶剂蒸发量以及各效的传热面积。计算的已知参数有:料液的流量、温度和浓度,最终完成液的浓度,加热蒸气的压强和冷凝器中的压强等。

蒸发器的设计计算步骤多效蒸发的计算一般采用试算法。

①根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸气压强及冷凝器的压强),蒸发器的形式、流程和效数。

②根据生产经验数据,初步估计各效蒸发量和各效完成液的浓度。

③根据经验假设蒸气通过各效的压强降相等,估算个效溶液沸点和有效总温差。

④根据蒸发器的焓衡算,求各效的蒸发量和传热量。 ⑤根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤③至⑤,直到所求得各效传热面积相等(或满足预先给出的精度要求)为止。

43028*10*10*0.542735/300*24*0.13

X 13%

W F*142735*131624/X 50%

F kg h

kg h

===-=-=蒸发水量:()()(2)溶液沸点和有效温度差的确定

由二次蒸汽压强从手册中查得相应的二次蒸汽温度和汽化潜热列与下表中:

单效蒸发中的有效传热总温度差可用下式计算:

有效总温度差∑∑?--=?)(/1K T T

t

式中

t ?∑-----有效总温度差,为各效有效温度差之和,℃。

1T -----第一效加热蒸气的温度,℃。

/K T -----冷凝器操作压强下二次蒸气的饱和温度,℃。

?∑-------总的温度差损失,为各效温度差损失之和,℃,

?∑=?∑/

+?∑//

+?

∑///

式中

?∑ /

--- 由于溶液的蒸汽压下降而引起的温度差损失,℃,

?∑//

---由于蒸发器溶液的静压强而引起的温度差损失,℃, ?

∑///

----由于管道流体阻力产生压强降而引起的温度差损失,℃,

①由于溶液的蒸汽压下降所引起的温度差损失

22

'01(273.260)0.01620.01620.764

2355

0.764*1.82 1.37T f r C

+===?==

②由于溶液静压强所因引起的温度差损失

由于本设计采用降膜式蒸发器,无静液压效应,所以 ''?=0 ③由经验不计流体阻力产生压降所引起的温度差损失

二次蒸汽由分离器到冷凝器的流动中,在管道内会产生阻力损失,也可能会散失热量了,这些能量消耗造成的温度损失,记作'''

?。'''

?受管道长度、直径和保温情况等影响。计算时,一般取'''

?=0.5~1.5K 。 本设计取'''

?=1.0K

根据以估算的二次蒸汽压强1t '

及温度差损失△,即可由下式估算溶液各效溶液的沸点t ,所以总的温度差损失为

∑?=∑?

/

+∑?''+ ∑?'''=1.37+1=2.37℃

由手册可查得500KPa 饱和蒸汽压的温度为151.7℃,汽化热为2113.2KJ/kg

1151.760 2.3789.33m s t T T ?=--?=--=℃

(3)加热蒸汽消耗量的计算

加热蒸汽量可通过热量衡算求得,对图1做热量衡算:

01()c l DH Fh WH F W h Dh Q +=+-++

式中:

H------加热蒸汽的焓,kJ/kg;

'H ------二次蒸汽的焓,kJ/kg;

0h -------原料液的焓,kJ/kg;

1h ------完成液的焓,kJ/kg;

c h ------- 加热室排除冷凝液的焓,kJ/kg;

Q --------蒸发器的热负荷或传热速率,kJ/kg;

L Q -------热损失,可取Q 的某一百分数,kJ; 01,c c -------分别为原料、完成液的比热,kJ(/kg. ℃).

考虑溶液浓缩不大,将'

H 取1t

下饱和蒸汽的焓,则

010()v L

s

FC t t Wr Q D r -++=

式中,s v r r ---分别为加热蒸汽和二次蒸汽的汽化潜热,kJ/kg. 不计热量损失,则

010()31624*235542735*3.75*(6025)

37896.8/2113.5v s FC t t Wr D kg h

r -++-=

==

(4)蒸发器的传热面积的计算 传热面积方程为

Q

S t =

?

式中 Q---换热热流量,W 。 K----传热系数,W/(m 2·℃). t ?-传热温度差,℃ S-------传热面积,m 2

3737896.8*2113.2*10/3600 2.225*10s Q Dr W ===

89.33m t ?=℃

降膜式蒸发器的总传热系数为1200~3500 W/(m 2·℃),取K=2000 W/(m 2·℃)

7

22.225*10124()2000*89.33

m Q S m K t ===?

为安全计取s=124*1.18=146m 2 计算结果列表:

三、蒸发器工艺尺寸计算

我们选取的单效外热式循环管式蒸发器的计算方法如下。 (1) 加热管的选择和管数的初步估计

蒸发器的加热管通常选用38*2.5mm 无缝钢管。

加热管的长度一般为0.6~2m ,但也有选用2m 以上的管子。管子长度的选择应根据溶液结垢后的难以程度、溶液的起泡性和厂房的高度等因素来考虑,易结垢和易起泡沫溶液 的蒸发易选用短管。根据我们的设计任务和溶液性质,我们选用以下的管子。

可根据经验我们选取:L=3m ,57 3.5mm φ?

可以根据加热管的规格与长度初步估计所需的管子数n’,

'30146

281(0.1) 3.145710(30.1)

S n d L π-?

=

==-??-(根) 式中:

S----蒸发器的传热面积,m 2,由前面的工艺计算决定(优化后的面积); d 0----加热管外径,m ; L---加热管长度,m ;

因加热管固定在管板上,考虑管板厚度所占据的传热面积,则计算n’时的管长应用(L-0.1)m.

(2)复核总传热系数

馆内沸腾传热系数a i 按进口条件算。桃汁的粘度取L μ=0.7*10-3Pa ·S

342735

3843.14*0.05*281*0.7*10*3600

L

i L M

F d n μπμ-=

==

(3)加热室直径及加热管数目的确定

加热室的内径取决于加热管和循环管的规格、数目及在管板撒谎能够的排列方式。 加热管在管板上的排列方式有三角形排列、正方形排列、同心圆排列。根据我们的数据表加以比较我们选用三角形排列式。

管心距t 为相邻两管中心线之间的距离,t 一般为加热管外径的1.25~ 1.5倍,目前在换热器设计中,管心距的数据已经标准化,只要确定管子规格,相应的管心距则是定值。我们选用的设计管心距是:t 70mm =

加热室内径和加热管数采用作图法,亦可采用计算的方法。以三角形排列说明计算过程。 一根管子在管板上按正三角形排列时所占据的管板面积:

2

2886.0sina t t F m p ==

式中:a=60;t--管心距,m;

当加热管数为n 时,在管板上占据的总面积

32

212810.866(7010) 1.360.9

mp

nF F m ?-???===

式中:F 1--管数为n 时在管板上占据的总面积, φ—管板利用系数,φ=0.7-0.9;

当循环管直径为D 1时,在管板上占据的总面积为

2

332

12(2) 3.14(5301027010)

0.3524

4D t F m π--+??+??=

==

式中:F 2--循环管占据管板的总面积, 2

m ;

2t —外加热循环管与加热管之间的最小距离,m. 设加热室的直径

0D ,则:

20124

D F F π

=+=1.36+0.352=1.712m

由此求得D 0=1712mm ,经圆整取D 0=1700mm, 所以壳体内径为1700m ,厚度为10.0mm. (4)分离室直径与高度的确定

分离室的直径与高度取决于分离室的体积,而分离室的体积又与二次蒸汽的体积流量及蒸发体积强度有关。

分离室体积V 的计算式为:3600**W

V U ρ=

式中:

V-----分离室的体积,m 3; W-----某效蒸发器的二次蒸汽量,kg/h ; P-----某效蒸发器二次蒸汽量,Kg/m 3; U-----蒸发体积强度,m 3/(m 3*s).

