SANYO OS-CON固态电容

SANYO OS-CON固态电容
SANYO OS-CON固态电容

8

9

New UP UP UP

OS-CON

OS-CON

OS-CON

OS-CON

(Hrs.)

1001010.1

(Hrs.)

1001010.1

OS-CON OS-CON

OS-CON

OS-CON

OS-CON OS-CON

OS-CON

OS-CON

OS-CON OS-CON

OS-CON

OS-CON

OS-CON

Manufacturing Method

超级电容的充放电实验曲线测试(含答案)

超级电容器的充放电实验曲线测试 一、实验目的 了解超级电容器结构组成以及工作原理,理解超级电容器等效电路模型,学会绘制超级电容器充放电曲线。 二、超级电容器结构以及工作原理 超级电容器通常包含双电极、电解质、集流体、隔膜四个部件。超级电容器电极由多孔材料在金属薄膜(常用铝)上沉积而成,而活性炭则是常用的多孔材料。充电时,电荷存储于多孔材料和电解质之间的界面上。电解质的选择往往是电容器单体电压和离子导电性之间妥协的结果,追求离子导电性的最大化可能会导致所选择的电解质分解电压低至1V 。隔膜通常是纸,起绝缘作用,可以防止电极之间任何的导电接触。必须能够浸泡在电解质中,并且不影响电解质的离子导电性。 超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V 以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,

为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷相应减少。 三、实验线路图 四、实验步骤 1、充电实验 按照实验线路图连接电路,将开关接到K端,使电源接入电路中,实现超级电容的充电过程,通过串口命令记录电流和电压。 2、放电实验 在超级电容器充电完成后,将开关接到另一端,将电源断开,实现超级电容的放电过程,通过串口命令记录电流和电压。 五、注意事项 1、超级电容器具有固定的极性。在使用前,应确认极性。 2、超级电容器应在标称电压下使用。当电容器电压超过标称电压时,将会导致电解液分解,同时电容器会发热,容量下降,而且内阻增加,寿命缩短,在某些情况下,可导致电容器性能崩溃。 3、超级电容器不可应用于高频率充放电的电路中,高频率的快速充放电会导致电容器内部发热,容量衰减,内阻增加,在某些情况下会导致电容器性能崩溃。 4、外界环境温度对于超级电容器的寿命有着重要的影响。电容器应尽量远离热源。 5、安装超级电容器后,不可强行倾斜或扭动电容器,这样会导致电容器引线松动,导致性能劣化。

固态电容全面分析

四:固态电容全面分析 第一点,固态电容为高频电解电容,受此范围限制,高频电容普遍容量做的都不高,固态电容在耐压超过16V后容量显著减小,到20V 为330UF,25V,35V均为220UF。50V56UF,63V39UF。高频电容还有一点就是在低频情况下,性能不太好,阻抗很大,工作频率在100KHz 到300KHz效果最理想。第二点,固态电容受体积限制,不同于铝电解,体积可以理论上无限大,而且由于技术材料不同,最高电压仅63V。最低电压2.5V。所以限制了很多的用途,比如电源的输入端无法选用。第三点,固态电容成本高,是铝电解电容的数倍。材料工艺各不相同,而且没有全球化大规模的生产,目前全球生产厂家大约在10-15家。量没走的上去,成本高是在所难免的。第四点,关于固态电容的选型。滤高频的情况下,固态电容的容量可以选择液态铝电解容量的1/4到1/5。电压无须抛高。例如工作电压2.4V纹波电压不超过2.8V就可以选用2.5V的固态电容,如果纹波电压超过2.8V就要选用4V的了。不过选型毫无疑问也是受到实际线路板的设计限制,具体情况具体分析。第五点,固态电容的寿命问题。固态电容的标准寿命为105度2000H,95度6600小时,85度20000H,75度66000H,65度200000H。20万小时超过20年。第六点,固态电容的温度特性。固态电容耐温性能非常良好,由于内部电解质为固体,没有电解液的沸点,冰点等诸多问题,永不爆浆。而且更加耐高低温,在温度105度工作环境下,依然运行良好,-55度时依然能够工作,容量损失不大。 固态电容的PEDT专利到期,固态电容可望取代传统电容 综合媒体报道,台湾铝质电解电容器厂商近几年来都积极投入固态电容研发制造行列,不过由于桌面计算机需求减缓、日系厂商产能大增之下,固态电容器价格竞争转趋激烈,台系厂商虽仍具备价格优势,但是还是不如国内固态电容生产厂家,而各家厂家都在上游介电材料PEDT专利到期后(上游关键原料PEDT专利原掌握在德国H.C.Strack公司 ,过去为拜耳子公司,2007年售予凯雷集团),固态电容价格也更加平民化,进而取代传统铝质电容市场,台系厂商和中国大陆厂商或能抢得一席之地,占领一部分日系固态电容厂家的市场份额。固态电容主要是为解决传统铝电解电容器遇高热出现爆浆的问题,在下游应用端如高阶主板、高阶STB、通讯基地台、高阶电源供应器、LCD TV、服务器、VGA卡、游戏机等,在效能及质量提升的趋势下,固态电容有机会逐步取代传统式的液态铝质电解电容器。由于VISTA 及SANTA相继上市后,对于软、硬体的要求大幅提升,软硬件平台必须进行整合以发挥最大效能,因此对于上游被动组件质量的稳定性、耐用度、耐热度要求也相对提升,固态电容因而需求大增。目前使用台系固态电容和大陆国内固态电容厂家的产品,主要为台系2线MB 厂及大陆当地MB大厂,台湾1线MB大厂目前对台系或大陆国内厂家的固态电容产品还处于认证阶段,或者小量使用,属于试用性质。虽台系固态电容价格较日系同规格产品平均低20%,在成本考虑下,台系厂商极力争取1线大厂采用台系固态电容,取代日系固态电容。而台系固态电容厂家又面临国内生产厂家的在市场上紧跟压力,国内固态电容厂家的价格更有优势,交货期好,服务业好,不少日系固态电容使用厂家也有将部分竞争压力大得产品换成了大陆国内厂家的固态电容,也再试用阶段。H.C.Strack公司上游介电材料PEDT全球专利到期后,固态成本和售价下滑,市场普及,并有全面取代铝质电容的机会。

