LED色温图谱详解

LED色温图谱详解
LED色温图谱详解

相关色温8000-4000K的白光LED的发射光谱和色品质特性

摘要:文章报告和分析了8000K、6400K、5000K和4000K四种色温的白光LED的发射光谱、色品质和显色性等特性,它们与工作条件密切相关。随着正向电流IF的增加,色品坐标x和y值逐渐减小,色温增大,发生色漂移,而光通量呈亚线性增加,光效逐渐下降。由于在白光LED中发生光转换过程,产生光吸收的辐射传递,致使白光中InGaN芯片的蓝色EL光谱的形状和发射峰发生变化。白光LED的特性在很大程度上受InGaN蓝光LED芯片性能的制约。人们可以实现8000-4000K四种色温白光LED,显色指数高,且制作的白光LED的色容差可以达到很小,实现优质的白光照明光源。从上世纪90年代末到现在,白光发光二极管的出现和快速发展,引起人们极大的热情,白光LED具有低压、低功耗、高可靠,长寿命及固体化等优点。其量大的吸引力和期望是作为继白炽灯泡、荧光灯及高强度气体放电灯(HID)后的第四代照明新光源——具有庞大的照明市场和显著的节能前景的光源,是符合环保、节能要求的绿色照明光源。因此,受到日美和欧洲各国政府和商家的重视,他们制定发展规划和目标,且大集团公司在技术和资金上进行联合和重组。2003年6月我国政府也推出“半导体照明工程”,以期大力推动我国白光LED的发展。

尽管短短的几年来,白光LED的研发和应用取得举世瞩目的成绩,但目前还存在诸多问题,只能用于一些特殊的领域中。我们注意到,目前普通的白光LED与用作照明光源白光LED的概念是有质的差异,并不是越“白”越好。人们对用作照明的白光光源有着严格的要求,国际和我国早已制定标准。照明光源有六个严格的标准色温区:6400K、5000K、4000K、3450K、2900K及2700K及其相应的色域,照明光源的色品质参数是相互关联的。必须同时得到满中,方可称为合格的照明光源。尽管目前作为照明光源——白光LEDs还没有国际CIE标准及中国的国家标准,但是应当参照国际CIE和中国国家标准来要求和指导白光LEDs新照明光源的发展和应用。迄今有关不同色温度,高显色性白光LED的色品质和光谱特性报道欠缺。本文按照国家照明光源标准,报告和分析所研发的8000-4000K不同色温的白光LED的发射光谱、色品质及光电特性。

1、实现相关色温原理和实验从市场上可以很方便地购得多家公司提供的不同等级的InGaN蓝光LED芯片。这些芯片样品可分为发射波长455-460nm、460-465nm及465-470nm;光强一般在40mcd 以上。蓝芯片尺寸大多为320X320um左右。依据发光学光转换和色度学原理,采用蓝光LED芯片和可被蓝光有效激发的荧光粉有机组合成白光LED技术实现白光。荧光粉选择是多样性的,可以是一种黄色荧光粉或黄色和红色混合荧光粉。调控各发光颜色强度比,实现各种色温的白光。将含有荧光粉的优质高透过率树脂胶仔细涂覆在蓝芯片周围,用常规的封装工艺和环氧树脂封装成常规Ф5mm子弹型和半球型白光LED。白光LED的发射光谱,色品技及其他光电特性由浙大三色仪器有限公司生产的型号为SPR-920D型光谱辐射分析仪测试记录。该仪器配有一个0.5m的积分球及直流电源。所有实验均在室温下进行,白光LED的发射光谱在正向电流IF=20mA下测试。

2、不同色温白光LED的光谱特性

2.1 8000K的白光LED 7000-10000K白光呈现发蓝高色温的白光。在照明光源标准中没有这个标准。它是不能有作普通家庭照明光源的。这种高色温发蓝的白光LED可以用于要求不严的特殊照明和指示中,有一定用途。图1给出相关色温为8070K的半球Ф5白光LED的发射光谱。它是由InGaN蓝光LED的电致发光光谱和稀土YAG:Ce体系黄色荧光体被蓝光激发的光致发光光谱所组成,两光谱的本质是不同的。这样构成相关色温为8070K的发蓝的白光光谱,色品坐标x=0.2979,y=0.2939,在黑体轨迹的附近。 2.2 6400K的白光LED 图2是在正向电流IF=20mA下的色温为6450K的白光LED的发射光谱。它是属于色温为6400K的日光色。是目前照明光源使用的最广泛的色温之一。其光谱所组成。和图1光谱相比,黄成份的光谱增强,色温降低。此时白光LED中的蓝光EL光谱和只有InGaN LED的蓝光光谱相比是有差异的,因为发生荧光体高效的吸收蓝光和光转换的辐射传递。而这种光吸收(激发)与荧光体的激发光谱密切相关。由于这种荧光体光转换过程致使白光LED中的蓝光光谱的能量分布、发射峰以及半高宽等

性质发生变化。所涂覆的荧光粉越多,蓝色光谱变化越严重,在低色温的白光LED中更为明显。

该白光LED的色品坐标X=0.3146,Y=0.3360,它们落在CIE标准色度图6400K标准色温的色容差图的最内圈,其色容差1.9,很满意,显色指数Ra为82,完全符合照明光源的要求。

2.3 5000K的白光LED 色温5118K的白光LED的发射光谱(如图3所示),它属于标准色温为5000K的中性白光。光谱性质和上述相同,只是光谱中的黄成份的比例增加。该白光LED的色品坐标X=0.3422,Y=0.3543,其色容差在5000K标准色温的色域中为2.1,很满意,Ra=81。完全符合照明光源的光色参数要求。若要提高显色指数Ra,需要增加光谱中的红成份,可能牺牲光效。此外,在IF=20mA下,白光LED的光转换倍数高达4.9倍。这里所说的光转换倍数(B)定义是在某一正向电流IF和不同的色温下,是不同的。

2.4 4000K的白光LED 迄今有关符合照明光源标准要求的4000K白光LED光谱和色品质的报告很少。这是因为仅用稀土YAG:Ce体系黄色荧光体难以制作合乎要求的Tc≤4000K的白光LED,显色指数低,色品质差。为此,需要加入适量的红色荧光体,补足光谱中红成份。图4为我们开发4019K白光LED的发射光谱,它属于标准的色温为4000K的冷白色。光谱中黄和橙成份增加,相对光谱中蓝成份的比例进一步下降。该白光LED的色品坐标X=0.3810,Y=0.3815,在标准4000K色温的色容差的最内圈中,其色容差为0.6,显色指数Ra=82。色品质甚佳,完全符合照明光的严格要求。 3、白光LED的性质与IF的关系

3.1 色品坐标光源的色品坐标是一个重要参数。图5给出5000K白光LED在不同正向电流IF驱动下的色品坐标X和Y值的变化曲线。这条曲线给绘在标准6400K色温的色容差图中,具有直观动态感。其中纵坐标为Y值,横坐标为X值,而上横坐标为IF(mA)。显然,随IF增加,色品坐标X 和Y值逐渐偏离,到IF=70,80mA时,偏离非常严重。