即每立方米分离室体积每秒产生的二次蒸汽量。一般用允许值为U=1.1~1.5 m 3/(m 3*s) 根据由蒸发器工艺计算中得到的各效二次蒸汽量,再从蒸发体积强度U 的数值范围内选取一个值,即可由上式算出分离室的体积。

一般说来,各效的二次蒸汽量不相同,其密度也不相同,按上式计算得到的分离室体积也不会相同,通常末效体积最大。为方便起见,各效分离室的尺寸可取一致。分离室体积宜取其中较

大者。确定了分离室的体积,其高度与直径符合2**4

V D H

π

=

关系,确定高度与直径应考虑一

下原则:

(1)分离室的高度与直径之比H/D=1~2。对于中央循环管式蒸发器,其分离室一般不能小于1.8m ,以保证足够的雾沫分离高度。分离室的直径也不能太少,否则二次蒸汽流速过大,导致雾沫夹带现象严重。

(2) 在条件允许的情况下,分离室的直径尽量与加热室相同,这样可使结构简单制造方便。 (3)高度和直径都适于施工现场的安放。现取分离室中U=1.2m 3/(m 3*s );

3

31624

56360036000.131 1.2W V m U ρ=

==??

取分离室的高度H=5.4m 则D=3.6m

(5)接管尺寸的确定

流体进出口的内径按下式计算

d =

式中

s V -----流体的体积流量 m3/s

U--------流体的适宜流速 m/s ,

估算出内径后,应从管规格表格中选用相近的标准管。 取流体的流速为1.0m/s ,

00.057D m =

==

所以取ф57X3.5mm 规格管。

四、蒸发装置的辅助设备

蒸发操作时,二次蒸汽中夹带大量的液体,虽在分离室得到初步的分离,但是为了防止损失有用的产品或防止污染冷凝液,还需设置气液分离器,以使雾沫中的液体聚集并与二次蒸汽分离,故气液分离器或除沫器。其类型很多,我们选择惯性式除沫器,起工作原理是利用带有液滴的二次蒸汽在突然改变运动方向时,液滴因惯性作用而与蒸汽分离。取流体的流速为45m/s 在惯性式分离器的主要尺寸可按下列关系确定:D 0=D 1;

D 1:D 2:D 3=1:1.5:2 H=D 3 h=0.4~0.5D 1 D 0--------二次蒸汽的管径,m D 1--------除沫器内管的直径,m D 2--------除沫器外管的直径,m D 3--------除沫器外壳的直径,m H---------除沫器的总高度,m

h---------除沫器内管顶部与器顶的距离,m

00.305D m =

==则取相近标准管子ф299X7.5mm ,则

D 0=299mm D 1=299mm D 2=448.5mm D 3=598mm H=598mm h=135mm

选取二次蒸汽流出管: ф299X7.5mm 除雾器内管: ф530X9.0mm 除雾器外罩管:ф630X9.0mm

五、工艺计算汇总表

六、课程设计心得

时光荏苒,白驹过隙。转眼间,为期两周的食品工程原理课程设计就已经接近尾声了。回首望去,心情格外的开阔,感慨颇多。我忘不了和老师以及同学们一起度过的日日夜夜,忘不了我们组的几个人因为一个数据的来源而吵的面红耳赤,更忘不了看到一个个成果的喜悦………

首先,要感谢老师能给我们提供一个进行实践锻炼的舞台。以前我们学过的知识只不过是纸上谈兵,而食品工程原理课程设计却是以门综合性课程,它不仅要求我们对化工设计有基础的了解,而且还要对化工原理、化工机械基础、化工热力学等一系列知识能够进行综合的运用,同时也对计算机软件的应用水平提出了较高的要求。

这次设计,我不仅巩固了食品工程原理及相关知识,而且增强了团队的协作精神,同时也磨炼了意志。相信这次课程设计会让我们更加注意理论与实践的结合,成为我们人生中一笔宝贵的财富!

七、参考文献:

1. 柴城敬,刘国维,李阿娜,编.《化工原理课程设计》.天津科学技术出版社.

2. 崔鹏,魏凤玉,编.《化工原理》,合肥工业大学出版社.

3. 国家医药管理局上海医药设计院编.《化工工艺设计手册》上册,第一版(修订),化学工业出版社.

4. 时均,汪家鼎,余国琮,陈敏恒主编.《化学工程手册》第二版,上册第九篇蒸发,.化学工业出版社.

5. 时钧,汪家鼎,余国综,陈敏恒.化学工程,第二版(上卷),化学工业出版社,199

6.

6. 梁虎,王黎,朱平.多效蒸发系统优化设计研究.化学工程,199

7.

7.华南工学院化工原理教研组.化工过程设备设计.华南工学院出版社,1987.

三效降膜蒸发器说明书

目录 一、产品简介. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 二、设备特点. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 三、技术参数. . . . . . . . . . . . . . . . . . . . . . . . . . . 2 四、工作原理. . . . . . . . . . . . . . . . . . . . . . . . . . . 2 五、操作规程. . . . . . . . . . . . . . . . . . . . . . . . . . . 3 六、维护与保养. . . . . . . . . . . . . . . . . . . . . . . . . 5 七、工艺流程图. . . . . . . . . . . . . . . . . . . . . . . . . 6 一、产品简介 本设备广泛适用于葡萄糖、淀粉糖、低聚糖、饴糖、山梨醇、

广泛用于味精、酒精、鱼粉等行业的废液处理。 该设备在真空低温条件下进行连续操作,具有蒸发能力高、节能降耗、运行费用低、能最大地保持被处理物料原有的色、香、味和成份。在食品、医药、粮食深加工、饮料、轻工、环保、化工等许多行业均得到广泛的应用。 BNJM03型蒸发器(即三效降膜蒸发器)可以根据不同被处理物料的特点,设计成不同的工艺流程,也可根据不同用户要求配备自动化控制系统。 二、设备特点 A、接触物料材质:不锈钢SUS304。 B、设备由一、二、三效加热器,一、二、三效蒸发分离器、列管式冷凝器、热压泵、真空泵、物料泵、平衡罐、电控箱、工作台及所有管路、阀门组成。 C、蒸发温度低,部分二次蒸汽经喷射式热压泵重新吸入一效加热器,热量得到充分利用,蒸发温度相对较低。 D、浓缩比大,降膜式蒸发,使粘度较大的料液容易流动蒸发,不容易结垢,浓缩时间短,浓缩比可达到1:5。 E、电源、各进/出物料泵、真空泵等控制及真空系统仪表及温度仪表全集中于操作箱控制盘控制,实现自动化操作生产。三、技术参数 名称:三效降膜式蒸发器 设备配臵清单:一、二、三效加热器、蒸发器、送料泵,进料

降膜蒸发器的设计

齐齐哈尔大学 蒸发水量为2000的真空降膜蒸发器 题目蒸发水量为2000的真空降膜蒸发器 学院机电工程学院 专业班级过控133 学生姓名戴蒙龙 指导教师张宏斌 成绩 2016年 12月 20日