超级电容器的组装及性能测试实验指导书 (1)汇总

超级电容器的组装及性能测试指导书 实验名称:超级电容器的组装及性能测试 课程名称:电化学原理与方法 一、实验目的 1.掌握超级电容器的基本原理及特点; 2.掌握电极片的制备及电容器的组装; 3.掌握电容器的测试方法及充放电过程特点。 二、实验原理 1.电容器的分类 电容器是一种电荷存储器件,按其储存电荷的原理可分为三种:传统静电电容器,双电层电容器和法拉第准电容器。 传统静电电容器主要是通过电介质的极化来储存电荷,它的载流子为电子。 双电层电容器和法拉第准电容储存电荷主要是通过电解质离子在电极/溶液界面的聚集或发生氧化还原反应,它们具有比传统静电电容器大得多的比电容量,载流子为电子和离子,因此它们两者都被称为超级电容器,也称为电化学电容器。 2.双电层电容器 双电层理论由19世纪末Helmhotz等提出。Helmhotz模型认为金属表面上的净电荷将从溶液中吸收部分不规则的分配离子,使它们在电极/溶液界面的溶液一侧,离电极一定距离排成一排,形成一个电荷数量与电极表面剩余电荷数量相等而符号相反的界面层。于是,在电极上和溶液中就形成了两个电荷层,即双电层。 双电层电容器的基本构成如图1,它是由一对可极化电极和电解液组成。 双电层由一对理想极化电极组成,即在所施加的电位范围内并不产生法拉第反应,所有聚集的电荷均用来在电极的溶液界面建立双电层。 这里极化过程包括两种: (1)电荷传递极化(2)欧姆电阻极化。 当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中成电中性,这便是双电层电容的充放电原理。

超级电容器行业研究报告:海迪研究(15)

2010年8月17日

超级电容器行业研究简报 一、超级电容器简介 随着新能源领域的技术进步和行业发展,储能技术越来越受到各方重视,成为解决未来新能源产业发展的关键性环节,产业应用前景和市场规模十分巨大。当前,储能技术大致分为物理储能和电化学储能两条路线。而超级电容器则是物理储能中最具商用前景的一种技术装置,是对其他电化学储能技术的良好补充。 从行业需求角度看,电动/混合动力汽车、太阳能、风能等新能源应用都需求高能量密度储能元件,同时也要求免维护、长寿命、兼备能量密度和功率密度、应用范围宽。锂离子电池、镍氢电池、超级电容是目前全球主要发展的先进储能技术。当前,可充电储能元件行业的发展速度已经远高于全球GDP增长速度。超级电容作为电池的补充,其发展速度将快于电池技术。

1.1超级电容器的概念和特性 超级电容器是介于传统电容器和充电电池之间的一种新型储能装置, 主要是双电层超级电容器(还有赝电容型超级电容器)。它是世界上已投入量产的双电层电容器中容量最大的一种,其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。 与传统电容器相比:它具有较大的容量、较高的能量、较宽的工作温度范围和极长的使用寿命;而与蓄电池相比:它又具有较高的比功率,且对环境无污染,因此可以说,超级电容器是一种高效、实用、环保的能量存储装置。 1.2 超级电容器工作原理 超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,

负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷响应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。 二、超级电容器的行业分析 超级电容器产品获得投资关注虽然不久,但由于它具有特殊的优点,已在许多领域中获得了应用,其前景可以认为是非常广阔。2010年上海世博会中稳定运营的36辆超级电容客车更是吸引了众多观光者的眼球。超级电容车一旦展开普及,市场会大的超出想象。 基于中国消费电子近年来的惊人增长表现,预计今后几年内,我国纽扣型超级电容器有望保持30%以上的平均增长率,卷绕型和大型超级电容器则有可能保持50%以上的平均增长率。到2013年,我国超级电容器的整体产业规模有望达到79亿元。 依照美国国家能源局的数据预测,超级电容器在全球市场的容量