3.2 相关色温由上述色品坐标X和Y值随IF的变化,指明发生色漂移,这必然在相关色温中也呈现反映。图6表示白光LED在不同IF工作下的相关色温变化规律。显然,随着IF增加,相关色温Tc(K)逐渐增加,由日光色变为蓝白色。这是因为随正向电流IF的增加,白光LED的发射光谱,特别是InGaN LED蓝芯片的发射光谱发生很大变化,导致白光的发光颜色、色品质等性能改变。

3.3 白光LED的光通和光效制作的白光LED的光通(Φ)和光效(η)随施加的正向电流IF的变化曲线(如图7所示)。光通呈亚线性增加,趋向饱和,而光效逐渐下降。白光LED的光效下降与Taguchi等人的结果是一致的。白光LED的光通和光效的这种变化,在不同色温的白光LED中是一致的。对这种小功率白光LED来说,既要照顾光通量,又要考虑光效,故一般选择在IF=20mA下工作。早期Nakamura等人已指出,InGaN/AlGaN DH蓝光LED的光输出功率随IF增加呈亚线性增加。我们认为,引起白光效随IF增加逐渐降低的因素是多方面的。首先,蓝光InGaN芯片的发光效率随IF增加而逐渐降低的因素是多方面的。首先,蓝光InGaN芯片的发光效率随IF增加而逐渐下降;第二,随着IF增加,P-N 结温快速升高,结温和环境温度上升,对半导体蓝光芯片和荧光粉的发光将产生严重的温度猝灭;第三,由于在白光LED中发生蓝光→黄光光转换过程,产生光吸收的辐射传递,不仅使白光光谱中的蓝芯片的EL 的发射光谱形状和发射峰发生变化,而且蓝光效率下降在荧光体的光效下降和光衰程度似乎比InGaN蓝芯片更快。实际上是荧光体的发光效率受蓝芯片下降的“诛连”和强烈的制约。 4、结束语综上所述,采用蓝光LED芯片和荧光体有机结合是可以成功地开发出8000-4000K不同色温段,显色指数高,色品质优良,符合照明光源CIE严格标准要求的白光LED。制作的白光LED的色容差可以达到很小。8000K、6400K、5000K和4000K四种色温的白光LED的发射光谱、色品坐标、显色性等光色特性与工作条件密切相关。随着白光LED的正向电流增加,色品坐标X和Y值逐渐减小,而相关色温逐步增大,致使色漂移;而光通量呈亚线性增加,光效却逐渐下降。由于在白光LED中发生光转换过程,产生光吸收的辐射传递,致使白光中InGaN芯片的蓝色EL光谱的形状和发射峰发生变化。白光LED的上述特性与InGaN蓝光LED芯片性能密切相关,在很大程度上受其制约。

E:Δ色温=实测色温-计算色温(根据相对色温线)

结论:

1.根据实际测试的色标可看出:不在色温线上面的色坐标点,可以通过相对色温线的方式求出该点色温.

2.向下延长各个相对色温线,基本交汇在一点(X:0.33 Y:0.20).依此点坐标: 2500K相对色温线与X轴的夹角约为30度.

25000K相对色温线与2500K相对色温线之间的夹角约为90度.

250000K相对色温线与2000K相对色温线之间的夹角约为100度.

具体见上图所示.

3.根据上图白光色坐标分布图与相对色温线的关系,现在许多分光参数表是根据色温方式划分各个BIN等级(色标分布图是参照早期日亚白光色标分布图制作).这样分当然具有一定的好处。

4.工厂色标分布图所对应的的色温范围为:4000K~16000K.

5.采用白光计算机(T620)测试出的色温值与根据相对色温线所计算出的色温值有一定的差别,机台测试出的色温值只能做一个参考值.根据相对色温线所计算出的色温值与机台测试的色温值之间的差别详见上表Δ色温值.

相关色温8000-4000K的白光LED的发射光谱和色品质特性

摘要:文章报告和分析了8000K、6400K、5000K和4000K四种色温的白光LED的发射光谱、色

品质和显色性等特性,它们与工作条件密切相关。随着正向电流IF的增加,色品坐标x和y值逐渐减小,色温增大,发生色漂移,而光通量呈亚线性增加,光效逐渐下降。由于在白光LED中发生光转换过程,产生光吸收的辐射传递,致使白光中InGaN芯片的蓝色EL光谱的形状和发射峰发生变化。白光LED的特性在很大程度上受InGaN蓝光LED芯片性能的制约。人们可以实现8000-4000K四种色温白光LED,显色指数高,且制作的白光LED的色容差可以达到很小,实现优质的白光照明光源。从上世纪90年代末到现在,白光发光二极管的出现和快速发展,引起人们极大的热情,白光LED具有低压、低功耗、高可靠,长寿命及固体化等优点。其量大的吸引力和期望是作为继白炽灯泡、荧光灯及高强度气体放电灯(HID)后的第四代照明新光源——具有庞大的照明市场和显著的节能前景的光源,是符合环保、节能要求的绿色照明光源。因此,受到日美和欧洲各国政府和商家的重视,他们制定发展规划和目标,且大集团公司在技术和资金上进行联合和重组。2003年6月我国政府也推出“半导体照明工程”,以期大力推动我国白光LED的发展。

尽管短短的几年来,白光LED的研发和应用取得举世瞩目的成绩,但目前还存在诸多问题,只能用于一些特殊的领域中。我们注意到,目前普通的白光LED与用作照明光源白光LED的概念是有质的差异,并不是越“白”越好。人们对用作照明的白光光源有着严格的要求,国际和我国早已制定标准。照明光源有六个严格的标准色温区:6400K、5000K、4000K、3450K、2900K及2700K及其相应的色域,照明光源的色品质参数是相互关联的。必须同时得到满中,方可称为合格的照明光源。尽管目前作为照明光源——白光LEDs还没有国际CIE标准及中国的国家标准,但是应当参照国际CIE和中国国家标准来要求和指导白光LEDs新照明光源的发展和应用。迄今有关不同色温度,高显色性白光LED的色品质和光谱特性报道欠缺。本文按照国家照明光源标准,报告和分析所研发的8000-4000K不同色温的白光LED的发射光谱、色品质及光电特性。

1、实现相关色温原理和实验从市场上可以很方便地购得多家公司提供的不同等级的InGaN蓝光LED芯片。这些芯片样品可分为发射波长455-460nm、460-465nm及465-470nm;光强一般在40mcd 以上。蓝芯片尺寸大多为320X320um左右。依据发光学光转换和色度学原理,采用蓝光LED芯片和可被蓝光有效激发的荧光粉有机组合成白光LED技术实现白光。荧光粉选择是多样性的,可以是一种黄色荧光粉或黄色和红色混合荧光粉。调控各发光颜色强度比,实现各种色温的白光。将含有荧光粉的优质高透过率树脂胶仔细涂覆在蓝芯片周围,用常规的封装工艺和环氧树脂封装成常规Ф5mm子弹型和半球型白光LED。白光LED的发射光谱,色品技及其他光电特性由浙大三色仪器有限公司生产的型号为SPR-920D型光谱辐射分析仪测试记录。该仪器配有一个0.5m的积分球及直流电源。所有实验均在室温下进行,白光LED的发射光谱在正向电流IF=20mA下测试。