目录 摘要............................................................ I II Absract............................................................ I V 第1章蒸发器的概述. (1) 1.1蒸发器的简介 (1) 1.2蒸发器的分类 (1) 1.3蒸发器的类型及特点、 (2) 1.4蒸发器的维护 (5) 第2章蒸发器的确定 (6) 2.1 设计题目 (6) 2.2 设计条件: (6) 2.3 设计要求: (6) 2.4 设计方案的确定 (6) 第3章换热面积计算 (8) 3.1.进料量 (8) 3.2.加热面积初算 (8) 3.2.1估算各效浓度: (8) 3.2.2沸点的初算 (8) 3.2.3计算两效蒸发水量,及加热蒸汽的消耗量 (10) 3.3.重算两效传热面积 (11) 3.3.1.第一次重算 (11) 第4章蒸发器主要工艺尺寸的计算 (13) 4.1加热室 (13) 4.2分离室 (14) 4.3其他工件尺寸 (15) 第5章强度校核 (16) 5.1 筒体 (16) 5.2前端管箱 (17)

参考文献 (20) 致谢 (22)

摘要 蒸发就是采用加热的方法,使溶液中的发挥性溶剂在沸腾状态下部分气化并将其移除,从而提高溶液浓度的一种单元操作,蒸发操作是一个使溶液中的挥发性溶剂与不挥发性溶质分离的过程。蒸发设备称为蒸发器,蒸发操作的热源,一般为饱和蒸汽。蒸发在操作广泛应于化学、轻工、食品、制药等工业中。工业上被蒸发处理的溶液大多数为水溶液。本次设计的装置为蒸发水量为2000降膜蒸发器,浓缩物质为牛奶。降膜蒸发器除适用于热敏性溶液外,还可用于蒸发浓度较高的液体。 关键词:蒸发;换热;高效;使用广泛

四效降膜蒸发器设计参数及操作规程

1. 规格、参数、性能 1.1 蒸发器规格、型号 1.1.1 蒸发器名称、型号:RHJM-6000四效降膜蒸发器 1.1.2 蒸发水量规格:6000kg/h 1.2 蒸发器工艺参数 1.2.1 总物料流量:10000 kg/hr 1.2.2 总蒸发速率:6000 kg/hr 1.2.3 物料流程:四效→一效→二效→三效→出料 1.2.4 蒸汽流程:一效→二效→三效→四效→冷凝器 1.2.5 各效传热面积:一效(140m2)二效(100m2)三效(140m2)四效(100m2)1.3 蒸发器性能 1.3.1 物料:糖浆 1.3.2 物料进口:进四效 数量:10000kg/hr 温度:50-60℃ 浓度:30-32%(DS) 1.3.3 物料出口:从三效出料 数量:4000kg/hr 温度:65-70℃ 浓度:75-80%(DS) 蒸汽消耗量:1800kg/h (0.6MPa) 冷却水从35℃至43℃150m3/h 电能(安装功率)29kw

电流380/220v, 50赫兹,3相 设备的布置四效蒸发器、冷凝器 温度一效二效三效四效 加热温度℃104.5 90 76 60 蒸汽温度℃91 77 61 43 2. 工艺说明 为了更好地理解请利用工艺流程图 为了得到正确的结果,你应该了解现场安装,每条工艺线。 如果出现故障或紧急情况,必须非常熟悉和组件的物理位置和管道的工程布置。 2.1 物料 将要浓缩的物料输送到进料罐,通过进料泵将物料经过流量计打到四效上端管板上的分布器以保证进入每一根加热管的液量相同。 液膜在管子顶部向下流动过程中加速,由于重力及液体形成的蒸汽作用下流速增加,蒸发器从外部加热、水蒸汽及部分浓缩的物料离开蒸发器,大部分液体存储在下部的料仓并由此离开,少量液体及水蒸汽通过连接管道运到分离器蒸汽与液体在此分离,留存在顶部的水蒸汽进入冷凝器冷凝。从第四效蒸发器出来的物料通过四效出料泵送到一效管板上的分布器,液膜在向管子底部流动过程中加速,由于重力及液体形成的蒸汽作用下流速增加,蒸发器从外部加热、水蒸汽及部分浓缩的物料离开蒸发器,大部分液体存储在下部的料仓并由此离开,少量液体及水蒸汽通过连接管道输送到分离器,蒸汽与液体在此分离,留存在顶部的水蒸汽进入二效加热室或者通过热泵再次进入一效加热室,从第一效蒸发器出来的物料通过一效物料转移泵输送到二效管板上的分布器。依次类推,物料经过三效蒸发器出料,合格物料通过出料螺杆泵输送到成品罐,不合格物料打回流至蒸发前罐。 蒸发前储罐—→Ⅳ效—→Ⅰ效—→Ⅱ效—→Ⅲ效—→出料

T单效蒸发器使用说明书样本

资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。 目录 一、用途、适用范围及技术参数 (2) 二、主要结构、工作原理及特点 (2) 三、电气原理 (4) 四、安装与调试 (4) 五、设备的操作规程 (5) 六、常见故障及原因 (6) 七、附件

资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。 一、用途使用范围及技术参数 1、本套设备主要用于提高鲜奶干物质含量,并可使牛奶脱膻, 为了降低蒸发温度,控制蛋白变化,鲜奶在真空状态下瞬 间蒸发,不破坏牛奶任何成分及添加物质。整套设备操作 简单,运行平稳,可实现就地清洗。 手控操作系统----由手测浓缩后比重,进而调整进汽压力, 控制浓度。 2、技术参数: —物料处理量≥10000k g/h —水分蒸发量≥1000k g/h —进料温度:≥60℃ —蒸发温度:55℃~60℃ —进料浓度:11.5% —出料浓度:12.7% —蒸汽耗量:≥800k g/h —蒸汽压力:≥0.6M p a —耗电:9k w/h —冷凝器供冷却水温度:≤35℃ —冷凝器供冷却量:≥40T/H 二、主要结构、工作原理及特点 1、主要结构

资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。 本设备主要由降膜闪蒸室、分离室、冷凝室、西门子水环式真空泵、仿进口双机械密封卫生泵、连接管道及电气控制柜等组成。所有设备采用S U S304-2B制造 蒸发器1台蒸发器有可拆卸的顶盖,有进料管,在顶盖下面,是物料分配系统,可将物料均匀分配到每根蒸发管,加热室底部装有视镜,蒸发器底部装有人孔,出料口有防涡流结构。 ●分离器1台分离器采用旋涡切向进口结构,分离效率高,并配备C I P清洗装置。 ●出料泵1台仿进口泵,流量20T/H,扬程28M功率为4K W。将物料从蒸发器中排出,选用双端机械密封卫生泵。 ●冷凝器1台冷凝器为列管式冷凝器, 直立安装,在生产中绝对不产生二次污染,能严格保证产品质量。 ●真空泵1台西门子产品。2.3K W ●冷凝水泵1台流量10T/H,扬程20M功率为 2.2K W。 ●管路、阀门、管件用于连接上述部件、输送物料、冷凝水以及不凝性气体均采用304不锈钢管件及阀门。包括上面带有