卷绕型固态电解电容器生产工艺流程的作用

卷绕型高分子铝固态电解电容器 卷绕型高分子铝固态电解电容器生产工艺流程的作用 预处理的作用是通过改善铝箔的结构,尤其是表面结构,提高其电蚀性能,达到充分扩大表面积的目的。采用无水乙醇和含有氨基的硅烷偶联剂KBM -403溶液对铝箔处理后,充分提高树脂与基材的附着力,铝箔表面更容易覆盖上导电聚合物,从而提高固体铝电解电容器性能. 高分子含浸 利用裁切机或一体机将铝箔、电解纸按照不同的规格分切成一定的长度和宽度。 生产过程中的碰撞、振动与刮伤也会使铝箔表面的氧化膜产生缺陷。碳化后的芯子置于放有磷酸、磷酸二氢铵水溶液(质量分数0.9~1%,pH 约为3)的水槽中(温度70~90℃)进行浸泡,修补氧化膜。 预浸 将铝壳外观不良的电容成品予以人工挑出重新组立、清洗、老化等工序。 利用纯水、洗涤剂(氢氧化钠、磷酸)洗掉裸品上的油污和其它杂物 UV 油墨对产品做标识(规格、型号) 利用自动芯子熔接机将电容器芯子(长度约10~20cm )熔接于铁片上(不可循环使用),然后置于架子上。 利用全自动钉接卷绕机或一体机在电极箔铆上铁铜导针,再将电极箔和电解纸卷绕成电容器芯子,最后用胶带、PPA 胶水粘合固定芯子. 将电解纸进行碳化,使电解纸变成疏松多孔结构。碳化的目的是降低电解纸的阻抗。 沥干后的整排芯子置于烘道内电加热至40~170℃,去除表面水分,同时含浸液发生聚合反应,溶剂挥发,形成固态导电性高分子电解质(聚3,4-乙烯基二氧噻吩)。 将电容器置于自动充电老化选别机进行加热(120~130℃),修补加工过程对铝箔的氧化皮膜层造成的破坏,并在电容器两极加上一定电压,通过输出的性能参数全自动分选出半成品和次品 将芯子置于含浸液(EDOT 、KBM -403聚苯硫醚PPS 、对甲苯磺酸铁)、溶剂乙醇、甲醇、乙醇胺托盘内数分钟,使含浸液吸附于铝箔微孔内。 托盘内数分钟,使含浸液吸附于铝箔微孔内。利用全自动组立机将热处理过的高分子电容器芯子,装进铝壳内,然后用胶粒封口。 根据客户需要,利用三合一剪脚机,将电容器正负接脚剪裁成客户指定长度。或利用自动座板组立机将电容器底部套一座板,使其在主板上易于自动化插件,或将其通过编带机编带,使其满足客户要求。 按要求进行包装,按时出货给顾客。

CDSCP高分子聚合物固体铝电解电容器融资投资立项项目可行性研究报告(中撰咨询)

CDSCP高分子聚合物固体铝电解电容器立项投资融资项目 可行性研究报告 (典型案例〃仅供参考) 广州中撰企业投资咨询有限公司

地址:中国〃广州

目录 第一章CDSCP高分子聚合物固体铝电解电容器项目概论 (1) 一、CDSCP高分子聚合物固体铝电解电容器项目名称及承办单位 (1) 二、CDSCP高分子聚合物固体铝电解电容器项目可行性研究报告委托编制单位 (1) 三、可行性研究的目的 (1) 四、可行性研究报告编制依据原则和范围 (2) (一)项目可行性报告编制依据 (2) (二)可行性研究报告编制原则 (2) (三)可行性研究报告编制范围 (4) 五、研究的主要过程 (5) 六、CDSCP高分子聚合物固体铝电解电容器产品方案及建设规模 (6) 七、CDSCP高分子聚合物固体铝电解电容器项目总投资估算 (6) 八、工艺技术装备方案的选择 (6) 九、项目实施进度建议 (6) 十、研究结论 (7) 十一、CDSCP高分子聚合物固体铝电解电容器项目主要经济技术指标 (9) 项目主要经济技术指标一览表 (9) 第二章CDSCP高分子聚合物固体铝电解电容器产品说明 (15) 第三章CDSCP高分子聚合物固体铝电解电容器项目市场分析预测 (15) 第四章项目选址科学性分析 (16) 一、厂址的选择原则 (16) 二、厂址选择方案 (16) 四、选址用地权属性质类别及占地面积 (17)

五、项目用地利用指标 (17) 项目占地及建筑工程投资一览表 (18) 六、项目选址综合评价 (19) 第五章项目建设内容与建设规模 (20) 一、建设内容 (20) (一)土建工程 (20) (二)设备购臵 (20) 二、建设规模 (21) 第六章原辅材料供应及基本生产条件 (21) 一、原辅材料供应条件 (21) (一)主要原辅材料供应 (21) (二)原辅材料来源 (21) 原辅材料及能源供应情况一览表 (22) 二、基本生产条件 (23) 第七章工程技术方案 (24) 一、工艺技术方案的选用原则 (24) 二、工艺技术方案 (25) (一)工艺技术来源及特点 (25) (二)技术保障措施 (25) (三)产品生产工艺流程 (26) CDSCP高分子聚合物固体铝电解电容器生产工艺流程示意简图 (26) 三、设备的选择 (26) (一)设备配臵原则 (26) (二)设备配臵方案 (27) 主要设备投资明细表 (28) 第八章环境保护 (28) 一、环境保护设计依据 (29)

