双FSK调制解调电路

双FSK调制解调电路
双FSK调制解调电路

课程设计

课程设计

题目2FSK调制解调电路的设计

调制解调电路的设计 学院名称电气工程学院

电气工程学院

指导老师

指导老师

班级

学号20094470312

学生姓名

学生姓名

一二年六月

二0一二年六月

目 录

目 录 (1)

摘 要 (3)

第1章 绪 论 (4)

第2章 方案设计 (5)

2.1方案比较 (5)

2.1.1键控法 (5)

2.1.2模拟调制法 (6)

2.2方案论证 (7)

第3章 硬件设计 (8)

3.1器件介绍 (8)

3.1.1NE564介绍 (8)

3.1.22CD4016介绍 (10)

3.1.3锁相环的基本工作原理 (11)

3.1.4相位模型介绍 (12)

3.1.5环路滤波器介绍 (12)

3.1.6压控振荡器介绍 (13)

3.22FSK调制电路设计 (13)

3.32FSK解调器电路设计 (15)

总 结 (17)

参考文献 (18)

摘 要

本文采用锁相环专用集成电路NE564,实现了2FSK调制电路和解调电路的设计。本设计首先对本次设计的思路进行的阐述,对数字调制解调的基本原理、集成电路NE564的内部结构及基本工作原理进行了详细的介绍,并基于NE564设计了2FSK 调制解调电路,最后详细给出了制作电路的步骤和方法以及在制作过程当中的问题,得出的结论。测试表明,该电路的中心频率f0=5MHz,在Uim≥1V,及无外部干扰,解调后误码率为0。

关键词2FSK;调制;解调;NE564;CD4016

第1章 绪 论

“锁相环技术”是近几年来迅速发展起来的一门技术,由于它的环路结构简单,性能良好。在许多新型的电子设备中,特别是在通信系统中,得到广泛的应用。随着通信技术的发展,锁相环技术在调制解调中扮演着越来越重要的角色。锁相环技术所以能得到这么广泛的应用,是由于其独特的优良性能所决定的。本设计用到的锁相环的跟踪特性,可制成高性能的调制器和解调器,它具有低门限特性,可大大改善模拟信号和数字信号的解调质量。

在数字通信系统中,由于数字信号具有丰富的低频成分,不宜进行无线传输或长距离电缆传输,因而同模拟调制一样,需要将基带信号进行高频正弦调制,即数字调制。与模拟调制相比,数字调制并无本质区别,都属于正弦波调制,但是数字调制系统也有自身的特点,其技术要求与模拟调制系统也有不同。一般来说,数字调制技术可分为两种类型:一是利用模拟方法实现数字调制,即把数字基带信号当作模拟信号的特殊情况来处理;二是利用数字信号的离散取值特点去键控载波,从而实现数字调制,这种方法通常称为键控法。常用的数字调制方式有振幅键控(2ASK)、移频键控(2FSK)、移相键控(2PSK)等。

随着科技的发展,电子产品市场运作节奏也进一步加快,涉及诸多领域的现代电子技术已迈入一个全新的阶段,如何把锁相环的强大优势发挥出来,就是目前电路研究发展的方向了。把锁相环技术应用与高频2FSK信号的接收解调中,从而使电路性能得到进一步的改善,这对数字电路来说也算是个不小的突破。

第2章 方案设计

2.1方案比较

2FSK信号波形图如2-1图所示,它是由调制信号去控制载波信号,用载波的频率来传递数字信息,即用所传递的数字消息控制载波的频率。

2.1.1键控法

调制器选用图2-2所示方案,采用石英晶体振荡器构成两个不同频率的载波发生器,用模拟双向开关CD4016实现开关1和开关2,最后用集成运放构成加法电路,最终实现2FSK调制。解调器选用图2-3所示方案,以LC谐振回路实现带通滤波,然后用两个模拟乘法器实现相干解调,最后用集成运放构成抽样判决器,实现2FSK 信号的解调。

2.1.2模拟调制法

采用图2-4、图2-5所示方案实现模拟调制解调,以高频锁相环NE564为主体,辅以适当外围元件即可实现。若要构成适用的发射器及接收器,只需增加合适的发射功放及接收滤波、解调放大电路即可。

图2-4 2FSK

图2-5 2FSK模拟解调法原理框图

设计基本原理和系统框图

2FSK系统分调制和解调两部分。

(1)调制部分:2FSK信号的产生方法主要有两种。第一种是用二进制基带矩形脉冲信号去调制一个调频器,如图2-2所示,使其能够输出两个不同频率的码元。第二种方法是用一个受基带脉冲控制的开关电路去选择两个独立频率源的振荡作为输出,如图2-3所示。这两种方法产生的2FSK信号的波形基本相同,只有一点差异,即由调频器产生的2FSK信号,在相邻码元之间的相位是连续的,如图所示;而开关法产生的2FSK信号,则分别由两个独立的频率源产生不同频率的信号,故相邻码元的相位不一定是连续,如图所示。本次设计用键控法实现2FSK信号。表现为:

(a)相位连续(b)相位不连续

(2)解调部分:2FSK信号的接收主要分为相干和非相干接收两类,本次设计采用非相干法(即包络解调法),其方框图如下。用两个窄带的分路滤波器分别滤出频率为f1和f2的高频脉冲,经过包络检波后分别取出它们的包络。把两路输出同时送到抽样判决器进行比较,从而判决输出基带数字信号。

2.2方案论证

比较而言,选用模拟调制法更为经济、可靠,它具有低门限特性,可大大改善模拟信号和数字信号的解调质量。而高频模拟锁相环NE564的最高工作频率可达到50MHz,采用+5V单电源供电,特别适用于高速数字通信中2FSK、FM调频信号的调制、解调,无需外接复杂的滤波器。实际上,此法案是几年前流行的一种方案。就目前接收机技术来说,锁相环因为起得天独厚的性能优势,在接收机技术上可以有广阔的发展前景。但是因为发送信号的频率比较高,那么如何能够把这种信号很好的解出来,这成了锁相环技术的一种考验。本文主要就是研究利用锁相环,接收高频信号,并把它解调出来。

模拟调制法的设计就是在目前接收解调以及锁相环技术的蓬勃发展下,把锁相环技术运用与接收解调中,抛弃原来的纯分离元器件电路,而是利用高频锁相环集成电路NE564,从而把原始信号更好的还原出来。利用锁相环集成电路不但使电路更加简单,而且性能更好,充分体现了集成电路的优势。在未来的世界,锁相环电路将在通信领域大放光彩。随着集成电路技术的发展,目前市面上已有多类专用2FSK收发芯片,如Microelectronic Integrated Systems公司的TH7108、TH71112、MICRF500芯片等。

第3章 硬件设计

要求使用高频模拟锁相环NE564为基础,设计2FSK的调制解调电路。

3.1器件介绍

3.1.1NE564介绍

高频模拟锁相环NE564是Philips Semiconductors公司(荷兰菲利浦公司的产品,同类国产产品的型号有XD564、L564等。NE564最高工作频率可达到50MHz,采用+5V单电源供电,特别适用于高速数字通信中FM调频信号及2FSK移频键控信号的调制、解调,而无需外接复杂的滤波器。