四效葡萄糖酸钠蒸发器作业指导书

1、蒸发岗位工作目的:通过蒸发浓缩,使葡萄糖酸钠溶液达到结晶所需浓度。 2、主要蒸发设备的工作原理 一、四效降膜式蒸发器的工作原理: 物料经分配装制均匀分布于各蒸发管中,物料在自身重力和二次蒸汽的作用下成膜状自上而下地流动,同时与蒸发管外壁的加热蒸汽发生热交换而蒸发,使物料得到浓缩。 二、列管冷凝器的工作原理: 列管冷凝器由筒体及列管组成,当高温蒸汽在壳体内遇到低温列管壁时,便凝结成冷凝水,体积骤然减小,使壳体内形成真空。 3三效降膜蒸发器操作 一、流程说明 1、物料走向(本流程为四效顺流工艺): 原料罐—进料泵—流量计-预热器—一效蒸发器—一效分离器—一效出料泵—二效蒸发器—二效分离—二效出料泵—三效蒸发器—三效分离器—三效出料泵-四效加热器-四效结晶器-溢效出料—结晶罐—分离—干燥 2、冷凝水走向: 生蒸汽→热泵→一效加热器(预热器)→二效加热器→三效加热器→四效加热器→冷却器 3、蒸汽流向: 加热介质利用生蒸汽与一效蒸发后产生的一部分二次蒸汽混合,通过高效热泵而给 一效加热,另一部分作为二效的加热热源,二效产生的二次蒸汽则给三效加热,三效产生 的二次蒸汽给四效、四效产生的蒸汽则进入冷凝器冷凝。 二、开机关准备工作 1、检查各运转设备油位,如缺润滑油及时添加。 2、手动盘转各运转设备应无卡阻现象。 3、开启泵冷却水进水阀,调节到适当流量,使各泵均有冷却水流出。 三、开机 1、通知循环水岗位开启冷却水泵,开启冷凝汽进水阀门及冷却水回水泵,使冷却水循环。 2、打开真空泵进水阀,开启真空泵,(在开启真空泵前将所有不凝汽门、冷凝水门关闭)。 3、完全打开进料泵阀,打开各效进料阀门,按顺序开启一效进料泵、二效进料泵、三效、四效循环泵,期间需保证各效有一定液位(通过视镜观察)以免产生气蚀现象。 4、待真空泵到正常值时,开启进料阀门向蒸发器内进料,一效蒸发器入料,待一效蒸发器视镜有液位后,开启二效出料泵向二效蒸发器入料,同时开启蒸汽阀门(缓缓开启)进汽蒸发,开启时应侧身,当Ⅱ效蒸发器有液位后,开启Ⅱ效出料泵向Ⅲ效入料,当Ⅲ效蒸发器有液位后,开启Ⅲ效循环泵泵。 5、当各效冷凝水视镜有冷凝水后,依次打Ⅰ开效、Ⅱ效、Ⅲ效冷凝水阀门,启动冷凝水泵打开泵出水阀门,调节阀门开度(注意:调节效Ⅲ冷凝水时应调节冷凝水泵出口阀门)使Ⅰ效、Ⅱ效、Ⅲ效冷凝水稳定在视镜1/2处。 6、调节Ⅰ、Ⅱ、Ⅲ效不凝汽上下阀门开度在0.5-3圈之间,使各效不凝汽既充分排出又不造成各效蒸汽过多损失。 7、料液浓度达到要求标准时开启溢流阀门、向结晶罐出料。 8、据生产实际情况,按所要求的真空度调整真空系统(含蒸汽管路及真空平衡管路)阀门。根据流量计读数按要求调整所有进出料阀门。根据平面液位计调整冷凝水管路阀门。 9、运行过程中不断检测三效、四效浓度,每小时取样一次并记录化验结果。 4 注意事项 正常开车注意事项 1、要及时检查出料浓度(每10min一次),当初料浓度有变化时,要及时调整进汽量与进 1

三效降膜蒸发器说明书讲解

目录 一、产品简 介. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 二、设备特 点. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 三、技术参 数. . . . . . . . . . . . . . . . . . . . . . . . . . . 2 四、工作原 理. . . . . . . . . . . . . . . . . . . . . . . . . . . 2 五、操作规 程. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

六、维护与保 养. . . . . . . . . . . . . . . . . . . . . . . . . 5 七、工艺流程 图. . . . . . . . . . . . . . . . . . . . . . . . . 6 一、产品简介 本设备广泛适用于葡萄糖、淀粉糖、低聚糖、饴糖、山梨醇、鲜奶、果汁、维C、麦芽糊精、化工、制药等水溶液的浓缩。并可广泛用于味精、酒精、鱼粉等行业的废液处理。 该设备在真空低温条件下进行连续操作,具有蒸发能力高、节能降耗、运行费用低、能最大地保持被处理物料原有的色、香、味和成份。在食品、医药、粮食深加工、饮料、轻工、环保、化工等许多行业均得到广泛的应用。 BNJM03型蒸发器(即三效降膜蒸发器)可以根据不同被处理物料的特点,设计成不同的工艺流程,也可根据不同用户要求配备自动化控制系统。 二、设备特点 A、接触物料材质:不锈钢SUS304。 B、设备由一、二、三效加热器,一、二、三效蒸发分离器、列管式冷凝器、热压泵、真空泵、物料泵、平衡罐、电控箱、工作台及所有管路、阀门组成。

管式降膜蒸发器技术说明

管式降膜蒸发站技术说明 1. 主要设备选型 1.1概述 本标书提供的蒸发器型式为管式降膜蒸发器,管式降膜蒸发器在食品、化工、海水淡化、造纸等行业早已是成熟产品,特别是造纸业由于管式降膜蒸发器的特点,目前在国际上早已形成主流,由于国内薄壁不锈钢管材的供应得到解决,今后管式降膜蒸发器将成为用户第一选择。 我公司从事蒸发研究与制造多年,积累了丰富的经验,同时吸收了国外管式降膜蒸发器设备设计、工艺设计先进的技术部分,已形成自己专有技术特点,已有多个成功运行的实例。 1.2设备结构及工作原理 管式降膜蒸发器由加热蒸发室、分配盘、汽液分离室、除雾器、循环管等部分构成。 加热蒸发室 加热蒸发室是由壳体、上下管板、隔板和加热管构成。壳体是根据工作压力按压力容器或常压容器设计,并考虑到在真空状态下受外压时壳体的稳定性。壳体、管子和管板的材料根据介质性质或使用要求,分为碳钢或不锈钢两种形式。加热蒸发室中心为内部循环管,其余部分为均匀分布的加热管,黑液由经内部循环管预热输送至上管板上部的配液盘,由配液盘均匀地分布在管板的管桥上,再沿管壁成膜状流下,同时进行传热蒸发。由于黑液经过中间循环管预热,缩短了预热时间,提高了蒸发效率,不易结垢。此外由于从黑液中蒸发出的蒸汽快速向下流动,将黑液液膜吹得更薄、流速更快,使传热热阻大大降低,传热膜系数更高。由于是液膜蒸发,降低了传热热阻,也没有由于静液位压力引起的沸点升高,故用于加热的有效温差提高。料液在管壁上形成的垢可以用高压水、机械方法、化学方法进行清洗。所以,管式降

膜蒸发器的传热系数和热效率均高于传统的蒸发器。 在对环境要求较高的场合,特别是硫酸盐法制浆,为解决冷凝水的后处理问题,将壳程作成带内部汽提的结构形式,将冷凝水分成轻、重污冷凝水,将重污冷凝水送汽提塔处理,既解决了环境污染,也减少了污水处理量。 管式降膜蒸发器既保留了板式降膜蒸发器传热效率高、运行周期长、操作弹性大等优点,又解决了板式降膜蒸发器易破裂、不易维修的缺点。 分配盘 配液盘是将黑液(被蒸发的介质)均匀分布于各个加热管及加热管内部表面的部件。由于介质的性质不同,以及各效蒸发器黑液的粘度变化,其结构及尺寸也相应改变。分配盘分为多块,便于制造、维护、清理。 分配盘 管板