聚合物固体电解电容器

聚合物固体铝电解电容器专题 综合消息,今年以来,由于目前CPU频率越来越高,因此产生高热量对主板电容的要求也越来越高,为此英特尔已经强烈建议主板厂商在LGA 755 CPU平台上使用固态铝电解电容取代传统的铝电解电容。虽然目前固态电容成本相对较高,但是与售后维修成本相比还是比较划算的,因此,台湾众主板厂商已经纷纷开始在自己的主板上使用固态电容,因而使得全球范围内的固态电解电容市场需求迅速上扬而大放异彩,成为2005 年电子组件中的闪亮之星。业内人士指出,进入第三季度,包括主机板、LCD 等产业 进入旺季,加上LGA 755 CPU供给提高,对固态电容需求明显成长,8月以来固态电容出货已逐渐吃紧。目前,Nippon Chemi-con公司(佳美工)、Sanyo(三洋)与、Fujitsu (富士通)等日系厂商是全球固态电容的主要供应商,据了解,其中最大厂商的佳美工至今年第2季末的月产能为2700-3000万颗,预期第4季将扩大至4200万颗;排名第二的富士通也规划月产能将由1500颗扩大至2000万颗;排名第三的三洋则将维持月产能700万颗,并计划在06年年底前扩产至3000万颗;另台湾地区的立隆电子也已经开始量产(目前月产能为400-600万颗,计划年底前新增6条生产线,届时月产能将达1200万颗)。 一、项目背景 1、项目的迫切性、重要性 在各种片式电子元件中,铝电解电容器片式化的难度最大,同时也是技术含量最高的。且铝电解电容器具有电容量大、体积小、价格便宜等优点。而一般传统的液体铝电解电容器由于采用工作电解液作阴极,极易干涸、泄漏,因此可靠性低,工作寿命短且不易实现片式化,同时阻抗频率特性较差,不能满足现代电子系统中电子元件表面组装化,数字电路高速化及开关电源高频化发展。而该项目的新型片式聚合物固体铝电解电容器,是以高分子聚合物为电解质,是传统铝电解电容器和钽电解电容器的更新换代产品,具有超越现有液体铝电解电容器和固体钽电解电容器的卓越电性能、优异的温度稳定性和近似理想电容器的阻抗频率特性,加上其兼有小型化、片式化、轻量化、低剖面、可以承波峰焊和再流焊、电容量大等优良特征。市场需求量很大,应用领域广泛。 2、项目相关产品的市场需求 片式电解电容器是电子元件行业发展的新方向,国际上片式元器件已成为成熟产业,片式电容器的市场容量目前正处在快速增长阶段。国外先进国家的表面安装技术贴装元件(片式电子元件)已达到75%以上,我国也达到40%左右。 由于当今世界通信信息网络产品、数字式电子产品处于上升期,仍在快速发展,还有伴随着电子设备的小型化,尤其是电脑手机的小型化,世界市场对片式电解电容器的需求将会与日俱增。预计2-3年后,美国需求量约为110-130亿只,日本及亚洲市场约为100-120亿只。国内片式电解电容器的发展还处在起步阶段。在2001年,国内片式铝电解电容器需用量已达15亿只以上,绝大多数需要通过从国外进口。2004年全球高分子聚合物片式固体铝电解电容器需求量为40亿只,未来10-15年将是片式电解电容器快速发展时期,需求量以年均20%左右的速度增长,市场前景很好。 “固态电容”是2005年最受关注的电子组件产品, 2005年整年度高阶主机板(英特尔775 Pin CPU)的需求量约为6,244.4万片。而1片775Pin CPU约需用到4~10颗固态电容(主机板制造端通常再细分不同等级的高阶主机板及依最终销售国家不同,而使用不同颗数的固态电容),约为2.5亿~6.2亿颗 3、固态铝电解电容器应用领域

超级电容器研究综述

一、超级电容器的发展与进步 (一)概述 在古代,人们发现了与琥珀及橡皮相摩擦,引起表面贮存电荷的可能性。然而这一效应的缘由直到18世纪中叶方被人们理解。140年后,人们开始对电有了分子原子级的了解。早期的有关莱顿瓶的发现和研究,开启了电容器的序幕。之后,电容器不断的发展起来,现如今,其发展起来的电化学超级电容器,已经应用于国防设备、电力设备、通讯设备、铁路设施、电子产品、汽车工业等方方面面,成为当代社会不可缺少的一部分。 电能能够以两种截然不同的方式存贮:一种间接方式是作为潜在可用的化学能,存贮在电池里。另一种直接的方式,则是以静电学形式将正负电荷置于一个电容器的不同极板之间来存贮电能。超级电容器在存贮电荷时有着两种原理,一种是通过双电层原理,以非法第模式来存贮电能;而另一种则是法拉第模式,通过发生氧化还原反应来产生赝电容。目前双电层型超级电容器一般采用碳材料做电极,通过碳材料的大的比表面积来增加双电层的面积,而赝电容型超级电容器一般采用氧化物或聚合物的材料来做为电极。同时,二者在制作超级电容器的时候也可以并用,从而使得超级电容器也可以划分为对称超级电容器和非对称超级电容器,对称即指电容器的两极的材料相同,非对称则不同。在电解质方面,超级电容器绝大多数均采用液体电解质,如水及其它有机溶剂。 超级电容器的电化学性能分析有很多方法,但通常都包括以下四种图:循环伏安曲线,恒流充放电曲线,交流阻抗谱,循环稳定性曲线。通过这四种图可以比较明确地判断出一个超级电容器的电化学性能的好坏,具体判断方法之后会详细说明。 超级电容器有着非常高的功率密度,但是其能量密度却比较低,它有着极好的循环充放电稳定性但是电压窗口却比较窄。但是人们也在对其进行着不断的研究来改善超级电容器的这些弊端。 (二)超级电容器的原理 超级电容器又称为电化学电容器,是介于传统电容器和电池之间的新型电化学储能器件,它的出现填补了Ragone图中传统电容器的高比功率和电池的高比能量之间的空白。一方面,与传统电容器相比,超级电容器的电极材料往往选用高比表面积材料,如活性碳,通过静电作用在固/液界面形成对峙的双电层存储电荷,因此超级电容器拥有比传统电容器高的能量密度,静电容量能够达到千法拉至万法拉级;另一方面,与电池能量存储机理类似,超级电容器可以通过法拉第氧化还原反应完成电荷存储和释放,由于主要依靠电极表面或近表面的活性材料存储电荷,超级电容器与电池相比,能量密度较低,但是具有高的功率密度和循环稳定性。 1 传统电容器 传统的平行板电容器是所有静电电容器储能的基础,传统电容器电能的储存来源于电荷在两极板上聚集而产生电场。平行板电容器的静电电容的计算公式为: r是两极板材料的相对介电常数,0是真空介电常数,A是电极板的正对面积,d 是两极板的距离。 2 双电层超级电容器 双电层电容器是通过静电电荷分离,依靠固/液界面的双电层效应完成能量的存储和转化。电解液离子分布可为两个区域——紧密层和扩散层。其双电层电容可视为由紧密层电容和扩散层电容串联而成。双电层电容器正是基于上述理论发展起来的。充电时,电子经外电