NE564采用双极性工艺,其外部引脚图和内部组成框图分别如图3-1和图3-2所示。其中,A1为限幅器,可抑制FM调频信号的寄生调幅;相位比较器(鉴相器)PD的内部含有限幅放大器,以提高对AM调幅信号的抗干扰能力;外接电容C3、C4组成低通滤波器,用来滤出比较器输出的直流误差电压的纹波;改变引脚的输2入电流可改变环路增益;压控振荡器VCO的内部接有固定电阻R(R=100 ),只需外接一个定时电容Ct就可产生振荡,振荡频率fv与Ct的关系曲线如图3-12所示。VCO 有两个电压输出端,其中VCO01输出TTL电平,VCO02输出ECL电平。后置鉴相器由单位增益跨导放大器A3和施密特触发器ST组成,其中,A3提供解调FSK信号时的补偿直流电平及用作线性解调FM信号时的后置鉴相滤波器;ST的回差电压可通过引脚16外接直流电压进行调整,以消除输出信号TTL0的相位抖动。

1V +1

2L GC

3

PC14L P

5L P

6R F1

7B F

8G ND

9V CO 0110V +211V CO 0212FC L 13FC L 14A N015H YS 16T TL 0N E564

由图3-1可知,NE564为双列直插16脚封装,各引脚的功能如表3-1所示。

表3-1 NE564引脚的功能 引脚

编号

英文缩写 引脚功能 引脚

编号 英文缩写 引脚功能 1 V +1 VCC ,接+5V 9 VCO 01 VCO 输出1,TTL

电平

2 LGC 环路增益控制端,电流约为200uA 10 V +2 VCC ,接+5V

3 PC 1 鉴相器输入端,来自分频器,占空比50% 11 VCO 02 VCO 输出2,ECL

电平

4 LF 环路滤波引出端 12 FC 1

振荡频率设置电

容引出端

5 LF 环路滤波引出端

13 FC 1 振荡频率设置电容引出端 6 R F1 信号输入端,占空比

50%

14 AN 0 模拟输出端(用于调解输出) 7 BF 偏置滤波输入端 15 HYS 延迟设置端

(设置门限值)

8 GND 地端 16 TTL 0

TTL 电平输出端

(调解输出) 3.1.2 2CD4016介绍

CD4016为4个独立的双向模拟开关,控制输入端在输入高电平时模拟开关导通,低电平时截止。输入输出为双向,即可以由IN/OUT 到OUT/IN ,也可以反过来,此芯片广泛用于信号开关,削波,调制解调电路中。其引脚排列如图3-3所示,及内部结构如图3-4。

11 I/O

21 O/I

32 O/I

42 I/O

52 CT L

6

3 CT L

7G ND 8 3 I/O

9 3 O/I 10 4 O/I 11 4 I/O 12 4 CT L 13 1 CT L 14V CC C D4016

3.1.3锁相环的基本工作原理

锁相环路的系统框图如图3-5所示,由鉴相器PD(Phase Detector)、环路滤波器LF(Loop Filter)和压控振荡器VCO组成的,其中LF为低通滤波器。

各部分功能如下:

(1)鉴相器PD:鉴相器是一个相位比较器,完成对输入信号相位与VCO输出信号相位进行比较,得误差相位φe(t)= φi(t)- φo(t)。

(2)环路滤波器LF:环路滤波器(LF)是一个低通滤波器(LPF),其作用是把鉴相器输出电压u d(t)中的高频分量及干扰杂波抑制掉,得到纯正的控制信号电压u C(t)。

(3)压控振荡器VCO:压控振荡器是一种电压-频率变换器,它的瞬时振荡频率ωo(t)是用控制电压u C(t)控制振荡器得到,即用u C(t)控制VCO的振荡频率,使ωi与ωo的相位不断减小,最后保持在某一预期值。

当锁相环路处于“失锁”状态时,u i(t)和u o(t)进行相位比较,由PD输出一个与相位差成正比的误差电压u d(t)。u d(t)经LF滤波,取出其中缓慢变化的直流或低频电压分量u C(t)作为控制电压。显然,u C(t)也将随着相位差的变动作相应变化。u C(t)加到

VCO上,从而控制VCO的振荡频率,使ωo不断改变,u i(t)和u o(t)的相位差不断减小,直至锁相环路进入“锁定”状态。

3.1.4相位模型介绍

在锁相环路当中,鉴相器用作相位比较,其原理框图如图3-6所示。由图可知,鉴相器的输入信号分别为环路的输入信号Ui(t)和压控振荡器的输出信号Uo(t)输出信号为与上述两个信号瞬时相位差成正比例的误差信号Ud(t)。Ud(t)的大小将依据鉴相器的类型而定,常见的鉴相器有乘积型和叠加型,前者一般采用模拟乘法器实现。

设输入电压信号Ui(t)的角频率为Wi,瞬时相位Ei(t),压控振荡器的输出信号Uo(t)的频率为Wo,瞬时相位Eo(t),环路的参考输出频率即基准频率为Wr,鉴相器应该满足下列条件:

(1)当锁相环路处于“锁定”状态时,Wi=Wo=Wr,鉴相器无输出电压。

(2)锁相环路处于“失锁”状态时Wi=Wr+Ei(t)/dt,Wo==Wr+Eo(t)/dt。

Ud(t)

图3-6 鉴频器框图

可得输出信号与输入信号可表示为:

Ui=Uimcos(∫Widt)=Uimcos[Wrt+Ei(t)+Eo] (3-7)

Uo(t)=Uomcos(∫Wodt)=Uomcos[Wrt+Eo(t)] (3-8)经过环路滤波器滤波后输出控制电压为:

Ud(t)=1/2UimUomsin[Ei(t)-Eo(t)]

=Adsin[Ei(t)-Eo(t)] (3-9)可见,鉴相器输出信号是一个关于Ui(t)与Uo(t)相位差的函数

由式(3-7)可得鉴相器的电路模型如图3-6所示。这个模型表明,鉴相器具有把相位转换为误差电压输的作用,其处理对象是E i和E0,而不是信号Ui(t)与Uo(t),这个是电路模型与组成框图的区别。

3.1.5环路滤波器介绍

环路滤波器实际上是一个低通滤波器,其作用是滤除鉴相器的输出误差中的高频

分量及干扰分量,而让其中的低通分量或直流分量通过,得到控制电压,以保证环路所需求的性能并提高环路的稳定性,因此对锁相环路的性能有影响。

3.1.6压控振荡器介绍

在锁相环路中,压控振荡器的作用是产生频率随控制电压∪c(t)而变化的振荡电压∪0(t)。

压控振荡器瞬时振荡频率ω0随控制电压∪c(t)变化的曲线,称为压控振荡器的调频特性曲线。一般情况下,调频特性曲线是非线性的,如下图所示,但是,在∪c(t)的某一范围内,ω0与∪c(t)之间近似为线性关系,即

ω0=ωr+A0∪c(t) (3-10)式中,ωr表示∪c(t)=0时压控振荡器的固有振荡频率;A0为比例系数,又叫压控灵敏度,单位为rad/(s·v)。

3.22FSK调制电路设计

利用锁相环VCO输出信号频率随输入信号大小而变化的特点,可将待传输调制信码直接送入NE564的VCO输入端,从而可以实现2FSK调制。图3-11是NE564构成的2FSK调制器电路。调制信码从双态信号控制CD4016模拟开关13脚输入,NE564的6脚电压在5V与1.42V之间转换(即5V×[R6/(R5+R6)]=1.42V),经缓冲放大器A1及相位比较器PD中的放大器放大后,直接控制VCO的输出频率。因此,9