单效中央循环管蒸发器

食品工程原理课程设计说明书 番茄汁单效连续加料蒸发装置的设计 : 学号: 班级: 年月日 设计任务书

目录1.前言

1.1 概述 1.2蒸发器选型 2.单效蒸发工艺计算 2.1 物料衡算 2.2 热量衡算 2.3 传热面积计算 2.4 计算结果列表 3.蒸发器主体工艺设计 3.1 加热管的选择和管数的初步估计 3.1.1 加热管的选择和管数的初步估计 3.1.2 循环管的选择 3.1.3 加热室直径的确定 3.1.4 分离室直径与高度的确定 3.2 接管尺寸的确定 3.3 进料方式及加热管排布方式的确定 3.3.1进料方式的确定 3.3.2加热管排布方式的确定 3.4 仪表、视镜与人孔的确定 3.5 蒸发器主要部件规格列表 4.蒸发装置的辅助设备 4.1 气液分离器 4.2 蒸汽冷凝器 5.结语 致谢 附表 参考文献 1.前言 1·1 概述

食品工程原理是食品工程与科学专业主要课程之一,食品工业包含诸多的单元操作,如蒸发、结晶、杀菌等,本课程均有介绍。本次设计题目为番茄汁单效连续加料蒸发装置的设计。通过设计,一方面提高学生对食品工业单元操作的认识,另一方面加深学生对食品工程原理课程的理解与掌握。 本设计涉及的单元操作为蒸发。蒸发是典型的传热过程,即是将含有不挥发溶质的溶液加热沸腾,使其中的挥发性溶剂部分汽化从而将溶液浓缩的过程。蒸发是一种分离操作,广泛应用于化工、轻工、制药和食品等许多工业中溶剂为挥发性而溶质为非挥发性的场合。在许多场合,蒸发系统的热量经济性成为整个生产流程的关键因素。工业上蒸发主要以浓缩和分离为主要目的。本设计以浓缩为主要目的,设计出将番茄汁的可溶性固形物含量由8%浓缩为40%的单效连续加料蒸发装置。 本设计首先确定浓缩罐的处理能力为6t/h番茄汁原浆。 根据选用蒸发器的特点进行物料衡算、热量衡算,进一步确定换热器的传热面积。根据经验及相关文献,选取加热管的长度为1.3m,管径为50mm。进而确定加热管数目,并确定排布方式。根据加热管截面积与中央循环管的截面积的关系以及中央循环管直径与加热室直径的关系确定中央循环管的直径和加热室的直径。从而完成加热室的设计;根据分离室与加热室的比例关系确定分离室的尺寸;根据物料流量及特性确定各输送管道的直径、选材以及其他部位的选材并确定定气液分离器以及冷凝器的型 号;最后在需要的部位安装相关仪表、视镜以及人孔。 1·2蒸发器选型 蒸发操作的蒸发器有悬筐式蒸发器、强制循环蒸发 器、升膜式蒸发器、降膜式蒸发器、中央循环管式蒸发 器等,本设计采用的是中央循环管式蒸发器,其简介如 下: 1·2·1结构和原理 其下部的加热室由垂直管束组成,中间由一根直径 较大的中央循环管。当加热室液体被加热沸腾时,中央 循环管气液混合物的平均密度较大;而其余加热管气液 混合物的平均密度较小。在密度差的作用下,溶液由中 央循环管下降,而由加热管上升,做自然循环流动。溶液的循环流动提高了沸腾表面传热系数,强化了蒸发过程。二次蒸汽于蒸发室中经气液分离器与溶液分离后上升,由冷凝器冷凝。

降膜蒸发器的设计

齐齐哈尔大学 蒸发水量为2000的真空 降膜蒸发器 题目蒸发水量为2000的真空降膜蒸发器 学院机电工程学院 专业班级过控133 学生姓名戴蒙龙 指导教师张宏斌 成绩 2016年 12月 20日 目录 摘要............................................. 错误!未指定书签。Absract............................................ 错误!未指定书签。 第1章蒸发器的概述................................ 错误!未指定书签。 1.1蒸发器的简介................................. 错误!未指定书签。 1.2蒸发器的分类................................. 错误!未指定书签。 1.3蒸发器的类型及特点、......................... 错误!未指定书签。 1.4蒸发器的维护................................. 错误!未指定书签。 第2章蒸发器的确定................................. 错误!未指定书签。 2.1 设计题目.................................... 错误!未指定书签。 2.2 设计条件:.................................. 错误!未指定书签。 2.3 设计要求:.................................. 错误!未指定书签。 2.4 设计方案的确定.............................. 错误!未指定书签。 第3章换热面积计算................................ 错误!未指定书签。 3.1.进料量...................................... 错误!未指定书签。

单效降膜式蒸发器的设计

食品工程原理 课程设计说明书单效降膜式蒸发器的设计 姓名: 学号: 班级: 指导老师: 年月日

目录 1.前言 概述 蒸发器选型 2.单效蒸发工艺计算 物料衡算 热量衡算 传热面积计算 计算结果列表 3.蒸发器主体工艺设计 加热管的选择和管数的初步估计 3.1.1 加热管的选择和管数的初步估计 3.1.2 循环管的选择 3.1.3 加热室直径的确定 3.1.4 分离室直径与高度的确定 接管尺寸的确定 进料方式及加热管排布方式的确定 3.3.1进料方式的确定 3.3.2加热管排布方式的确定 仪表、视镜与人孔的确定 蒸发器主要部件规格列表 4.蒸发装置的辅助设备 气液分离器 蒸汽冷凝器 5.结语 致谢 附表 参考文献

任务书

一、设计意义 二、蒸发工艺设计计算 (1)蒸浓液浓度计算 多效蒸发的工艺计算的主要依据是物料衡算和、热量衡算及传热速率方程。计算的主要项目有:加热蒸气(生蒸气)的消耗量、各效溶剂蒸发量以及各效的传热面积。计算的已知参数有:料液的流量、温度和浓度,最终完成液的浓度,加热蒸气的压强和冷凝器中的压强等。 蒸发器的设计计算步骤多效蒸发的计算一般采用试算法。 ①根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸气压强及冷凝器的压强),蒸发器的形式、流程和效数。 ②根据生产经验数据,初步估计各效蒸发量和各效完成液的浓度。 ③根据经验假设蒸气通过各效的压强降相等,估算个效溶液沸点和有效总温差。 ④根据蒸发器的焓衡算,求各效的蒸发量和传热量。 ⑤根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤③至⑤,直到所求得各效传热面积相等(或满足预先给出的精度要求)为止。 43028*10*10*0.542735/300*24*0.13 X 13% W F*142735*131624/X 50% F kg h kg h ===-=-=蒸发水量:()()(2)溶液沸点和有效温度差的确定 由二次蒸汽压强从手册中查得相应的二次蒸汽温度和汽化潜热列与下表中: 蒸汽 压力(KPa ) 温度(℃) 汽化热(kJ/kg) 加热蒸汽 500 二次蒸汽 20 60 2355

降膜,升膜蒸发器的区别

降膜和升膜不同,膜传热系数不取决于管内汽速,因此适于用在蒸发量较小的场合。例如有些二级蒸发的设备,常在第一级蒸发时采用升膜,而在第二级蒸发时采用降膜。由于降膜流动是依靠重力而成膜的,为了使每一根管内的液体都能均匀分布,因此在降膜蒸发器上部应有降膜分配器,通称降膜头。降膜头的安装必须呈水平,以免出现液体流动不均的现象。机理