2019超级电容器行业分析报告及技术研究现状

2012超级电容器行业分析报告及技术研究现状 一、电容器、超级电容器行业分析 超级电容器根据制造工艺和外形结构可划分为钮扣型、卷绕型和大型三种类型三者在容量上大致归类为5F以下、5F~200F、200F以上它们由于其特点的不同运用领域也有所差异。 钮扣型产品具备小电流、长时间放电的特点,可用在小功率电子产品及电动玩具产品中。而卷绕型和大型产品则多在需要大电流短时放电,有记忆存储功能的电子产品中做后备电源,适用于带CPU的智能家电、工控和通信领域中的存储备份部件。另外大型超级电容器通过串并联构成电源系统可用在汽车等高能供应装置上。 表1、表2是对三种超级电容器产业规模进行调查而得到的数据整理而成的,分别反映了世界和中国超级电容器产业的情况。从这两个表中我们不难发现三个问题: 1、超级电容器产业的发展非常迅速,无论是钮扣型还是卷绕型或是大型超级电容器,其产业规模都在高速扩展。 2、中国在钮扣型超级电容方面的竞争力不明显,在中国钮扣型市场中,海外产品几乎占据了90%以上的份额,竞争非常激烈。数据表明,近几年国内厂家的市场份额也在逐步扩大。 3、卷绕型和大型方面,中国的技术水平与国际接近,市场份额也比较理想。近几年,中国厂商的销售收人也在呈几何倍数增长。据调查,国产超级电容器已占有中国市场60%~70%的份额。 二、超级电容器技术研究现状

超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷响应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。 超级电容器因其独特的双层大容量储存结构对原材料及制作工艺提出了极高的要求。电极、电解质和隔膜的组成和质量对超级电容器的性能起着决定性的影响。下面将从原材料,制作工艺等几个方面对超级电容器的技术现状进行分析。 2.1正极材料 目前用作超级电容器电极的材料主要有三类:碳材料、金属氧化物材料和导电聚合物材料。 2.1.1 碳材料 碳是最早被用来制造超级电容器的电极材料。碳电极电容器主要是利用储存在电极与电解液界面的双电层能量,其比表面积是决定电容器容量的重要因素。尽管高比表面的碳材料比表面积越大,容量也越大,但实际利用率并不高,因为多孔碳材料中孔径一般要2nm及 以上的空间才能形成双电层,从而进行有效的能量储存,而制备的碳材料往往存在微孔(孔 径小于2nm)不足的情况。所以这个系列主要是向着提高有效比表面积和可控微孔孔径(孔径 大于2nm)的方向发展。除此之外,碳材料的表面官能团、导电率、表观密度等对电容器性 能也有影响。现在已有许多不同类型的碳材料被证明可用于制作超级电容器的极化电极,如活性炭、活性炭纤维、碳气溶胶、碳纳米管以及某些有机物的裂解碳化产物。 2.1.2 金属氧化物材料 金属氧化物作为超级电容器电极材料的研究是基于法拉第准电容储能原理,即是在氧化物电极表面及体相发生的氧化还原反应而产生的吸附电容。其电容量远大于活性炭材料的双电层电容,但双电层电容器瞬间大电流放电的功率特性比法拉第电容器好。金属氧化物作为超级电容器电极材料有着潜在的研究前景。近年来金属氧化物电极材料的研究工作主要围绕以下两个方面进行:(l)制备高比表面积的RuO2活性物质。(2) RuO2与其它金属氧化物复合。

超级电容器实验报告

实验报告 题目C,MnO2的电化学电容特性实验姓名许树茂 学号20104016005 所在学院化学与环境学院 年级专业新能源材料与器件创新班 指导教师舒东老师 完成时间2012 年 4 月

1.【实验目的】 1. 了解超级电容器的原理; 2. 了解超级电容器的比电容的测试原理及方法; 3. 了解超级电容器双电层储能机理的特点; 4. 掌握超级电容器电极材料的制备方法; 5. 掌握利用循环伏安法及恒流充放电的测定材料比电容的测试方法。 2. 【实验原理】 超级电容器的原理 超级电容器是由两个电极插入电解质中构成。超级电容与电解电容相比,具有非常高的功率密度和实质的能量密度。尽管超级电容器储存电荷的能力比普通电容器高,但是超级电容与电解电容或者电池的结构非常相似。 图1 超级电容器的结构图 从图中可看出,超级电容器与电解电容或者电池的结构非常相似,主要差别是用到的电极材料不一样。在超级电容器里,电极基于碳材料技术,可提供非常大的表面面积。表面面积大且电荷间隔很小,使超级电容器具有很高的能量密度。大多数超级电容器的容量用法拉(F)标定,通常在1F到5,000F之间。 (1) 双电层超级电容器的工作原理 双电层电容是在电极/溶液界面通过电子或离子的定向排列造成电荷的对峙所产生的。对一个电极/溶液体系,会在电子导电的电极和离子导电的电解质溶液界面上形成双电层。当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。这时对某一电极而言,会在一定距离内(分散层)产生与电极上的

高分子固体电容器行业分析报告2011

2011年高分子固体电容器行业分析报告 2011年1月

目录 一、电容器 (4) 1、电容器概述 (4) 2、电容器基本特性 (5) 3、电容器分类 (6) 二、电解电容器 (7) 1、电解电容器简介 (7) 2、电解电容器分类 (9) (1)电解液 (9) (2)二氧化锰 (10) (3)有机半导体 (11) (4)高分子聚合物导体 (12) 3、不同电容器主要性能比较 (15) (1)导电性能 (15) (2)等效串联电阻(ESR) (15) (3)频率特性 (16) (4)温度特性 (17) (5)寿命 (18) (6)耐压 (19) 三、高分子固体铝电解电容器下游市场分析 (20) 1、计算机市场 (20) 2、消费电子市场 (24) 四、高分子固体电解电容器产业分析 (25) 1、发展及其现状 (25) 2、原材料 (28) 3、主要厂商 (28) 五、相关公司简况 (29)