脚输出的是2FSK信号。

图3-11 NE564构成的2FSK调制电路

PD输出端不再接滤波电容,而是接电位器R P1,用于调整环路增益并可细调压控振荡器的固有频率f v,f v与C t的关系如下图所示。

C 1是输入耦合电容,R 1、C 2组成差分放大器A 1的输入偏置电路滤波器,可滤除调制信码中的杂波。R 2(包含电位器R P2)对引脚2提供输入电流I 2,可控制环路增益和VCO 锁定范围,R 2与电流I 2的关系可表示为:

223.1I V

V R CC ?= (3-13) I 2一般为200uA 。调整时,可先设置I 2的初值位100uA ,待环路锁定后再调节电位器R P2使环路增益和压控振荡器的锁定范围达到最佳值。

R 3是压控振荡器输出端必须接的上拉电阻,一般为几千欧姆,这里取2K 。R 4是VCO 输出ECL 电平和鉴相器输入端之间的限流电阻,可取值3K 。

压控振荡器的固有振荡频率可表示为:

t v C f 22001

≈ (3-14)

若已调2FSK 信号中心频率f v =5MHz ,则C t =90pF (可取标称值82pF 与8.2pF 可调电容并联构成)。若调制信码的波特率为500kBaud ,则9脚输出2FSK 信号频率范围为f o =5±1MHz 。

3.3 2FSK 解调器电路设计

NE564构成的2FSK 解调器电路如图3-15所示。已知输入信号v i 的频率f i =5±1MHz ,调制信码(由“0”、“1”组成的方波)的频率f o =500kHz 。已调制信号直接送入NE564的VCO 输入端,与压控振荡器输出的5MHz (9脚输出)进行相

位比较,输出信号经环路滤波后由A 2放大,

从16脚输出解调后的方波(TTL 电平)

电阻R6和电位器R P2用于调整施密特触发器的回差电压,可改善输出方波的波形。R7为上拉电阻,增加R7的值亦可改善输出波形。

由于输入信号的频率f i=5±1MHz,解调时必须使压控振荡器工作在4~6MHz并保证NE564锁定,此时16脚输出才为高电平“1”;超出此范围失锁,则16脚输出为低电平“0”。因此,压控振荡器的固有振荡频率fv和捕捉带 f v必须十分准确。由已知条件可得:压控振荡器的固有振荡频率fv=5MHz, f v=f imax-f imin=2.0MHz。由式

(3-14)得C t =90pF ,可取标称值82pF 与8.2pF 可调电容并联,以便精确调整固有振荡频率,使f v =5MHz 。

外接电容C 3、C 4与内部两个对应电阻(阻值R=1.3K )分别组成一阶低通滤波器,其截止角频率可用下式描述:

31

RC C =ω (3-16)

滤波器的性能对环路入锁时间的快慢有一定影响,由于本例输出信号频率较高,低通滤波器的截止角频率也要相应提高,计算可取C 3=C 4=300pF 。制作实物电路时可通过观测4脚和5脚的输出波形调整电容的值,使输出波形更为清晰。电容C 6的作用事滤除内部单位增益跨导放大器A 3输出的补偿直流电压中的交流成分,因此,对C 6的耐压有一定要求,通常取耐压大于电源电压的电解电容,这里取C 6=10uF/8V 。C 7和C 8为电源滤波电容,一般取0.2uF 。

总 结

这段时间的课题设计在忙忙碌碌中一晃而过。刚开始,我们头绪不是很清楚,不知道从哪里入手,但通过老师的耐心指导并和同学认真研究设计课题,跑图书馆查资料、确定基本设计方案、对所用芯片功能进行查找、调试、上机仿真等,经历了一次次的困难,却积累了很多宝贵的经验。在整个设计的过程中遇到的问题主要有以下三点,第一:基础知识掌握的不牢固,主要表现在一些常用的电路的形式和功能不清楚,对书本上的内容理解不够透彻。第二:对一些常用的应用软件缺少应用,体现在画电路图和系统的仿真的时候,对这些软件的操作不熟练,浪费了很多时间。第三:相关知识掌握的不够全面,缺少系统设计的经验。

这次设计进一步端了我的学习态度,学会了实事求是,严谨的作风,对自己要严格要求,不能够一知半解,要力求明明白白。急于求成是不好的,我有所感受。如果省略了那些必要的步骤,急于求成,不仅会浪费时间,还会适得其反。我觉得动手之前,头脑里必须清楚该怎么做,这一点是很重要的。就目前来说,我的动手能力虽然

差一点,但我想,通过我的不懈努力,在这方面,我总会得到提高。这一点,我坚信。因为别人能做到的,我也一定能做到。

在此次设计中我最大的体会就是进一步认识到了理论联系实践的重要性。一份耕耘,一份收获。通过这段时间的设计,让我明白科学的思维方法和学习方法是多么重要,只有这样才能够有很高的效率,才能够让自己的工作更完美。

总而言之,此次课题设计让我学到了好多平时在课堂上学不到的东西,增加了我的知识运用能力,增强我的实际操作能力。谢谢老师给我们提供这么好的机会,为我们之后走向社会奠定了一个好的基础。

本次设计让我学到了很多,也学会到了要怎么样去面对困难,不要对知识一知半截,要有的求实的能力,通过老师的帮助我学到了很多在平时的没有注意到的动东西及知识,更美没有深入的的去理解,通过这次我要更加的明确自己。更要注重自己在各方面的锻炼能力,把握机会。这次的设计非常的感谢老师给我们这个机会。

参考文献

[1]张肃文.高频电子线路.北京:人民教育出版社,1979

[2]郑应光.模拟电子线路(一).南京:东南大学出版社,2000

[3]阎石.数字电子技术基础.北京:高等教育出版社,2005

[4]于安红.简明电子元器件手册.上海:上海交通大学出版社,2005

[5]张立中.通信技术基础.北京:中国劳动社会保障出版社,2008

AM,DSB,SSB调制和解调电路的设计。

东北大学分校电子信息系 综合课程设计 基于Multisim的调幅电路的仿真 专业名称电子信息工程 班级学号5081411 学生曹翔 指导教师王芬芬 设计时间2011/6/22

基于Multisim的调幅电路的仿真 1.前言 信号调制可以将信号的频谱搬移到任意位置,从而有利于信号的传送,并且是频谱资源得到充分利用。调制作用的实质就是使相同频率围的信号分别依托于不同频率的载波上,接收机就可以分离出所需的频率信号,不致相互干扰。而要还原出被调制的信号就需要解调电路。调制与解调在高频通信领域有着广泛的应用,同时也是信号处理应用的重要问题之一,系统的仿真和分析是设计过程中的重要步骤和必要的保证。论文利用Multisim提供的示波器模块,分别对信号的调幅和解调进行了波形分析。 AM调制优点在于系统结构简单,价格低廉,所以至今仍广泛应用于无线但广播。与AM信号相比,因为不存在载波分量,DSB调制效率是100%。我们注意到DSB信号两个边带中任意一个都包含了M(w)的所有频谱成分,所以利用SSB调幅可以提高信道的利用率,所以选择SSB调制与解调作为课程设计的题目具有很大的实际意义。 论文主要是综述现代通信系统中AM ,DSB,SSB调制解调的基本技术,并分别在时域讨论振幅调制与解调的基本原理, 以及介绍分析有关电路组成。此课程设计的目的在于进一步巩固高频、通信原理等相关专业课上所学关于频率调制与解调等相关容。同时加强了团队合作意识,培养分析问题、解决问题的综合能力。 本次综合课设于2011年6月20日着手准备。我团队四人:曹翔、婷婷、赖志娟、少楠分工合作,利用两天时间完成对设计题目的认识与了解,用三天时间完成了本次设计的仿真、调试。 2.基本理论 由于从消息转换过来的调制信号具有频率较低的频谱分量,这种信号在许多信道中不宜传输。因此,在通信系统的发送端通常需要有调制过程,同时在接受端则需要有解调过程从而还原出调制信号。 所谓调制就是利用原始信号控制高频载波信号的某一参数,使这个参数随调制信号的变化而变化,最常用的模拟调制方式是用正弦波作为载波的调幅(AM)、调频(FM)、调相 (PM)三种。解调是与调制相反的过程,即从接收到的已调波信号中恢复原调制信息的过程。与调幅、调频、调相相对应,有检波、鉴频和鉴相[1]。 振幅调制方式是用传递的低频信号去控制作为传送载体的高频振荡波(称为

FM调制解调电路的设计..