2、不同色温白光LED的光谱特性

2.1 8000K的白光LED 7000-10000K白光呈现发蓝高色温的白光。在照明光源标准中没有这个标准。它是不能有作普通家庭照明光源的。这种高色温发蓝的白光LED可以用于要求不严的特殊照明和指示中,有一定用途。图1给出相关色温为8070K的半球Ф5白光LED的发射光谱。它是由InGaN蓝光LED的电致发光光谱和稀土YAG:Ce体系黄色荧光体被蓝光激发的光致发光光谱所组成,两光谱的本质是不同的。这样构成相关色温为8070K的发蓝的白光光谱,色品坐标x=0.2979,y=0.2939,在黑体轨迹的附近。 2.2 6400K的白光LED 图2是在正向电流IF=20mA下的色温为6450K的白光LED的发射光谱。它是属于色温为6400K的日光色。是目前照明光源使用的最广泛的色温之一。其光谱所组成。和图1光谱相比,黄成份的光谱增强,色温降低。此时白光LED中的蓝光EL光谱和只有InGaN LED的蓝光光谱相比是有差异的,因为发生荧光体高效的吸收蓝光和光转换的辐射传递。而这种光吸收(激发)与荧光体的激发光谱密切相关。由于这种荧光体光转换过程致使白光LED中的蓝光光谱的能量分布、发射峰以及半高宽等性质发生变化。所涂覆的荧光粉越多,蓝色光谱变化越严重,在低色温的白光LED中更为明显。

该白光LED的色品坐标X=0.3146,Y=0.3360,它们落在CIE标准色度图6400K标准色温的色容差图的最内圈,其色容差1.9,很满意,显色指数Ra为82,完全符合照明光源的要求。

2.3 5000K的白光LED 色温5118K的白光LED的发射光谱(如图3所示),它属于标准色温为5000K的中性白光。光谱性质和上述相同,只是光谱中的黄成份的比例增加。该白光LED的色品坐标

X=0.3422,Y=0.3543,其色容差在5000K标准色温的色域中为2.1,很满意,Ra=81。完全符合照明光源的光色参数要求。若要提高显色指数Ra,需要增加光谱中的红成份,可能牺牲光效。此外,在IF=20mA下,白光LED的光转换倍数高达4.9倍。这里所说的光转换倍数(B)定义是在某一正向电流IF和不同的色温下,是不同的。

2.4 4000K的白光LED 迄今有关符合照明光源标准要求的4000K白光LED光谱和色品质的报告很少。这是因为仅用稀土YAG:Ce体系黄色荧光体难以制作合乎要求的Tc≤4000K的白光LED,显色指数低,色品质差。为此,需要加入适量的红色荧光体,补足光谱中红成份。图4为我们开发4019K白光LED的发射光谱,它属于标准的色温为4000K的冷白色。光谱中黄和橙成份增加,相对光谱中蓝成份的比例进一步下降。该白光LED的色品坐标X=0.3810,Y=0.3815,在标准4000K色温的色容差的最内圈中,其色容差为0.6,显色指数Ra=82。色品质甚佳,完全符合照明光的严格要求。 3、白光LED的性质与IF的关系

3.1 色品坐标光源的色品坐标是一个重要参数。图5给出5000K白光LED在不同正向电流IF驱动下的色品坐标X和Y值的变化曲线。这条曲线给绘在标准6400K色温的色容差图中,具有直观动态感。其中纵坐标为Y值,横坐标为X值,而上横坐标为IF(mA)。显然,随IF增加,色品坐标X 和Y值逐渐偏离,到IF=70,80mA时,偏离非常严重。

3.2 相关色温由上述色品坐标X和Y值随IF的变化,指明发生色漂移,这必然在相关色温中也呈现反映。图6表示白光LED在不同IF工作下的相关色温变化规律。显然,随着IF增加,相关色温Tc(K)逐渐增加,由日光色变为蓝白色。这是因为随正向电流IF的增加,白光LED的发射光谱,特别是InGaN LED蓝芯片的发射光谱发生很大变化,导致白光的发光颜色、色品质等性能改变。

3.3 白光LED的光通和光效制作的白光LED的光通(Φ)和光效(η)随施加的正向电流IF的变化曲线(如图7所示)。光通呈亚线性增加,趋向饱和,而光效逐渐下降。白光LED的光效下降与Taguchi等人的结果是一致的。白光LED的光通和光效的这种变化,在不同色温的白光LED中是一致的。对这种小功率白光LED来说,既要照顾光通量,又要考虑光效,故一般选择在IF=20mA下工作。早期Nakamura等人已指出,InGaN/AlGaN DH蓝光LED的光输出功率随IF增加呈亚线性增加。我们认为,引起白光效随IF增加逐渐降低的因素是多方面的。首先,蓝光InGaN芯片的发光效率随IF增加而逐渐降低的因素是多方面的。首先,蓝光InGaN芯片的发光效率随IF增加而逐渐下降;第二,随着IF增加,P-N 结温快速升高,结温和环境温度上升,对半导体蓝光芯片和荧光粉的发光将产生严重的温度猝灭;第三,由于在白光LED中发生蓝光→黄光光转换过程,产生光吸收的辐射传递,不仅使白光光谱中的蓝芯片的EL 的发射光谱形状和发射峰发生变化,而且蓝光效率下降在荧光体的光效下降和光衰程度似乎比InGaN蓝芯片更快。实际上是荧光体的发光效率受蓝芯片下降的“诛连”和强烈的制约。 4、结束语综上所述,采用蓝光LED芯片和荧光体有机结合是可以成功地开发出8000-4000K不同色温段,显色指数高,色品质优良,符合照明光源CIE严格标准要求的白光LED。制作的白光LED的色容差可以达到很小。8000K、6400K、5000K和4000K四种色温的白光LED的发射光谱、色品坐标、显色性等光色特性与工作条件密切相关。随着白光LED的正向电流增加,色品坐标X和Y值逐渐减小,而相关色温逐步增大,致使色漂移;而光通量呈亚线性增加,光效却逐渐下降。由于在白光LED中发生光转换过程,产生光吸收的辐射传递,致使白光中InGaN芯片的蓝色EL光谱的形状和发射峰发生变化。白光LED的上述特性与InGaN蓝光LED芯片性能密切相关,在很大程度上受其制约。

CREE LED色温演示,带你认识各色温的LED

CREE LED色温演示,带你认识各色温的LED 昨天参加了CREE的推介会,看到不少好玩的东西,和大家分享下。 平时玩LED手电的,都听说过色温这个概念。LED的色温简单说就是光色冷暖的定义,色温越低光色越暖,色温越高光色越冷,为什么会这样,想想一根铁棍,你把它烧得越烫,它的光是不是从暗红--橙红开始向白-蓝-紫转变,色温就是这样定义的。我们平时用的白光手电色温一般在5700K~7000K,暖光手电色温一般在4000K~4500K左右。而以前的卤素灯泡,色温好象是2700K左右。 这是装在一起的8颗LED,演示了从2700K~7000K的色温 2700K 3000K

3500K 4000K 4500K

5000K 6000K

7000K 为了区分各种色温的LED,CREE的LED有一个分级系统,按每颗LED的光色归类到不同的级别,便于用户选择。 筒友的极品玩具,CREE的演示箱,里边有CREE的大部分产品,各种色温的对比