1、江海股份 (29) 2、新宙邦 (30) 五、风险因素 (31)

一、电容器 1、电容器概述 电容器,顾名思义,就是容纳电荷的“容器”。电容器存储的正负电荷等量地分布于两块不直接导通的导体板上。电容器的基本结构由两块导体板(通常为金属板)中间隔以电介质构成。 作为三大无源元件(电阻、电感、电容)之一,电容器是必不可少的基础电子元器件,在电子电器装置中几乎无处不在。通过充电、放电,电容器可存储及变换能量。在整机使用的电子元件中,电容器用量约占全部电子元件用量的40%左右。 电容器由来已久。最初的电容器是1745 年由荷兰人罗克发明的莱顿瓶,它是玻璃电容器的雏形。1874 年德国人鲍尔发明云母电容器,1876 年英国人斐茨杰拉德发明纸介电容器。1900 年意大利人隆巴迪发明陶瓷介质电容器。20 世纪30 年代人们发现在陶瓷中添加钛酸盐可以大大改善电容器性能,因而制造出便宜的陶瓷介质电容器。1921 年出现液体铝电解电容器,1949 年出现液体烧结钽电解电容

超级电容器电极制备实验前言

1超级电容器 1.1电池技术的缺陷 Li电池等新型电池可以提供一个可靠的能量储存方案,并且已经在很多领域中广泛使用。众所周知,化学电池是通过电化学反应,产生法拉第电荷转移来储存电荷的,使用寿命较短,并且受温度影响较大,这也同样是采用铅酸电池(蓄电池)的设计者所面临的困难。同时,大电流会直接影响这些电池的寿命,因此,对于要求长寿命、高可靠性的某些应用,这些基于化学反应的电池就显出种种不足。 1.2超级电容器的简介 超级电容器(又称电化学电容器、电双层电容器)是一种能量存储装置,属新一代绿色能源。它主要依靠在电极与电解液界面形成电双层贮存电能,性能介于普通电容器和可充电电池之问,在较宽的温度范围内(—40~60。C)工作,可以在大电流(10~1000A)下充放电。与可充电电池(包括镍氢电池和锂电池)相比,超级电容器具有更高的功率密度和更长的循环寿命。与普通电容器相比,超级电容器的能量密度要高出100倍以上。可见,超级电容器集高能量密度、高功率密度、长寿命等特性于一身,具有工作温度宽、可靠性高、可快速循环充放电或快速充电长时间放电等特点。超级电容器可用于大电流瞬时供给、中电流短时问后备电源、小电流长时间后备电源和低频微波吸收等。 超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷相应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。超级电容器有如下特点: (1)电容量大。超级电容器采用活性炭粉与活性炭纤维作为可极化电极与电解液接触的面积大大增加,根据电容量的计算公式,那么两极板的表面积越大,则电容量越大。因此,一般双电层电容器容量很容易超过1F,它的出现使普通电容器的容量范围骤然跃升了3-4个数量级,目前单体超级电容器的最大电容量可达5000F。

超级电容器展现状及前景分析

超级电容器发展现状及前景分析 一、超级电容器的概念 超级电容器是一种具有超级储电能力,可提供强大的脉冲功率的物理二次电源,它是根据电化学双电层理论研制而成的,所以又称双电层电容器。 超级电容器基本原理为:当向电极充电时,处于理想极化电极状态的电极表面电荷将吸引周围电解质溶液中的异性离子,使这些离子附于电极表面上形成双电荷层,构成双电层电容。由于两电荷层的距离非常小(一般0.5mm以下),再加之采用特殊电极结构,使电极表面积成万倍的增加,从而产生极大的电容量。 超级电容器实现了电容量由微法级向法拉级的飞跃,彻底改变了人们对电容器的传统印象。目前,超级电容器已形成系列产品,实现电容量0.5-1000F(法),工们电压12-400V,最大放电电流400-2000A。 超级电容器的性能特点: ①.具有法拉级的超大电容量; ②.比脉冲功率比蓄电池高近十倍; ③.充放电循环寿命在十万次以上; ④.能在-40℃-70℃的环境温度中正常使用; ⑤.有超强的荷电保持能力,漏电源非常小; ⑥.充电迅速,使用便捷; ⑦.无污染,真正免维护。 二、超级电容器行业市场分析 超级电容器根据制造工艺和外形结构可划分为钮扣型、卷绕型和大型三种类型,三者在容量上大致归类为小于5F、5F~200F、大于200F,它们由于其特点的不同,运用领域也有所差异。 钮扣型产品具备小电流、长时间放电的特点,可用在小功率电子产品及电动玩具产品中;而卷绕型和大型产品则多在需要大电流短时放电,有记忆存储功能的电子产品中做后备电源,适用于带CPU的智能家电、工控和通信领域中的存储备份部件;另外大型超级电容器通过串并联构成电源系统可用在汽车等高能供应装置上。这三种超级电容器在全球和国内的生产规模情况分别见表1和表2 所示。