解释一:是指为实现某一特定功能,一定的系统结构中各要素的内在工作方式以及诸要 素在一定环境条件下相互联系、相互作用的运行规则和原理。 解释二:机理是指事物变化的理由与道理。在化学动力学中,所谓“机理”是指从原子的结合关系中来描绘化学过程。在化学气相沉积中,机理的含义更加广泛。如果其过程是动力学控制的,机理是指原子水平的表面过程。 我们这里有一个塔下面就是一个降膜蒸发器 它由加热室和分离罐组成 物料从加热室顶部进入,沿加热管内壁呈膜状下降 在下降的过程中被不断的蒸发增浓 汽液混合物从加热室底部流出进入分离罐 蒸汽从分离罐顶部排出 完成液从分离罐底部排出 升膜蒸发器:是一种将加热室与蒸发室(分离室)分离的蒸发器。加热室实际上就是一个加热管很长的立式固定管板换热器,料 液由底部进入加热管,受热沸腾后迅速汽化;蒸汽在管内迅速上升,料液受到高速上升蒸汽的带动,沿管壁形成膜状上升,并继 续蒸发。汽液在顶部分离,二次蒸汽从顶部溢出,完成液则由底部排出。加热管一般采用25~5mm的无缝管,管长与管径比在常 压下约为100~150,在减压下约为130~180。这种蒸发器适用于蒸发量较大,有热敏性和易产生泡沫的溶液,不适于粘度很大, 容易结晶或结垢的物料。 降膜蒸发器:与升膜蒸发器结构基本相同,主要区别在于原料液是从加热室的顶部加入,在重力的作用下沿管内壁形成膜状下降,并进行蒸发,浓缩液从加热室的底部进入到分离器内并从底部排出,二次蒸汽由顶部溢出。由于二次蒸汽的流向与料液的流向一致,所以能促进料液的向下运动并形成薄膜。在每根加热管的顶部必须装有降膜分布器,以保证每根管子的内壁都能为料液所湿润,并不断有液体缓慢流过,否则,一部分管壁形成干壁现象,不能达到最大的生产能力,甚至不能保证产品质量。降膜蒸发器 适用于热敏性物料,不适于易结晶,结垢或粘度很大的物料。 对于膜蒸发器和升膜蒸发器的工作原理、区别及各自的优缺点,请参照下面的详细介绍。 如果液体黏度比较大,建议还是使用旋转刮板式蒸发器好,此种蒸发器适用于高粘度、易结晶、结垢的浓溶液,我以前的厂用的 就是它,效果不错,如果在它上面加装抽真空装置,效果会更好。 我原来用过三效降膜蒸发器和四效降膜蒸发器,主要用于浓缩葡萄糖浆和玉米浆,记得粘度范围要求好像是<400CP,具体我们使 用的是多少不记得了。 升膜和降膜的区别还在于:升膜的动力消耗较大!但蒸发效果要好!对于国外一般选择升膜蒸发器,原因是他们的主要是风力、水、发电,不像国内是火力发电,所以电的成本低!国内建议选择降膜蒸发器!淀粉的玉米浆、酒精的浓缩液、牛奶的蒸发,都 可以用降膜蒸发器!至于粘度,没有作统计! 补充一点:升膜和降膜的流速控制不同。升膜的流速要大好多。 升膜的气速常压下要20~30m/s,减压下80~200m/s,加热管长径比100/300。一般一个流程即达到要求。 降膜一般用于粘度不太大的溶液,一次达不到要求可以循环蒸发。 粘度较大或者有结晶的一般使用强制循环蒸发,粘度很大的可以考虑刮膜蒸发 如果是聚合物脱单还是要谨慎一些,低于聚合物熔融态粘度的都没问题。 升膜蒸发器和降膜蒸发器都属于单程蒸发器。这类蒸发器主要特点是:溶液在蒸发器中只通过加热室一次,不做循环流动即从浓 溶液排出。升膜蒸发器,其加热室由许多垂直长管组成,料液经预热后由蒸发器底部引入,进入加热管内受热沸腾后迅速汽化, 生成的蒸汽在加热管内高速上升。溶液则被上升的蒸汽所带动,沿管壁成膜状上升,并在此过程中连续蒸发,汽液混合物在分离 器内分离,完成液由分离器底部排出,二次蒸汽则在顶部导出。 降膜蒸发器,料液是从蒸发器顶部加入,在重力作用下沿管壁成膜状下降,并在此过程中不断被蒸发而蒸浓,在其底部得到完成液。 升膜蒸发器适用于蒸发量较大(即稀溶液)、

降膜蒸发器

蒸发回收铵盐技术 对于偏酸性高含盐高氨氮废水,氨氮均以铵盐形式存在,如采用吹脱、蒸馏等技术需调节pH将氨氮转化为游离氨,不仅需要消耗大量液碱,而且这仅仅是将铵盐转化为了钠盐,废水中阴离子浓度没有降低,因此未能从根本上解决出水达标问题;而采用低温多效蒸发技术,将铵盐结晶回收,另外冷凝出水又达到回用标准,从而经济有效地实现了高氨氮废水处理的零排放,十分贴合低碳环保的可持续发展理念。 特点: 1、利用负压多效蒸发技术,提高了生蒸汽的利用率,从而达到节约蒸汽的目的,通常二效或多效蒸发每吨废水蒸汽消耗量为0.28-0.33吨; 2、可直接回收高纯度的硫酸铵、氯化铵、硝酸铵或硫酸钠晶体,出水达回用标准,从而实现废水处理的零排放; 3、蒸发器采用专利分离技术,保证冷凝水铵盐含量≤0.2%; 4、设备采用特氟龙防腐技术,很好的解决了传统多效蒸发系统中高盐分废水对于设备的腐蚀问题。 低压蒸氨回收氨水技术 采用蒸汽汽提技术回收氨水,该技术是根据国内知名蒸馏专家、享受国务院特殊津贴专家、香港国际科学院院士许开天教授的蒸馏技术改进而开发的低能耗蒸氨技术。 核心技术: 1、采用E型组合塔板,气液接触时间长,传质效率较高,提高了液相氨气的释放; 2、闪蒸包技术,即闪蒸罐及汽液分离罐与塔体相结合,实现氨氮高效分离,大大节约了成本; 3、与传统汽提法相比,采用低压蒸汽,大大节约了蒸汽用量。 低温蒸发 采用国内外较为先进的热泵技术结合高效的水平管降膜蒸发技术,对工业废水进行深度处理,通过蒸发技术利用废水中各组分的相对挥发性差异来对废液进行浓缩分离,采用热泵技术回收蒸发器顶部排出的水蒸气,并提升其压力和温度再度返回到蒸发器,重新作为蒸发器的热源循环使用,这样既节省能源又有很好的处理效果。 该技术是华杉研发中心与东华大学周亚素教授课题组共同合作开发、改进和试验而成的低温蒸发技术,其可以实现技术效益、经济效益和社会效益的统一,为工业废水处理提供更新更好的选择。 1、技术效益 采用水平管降膜蒸发器,其换热效率明显高于传统的板式和竖管降膜蒸发器,其换热系数约为后两者的2-3倍。此外,本系统蒸发一吨水的能耗只有传统蒸发器的四分之一到五分

降膜技术总结

降膜蒸发技术 从操作方式可分为单效蒸发、多效蒸发和直接接触蒸发;按流体循环方式可分为不循环型蒸发、自然循环型蒸发、强制循环型蒸发、刮膜式蒸发及离心式薄膜蒸发 1降膜式蒸发器简介 工作原理:物料由加热室顶部加入,经液体分布器分布后呈膜状向下流动。在管内被加热汽化,被汽化的蒸汽与液体一起由加热管下端引出,经气液分离后即得到浓缩液。在降膜式蒸发器的操作过程中,由于物料的停留时间很短(约5~10 s),而传热系数很高,因此其较广泛地应用于热敏性物料,也可以用于蒸发粘度较大的物料,但不适宜处理易结晶的溶液。 2降膜蒸发系统的特点: 1) 降膜式蒸发器的料液是从蒸发器的顶部加入,在重力作用下沿管壁成膜状下降,并在此过程中蒸发增浓,在其底部得到浓缩液。降膜式蒸发器可以蒸发浓度较高、粘度较大(例如在0.05~0.45Ns/m2范围内)物料。 2) 由于溶液在单程型蒸发器中呈膜状流动,传热系数较高。 3) 停留时间短,不易引起物料变质,适于处理热敏性物料。 4) 液体滞留量小,降膜蒸发器可以根据能量供应、真空度、进料量、浓度等的变化而采取快速运作。近常数, 5) 由于工艺流体仅在重力作用下流动,而不是靠高温差来推动,可以使用低温差蒸发。 6) 降膜蒸发器适用于发泡性物料蒸发浓缩,由于料液在加热管内成膜状蒸发,即形成汽液分离,同时在效体底部,料液大部份即被抽走,只有少部份料液与所有二次蒸汽进入分离器强化分离,料液整过程没有形成太大冲击,避免了泡沫的形成。 3工艺流程 工艺流程有顺流(并流)、逆流、混流(错流)、平流四种形式:

顺流: 溶液和蒸汽流向相同,都由一效顺序流到末效。原料液用泵送入一效,依靠各效间的压差,自动流入下一效,完成液自末效(一般是在负压下操作)用泵抽出。由于后一效的压力低,溶液的沸点也低,溶液从前效进入后一效时会闪蒸部分水分,产生的二次汽也较多,由于后效的浓度较前效高、操作温度低,往往第一效的传热系数比末效高很多。顺流流程一般适宜处理在高浓度的情况下为热敏性的物料。例如糖厂的青汁蒸发。 逆流: 原料由泵从末效依次送入前效,完成液由一效排出,料液与蒸汽逆向流动。一般适宜处理粘度随温度和浓度变化较大的溶液,不易处理热敏性物料。用泵输送,用电量大一些。 混流: 是顺逆流流程的结合,兼有顺逆流的优点避其缺点,但操作复杂,要求自控程度很高。例如淀粉厂黄浆水的蒸发。目前使用较广。 平流: 各效都加料都出完成液,各效都有结晶析出,可及时分离结晶,一般用于饱和溶液的蒸发。很少使用。

关于多效降膜式蒸发器的工作原理及应用要点

关于多效降膜式蒸发器的工作原理及应用要点 蒸发(或称浓缩)是指将含有非挥发性溶质和挥发性溶剂组成的溶液进行蒸发浓缩的过程,主要是利用加热作用使溶液中一部分溶剂汽化而获得。蒸发工艺在制药生产中应用较多,如中药生产方面是将提取液进行蒸发浓缩而得到浓缩液或流浸膏,又如在抗生素生产中蒸发操作用于发酵滤液、树脂洗脱液以及各种提取液的浓缩。 蒸发设备一般称为蒸发器,其构造与种类繁多,而且其发展历史久远。从操作方式可分为单效蒸发、多效蒸发和直接接触蒸发;按流体循环方式可分为不循环型蒸发、自然循环型蒸发、强制循环型蒸发、刮膜式蒸发及离心式薄膜蒸发。设计时针对不同的物料用不同的蒸发器。正确的应用不仅能提高产品的质量,又能节能降耗、降低生产成本、提高经济效益。其中,降膜式蒸发器是现代蒸发技术中常见的单元操作,本文将对多效降膜式蒸发器的特点及相关要点作一探讨。 1降膜式蒸发器概述 1.1降膜式蒸发器简介 工作原理:物料由加热室顶部加入,经液体分布器分布后呈膜状向下流动。在管内被加热汽化,被汽化的蒸汽与液体一起由加热管下端引出,经气液分离后即得到浓缩液。 在降膜式蒸发器的操作过程中,由于物料的停留时间很短(约5~10s),而传热系数很高,因此其较广泛地应用于热敏性物料,也可以用于蒸发粘度较大的物料,但不适宜处理易结晶的溶液。 1.2降膜式蒸发器与升膜式蒸发器比较 降膜式蒸发器与升膜式蒸发器的性能比较如表1所示。 表1降膜式蒸发器与升膜式蒸发器的性能比较 2多效降膜式蒸发器的结构 多效降膜式蒸发器由蒸发器、分离器、预热器、冷凝器、凝水罐、循环泵等部件组成,其结构如图1所示。 2.1蒸发器 蒸发器为列管式换热器,管程通液体物料,壳程通加热蒸汽,液体物料从蒸发器的顶部进入,经过分布器进入加热管,液体物料沿加热管往下流,并被加热蒸发,直至加热器底部,浓缩的液体和蒸发产生的二次蒸汽进入分离器进行分离,其底部装有控制布水的液位开关。 作用:对液体物料加热、蒸发。

降膜蒸发器的设计

齐齐哈尔大学 ?的真蒸发水量为2000kg? 空降膜蒸发器 ?的真空降膜蒸发器 题目蒸发水量为2000kg? 学院机电工程学院 专业班级过控133 学生姓名戴蒙龙 指导教师张宏斌 成绩 2016年 12月 20日

目录 摘要............................................................ I II Absract............................................................ I V 第1章蒸发器的概述. (1) 1.1蒸发器的简介 (1) 1.2蒸发器的分类 (1) 1.3蒸发器的类型与特点、 (2) 1.4蒸发器的维护 (5) 第2章蒸发器的确定 (6) 2.1 设计题目 (6) 2.2 设计条件: (6) 2.3 设计要求: (6) 2.4 设计方案的确定 (6) 第3章换热面积计算 (7) 3.1.进料量 (8) 3.2.加热面积初算 (8) 3.2.1估算各效浓度: (8) 3.2.2沸点的初算 (8) 3.2.3计算两效蒸发水量W1,W2与加热蒸汽的消耗量D1 (9) 3.3.重算两效传热面积 (11) 3.3.1.第一次重算 (11) 第4章蒸发器主要工艺尺寸的计算 (12) 4.1加热室 (13) 4.2分离室 (13) 4.3其他工件尺寸 (14) 第5章强度校核 (15) 5.1 筒体 (15) 5.2前端管箱 (16) 参考文献 (19)

致谢 (21)

蒸发就是采用加热的方法,使溶液中的发挥性溶剂在沸腾状态下部分气化并将其移除,从而提高溶液浓度的一种单元操作,蒸发操作是一个使溶液中的挥发性溶剂与不挥发性溶质分离的过程。蒸发设备称为蒸发器,蒸发操作的热源,一般为饱和蒸汽。蒸发在操作广泛应于化学、轻工、食品、制药等工业中。工业上 ?降被蒸发处理的溶液大多数为水溶液。本次设计的装置为蒸发水量为2000kg?膜蒸发器,浓缩物质为牛奶。降膜蒸发器除适用于热敏性溶液外,还可用于蒸发浓度较高的液体。 关键词:蒸发;换热;高效;使用广泛