仔细看看吧。CREE的LED分为冷白、自然白(中性白)、暖白。冷白区间是10000K~6350K、自然白是5700K~4000K、暖白是3700K~2700K,光色越暖,亮度越低,这是现在技术决定的,所以我们平时用得最多的还是冷白和自然白。 冷白的编号开头是W、自然白是3~5,暖白是6~8。 其中WH和3B是重合的,WJ和3A是重合的,这是冷白和自然白的交界点 WJ、5D、,分别是冷白、自然白、暖白中最暖的三个档 WA、3C、6B,冷白、自然白、暖白中最冷的三个档,

MCE是4核的LED,也有三个档,最暖这个是J档

色温对照表

色温对照表 摄影构图2008-12-06 18:14:14 阅读947 评论0 字号:大中小 拍摄时色温的设置(对照表) 拍摄时色温的设置(对照表)烛焰1500 -1800* 日落前光色偏红,色温降至2200) 家用白灯2500-3000 60瓦的充气钨丝灯2800 100瓦的钨丝灯2950 1000瓦的钨丝灯3000 (日出后40分钟光色较黄) 500瓦的投影灯2865 500瓦钨丝灯3175 3200K的泛光灯3200 琥珀闪光信号灯3200 R32反射镜泛光灯3200 锆制的浓弧光灯3200 反射镜泛光灯3400 暖色的白荧光灯3500 清晰闪光灯信号3800 冷色的白荧光灯4500 白昼的泛光灯4800 (下午阳光雪白上升4800~5800)白焰碳弧灯5000 (阳光直射下) M2B闪光信号灯5100

晴天5200* 正午的日光5400 高强度的太阳弧光灯5550 夏季的直射太阳光5800 早上10点到下午3点的直射太阳光 6000*(摄影拍片黄金时间) 蓝闪光信号灯6000 白昼的荧光灯6500(阴天下6500~9000) 正午晴空的太阳光6500* (阴天正午时分约6500)阴天的光线6800-7000 * 高速电子闪光管7000 来自灰蒙天空的光线7500-8400 来自晴空蓝天的光线10000-20000* 在水域上空的晴朗蓝天20000-27000* 注:光源~以K (开尔文)为单位(K数为高越偏蓝调) 如:海洋、无云的天空、雪地阴影、晴天里的阴影、室内、 雨天、阴天(色温在9000-20000K) 拍摄时色温的设置(对照表)烛焰 1500 -1800* (日落前光色偏红,色温降至2200) 家用白灯 2500-3000 60瓦的充气钨丝灯 2800 100瓦的钨丝灯 2950 1000瓦的钨丝灯 3000 (日出后40分钟光色较黄) 500瓦的投影灯 2865 500瓦钨丝灯 3175 3200K的泛光灯 3200 琥珀闪光信号灯 3200

色温图谱

2000-2500K 2500-3000K 3000-3500K 3500-4000K 4000-4500K 4500-5500K 5500-6500K 6500-7000K 7000-10000K 10000-25000K-------CIE1931

相关色温8000-4000K的白光LED的发射光谱和色品质特性 结论: 1.根据实际测试的色标可看出:不在色温线上面的色坐标点,可以通过相对色温线的方式求出该点色温. 2.向下延长各个相对色温线,基本交汇在一点(X:0.33 Y:0.20).依此点坐标: 2500K相对色温线与X轴的夹角约为30度. 25000K相对色温线与2500K相对色温线之间的夹角约为90度. 250000K相对色温线与2000K相对色温线之间的夹角约为100度. 具体见上图所示. 3.根据上图白光色坐标分布图与相对色温线的关系,现在许多分光参数表是根据色温方式划分各个BIN等级(色标分布图是参照早期日亚白光色标分布图制作).这样分当然具有一定的好处。 4.工厂色标分布图所对应的的色温范围为:4000K~16000K. 5.采用白光计算机(T620)测试出的色温值与根据相对色温线所计算出的色温值有一定的差别,机台测试出的色温值只能做一个参考值.根据相对色温线所计算出的色温值与机台测试的色温值之间的差别详见上表Δ色温值. 摘要:文章报告和分析了8000K、6400K、5000K和4000K四种色温的白光LED 的发射光谱、色品质和显色性等特性,它们与工作条件密切相关。随着正向电流IF的增加,色品坐标x和y值逐渐减小,色温增大,发生色漂移,而光通量呈亚线性增加,光效逐渐下降。由于在白光LED中发生光转换过程,产生光吸收的辐射传递,致使白光中InGaN芯片的蓝色EL光谱的形状和发射峰发生变化。白光LED的特性在很大程度上受InGaN蓝光LED芯片性能的制约。人们可以实现8000-4000K四种色温白光LED,显色指数高,且制作的白光LED的色容差可以达到很小,实现优质的白光照明光源。从上世纪90年代末到现在,白光发光二极管的出现和快速发展,引起人们极大的热情,白光LED具有低压、低功耗、高可靠,长寿命及固体化等优点。其量大的吸引力和期望是作为继白炽灯泡、荧光灯及高强度气体放电灯(HID)后的第四代照明新光源——具有庞大的照明市场和显著的节能前景的光源,是符合环保、节能要求的绿色照明光源。因此,受到日美和欧洲各国政府和商家的重视,他们制定发展规划和目标,且大集团公司在技术和资金上进行联合和重组。2003年6月我国政府也推出“半导体照明工程”,以期大力推动我国白光LED的发展。 尽管短短的几年来,白光LED的研发和应用取得举世瞩目的成绩,但目前还存在诸多问题,只能用于一些特殊的领域中。我们注意到,目前普通的白光

LED灯亮度和普通灯亮度对比

LED灯亮度和普通灯亮度对比 关于亮度和节能比较: 1W LED=3W CFL(节能灯)=15W白炽灯 3W LED=8W CFL(节能灯)=25W白炽灯 4W LED=11W CFL(节能灯)=40W白炽灯 8W LED=15W CFL(节能灯)=75W白炽灯 12W LED=20W CFL(节能灯)=100W 白炽灯

各种灯光的色温表(K值) 色温是衡量光线色彩的定值,表示光源光谱质量最通用的指 标。 3300K时为暖色光(偏黄橙),<5500K 为正白偏黄,5500K到6 500为正白光,相当正午的太阳 光。>6500K为正白偏蓝, >8000K为冷色光。以下是各种灯光色温值,方便制作不同 的光源的效果。

以K为单位的光色度对照表 光源 K 烛焰1500 家用白炽灯2500-3000 60瓦的充气钨丝灯2800 500瓦的投影灯2865 100瓦的钨丝灯 2950 1000瓦的钨丝灯 3000 500瓦钨丝灯3175 琥珀闪光信号灯3200 R32反射镜泛光灯 3200 锆制的浓弧光灯 3200 反射镜泛光灯3400 暖色的白荧光灯 3500 清晰闪光灯信号 3800 冷色的白荧光灯4500 白昼的泛光灯4800 白焰碳弧灯5000 M2B闪光信号灯5100 正午的日光5400 高强度的太阳弧光灯 5550