铝电解电容器指产品的使用手册-NCC

8)电容器的故障模式 非固体铝电解电容器是有使用寿命的零件,在一般情况下会发生开路型磨损故障。产品及使用条件的不同有时会同时引发压力阀动作等的故障。 9)电容器的绝缘 电容器在以下,情况下要与电路完全隔离。 …非固体铝电解电容器的外壳和阴极端子及阳极端子和电路型板之间 …非固体铝电解电容器基板自立型的无连接(强度增强用)端子和其他(阳极及阴极)端子及电路型板之间 10)外包装套管 非固体铝电解电容器的外包装套管不保证绝缘(螺丝端子型除外)。请勿用于需要绝缘的地方。 11)电容器的使用环境 电容器请不要在以下环境下使用。 ①直接溅水、盐水、油或处于结露状态的环境②阳光直接照射的环境 ③充满有毒气体(硫化氢、亚硫酸、亚硝酸、氯及其化合物、溴及其化合物、氨等)的环境④臭氧、紫外线及放射线照射的环境 ⑤振动或冲击条件超过产品目录或规格说明书规定范围的过激 环境 12)电容器的配置 ①非固体铝电解电容器使用了以可燃性有机溶剂为主要溶煤的导电性电解液和可燃性电解纸。当电解液万一漏出到印刷电路板上时,会腐蚀电路板,导致电路板间短路,甚至冒烟、起火等,因此,请在确认以下内容后进行设计。 …请对准电容器的端子间隔和印刷配线板的孔间隔。…电容器压力阀部的上面,请留出以下空间。 φ8(6.3)?φ16:2 mm 以上 φ18?φ35 :3 mm 以上 φ40? :5 mm 以上 …配线或电路不可延伸到电容器的压力阀部上方。 …如果电容器的压力阀部接触印刷配线板边时,根据压力阀的位置,打开压力阀动作的排气孔。 使用注意事项(非固体铝电解电容器) 1)请在确认使用环境及装配环境的基础上,在产品目录及规格说明书中规定的电容器额定性能的范围内使用。2)极性 铝电解电容器具有极性。 请不要加载反向电压或交流电压。如果安装时极性弄反,有可能导致电路在初始状态短路,压力阀动作等破损。关于极性,请确认产品目录或规格说明书中各页的尺寸图及产品本体的标示。但是,引线型的橡胶形状(凹凸结构)和极性没有关系。 当非固体铝电解电容器使用于极性颠倒的电路中时,请选择双极性电容器。但双极性电容器也不可使用于交流电路。 3)加载电压 请不要加载过大电压(超过额定电压的电压)。 电容器上设定了额定电压。请将和直流电压重叠的纹波电压的峰值设定在额定电压以下。虽然规定了超过额定电压的浪涌电压,但有限制条件,不能保证长时间使用。 4)纹波电流 请不要加载超大电流(超过额定纹波电流的电流)。 当流过的纹波电流过大时,可能导致内部发热量加大,寿命变短,压力阀动作等破损。 额定纹波电流的频率是有限制条件的。在规定外的频率下使用时,要控制在乘以各系列规定的频率修正系数的值以下。 5)使用温度 请不要在高温(超过工作上限温度的温度)下使用。 如果超过工作上限温度使用,电容器的寿命会缩短,并导致压力阀动作等破损。 此外,如果将非固体铝电解电容器的温度设定得较低使用,寿命可能延长。 6)寿命 设计电路时,要选用与设备寿命符合的电容器。 请注意利用推定寿命公式计算的结果并非保证值。在进行机器的寿命设计时,请选择相对于推断值具有充足的余裕的电容器。 此外,利用推定寿命公计算的结果超过15年时,以15年为上限。 7)充放电 通用电容器请勿使用于急速充放电的电路中。 如果使用于电压差大的充放电电路,或短周期且反复急速充放电的电路中,可能导致静电容量减少,内部发热等损坏。这样的电路,必须选择符合充放电周期、耐久次数、放电电阻、使用温度等条件的急速充放电产品。 使用于反复急速充放电的电路中的电容器请向我司咨询。 导电性高分子固体铝电解电容器的使用注意事项请参照「使用注意事项(导电性高分子固体铝电解电容器)」。

高分子固体电容器

高分子固体电容器 又叫聚合物电解电容器,是指以高分子导电材料(PEDT)取代传统电解液的固态电解电容器,现在有高分子固体铝电解电容器和高分子固体钽电解电容器两种. 一、电容器的分类 电容的种类首先要按照介质种类来分。按介质可分为无机介质电容器、有机介质电容器和电解电容器三大类。 1、无机介质电容器:包括人们熟悉的陶瓷电容以及云母电容,在CPU上我们会经常看到陶瓷电容。陶瓷电容的综合性能很好,可以应用GHz级别的超高频器件上,比如CPU/GPU。当然,它的价格也很贵。 2、有机介质电容器:例如薄膜电容器,这类电容经常用在音箱上,其特性是比较精密、耐高温高压。 3、电解电容器:人们所熟知的铝电容,钽电容其实都是电解电容。如果说电容是电子元器件中最重要和不可取代的元件的话,那么电解电容器又在整个电容产业中占据了半壁江山。我国电解电容年产量300亿只,且年平均增长率高达30%,占全球电解电容产量的1/3以上。 电解电容的分类,传统的方法都是按阳极材质,比如说铝、钽或者铌。但这种凭阳极判断电容性能的方法已经过时了,目前决定电解电容性能的关键并不在于阳极,而在于电解质,也就是阴极。 按照阴极材料分类,电解电容器可分为电解液、二氧化锰、TCNQ有机半导体、固体聚合物导体等。 二、电解电容器的发展趋势 目前,新型的电解电容发展的非常快,某些产品的性能已达到无机电容器的水准,电解电容正在替换某些无机和有机介质电容器。电解电容的使用范围相当广泛,基本上,有电源的设备都会使用到电解电容。例如通讯产品,数码产品,汽车上音响、发动机、ABS、GPS、电子喷油系统以及几乎所有的家用电器。由于技术的进步,如今在小型化要求较高的军用电子对抗设备中也开始广泛使用电解电容。 在电解电容中,传统的铝电解电容由是以电解液作为介电材料,摆脱不了因为物理特性而受热膨胀,出现漏液的危险现象,让铝电解电容器面临著前所未有的压力和挑战,部分市场悲观地认定铝电解电容已经穷途末路,未来将退出被动元件舞台舞台。