FM 调制/解调电路的设计 摘要:本设计根据锁相环原理,通过两片CD4046搭接基本电路来实现FM 调制/解调电路的设计,将调制电路的输出信号作为解调电路的输入信号,最终实现信号的调制解调。原理分析,我们得到的载波信号的电压P P V -大于3V ,最大频率偏移m f ?≥5KHz ,解调电路输出的FM 调制信号的电压P P V -大于200mV 可以看出我们的具体设计符合设计指标。 关键词:锁相环、调制、解调、滤波器 一、概述 FM 调制电路将代表不同信息的信号频率,搬移到频率较高的频段,以电磁波的方式将信息通过信道发送出去。FM 解调电路将接收到的包含信息的高频信号的频率搬移到原信号所处的频段。锁相环是一种相位负反馈的自动相位控制电路,它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域它是通过比较输入信号的相位和压控振荡器输出信号的相位,取出与这两个信号的相位差成正比的电压,并将该电压该电压作为压控振荡器的控制电压来控制振荡频率,以达到输出信号的频率与输入信号的频率相等的目的。锁相环主要由相位比较器、压控振荡器和低通滤波器三部分组成。调制电路还需要另设计一个高频信号放大器和加法器。解调电路需要设计一个低通滤波器,来取出解调信号。 技术指标: 1.载波频率fc=46.5KHz,载波信号的电压Vp-p ≥3V ; 2.FM 调频信号的电压Vp-p ≥6V ,最大频率偏移?fm ≥5KHz ; 3.解调电路输出的FM 调制信号的电压Vp-p ≥200mV 。 二、方案设计与分析 调频是用调制信号直接线性地改变载波振荡的瞬时频率,即使载波振荡频率随调制信号的失真变化而变化。其逆过程为频率解调(也称频率检波或鉴频)。 本实验是用CD4046数字集成锁相环(PLL )来实现调频/解调(鉴频)的。 1.FM 调频电路原理图(如图1所示) 将调制信号加到压控振荡器(VCO )的控制端,使压控振荡器得输出频率(在自

调制放大解调设计(正文)有PCB图哦!

目录 第一章前言 (1) 第二章设计说明 (2) 2.1整体功能 (2) 2.2系统结构 (2) 2.3设计条件需求 (2) 第三章单元电路设计 (4) 3.1电源电路设计 (4) 3.2信号发生电路设计 (4) 3.3调制解调电路设计 (5) 3.4整体电路图 (6) 3.5整机原件清单 (7) 第四章调试 (8) 第五章心得体会 (10) 第六章参考文献 (11) 附录 (12)

第一章前言 调制主要应用于广播、语音通信领域。调制就是对信号源的信息进行处理加到载波上,使其变为适合于信道传输的形式的过程,就是使载波随信号而改变的技术。一般来说,信号源的信息(也称为信源)含有直流分量和频率较低的频率分量,称为基带信号。基带信号往往不能作为传输信号,因此必须把基带信号转变为一个相对基带频率而言频率非常高的信号以适合于信道传输。这个信号叫做已调信号,而基带信号叫做调制信号。调制是通过改变高频载波即消息的载体信号的幅度、相位或者频率,使其随着基带信号幅度的变化而变化来实现的。解调是从携带消息的已调信号中恢复消息的过程。在各种信息传输或处理系统中,发送端用所欲传送的消息对载波进行调制,产生携带这一消息的信号。接收端必须恢复所传送的消息才能加以利用,这就是解调。 调制解调器是由调制器和解调器两部分组成。目前调制解调器主要有两种:内置式和外置式。 调制解调器的一个重要性能参数是传输速率,目前市面上28.8K、33.6K 和56K的调制解调器都有,而且56K的调制解调器已经成为市场的主流产品。但由于国内通信线路的限制,以及用户太多、国际出口太少的缘故,平时使用很难达到上述速率。 本设计是设计出调制放大解调设计电路。通过产生正弦波,进行与高频波相乘,再解调出来,经过滤波,去掉杂波后,完成信号的恢复。

基于Simulink的2FSK调制解调系统设计

二○一二~二○一三学年第二学期 电子信息工程系 课程设计计划书 班级: 课程名称: 学时学分: 姓名: 学号: 指导教师: 二○一三年六月一日

一、课程设计目的: 通过课程设计,巩固已经学过的有关数字调制系统的知识,加深对知识的理解和应用,学会应用Matlab Simulink 或SystemView等工具对通信系统进行仿真。 二、课程设计时间安排: 课程设计时间为第一周。首先查找资料,掌握系统原理,熟悉仿真软件,然后编写程序或构建仿真结构模型,最后调试运行并分析仿真结果。 三、课程设计内容及要求: 1 设计任务与要求 1.1 设计要求 (1)学习使用计算机建立通信系统仿真模型的基本方法及基本技能,学会利用仿真的手段对于实用通讯系统的基本理论、基本算法进行实际验证; (2)学习现有流行通信系统仿真软件MATLAB7.0的基本实用方法,学会使用这软件解决实际系统出现的问题; (3)通过系统仿真加深对通信课程理论的理解,拓展知识面,激发学习和研究的兴趣;(4)用MATLAB7.0设计一种2FSK数字调制解调系统; 1.2设计任务 根据课程设计的设计题目实现某种数字传输系统,具体要求如下; (1)信源:产生二进制随机比特流,数字基带信号采用单极性数字信号、矩形波数字基带信号波形; (2)调制:采用二进制频移键控(2FSK)对数字基带信号进行调制,使用键控法产生2FSK 信号; (3)信道:属于加性高斯信道; (4)解调:采用相干解调; (5)性能分析:仿真出该数字传输系统的性能指标,即该系统的误码率,并画出SNR(信噪比)和误码率的曲线图;

2 方案设计与论证 频移键控是利用载波的频率来传递数字信号,在2FSK 中,载波的频率随着二进制基带信号在f1和f2两个频率点间变化,频移键控是利用载波的频移变化来传递数字信息的。在2FSK 中,载波的频率随基带信号在f1和f2两个频率点间变化。故其表达式为: { )cos() cos(212)(n n t A t A FSK t e ?ωθω++= 典型波形如下图所示。由图可见。2FSK 信号可以看作两个不同载频的ASK 信号的叠加。因此2FSK 信号的时域表达式又可以写成: )cos()]([)cos(])([)(2_ 12n s n n n n s n FSK t nT t g a t nT t g a t s ?ωθω+-++-=∑∑ 1 1 1 1 t ak s 1(t) cos (w1t+θn ) s 2(t) s 1(t) co s(w1t +θn )cos (w2t+φn) s 2(t) cos (w2t+φn) 2FSK 信号 t t t t t t 2.1 2FSK 数字系统的调制原理 2FSK 调制就是使用两个不同的频率的载波信号来传输一个二进制信息序列。可以用二进制“1”来对应于载频f1,而“0”用来对应于另一相载频w2的已调波形,而这个可以用受矩形脉冲序列控制的开关电路对两个不同的独立的频率源w1、f2进行选择通。如下原理图:

AM调制与解调电路设计

AM 调制与解调电路设计 一.设计要求:设计AM 调制和解调电路 调制信号为:()1S 3cos 272103cos164t V tV ππ=?+=???? 载波信号:()2S 6 cos 2107210 6 cos1640t V tV ππ=??+=???? 二.设计内容:本题采用普通调幅方式,解调电路采用包络检波方法; 调幅电路采用丙类功放电路,集电极调制; 检波电路采用改进后的二极管峰值包络检波器。 1.AM 调幅电路设计: (1).参数计算: ()6cos1640c u t tV π=载波为, ()3cos164t tV πΩ=调制信号为u 则普通调幅信号为am cm U U [1cos164]cos1640a M t t ππ=+ 其中调幅指数 0.5a M = 最终调幅信号为 am U 6[10.5cos164]cos1640t t ππ=+ 为了让三极管处在过压状态cc U 的取值不能过大,本题设为6v 其中选频网络参数为 21 LC c ω= c 1640ωπ= L 200H,C 188F 1BB V μμ===另U (2).调幅电路如下图所示:

调幅波形如下: 可知调幅信号与包络线基本匹配 2.检波电路设计: 参数计算: 取10L R k =Ω 1.电容 C 对载频信号近似短路,故应有1 c RC ω ,取 ()510/10/0.00194c c RC ωω== 2.为避免惰性失真,有m a x /0.00336 a RC M Ω= ,取0.0022,1RC R k C F μ==Ω=,则

3.设 11212250.2,,330, 1.6566 R R R R R R R k R ====Ω=Ω则。因此, 4.c C 的取值应使低频调制信号能有效地耦合到L R 上,即满足min 1 c L C R Ω ,取 4.7c C F μ= 3.调制解调电路如下图所示: o am U U 与波形为: o L U U 与解调信号的波形为:

调制解调电路

第六章 频谱变换电路 ?? ?非线性:调频、限幅 频 线性:调幅、混频、倍 6.1概述 频谱变换电路:频谱搬移,使之适合于传输. 具备将输入信号频谱进行频谱变换,以获取具有所需频谱的输出信号这种功能的电路就叫做频谱变换电路。 6.2乘法器 变跨导式模拟乘法器是以恒流源式差动放大电路为基础,并采用变换跨导的原理而形成的。 变跨导式模拟乘法器(恒流源式差分放大器) 双入双出 () () EQ T EQ T b b be i be c o I U I U r r u r R u ββ β+≈++=?- ='111

() 21I U T β+= ∴I u U R u i T C o ??- ≈12 若I u i ∞2成正比,则21i i o u u u ?∞ e i e BE i e R u R u u I I 23 2≈-= = ∴21212i i e i i T C o U U R R u u U R u ??=? ?- = 跨导 222121 i e I T T T EQ m u R U U U I U I g ∞?=== ∴称为变跨导乘法器. 6.3调幅波 一、幅度调制(AM ) ()t u Ω-低频 ()t u c -高频 定义:用()t u Ω去控制()t u c 的幅度,使幅度()t u Ω∞,称为调制 称()t u Ω为调制信号,()t u c 为载波信号. 1、 调幅特性. 令()t U t u m Ω=ΩΩcos ()t w U t u c cm c cos = 则 )()t w t M U t u c a cm AM cos cos 1?Ω+= 其中cm m a U U k M Ω? =称为调制指数.(k 由电路决定的一个常数) ()t w t M U t w U t u c a cm c cm AM cos cos cos ?Ω??+?= ()()[]t w t w M U t w U c c a cm c cm Ω-+Ω+??+ ?=cos cos 2 1cos ∴调幅波有3个频率分量c w 、Ω+c w 、Ω-c w .

2FSK调制解调通信原理课程设计

` 课程设计报告 课程名称:通信系统课程设计 设计名称:2FSK调制解调仿真实现 姓名: 学号: 班级: 指导教师: 起止日期:

课程设计任务书 学生班级:学生姓名:学号: 设计名称:2FSK调制解调仿真实现 起止日期:指导教师: 课程设计学生日志

课程设计考勤表 课程设计评语表

2FSK 的调制解调仿真实现 一、 设计目的和意义 1、 熟练地掌握matlab 在数字通信工程方面的应用。 2、 了解信号处理系统的设计方法和步骤。 3、 理解2FSK 调制解调的具体实现方法,加深对理论的理解,并实现2FSK 的调制解调,画出各个阶段的波形。 4、 学习信号调制与解调的相关知识。 5、 通过编程、调试掌握matlab 软件的一些应用,掌握2FSK 调制解调的方法,激发学习和研究的兴趣; 二、 设计原理 1.2FSK 介绍: 数字频率调制又称频移键控(FSK ),二进制频移键控记作2FSK 。数字频移键控是用载波的频率来传送数字消息,即用所传送的数字消息控制载波的频率。2FSK 信号便是符号“1”对应于载频f1,而符号“0”对应于载频f2(与f1不同的另一载频)的已调波形,而且f1与f2之间的改变是瞬间完成的。 其表达式为: { )cos() cos(212)(n n t A t A FSK t e ?ωθω++= 典型波形如下图所示。由图可见,2FSK 信号可以看作两个不同载频的ASK 信号的叠加。因此2FSK 信号的时域表达式又可以写成: ) cos()]([)cos(])([)(2_ 12n s n n n n s n FSK t nT t g a t nT t g a t s ?ωθω+-++-=∑∑ z

FM调制解调电路的设计说明

DOC 格式. FM 调制/解调电路的设计 摘要:本设计根据锁相环原理,通过两片CD4046搭接基本电路来实现FM 调制/解调电路的设计,将调制电路的输出信号作为解调电路的输入信号,最终实现信号的调制 解调。原理分析,我们得到的载波信号的电压P P V -大于3V ,最大频率偏移m f ?≥5KHz , 解调电路输出的FM 调制信号的电压P P V -大于200mV 可以看出我们的具体设计符合设 计指标。 关键词:锁相环、调制、解调、滤波器 一、概述 FM 调制电路将代表不同信息的信号频率,搬移到频率较高的频段,以电磁波的方式将信息通过信道发送出去。FM 解调电路将接收到的包含信息的高频信号的频率搬移到原信号所处的频段。锁相环是一种相位负反馈的自动相位控制电路,它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域它是通过比较输入信号的相位和压控振荡器输出信号的相位,取出与这两个信号的相位差成正比的电压,并将该电压该电压作为压控振荡器的控制电压来控制振荡频率,以达到输出信号的频率与输入信号的频率相等的目的。锁相环主要由相位比较器、压控振荡器和低通滤波器三部分组成。调制电路还需要另设计一个高频信号放大器和加法器。解调电路需要设计一个低通滤波器,来取出解调信号。 技术指标: 1.载波频率fc=46.5KHz,载波信号的电压Vp-p ≥3V ; 2.FM 调频信号的电压Vp-p ≥6V ,最大频率偏移?fm ≥5KHz ; 3.解调电路输出的FM 调制信号的电压Vp-p ≥200mV 。 二、方案设计与分析 调频是用调制信号直接线性地改变载波振荡的瞬时频率,即使载波振荡频率随调制信号的失真变化而变化。其逆过程为频率解调(也称频率检波或鉴频)。 本实验是用CD4046数字集成锁相环(PLL )来实现调频/解调(鉴频)的。 1.FM 调频电路原理图(如图1所示) 将调制信号加到压控振荡器(VCO )的控制端,使压控振荡器得输出频率(在自振频率(中心频率)o f 上下)随调制信号的变化而变化,于是生成了调频波。