夏季的直射太阳光5800 10:00到15:00的直射阳光6000 蓝闪光信号灯 6000 白昼的荧光灯 6500 正午晴空的太阳光 6500 阴天的光线6800-7000 高速电子闪光管7000 简易色温表 蜡烛及火光1900K以下朝阳及夕 阳2000K 家用钨丝灯2900K 日出后一小时阳光3500K 摄影用钨丝灯3200K 早晨及午后阳光4300K 摄影用石英灯3200K 平常白 昼5000~6000K 220 V日光灯3500~4000K 晴天中午太 阳5400K 普通日光灯4500~6000K 阴 天6000K以上 HMI灯5600K 晴天时的阴影 下6000~7000K 水银灯5800K 雪

色温对照表

White Balance Occasionally the question arises as to how to reproduce the "real" color of light sources in a rendered environment. I set out to research this subject, and found a lot of very contradictory information. Some approaches try to categorize light sources by their color temperature. Some then try to come up with some meaningful way of converting that color temperature to RGB values to use in programs like Lightwave or Cinema 4D. Ultimately these approaches all fail to take into account several realities that work against trying to come up with a unified approach to light coloring and rendering. The human visual system is very good at "white balancing" what we look at. As long as the scene we are viewing contains a continuous spectrum of colors, we interpret the light as "white". In reality, the incandescent light we light our homes with is quite orange. Daylight is very blue. Fluorescent lights vary from sickly greens to reddish purples. And yet, we see all these lighting situations as more or less neutrally colored. In the real world, light consists of all visible colors, not just red, green, and blue wavelengths. The RGB color system that we use in computer graphics arose out of a peculiarity of human perception - we have structures in our eyes called "cones" that respond to red, green, and blue light sources. A monochromatic yellow light excites both the red and green cones in our eyes, and we see it as yellow. Such a yellow light in the real world would not allow a red object to appear red, or a green object to appear green. But in computer graphics a yellow light has both a red and green component, and so allows objects with those colors to appear fully colored. This is a limitation of many computer graphic programs at the moment. Film cameras cannot compensate for the varying shades of light in the way that our visual sense can. Thus, we have daylight film which has heavy orange filtering to tone down the blue quality of outdoor light. We have indoor film which has a boosted blue response to even out the amber lighting. For fluorescent situations, we can use a combination of film type and filters to color balance the scene we are photographing. If we were to pick a particular color of light, say daylight, and say that it is "white" and photograph everything, indoors and out, with a film stock that renders daylight as white, all of our indoor shots would be shades of orange and amber, and outdoor shots under blue sky would be intensely blue. This would be undesirable. Thus too it is undesirable to pick a similar approach with our 3D rendering of light. We have to be relative - and choose a light color to be "white" in our scene, with other types of light sources being colored relative to that one. In this way we can produce our synthetic "photos" to produce a pleasing result in our final renders. Of course, to understand how different types of light sources relate to each other, it is important to understand how these light sources work. To do this we are going to look at 3 basic types of light source. Black Body Illuminants The first group of light sources are the black body illuminants. These are materials that produce light when they are heated. The sun is a black body illuminant, as is a candle flame. The color of light of these types of sources can be characterized by their Kelvin temperature. Note that this temperature has nothing to do with how "hot" a light source is - just with the color of its light. A light source with a low Kelvin temperature is very red. One with a high Kelvin temperature is very blue. More accurately, when we see two light sources side by side in a scene, the higher Kelvin light appears more blue, and the lower Kelvin light appears more red. Its all relative. Black body illuminants produce a fairly even, continuous spectrum of colors, and so are perceived as "white" by our visual sense. Therefore, in the absence of comparative light sources in our scene, these should be rendered with warm, nearly white lights. Below is a chart of some common Kelvin Light Source temperatures coupled with their RGB Equivalents. These equivalents were arrived arbitrarily - I eyeballed them. There were a couple of converters I found

色温对照表

色温对照表 拍摄时色温的设置(对照表) 烛 焰 1500 -1800* 日落前光色偏红,色温降至2200) 家用白灯 2500-3000 60瓦的充气钨丝灯 2800 100瓦的钨丝灯 2950 1000瓦的钨丝灯 3000 (日出后40分钟光色较黄) 500瓦的投影灯 2865 500瓦钨丝灯 3175 3200K的泛光灯 3200 琥珀闪光信号灯 3200 R32反射镜泛光灯 3200 锆制的浓弧光灯 3200 反射镜泛光灯 3400 暖色的白荧光灯 3500 清晰闪光灯信号 3800 冷色的白荧光灯 4500 白昼的泛光灯 4800

(下午阳光雪白上升4800~5800) 白焰碳弧灯 5000 (阳光直射下) M2B闪光信号灯 5100 晴 天 5200* 正午的日光 5400 高强度的太阳弧光灯 5550 夏季的直射太阳光 5800 早上10点到下午3点的直射太阳光 6000*(摄影拍片黄金时间) 蓝闪光信号灯 6000 白昼的荧光灯6500(阴天下6500~9000) 正午晴空的太阳光 6500* (阴天正午时分约6500) 阴天的光线 6800-7000 *高速电子闪光管 7000 来自灰蒙天空的光线 7500-8400 来自晴空蓝天的光线 * 在水域上空的晴朗蓝天 20000-27000* 注:光源以 K (开尔文)为单位,(K数为高越偏蓝调)色温(Color Temperature),单位:开尔文[Kelvin]定义:当光源所发出的颜色与“黑体”在某一温度下辐射的颜色相同时,“黑体”的温度就称为该光源的色温。“黑体”的温度越高,光谱中蓝色的成份则越多,而红色的成份则越少。色温是衡量一种光源“有多么热”或者“有多么冷”的指标,也是表示一种光源“白得程度”、“黄得程度”或者“蓝得程度”的指标。 暖色<3300K;中间色3300至5000K;冷色>5000K。如:海洋、无云的天空、雪地阴影、晴天里的阴影、室内、雨天、阴天(色温在9000-20000K) 拍摄时色温的设置(对照表) 烛 焰 1500 -1800*

色温对照表

色温对照表 - 以K为单位的光色度对照表 色温指的是光波在不同的能量下,人类眼睛所感受的颜色变化。 在色温的计算上,是以 Kelvin 为单位,黑体幅射的0° Kelvin= 摄氏 -273 ° C 做为计算的起点。将黑体加热,随着能量的提高,便会进入可见光的领域,例如,在2800 ° K 时,发出的色光和灯泡相同,我们便说灯泡的色温是2800 ° K。 可见光领域的色温变化,由低色温至高色温是由橙红 --> 白 --> 蓝。 色温的特性 1. 在高纬度的地区,色温较高,所见到的颜色偏蓝。 2. 在低纬度的地区,色温较低,所见到的颜色偏红。 ( <---- 低色温 ------------------ 高色温 ----> ) 3. 在一天之中,色温亦有变化,当太阳光斜射时,能量被( 云层、空气 )吸收较多,所以色温较低。当太阳光直射时,能量被吸收较少,所以色温较高。 4.Windows 的 sRGB 色彩模型是以6500 ° K 做为标准色温,以 D65 表示之。 5. 清晨的色温大约在4400 ° K。 6. 高山上色温大约在6000 ° K。 色温对照表 - 以K为单位的光色度对照表 烛焰 1500 家用白灯 2500-3000 60瓦的充气钨丝灯 2800 100瓦的钨丝灯 2950 1000瓦的钨丝灯 3000 500瓦的投影灯 2865 500瓦钨丝灯 3175 3200K的泛光灯 3200 琥珀闪光信号灯 3200 R32反射镜泛光灯 3200 锆制的浓弧光灯 3200 1,2,4号泛光灯,反射镜泛光灯 3400 暖色的白荧光灯 3500 切碎箔片,清晰闪光灯信号 3800 冷色的白荧光灯 4500 白昼的泛光灯 4800 白焰碳弧灯 5000 M2B闪光信号灯 5100 正午的日光 5400 高强度的太阳弧光灯 5550 夏季的直射太阳光 5800 早上10点到下午3点的直射太阳光 6000 蓝闪光信号灯 6000 白昼的荧光灯 6500 正午晴空的太阳光 6500 阴天的光线 6800-7000 高速电子闪光管 7000 来自灰蒙天空的光线 7500-8400