多效真空降膜蒸发器的热量衡算

多效逆流真空降膜蒸发器的计算 1、蒸发水量计算W (kg/s) 由于多效水分总蒸发量为各效蒸发量之和,即: n W W W W +???++=21 (h kg /) 对溶液中固体进行物料衡算: n x W S x W W S x W F Fx )()()(221110-=???=--=-= 由此得总蒸发量:)1(0 n x x F W - = (h kg /) 任一效(第1效)中溶液的浓度 (即i 效的出料浓度): %100210 ?----= n i W W W F Fx x 如已知各效水分蒸发量,则可按上式求出各效的浓度。但各效的水分蒸发量必须通过后面的热量衡算才能求得。 2、加热蒸汽消耗量D (h kg /): 对多效浓缩罐操作,一般已知量: 1、第一效加热室的加热蒸汽压强 2、末效蒸发室的真空度 3、料液量 4、物料进料浓度 5、规定量:规定溶液的最终浓度 未知量: 1、各效蒸发水量。其中总蒸发水量W 可由物料衡算求得。 2、各效的沸点 3、各效的溶液浓度 因此,在多次浓缩操作中,加热蒸汽消耗量的计算是相当烦琐的,为了避免过于复杂,常常做一些合理的简化。 蒸汽消耗量计算的原理是热量衡换,既能量守恒定律(进入蒸发器的热=离开蒸发器的热)。 进入蒸发器的热量: 1、加热蒸气带入的热量:D H 2、物料(原料液)带入的热量 离开蒸发器的热量: 1、浓缩液离开蒸发器带走的热量 2、二次蒸气带走的热量 3、加热蒸气冷凝液带走的热量 以三效顺流降膜真空蒸发器为例: 多效蒸发常见符号意义:

h kg F /:原料液流量,; h kg W /:总蒸发量, 的浓度,质量分率 :原料液及各效完成液n x x x ,,,10 ; C 0?:原料液的温度,t ; C t t t n ?:各效溶液的沸点, ,,21; h kg D /1蒸汽)消耗量,:第一效加热蒸汽(生 ;:生蒸汽的压强,Pa p 1 C 1?:生蒸汽的温度,T ; C T T T n ?,:各效二次蒸汽的温度''2'1,, ; ; :末效蒸发室的压强,Pa p n ' kg kJ r r r n /,,,21潜热,:各效加热蒸汽的汽化 ; 汽的焓,:生蒸汽及各效二次蒸kg kJ H H H H n /,,' '2'11 ; 的焓,:原料液及各效完成液kg kJ h h h h n /,,,,210 221,,,m S S S n :各效蒸发器的面积, 表示效数的序号,,下标n ,21 一般工厂多采用沸点进料,则v V L t KA L Q W D 1 ?= =≈(Lv 为相应温度下的汽化潜热。)

四效降膜蒸发器设计参数及操作规程

v1.0 可编辑可修改1. 规格、参数、性能 蒸发器规格、型号 1.1.1 蒸发器名称、型号:RHJM-6000四效降膜蒸发器 1.1.2 蒸发水量规格:6000kg/h 蒸发器工艺参数 1.2.1 总物料流量:10000 kg/hr 1.2.2 总蒸发速率:6000 kg/hr 1.2.3 物料流程:四效→一效→二效→三效→出料 1.2.4 蒸汽流程:一效→二效→三效→四效→冷凝器 1.2.5 各效传热面积:一效(140m2)二效(100m2)三效(140m2)四效(100m2) 蒸发器性能 1.3.1 物料:糖浆 1.3.2 物料进口:进四效 数量:10000kg/hr 温度:50-60℃ 浓度:30-32%(DS) 1.3.3 物料出口:从三效出料 数量:4000kg/hr 温度:65-70℃ 浓度:75-80%(DS) 蒸汽消耗量:1800kg/h () 冷却水从35℃至43℃ 150m3/h 电能(安装功率) 29kw 电流 380/220v, 50赫兹,3相 设备的布置四效蒸发器、冷凝器 温度一效二效三效四效 加热温度℃ 90 76 60

蒸汽温度℃91 77 61 43 2. 工艺说明 为了更好地理解请利用工艺流程图 为了得到正确的结果,你应该了解现场安装,每条工艺线。 如果出现故障或紧急情况,必须非常熟悉和组件的物理位置和管道的工程布置。 物料 将要浓缩的物料输送到进料罐,通过进料泵将物料经过流量计打到四效上端管板上的分布器以保证进入每一根加热管的液量相同。 液膜在管子顶部向下流动过程中加速,由于重力及液体形成的蒸汽作用下流速增加,蒸发器从外部加热、水蒸汽及部分浓缩的物料离开蒸发器,大部分液体存储在下部的料仓并由此离开,少量液体及水蒸汽通过连接管道运到分离器蒸汽与液体在此分离,留存在顶部的水蒸汽进入冷凝器冷凝。从第四效蒸发器出来的物料通过四效出料泵送到一效管板上的分布器,液膜在向管子底部流动过程中加速,由于重力及液体形成的蒸汽作用下流速增加,蒸发器从外部加热、水蒸汽及部分浓缩的物料离开蒸发器,大部分液体存储在下部的料仓并由此离开,少量液体及水蒸汽通过连接管道输送到分离器,蒸汽与液体在此分离,留存在顶部的水蒸汽进入二效加热室或者通过热泵再次进入一效加热室,从第一效蒸发器出来的物料通过一效物料转移泵输送到二效管板上的分布器。依次类推,物料经过三效蒸发器出料,合格物料通过出料螺杆泵输送到成品罐,不合格物料打回流至蒸发前罐。 蒸发前储罐—→Ⅳ效—→Ⅰ效—→Ⅱ效—→Ⅲ效—→出料 加热设备蒸汽流程 Ⅰ效—→Ⅱ效—→Ⅲ效—→Ⅳ效—→冷凝器 冷凝液流程 Ⅰ效加热室冷凝水—→Ⅱ效加热室冷凝水—→Ⅲ效加热室冷凝水—→Ⅳ效加热室冷凝水—→分水罐—→冷凝水泵 空气流程(蒸发器排气) ①空气可通过以下途径进入系统 法兰连接、仪表连接、阀门连接泄露等。

多效降膜式蒸发器的工作原理及相关要点

多效降膜式蒸发器的工作原理及相关要点 发布时间:2009-11-24 21:17:16 文章来源:《中国制药装备》 [关键词]:多效降膜式蒸发器【打印】 范建兵 (常熟市春来机械有限公司,江苏常熟 215556) 摘要:从降膜式蒸发器的概述入手,阐述了多效降膜式蒸发器的结构,并对多效降膜式蒸发器的工作原理、流程及相关要点作了探讨。 关键词:降膜式蒸发器;多效;工作原理;流程;相关要点 蒸发(或称浓缩)是指将含有非挥发性溶质和挥发性溶剂组成的溶液进行蒸发浓缩的过程,主要是利用加热作用使溶液中一部分溶剂汽化而获得。蒸发工艺在制药生产中应用较多,如中药生产方面是将提取液进行蒸发浓缩而得到浓缩液或流浸膏,又如在抗生素生产中蒸发操作用于发酵滤液、树脂洗脱液以及各种提取液的浓缩。 蒸发设备一般称为蒸发器,其构造与种类繁多,而且其发展历史久远。从操作方式可分为单效蒸发、多效蒸发和直接接触蒸发;按流体循环方式可分为不循环型蒸发、自然循环型蒸发、强制循环型蒸发、刮膜式蒸发及离心式薄膜蒸发。设计时针对不同的物料用不同的蒸发器。正确的应用不仅能提高产品的质量,又能节能降耗、降低生产成本、提高经济效益。其中,降膜式蒸发器是现代蒸发技术中常见的单元操作,本文将对多效降膜式蒸发器的特点及相关要点作一探讨。 1 降膜式蒸发器概述 1.1 降膜式蒸发器简介 工作原理:物料由加热室顶部加入,经液体分布器分布后呈膜状向下流动。在管内被加热汽化,被汽化的蒸汽与液体一起由加热管下端引出,经气液分离后即得到浓缩液。 在降膜式蒸发器的操作过程中,由于物料的停留时间很短(约5~10 s),而传热系数很高,因此其较广泛地应用于热敏性物料,也可以用于蒸发粘度较大的物料,但不适宜处理易结晶的溶液。 1.2 降膜式蒸发器与升膜式蒸发器比较 降膜式蒸发器与升膜式蒸发器的性能比较如表1所示。 表1 降膜式蒸发器与升膜式蒸发器的性能比较

相关文档
最新文档