倍频电路设计

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目:倍频电路设计 初始条件: 具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。 要求完成的主要任务: 1. 采用晶体管或集成电路设计一个倍频电路; 2. 额定电压5V,电流10~15 mA ; 3. 输入频率4MHz,输出频率12 MHz 左右; 4. 输出电压≥ 1 V,输出失真小; 5. 完成课程设计报告(应包含电路图,清单、调试及设计总结)。 时间安排: 1.2011年6月3日分班集中,布置课程设计任务、选题;讲解课设具体实施计划与课程设计报告格式的要求;课设答疑事项。 2.2011年6月4日至2011年6月9日完成资料查阅、设计、制作与调试;完成课程设计报告撰写。 3. 2011年6月10日提交课程设计报告,进行课程设计验收和答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要..................................................................... I Abstract.................................................................. II 1 绪论 (1) 2 设计内容及要求 (2) 2.1 设计目的及主要任务 (2) 2.1.1 设计的目的 (2) 2.1.2 设计任务及主要技术指标 (2) 2.2 设计思想 (2) 3 设计原理及方案 (3) 3.1 设计原理 (3) 3.1.1锁相环组成介绍 (3) 3.1.2锁相环原理 (5) 3.1.3 NE564芯片介绍 (6) 3.2 设计方案 (7) 4 电路制作及硬件调试 (9) 5 心得体会 (10) 参考文献 (11)

基于MATLAB的2FSK调制解调课设

摘要 FSK是信息传输中使用得较早的一种调制方式,它的主要优点是: 实现起来较容易,抗噪声与抗衰减的性能较好。在中低速数据传输中得到了广泛的应用。所谓FSK就是用数字信号去调制载波的频率。二进制的基带信号是用正负电平来表示的。FSK--又称频移键控法。FSK 是信息传输中使用得较早的一种调制方式,它的主要优点是: 实现起来较容易,抗噪声与抗衰减的性能较好。在中低速数据传输中得到了广泛的应用。所谓FSK就是用数字信号去调制载波的频率。 关键词:2FSK 基带信号载波调制解调

目录 摘要 0 一引言 (1) 二设计原理 (2) 2.1 2FSK介绍 (2) 2.2 2FSK调制原理 (2) 2.3 2FSK解调原理 (3) 三详细设计步骤 (4) 四设计结果及分析 (5) 4.1 信号产生 (5) 4.2 信号调制 (7) 4.3 信号解调 (8) 4.4 课程设计程序 (10) 五心得体会 (15) 六参考文献 (16)

一、引言 2FSK信号的产生方法主要有两种:一种是调频法,一种是开关法。这两种方法产生的2FSK信号的波形基本相同,只有一点差异,即由调频产生的2FSK信号在相邻码元之间的相位是连续的,而开关法产生的2FSK信号则分别由两个独立的频率源产生两个不同频率的信号,故相邻码元之间的相位不一定是连续的。本设计采用后者——开关法。2FSK信号的接受也分为相干和非相干接受两种,非相干接受方法不止一种,它们都不利用信号的相位信息。故本设计采用相干解调法。

二、 设计原理 2.1 2FSK 介绍: 数字频率调制又称频移键控(FSK ),二进制频移键控记作2FSK 。数字频移键控 是用载波的频率来传送数字消息,即用所传送的数字消息控制载波的频率。2FSK 信号便是符号“1”对应于载频f1,而符号“0”对应于载频f2(与f1不同的另一载频)的已调波形,而且f1与f2之间的改变是瞬间完成的。 其表达式为: { )cos() cos(212)(n n t A t A FSK t e ?ωθω++= (3-1) 典型波形如下图所示。由图可见,2FSK 信号可以看作两个不同载频的ASK 信号的叠加。因此2FSK 信号的时域表达式又可以写成: ) cos()]([)cos(])([)(2_ 12n s n n n n s n FSK t nT t g a t nT t g a t s ?ωθω+-++-=∑∑ (3-2) 1 1 1 1 t ak s 1(t)cos (w1t+θn ) s 2(t) s 1(t) co s(w1t+θn ) cos (w2t+φn) s 2(t) cos (w2t+φn) 2FSK 信号t t t t t t 2.2 2FSK 调制原理 2FSK 调制就是使用两个不同的频率的载波信号来传输一个二进制信息序列。可以用二进制“1”来对应于载频f1,而“0”用来对应于另一相载频w2的已调波形,而这个可以用受矩形脉冲序列控制的开关电路对两个不同的独立的频率源w1、f2进行选择通。本次课程设计采用的是前面一种方法。如下原理图:

FSK调制解调原理及设计

一.2FSK 调制原理: 1、2FSK 信号的产生: 2FSK 是利用数字基带信号控制在波的频率来传送信息。例如,1码用频率f1来传输,0码用频率f2来传输,而其振幅和初始相位不变。故其表示式为 式中,假设码元的初始相位分别为1θ和2θ;112 f π=ω和222f π=ω为两个不同的码元的角频率;幅度为A 为一常数,表示码元的包络为矩形脉冲。 2FSK 信号的产生方法有两种: (1)模拟法,即用数字基带信号作为调制信号进行调频。如图1-1(a )所示。 (2)键控法,用数字基带信号)(t g 及其反)(t g 相分别控制两个开关门电路,以此对两个载波发生器进行选通。如图1-1(b )所示。 这两种方法产生的2FSK 信号的波形基本相同,只有一点差异,即由调频器产生的2FSK 信号在相邻码元之间的相位是连续的,而键控法产生的2FSK 信号,则分别有两个独立的频率源产生两个不同频率的信号,故相邻码元的相位不一定是连续的。 (a) (b) 2FSK 信号产生原理图 由键控法产生原理可知,一位相位离散的2FSK 信号可看成不同频率交替发送的两个2ASK 信号之和,即 其中)(t g 是脉宽为s T 的矩形脉冲表示的NRZ 数字基带信号。 其中,n a 为n a 的反码,即若1=n a ,则0=n a ;若0=n a ,则1=n a 。 2、2FSK 信号的频谱特性: 由于相位离散的2FSK 信号可看成是两个2ASK 信号之和,所以,这里可以直接应用2ASK 信号的频谱分析结果,比较方便,即 2FSK 信号带宽为 s s F S K R f f f f f B 2||2||21212+-=+-≈ 式中,s s f R =是基带信号的带宽。 二.2FSK 解调原理: 仿真是基于非相干解调进行的,即不要求载波相位知识的解调和检测方法。 其非相干检测解调框图如下 M 信号非相干检测解调框图 当k=m 时检测器采样值为: 当k ≠m 时在样本和中的信号分量将是0,只要相继频率之间的频率间隔是,就与相移值无关了,于是其余相关器的输出仅有噪声组成。 其中噪声样本{}和{}都是零均值,具有相等的方差 对于平方律检测器而言,即先计算平方包络