LED色温图谱详解_1

---------------------------------------------------------------最新资料推荐------------------------------------------------------ LED色温图谱详解 LED 色温图谱详解 NOTE: 色温=实测色温-计算色温(根 据相对色温线) 结论: 1. 根据实际测试的色标可看出: 不在 色温线上面的色坐标点, 可以通过相对色温线的方式求出该点色温. 2. 向下延长各个相对色温线, 基本交汇在一点(X:0. 33 Y: 0. 20) . 依此点坐标: 2500K 相对色温线与X 轴的夹角约为30 度. 25000K 相对色温线与 2500K 相对色温线之间的夹角约为 90 度. 250000K 相对色温线与 2019K 相对色温线之间的夹角约为 100 度. 具体见上图所示. 3. 根据上图白光色坐标分布图与相对色温线 的关系, 现在许多分光参数表是根据色温方式划分各个 BIN 等级(色标分布图是参照早期日亚白光色标分布图制作) . 这样分当然具 有一定的好处。 4. 工厂色标分布图所对应的的色温范围为:4000K~16000K. 5. 采用白光计算机(T620) 测试出的色温值与根据相对色温线所计 算出的色温值有一定的差别, 机台测试出的色温值只能做一个参考值. 根据相对色温线所计算出的色温值与机台测试的色温值之间的 差别详见上表色温值. 相关色温 8000-4000K 的白光 LED 的 发射光谱和色品质特性摘要: 文章报告和分析了 8000K、 6400K、 5000K 和 4000K 四种色温 的白光 LED 的发射光谱、色品质和显色性等特性,它们与工作条 件密切相关。 1/ 22

色温所对及应的RGB颜色表完整版

色温所对及应的R G B 颜色表 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

色温所对及应的RGB颜色表 在进行CG设计时,特别是对场景进行渲染时,常涉及到照明布光,有时需要跟据光源的色温来调整光源颜色的RGB值,有了此表,就可以很方便地跟据光源的色温值查询到其所对应的颜色的RGB值了。 1000 K 2deg +06 255 51 0 #ff3300 1000 K 10deg +06 255 56 0 #ff3800 1100 K 2deg +07 255 69 0 #ff4500 1100 K 10deg +07 255 71 0 #ff4700 1200 K 2deg +08 255 82 0 #ff5200 1200 K 10deg +08 255 83 0 #ff5300 1300 K 2deg +08 255 93 0 #ff5d00 1300 K 10deg +08 255 93 0 #ff5d00 1400 K 2deg +09 255 102 0 #ff6600 1400 K 10deg +09 255 101 0 #ff6500 1500 K 2deg +09 255 111 0 #ff6f00 1500 K 10deg +09 255 109 0 #ff6d00 1600 K 2deg +10 255 118 0 #ff7600 1600 K 10deg +10 255 115 0 #ff7300 1700 K 2deg +10 255 124 0 #ff7c00 1700 K 10deg +10 255 121 0 #ff7900 1800 K 2deg +11 255 130 0 #ff8200 1800 K 10deg +11 255 126 0 #ff7e00 1900 K 2deg +11 255 135 0 #ff8700 1900 K 10deg +11 255 131 0 #ff8300 2000 K 2deg +11 255 141 11 #ff8d0b 2000 K 10deg +11 255 137 18 #ff8912 2100 K 2deg +11 255 146 29 #ff921d 2100 K 10deg +11 255 142 33 #ff8e21 2200 K 2deg +12 255 152 41 #ff9829 2200 K 10deg +12 255 147 44 #ff932c 2300 K 2deg +12 255 157 51 #ff9d33 2300 K 10deg +12 255 152 54 #ff9836 2400 K 2deg +12 255 162 60 #ffa23c 2400 K 10deg +12 255 157 63 #ff9d3f 2500 K 2deg +12 255 166 69 #ffa645 2500 K 10deg +12 255 161 72 #ffa148 2600 K 2deg +12 255 170 77 #ffaa4d 2600 K 10deg +12 255 165 79 #ffa54f 2700 K 2deg +13 255 174 84 #ffae54 2700 K 10deg +13 255 169 87 #ffa957 2800 K 2deg +13 255 178 91 #ffb25b 2800 K 10deg +13 255 173 94 #ffad5e 2900 K 2deg +13 255 182 98 #ffb662 2900 K 10deg +13 255 177 101 #ffb165 3000 K 2deg +13 255 185 105 #ffb969 3000 K 10deg +13 255 180 107 #ffb46b 3100 K 2deg +13 255 189 111 #ffbd6f 3100 K 10deg +13 255 184 114 #ffb872 3200 K 2deg +13 255 192 118 #ffc076

LED灯珠及LED灯具的色温标准规范

文件编号 版 本 1.0制订部门类 别生效日期2014.7.24 x y 2700RD 2725±1450.45780.41010.42600.38930.39440.4562 0.4373 CCT(K)和容差色坐标目标值坐标容差x y 0.48130.43190.4562 深圳安嵘光电产品有限公司 LED灯珠和LED灯具的色温标准规范 OW-WI-B-XX 研发部 灯珠及LED灯具1.0、目的:对公司所用的LED灯珠和生产的LED灯具产品的色温进行规范化,统一化而制订的标准文件,使生产和品质管控有标准可依。 2.0、适用范围:适合本厂所使用的LED灯珠零件和生产之灯具产品. 3.0、参考标准:《美国能源之星LM-80》 4.0、名词解译: 色温:色温是用来表征光源颜色的量,以绝对温度K来表示,即把标准黑体加热,温度升高到一定程度时该黑体颜色开始深红-浅红-橙黄-白-蓝,逐渐改变,当光源的光辐射所呈现的颜色与在某一温度下黑体辐射的颜色相同时,我们把黑体的绝对温度(TC)称为该光源的色温。5.0、测试设备:光谱分析测试 6.0、标准参数 代表符号 色温(K)0.42600.4593 制订日期 2014.7.240.3068 0.31130.32210.32610.33696500RR 6530±5100.31230.3282 0.3205 0.34810.3028 0.330430003500450040005000RN RB RL RC RZ 3045±17500.43380.4033465±2450.40730.39173985±2750.38180.37974503±2430.36110.36585028±2830.34470.35530.4299 0.41650.4147 0.38140.4373 0.38930.4299 0.41650.3996 0.40150.3889 0.36900.4147 0.38140.4006 0.40440.3736 0.38740.3670 0.35780.3896 0.37160.3736 0.38740.3548 0.37360.3512 0.34650.3670 0.35780.3551 0.37600.3376 0.37600.3366 0.36160.3515 0.3369修订日期5700RM 5665±3550.3287核准: 审核:聂俊雄 制作:方绪高0.34170.3376 0.36160.3207 0.34620.3222 0.32430.3366