(完整版)全固态锂电池技术的研究进展与展望

全固态锂电池技术的研究进展与展望 周俊飞 (衢州学院化学与材料工程学院浙江衢州324000) 摘要:现有电化学储能锂离子电池系统采用液体电解质,易泄露、易腐蚀、服役寿命短,具有安全隐患。薄膜型 全固态锂电池、大容量聚合物全固态锂电池和大容量无机全固态锂电池是一类以非可燃性固体电解质取代传统锂离 子电池中液态电解质,锂离子通过在正负极间嵌入-脱出并与电子发生电荷交换后实现电能与化学能转换的新型高 安全性锂二次电池。作者综述了各种全固态锂电池的研究和开发现状,包括固态锂电池的构造、工作原理和性能特 征,锂离子固体电解质材料与电极/电解质界面调控,固态整电池技术等方面,提出并详细分析了该技术面临的主要 科学与技术问题,最后指出了全固态锂电池技术未来的发展趋势。 关键词:储能;全固态锂离子电池;固体电解质;界面调控 1 全固态锂电池概述 全固态锂二次电池,简称为全固态锂电池,即电池各单元,包括正负极、电解质全部采用固态材料的锂二次电池,是从20 世纪50 年代开始发展起来的[10-12]。全固态锂电池在构造上比传统锂离子电池要简单,固体电解质除了传导锂离子,也充当了隔膜的角色,如图 2 所示,所以,在全固态锂电池中,电解液、电解质盐、隔膜与黏接剂聚偏氟乙烯等都不需要使用,大大简化了电池的构建步骤。全固态锂电池的工作原理与液态电解质锂离子电池的原理是相通的,充电时正极中的锂离子从活性物质的晶格中脱嵌,通过固体电解质向负极迁移,电子通过外电路向负极迁移,两者在负极处复合成锂原子、合金化或嵌入到负极材料中。放电过程与充电过程恰好相反,此时电子通过外电路驱动电子器件。目前,对于全固态锂二次电池的研究,按电解区分主要包括两大类[13]:一类是以有机聚合物电解质组成的锂离子电池,也称为聚合物全固态锂电池;另一类是以无机固体电解质组成的锂离子电池,又称为无机全固态锂电池,其比较见表1。通过表1 的比较可以清楚地看到,聚合物全固态锂电池的优点是安全性高、能够制备成各种形状、通过卷对卷的方式制备相对容易,但是,该类电池作为大容量化学电源进入储能领域仍有一段距离,主要存在的问题包括电解质和电极的界面不稳定、高分子固体电解质容易结晶、适用温度范围窄以及力学性能有提升空间;以上问题将导致大容量电池在使用过程中因为局部温度升高、界面处化学反应面使聚合物电解质开貌发生变化,进而增大界面电阻甚至导致断路。同时,具有隔膜作用的电解质层的力学性能的下降将引起电池内部发生短路,从面使电池失效[14-15]。无机固体电解质材料具有机械强度高,不含易燃、易挥发成分,不存在漏夜,抗温度性能好等特点;同时,无机材料处理容易实现大规模制备以满足大尺寸电池的需要,还可以制备成薄膜,易于将锂电池小型化,而且由无机材料组装的薄膜无机固体电解质锂电池具有超长的储存寿命和循环性能,是各类微型电子产品电源的最佳选择[10]。采用有机电解液的传统锂离子电池,因过度充电、内部短路等异常时电解液发热,有自燃甚至爆炸的危险(图3)。从图 3 可以清楚地看到,当电池因为受热或短路情况下导致温度升高后,传统的锰酸锂或钴酸锂液体电解质锂离子电池存在膨胀起火的危险,而基于纯无机材料的全固态锂电池未发生此类事故。这体现了无机全固态锂电池在安全性方面的独特优势。以固体电解质替代有机液体电解液的全固态锂电池,在解决传统锂离子电池能量密度偏低和使用寿命偏短这两个关键问题的同时,有望彻底解决电池的安全性问题,符合未来大容量新型化学储能技术发展的方向。正是被全固态锂电池作为电源所表现出来的优点所吸引,近年来国际上对全固态锂电池的开发和研究逐渐开始活跃[10-12] 2 全固态锂电池储能应用研究进展 在社会发展需求和潜在市场需求的推动下,基于新概念、新材料和新技术的化学储能新体系不断涌现,化学储能技术正向安全可靠、长寿命、大规模、低成本、无污染的方向发展。目前已开发的化学储能装置,包括各种二次电池(如镍氢电池、锂离子电池等)、超级电容器、可再生燃料电池(RFC:电解水制氢-储氢-燃料电池发电)、钠硫电池、液流储能电池等。综合各种因素,考虑用于大规模化学储能的主要是锂二次电池、钠硫电池及液流电池,而其中大容量储能用锂二次电池更具推广前景。。 全固态锂电池、锂硫电池、锂空气电池或锂金属电池等后锂离子充电电池的先导性研究在世界各地积极地进行着,计划在2020 年前后开始商业推广。在众多后锂离子充电电池中,包括日本丰田汽车、韩国三星电子和德国KOLIBRI 电池公司对全固态锂电池都表现出特别的兴趣。图 4 为未来二十年大容量锂电池的发展路径,从图 4 可以看出,全固态电

相关文档
最新文档