基于Multisim调制解调仿真电路设计

基于Multisim调制解调仿真电路设计 春芽电子科技春芽ing 摘要 通信电路系统中实现调制解调方法很多,而锁相环鉴频是利用现代锁相环技术来鉴频实现调制解调因为工作稳定、失真度小、信噪比高等优点被广泛应用。本课题分别设计2ASK、2PSK、2FSK的调制解调电路,功能是数字基带信号经过调制输出模拟信号,然后运用锁相环进行解调出数字信号,所以调制解调电路都运用Multisim软件进行仿真分析。对2ASK、2FSK、2PSK解调电路时低通滤波器输出的波形失真比较大,经过抽样判决电路整形后可以再生数字基带脉冲。整个硬件电路设计中,尽量做到电路简单实用,基本达到功能要求。 关键词:调制解调,Multisim仿真,锁相环 Abstract Communication circuit system to achieve a lot of modulation and demodulation, and the phase-locked loop frequency demodulation is the use of modern technology to achieve phase locked loop demodulation because the work is stable, low distortion, high signal noise ratio is widely used. This topic design of 2ASK, 2PSK, 2FSK modulation and demodulation circuit function is digital base band signal after the modulation output analog signal, then use the PLL to demodulate the digital signal, so modulation and demodulation circuit use Multisim software simulation analysis. The waveform distortion of the low pass filter output of 2ASK, 2FSK and 2PSK demodulation circuits is relatively large, and the digital baseband pulse can be regenerated by the sampling decision circuit. Throughout the hardware circuit design, as far as possible to achieve a simple and practical circuit, the basic requirements to achieve functional. Keywords: Modulation and Demodulation, Multisim Simulation, Phase Locked Loop

2FSKFSK 通信系统调制解调综合实验电路设计

学生学号实验课成绩 学生实验报告书 实验课程名称 开课学院 指导教师姓名 学生姓名 学生专业班级 200-- 200学年第学期

实验教学管理基本规范 实验就是培养学生动手能力、分析解决问题能力的重要环节;实验报告就是反映实验教学水平与质量的重要依据。为加强实验过程管理,改革实验成绩考核方法,改善实验教学效果,提高学生质量,特制定实验教学管理基本规范。 1、本规范适用于理工科类专业实验课程,文、经、管、计算机类实验课程可根据具体情况参照 执行或暂不执行。 2、每门实验课程一般会包括许多实验项目,除非常简单的验证演示性实验项目可以不写实验报 告外,其她实验项目均应按本格式完成实验报告。 3、实验报告应由实验预习、实验过程、结果分析三大部分组成。每部分均在实验成绩中占一 定比例。各部分成绩的观测点、考核目标、所占比例可参考附表执行。各专业也可以根据具体情况,调整考核内容与评分标准。 4、学生必须在完成实验预习内容的前提下进行实验。教师要在实验过程中抽查学生预习情况, 在学生离开实验室前,检查学生实验操作与记录情况,并在实验报告第二部分教师签字栏签名,以确保实验记录的真实性。 5、教师应及时评阅学生的实验报告并给出各实验项目成绩,完整保存实验报告。在完成所有实 验项目后,教师应按学生姓名将批改好的各实验项目实验报告装订成册,构成该实验课程总报告,按班级交课程承担单位(实验中心或实验室)保管存档。 6、实验课程成绩按其类型采取百分制或优、良、中、及格与不及格五级评定。

实验课程名称:__通信原理_____________

图3-1数字键控法实现2FSK信号的原理图 图中两个振荡器的载波输出受输入的二进制基带信号s(t)控制。由图3-1 可知,s(t)为“1”时,正脉冲使门电路1接通,门2断开,输出频率为f1;数字信号为“0”时,门1断开,门2接通,输出频率为f2。在一个码元Tb期间输出ω1或ω2两个载波之一。由于两个频率的振荡器就是独立的,故输出的2FSK信号:在码元“0”“1”转换时刻,相邻码元的相位有可能就是不连续的。这种方法的特点就是转换速率快,波形好,频率稳定度高,电路简单,得到广泛应用。对应图3-1(a)与(b) ,2FSK调制器各点的时间波形如图3-2所示,图中波形g可以瞧成就是两个不同频率载波的2ASK信号波形e 与波形f 的叠加。可见,2FSK信号由两个2ASK信号相加构成。其信号的时域表达式: ()()()()() ∑ ∑+ - + + - = k b k k b k FSK t kT t g a t kT t g a t S2 2 1 1 cos cos? ω ? ω 图3-2 2FSK调制器各点的时间波形 本次综合设计实验调制部分正就是采用此方法设计的。整个调制系统包括:载波振荡器、反相器、调制器与加法器等单元电路组成。 1、2 解调设计方案 数字频率键控( 2FSK) 信号常用解调方法有很多种,在设计中利用过零检测法。 过零检测法就是利用信号波形在单位时间内与零电平轴交叉的次数来测定信号频率。解调系统组成原理框图如图3-3所示电路: g f e d c b a 位定时 抽样判决 LPF 脉冲展宽 整流 微分 限幅 图3-3 2FSK过零检测解调电路原理框图 输入的FSK 信号经限幅放大后成为矩形脉冲波,再经过微分电路得到双向尖脉冲,然后整流得到单向尖脉冲,每个尖脉冲表示一个过零点,尖脉冲的重复频率就就是信号频率的两倍。将尖脉冲去触发一单稳电路, 产生一定宽度的矩形脉冲序列,该序列的平均分量与脉冲重复频率成正比,即与输入信号成正比。所以经过低通滤波器输出的平均分量的变化反映了输入信号频率的变化,这样把码元“ 1”与“ 0”在幅度上区分开来,恢复出数字基带信号。其原理框图及各点波形如图3-4 所示。

(8)g 玩转Linux下的Modem

玩转Linux下的Modem Modem可谓Linux下最难搞定的设备之一,它是我们使用Linux时许多失望和喜悦的源泉。本文介绍Modem相关的各种问题,比如端口、中断、PnP以及Modem 检测、网络配置,等等。 端口与Modem类型 计算机有许多连接其内部和外部世界的接口,部分接口是专用的,例如键盘接口只能连接键盘而不能连接任何其他设备,连鼠标也不能。 连接外部设备的多用途接口称为“端口”(Port)。大多数PC机都带有两个串行端口和一个并行端口。串行端口用一条线路串行传送数据,每次传送一个数据位,接收后再组合成字节。并行端口使用八条线路每次并行传送8个数据位。大多数家用打印机都连接到PC的并行端口。 Modem是一种通过电话线路传送数字信息的设备。我们知道,电话系统原本只为传送语音信息而设计,Modem技术突破了这一局限,它能够调制(modulate)数字信息,把数字信息转换成可以通过电话线路发送的模拟信号。在接收端,模拟信号重新被转换成数字信号(即解调,demodulate)。Modem这个词就是从modulator-demodulator缩写得到。 Modem发明于串行口广泛应用的时代。那时的Modem都是独立在计算机外的设备,通过电缆连接到串行口。今天我们仍可以见到这种外置的Modem,但更多的是插入主板的Modem卡,即内置Modem。由于大多数计算机都带有二个串行口,内置Modem通常增加第三个端口。 外置Modem的设置一般都相当简单,只需接好串行口和Modem之间的电缆、接上电话线、开启电源,大多数外置Modem就能直接开始工作。 内置Modem刚出现时,它的板子上总是带有所有通信所需的电路元件,并提供设置地址和IRQ的跳线。硬件厂商总是在寻求降低成本的途径。随着PC功能越来越好,Modem厂商开始用软件来替代部分电路元件,这些Modem称为软Modem 或Winmodem。软Modem价格低廉,它用设备驱动程序来完成原来必须由Modem 卡电路元件完成的部分任务。 软Modem的问题在于它的驱动程序是为Windows而不是为Linux编写的。虽然不存在什么特别的原因使得这种驱动程序的Linux版本无法编写,不过这最终