各种灯光的色温表(K值)

各种灯光的色温表(K值) 各种照明灯的亮度差别 关于亮度和节能比较: 1W LED=3W CFL(节能灯)=15W白炽灯 3W LED=8W CFL(节能灯)=25W白炽灯 4W LED=11W CFL(节能灯)=40W白炽灯 8W LED=15W CFL(节能灯)=75W白炽灯 12W LED=20W CFL(节能灯)=100W白炽灯 各种灯光的色温表(K值) 色温是衡量光线色彩的定值,表示光源光谱质量最通用的指标。 K<3300时为暖色光(偏黄橙), K>3300时为冷色光(偏青), K>6000的几乎是白光了! 以下是各种灯光的色温值,方便制作不同的光源效果!以K为单位的光色度对照表

色温:光源发射光的颜色与黑体在某一温度下辐射光色相同时,黑体的温度称为该光源的色温。因为在部分光源所发出的光通称为白光,故光源的色表温度或相关色温度即用以指称其光色相对白的程度,以量化光源的光色表现。根据Max Planck的理论,将一具完全吸收与放射能力的标准黑体加热,温度逐渐升高光度亦随之改变;CIE 色座标上的黑体曲线显示黑体由红棗橙红棗黄棗黄白棗白棗蓝白的过程黑体加温到出现与光源相同或接近光色时的温度,定义为该光源

的相关色温度,称色温,以绝对温度K(Kelvin,或称开氏温度)为单位(K=℃+273.15)因此,黑体加热至呈现红色时温度约为527℃即800K其他温度影响光色变化。 光色愈偏蓝,色温愈高;偏红则色温愈低。一天当中光的光色亦随时间变化;日出后40分钟光色较黄色温3000K;下午阳光雪白,上升至4800-5800K;阴天正午时分则约6500K;日落前光色偏红,色温又降至2200K。 因相关色温度事实上是以黑体辐射接近光源光色时,对该光源光色表现的评价值,并非一种精确的颜色对比,故具相同色温值的二光源,可能在光色外观上仍有些许差异。仅凭色温无法了解光源对物体的显色能力,或在该光源下特体颜色的再现如何。 光源色温不同,光色也不同,色温在3300K以下有稳重的气氛,温暖的感觉;色温在3000-5000K为中间色温,有爽快的感觉;色温在5000K 以上有冷的感觉,不同光源的不同光色组成最佳环境。 色温与高度:高色温光源照射下,如亮度不高则给人们有一种阴冷的气氛;低色温光源照射下,亮度过高会给人们有一种闷热感觉。光色的对比 在同一空间使用两种光色差很大的光源,其对比将会出现层次效果,光色对比大时,在获得亮度层次的同时,又可获得光色的层次。通常,大部分卖场都在希望能为顾客提供一个相对比较“暖”的环境,相对温馨的环境,所以,一般卖场的色温应该控制在3000~5000左右。 一般客厅的照明需要多样化,既有基本的照明,又要有重点的照明

各种灯光的色温表

色温-----当光源所发出的光的颜色与“黑体”在某一温度下辐射的颜色相同时,“黑体的温度就称为该光源的色温。“黑体”的温度越高,光谱中蓝色的成分则越多,而红色的成分则越少。例如:白炽灯的光色是暖白色,其色温为2700K左右,而日光色荧光灯的色温则是6400K左右。单位:开尔文(K)。白炽灯的色温一般在2700K左右、日光灯的色温在2700-6400K左右、钠灯的色温在2000K左右光源 K 烛焰 1500 家用白织灯 2500-3000 60瓦充气钨丝灯 2800 100瓦钨丝灯 2950 1000瓦钨丝灯 3000 500瓦透影灯 2865 500瓦钨丝灯 3175 琥伯闪光信号灯 3200 R32反射镜泛光灯 3200 锆制的浓狐光灯 3200 1,2,4号泛光灯 3400 反射镜泛光灯 3400 暖色白荧光灯 3500 冷色白荧光灯 4500 白昼的泛光灯 4800 白焰碳弧灯 5000 M2B闪光信号灯 5100 正午的日光 5400 夏季的直射日光 5800 10点至15点的直射日光 6000 白昼的荧光灯 6500 正午晴空的日光 6500 阴天的光线 6800-7000 来自灰蒙天空的光线 7500-8400 来自晴朗蓝天的光线 10000-20000 在水域上空的晴朗蓝天 20000-27000 lm是光通量是灯具发光的总量。CD是强度,就是单位角度的光通量也就是说cd=lm/球角度。而lx是光照到一个面上时。单位面积的光通量,lx=lm/面积。所以lx跟光源距物体的距离有关。大多的光源在不能的方向发光强度是不一样了。光域网是用来描述光在不同方向上的发光强度的。 Lightscape 灯光规格转换 白炽灯:8-14lm/W 单端荧光灯:55-80 lm/W 高压钠灯:80-140 lm/W 自镇流荧光灯:50-70 lm/W 金卤灯:60-90 lm/W 卤钨灯: 15-20 lm/W 220V白炽灯泡瓦数与流明的换算 10W——65lm 15W——101lm 25W——198lm 40W——340lm 60W——540lm 100W——1 050lm 150W——1845lm 200W——2660lm 300W——4350lm 500W——7700lm 1000W——17000lm

LED照明灯亮度与色温值对照表

L E D照明灯亮度与色温值对照表L E D灯具基础知识 经常有很多客户问到我们,大概需要多少瓦的LED照明灯才可以达到普通灯40瓦的亮度,又或者问这个灯3500流明照出来的灯光呈现什么颜色呢签于此今天在这里整理了一些资料,希望对于买LED节能灯具的顾客朋友们可以起到一点小小的帮助。 以下数据为LED照明灯与普通节能灯和传统灯具的对比: 1WLED灯=3WCFL(节能灯)=15W白炽灯 3WLED灯=8WCFL(节能灯)=25W白炽灯 4WLED灯=11WCFL(节能灯)=40W白炽灯 8WLED灯=15WCFL(节能灯)=75W白炽灯 12WLED灯=20WCFL(节能灯)=100W白炽灯 再看看色温,色温是衡量光线色彩的定值,表示光源光谱质量最通用的指标,以下是色温对照表(K 值): 光源K 烛焰1500? 家用白炽灯2500-3000 60瓦的充气钨丝灯2800 500瓦的投影灯2865 100瓦的钨丝灯2950 1000瓦的钨丝灯3000 500瓦钨丝灯3175 琥珀闪光信号灯3200 R32反射镜泛光灯3200 锆制的浓弧光灯3200 反射镜泛光灯3400 暖色的白荧光灯3500

清晰闪光灯信号3800 冷色的白荧光灯4500 白昼的泛光灯4800 白焰碳弧灯5000 M2B闪光信号灯5100 正午的日光5400 高强度的太阳弧光灯5550 夏季的直射太阳光5800 10:00到15:00的直射阳光6000 蓝闪光信号灯6000 白昼的荧光灯6500 正午晴空的太阳光6500 阴天的光线6800-7000 高速电子闪光管7000 简易色温表: 蜡烛及火光1900K以下朝阳及夕阳2000K 家用钨丝灯2900K日出后一小时阳光3500K 摄影用钨丝灯3200K早晨及午后阳光4300K 摄影用石英灯3200K平常白昼5000~6000K 220V日光灯3500~4000K晴天中午太阳5400K 普通日光灯4500~6000K阴天6000K以上 HMI灯5600K晴天时的阴影下6000~7000K 水银灯5800K雪地7000~8500K 电视萤光幕5500~8000K蓝天无云的天空10000K以上 通过以上对照表我们可以看出,1瓦LED照明灯相当于3瓦普通节能灯或9瓦白炽灯的亮度,对于流明比较模糊的用户也大概可以判断出LED灯具色温值所照射出来的效果是怎么样了,希望可以对大家起到一点小小的帮助。

关于LED亮度与节能的比较(精)

关于亮度和节能比较: 1W LED=3W CFL(节能灯)=15W白炽灯 3W LED=8W CFL(节能灯)=25W白炽灯 4W LED=11W CFL(节能灯)=40W白炽灯 8W LED=15W CFL(节能灯)=75W白炽灯 12W LED=20W CFL(节能灯)=100W 白炽灯 各种灯光的色温表(K值) 色温是衡量光线色彩的定值,表示光源光谱质量最通用的指 标。

3300K时为暖色光(偏黄橙),<5500K 为正白偏黄,5500K到6 500为正白光,相当正午的太阳 光。>6500K为正白偏蓝, >8000K为冷色光。以下是各种灯光色温值,方便制作不同 的光源的效果。 https://www.360docs.net/doc/8f11640921.html,/ 以K为单位的光色度对照表 光源 K 烛焰1500 家用白炽灯2500-3000 60瓦的充气钨丝灯2800 500瓦的投影灯2865 100瓦的钨丝灯 2950 1000瓦的钨丝灯 3000 500瓦钨丝灯3175 琥珀闪光信号灯3200 R32反射镜泛光灯 3200

锆制的浓弧光灯 3200 反射镜泛光灯3400 暖色的白荧光灯 3500 清晰闪光灯信号 3800 冷色的白荧光灯4500 白昼的泛光灯4800 白焰碳弧灯5000 M2B闪光信号灯5100 正午的日光5400 高强度的太阳弧光灯 5550 夏季的直射太阳光5800 10:00到15:00的直射阳光6000 蓝闪光信号灯 6000 白昼的荧光灯 6500 正午晴空的太阳光 6500 阴天的光线6800-7000 高速电子闪光管7000 简易色温表 蜡烛及火光1900K以下朝阳及夕 阳2000K 家用钨丝灯2900K 日出后一小时阳光3500K

LED照明灯亮度与色温值对照表

L E D照明灯亮度与色温 值对照表 This manuscript was revised by the office on December 22, 2012

LED照明灯亮度与色温值对照表 LED灯具基础知识 经常有很多客户问到我们,大概需要多少瓦的LED照明灯才可以达到普通灯40瓦的亮度,又或者问这个灯3500流明照出来的灯光呈现什么颜色呢签于此今天在这里整理了一些资料,希望对于买LED节能灯具的顾客朋友们可以起到一点小小的帮助。 以下数据为LED照明灯与普通节能灯和传统灯具的对比: 1W LED灯=3W CFL(节能灯)=15W白炽灯 3W LED灯=8W CFL(节能灯)=25W白炽灯 4W LED灯=11W CFL(节能灯)=40W白炽灯 8W LED灯=15W CFL(节能灯)=75W白炽灯 12W LED灯=20W CFL(节能灯)=100W白炽灯 再看看色温,色温是衡量光线色彩的定值,表示光源光谱质量最通用的指标,以下是色温对照表(K值): 光源 K 烛焰 1500 家用白炽灯 2500-3000 60瓦的充气钨丝灯 2800 500瓦的投影灯 2865

100瓦的钨丝灯2950 1000瓦的钨丝灯 3000 500瓦钨丝灯 3175 琥珀闪光信号灯 3200 R32反射镜泛光灯 3200 锆制的浓弧光灯 3200 反射镜泛光灯 3400 暖色的白荧光灯 3500 清晰闪光灯信号 3800 冷色的白荧光灯 4500 白昼的泛光灯 4800 白焰碳弧灯 5000 M2B闪光信号灯 5100 正午的日光 5400 高强度的太阳弧光灯 5550 夏季的直射太阳光 5800

每种颜色的光波长的对应值

每种颜色的光与波长的对应值 紫光 400~450 nm 蓝光 450~480 nm 青光 480~490 nm 蓝光绿 490~500 nm 绿光 500~560 nm 黄光绿 560~580 nm 黄光 580~595 nm 橙光 595~605 nm 红光 605~700 nm

根据光子能量公式:E=hυ 其中,h为普朗克常数,υ为光子频率 可见光的性质是由其频率决定的。 另外,在不同折射率的介质中,光的波长会改变而频率不变。

色温 色温(colo(u)r temperature)是表示光源光色的尺度,单位为K(开尔文)。色温在摄影、录象、出版等领域具有重要应用。光源的色温是通过对比它的色彩和理论的热黑体辐射体来确定的。热黑体辐射体与光源的色彩相匹配时的开尔文温度就是那个光源的色温,它直接和普朗克黑体辐射定律相联系。 一.概述 基本定义 色温是表示光源光谱质量最通用的指标。一般用Tc表示。色温是按绝对黑体来定义的,光源的辐射在可见区和绝对黑体的辐射完全相同时,此时黑体的温度就称此光源的色温。低色温光源的特征是能量分布中,红辐射相对说要多些,通常称为“暖光”;色温提高后,能量分布中,蓝辐射的比例增加,通常称为“冷光”。一些常用光源的色温为:标准烛光为1930K(开尔文温度单位);钨丝灯为2760-2900K;荧光灯为3000K;闪光灯为3800K;中午阳光为5600K;电子闪光灯为6000K;蓝天为K。 我们知道,通常人眼所见到的光线,是由7种色光的光谱叠加组成。但其中有些光线偏蓝,有些则偏红,色温就是专门用来量度和计算光线的颜色成分的方法,是19世纪末由英国物理学家洛德·开尔文所创立的,他制定出了一整套色温计算法,而其具体确定的标准是基于以一黑体辐射器所发出来的波长。 三种色温的荧光灯光谱 显示器指标 色温(ColorTemperature)是高档显示器一个性能指标。我们知道,光源发光时会产生一组光谱,用一个纯黑体产生出同样的光谱时所需要达到的某一温度,这个温度就是该光源的色温。15英寸以上数控显示器肯定带有色温调节功能,通过该功能(一般有9300K、

相关文档
最新文档