ASK调制与解调电路设计

《电力系统自动化》课程设计任务书

目录 一.背景描述…………………………二.设计内容…………………………三.工作原理…………………………四.电路设计及参数设置……………五.仿真及波形分析…………………六.设计总结…………………………七.参考文献…………………………

一.背景描述: 电力系统远动技术是为电力系统调度服务的远距离监测、控制技术。由于电能生产的特点,能源中心和负荷中心一般相距甚远,电力系统分布在很广的地域,其中发电厂、变电所、电力调度中心和用户之间的距离近则几十公里,远则几百公里甚至数千公里。要管理和监控分布甚广的众多厂、所、站和设备、元器件的运行工况,已不能用通常的机械联系或电联系来传递控制信息或反馈的数据,必须借助于一种技术手段,这就是远动技术。它将各个厂、所、站的运行工况(包括开关状态、设备的运行参数等)转换成便于传输的信号形式,加上保护措施以防止传输过程中的外界干扰,经过调制后,由专门的信息通道传送到调度所。在调度所的中心站经过反调制,还原为原来对应于厂、所、站工况的一些信号再显示出来,供给调度人员监控之用。调度人员的一些控制命令也可以通过类似过程传送到远方厂、所、站,驱动被控对象。这一过程实际上涉及遥测、遥信、遥调、遥控,所以,远动技术是四遥的结合。 二.设计内容: 1.对电力系统远动信息传输系统的主要环节进行理论分析和研究。 2. 熟悉数字调幅技术的有关原理和实现方法。 3. 设计ASK调制解调电路。 4. 熟悉ORCAD软件的应用,学习元件库使用、原理图的建立以及 应用原理图进行仿真的基本方法。 三. 工作原理: 1. 数字调幅技术的原理和实现方法 (1)数字调制的概念 用二进制(多进制)数字信号作为调制信号,去控制载波某些参量的变化,这种把基带数字信号变换成频带数字信号的过程称为数字调制,反之,称为数字解调。 (2)数字调制的分类 在二进制时分为:振幅键控(ASK)、频移键控(FSK)、相移键控(PSK)。

2FSK的调制与解调器的设计与实现

编号: 毕业设计说明书 题目:2FSK调制与解调器的 设计与实现 学院:信息与通信学院 专业:电子信息工程 姓名:闫朝明 学号: 1100220429 指导教师单位:信息与通信学院 姓名:田克纯 职称:教授 实验研究 2015 年 5 月 20 日

调制解调器在通信系统中的有着重要的地位,系统的性能很大程度上取决于它的好坏。二进制频率调制在数据通信的发展历史上,是一种较早使用的通信方式,这种调制解调方式的抗噪声干扰性能强大,抗衰落性能较强,实现起来有非常容易,由于这些优点,被广泛的应用于中低速数据传输系统中,所以一直以来都是学校数字信号调制教学的重点内容。但学生实验室中的2FSK调制与解调器采用整体电路的方式进行设计,电路板体积较大且灵活性较差。而此次毕业设计,按照各部分电路的不同功能,将2FSK 调制与解调系统中的电路进行模块化,每个模块都设计出参数各异的小模块电路。关于信号的调制,有两种常用的方法,分别是直接调制和间接调制,其中间接调制则采用频移键控方法,直接调频则采用压控振荡法。信号的解调总体也可以分为两种方式,相关解调和非相干解调。在本次毕业设计当中,非相干解调使用了过零检测法,相干解调则采用了锁相解调法。使得用户在使用时,可根据需求,选择相应的模块进行拼接,从而完成不同方式、参数的2FSK调制解调器,这比传统的2FSK调制与解调器更加灵活和实用,也能使学生的动手能力得到很好的锻炼。 关键词:2FSK;模块化;频移键控;压控振荡法;锁相解调;过零检测法

Modem has an important role in the communication system, the performance of the system is good or bad depends largely on it. Binary frequency modulation in the history of the development of data communications, is a means of communication used earlier, such a strong anti-noise modulation and demodulation performance, strong anti-fading performance, very easy to implement, because of these advantages, is widely used in low-speed data transmission system, it has been focused on digital signal modulation content of school teaching. However, the student lab 2FSK modulation and demodulation circuit device by way of the overall design, the circuit board larger and less flexible. And the graduation project, in accordance with the different functions of each part of the circuit, the 2FSK modulation and demodulation circuit modular system, each module design small modular circuit parameters different. About modulated signal, there are two commonly used methods, namely direct and indirect modulation modulation, in which the indirect modulation frequency shift keying method is used, the direct voltage controlled oscillator frequency modulation method is used. Demodulated overall signal can also be divided into two ways, coherent demodulation and non-coherent demodulation. In this graduation designs, non-coherent demodulation using zero-crossing detection method, coherent demodulation is using a phase-locked demodulation. Enables users to use, according to the needs, select the appropriate module stitching to complete different way, parameters 2FSK modem, which is more flexible and practical than traditional 2FSK modulation and demodulation device, but also enable students to develop practical skills good exercise. Key words:2FSK; frequency shift keying; VCO; demodulation; zero crossing detection method

2fsk调制解调电路设计毕业设计(论文)word格式

一、设计基本原理和系统框图 2FSK 系统分调制和解调两部分。 ①调制部分:2FSK 信号的产生方法主要有两种。第一种是用二进制基带矩形脉冲信号去调制一个调频器,如(a)图所示,使其能够输出两个不同频率的码元。第二种方法是用一个受基带脉冲控制的开关电路去选择两个独立频率源的振荡作为输出,如(b)图所示。这两种方法产生的2FSK 信号的波形基本相同,只有一点差异,即由调频器产生的2FSK 信号,在相邻码元之间的相位是连续的,如(c)图所示;而开关法产生的2FSK 信号,则分别由两个独立的频率源产生不同频率的信号,故相邻码元的相位不一定是连续,如(d)图所示。本次设计用键控法实现2FSK 信号。 (c)相位连续 (d)相位不连续 ②解调部分:2FSK 信号的接收主要分为相干和非相干接收两类,本次设计采用非相干法(即包络解调法),其方框图如下。用两个窄带的分路滤波器分别滤出频率为1f 和2f 的高频脉冲,经过包络检波后分别取出它们的包络。把两路输出同时送到抽样判决器进行比

较,从而判决输出基带数字信号。 2FSK n(t) FSK信号包络解调方框图 设频率 1 f代表数字信号1; 2 f代表数字信号0,则抽样判决器的判决准则: 式中x1和x2分别为抽样判决时刻两个包络检波器的输出值。这里的抽样判决器,要比较x1、x2的大小,或者说把差值x1-x2与零电平比较。因此,有时称这种比较判决器的判决电平为零电平。 当FSK信号为 1 f时,上支路相当于接收“1”码的情况,其输出x1为正弦波加窄带高斯噪声的包络,它服从莱斯分布。而下支路相当于接收“0”码的情况,输出x2为窄带高斯噪声的包络,它服 从瑞利分布。如果FSK信号为 2 f,上、下支路的情况正好相反,此时上支路输出的瞬时值服从瑞利分布,下支路输出的瞬时值服从莱斯分布。 无论输出的FSK信号是 1 f或 2 f,两路输出的判决准则不变,因此可以判决出FSK信号。 带通f1 滤波器 带通f2 滤波器 包络检波器 包络检波器 抽样判决器

相关文档
最新文档