ch9 强度理论(3rd)

ch9 强度理论(3rd)
ch9 强度理论(3rd)

第九章 强度理论

9-3 已知脆性材料的许用拉应力[σ]与泊松比μ,试根据第一与第二强度理论确定纯剪

切时的许用切应力[τ ]。

解:纯剪切时的主应力为

0 ,231==-=στσσ

根据第一强度理论,要求 ][1σσ≤ 即要求

][στ≤

由此得切应力的最大许可值即许用切应力为

][][στ= 根据第二强度理论,要求 ][)(321σσσμσ≤+-

即要求

][σμττ≤+

由此得相应许用切应力为

μ

στ+=

1]

[][ 9-4 试比较图示正方形棱柱体在下列两种情况下的相当应力r3

σ

,弹性常数E 和μ均

为已知。

(a) 棱柱体轴向受压;

(b) 棱柱体在刚性方模中轴向受压。

题9-4图

(a)解:对于棱柱体轴向受压的情况(见题图a ),三个主应力依次为

ζζζζ-===321 0,

由此可得第三强度理论的相当应力为

ζζζζ=-=31r3

(a)

(b)解:对于棱柱体在刚性方模中轴向受压的情况(见题图b ),可先取受力微体及坐标如图9-4所示,然后计算其应力。

图9-4

由图9-4可得

ζζy -=

根据刚性方模的约束条件,有 0)]([1

=+-=

z y x x ζζμζE

ε 即

)(z y x ζζμζ+=

注意到 x z ζζ=

故有

ζμ

μζζz x --

==1 三个主应力依次为

ζζζμ

μ

ζζ-=--

==3211, 由此可得其相当应力为

ζμ

μ

ζζζ--=

-=12131r3 (b)

按照第三强度理论,(a)与(b)两种情况相当应力的比值为

1211)

r3()r3(>--=

=

μ

μ

ζζr b a 这表明加刚性方模后对棱柱体的强度有利。

9-5 图示外伸梁,承受载荷F = 130 kN 作用,许用应力[σ]=170 MPa 。试校核梁的强

度。如危险点处于复杂应力状态,采用第三强度理论校核强度。

题9-5图

解:1.内力分析

由题图可知,+B 截面为危险截面,剪力与弯矩均为最大,其值分别为

m N 1080.7m 600.0N 10130 kN 130432S ??=??====Fl M F F ,

2.几何性质计算

3

4324max ,)

(343

)(3

43

54

543

3m 1090.2]m )0137.0140.0(0085.02

1

1023.2[ 2m 1023.2)m 2

0137.0140.0(0137.0122.0 m 1005.5m 140.01007.7 m 1007.7]m 12

)0137.02280.0()0085.0122.0(12280.0122.0[------?=-??+?==?=-??=?=?=?=?-?--?=z a z b z z z S S S W I

式中:足标b 系指翼缘与腹板的交界点;足标a 系指上翼缘顶边中点。

3.应力计算及强度校核

三个可能的危险点(a ,b 和c )示如图9-5。

图9-5

a 点处的正应力和切应力分别为

MPa 9614 Pa 10496.1m

0137.01007.7N 10115.110130 MPa 5154 Pa 10545.1m

1005.5N

1080.7 72

543)(S 82

44.t I S F η.W M ζz a z z =?=?????===?=??==---

该点处于单向与纯剪切组合应力状态,根据第三强度理论,其相当应力为

][MPa 4.157MPa 96.1445.154422223r στσσ<=?+=+=

b 点处的正应力和切应力分别为

MPa

248 Pa 1082.4m 0085.01007.7N 1023.210130 MPa 3139 Pa 10393.1m 1007.7)N 0137.0140.0(1080.77

2

54

3

)(S 82

54.δ

I S F η.I y M ζz b z z b =?=?????=

=

=?=?-??==---

该点也处于单向与纯剪切组合应力状态,其相当应力为

][MPa 4.169MPa 2.4843.139223r σσ<=?+=

c 点处于纯剪切应力状态,其切应力为

MPa 7.62 Pa 1027.6m

0085.01007.7N 1090.21013072

543max

,S =?=?????==--δ

I S F ηz z 其相当应力为

125.4MPa MPa 7.62223r =?==τσ

结论:该梁满足强度要求。 4.强度校核

依据第三强度理论,上述三点的相当应力依次为

MPa

4.125 MPa 7.6222 MPa

5.169 MPa )]05.15(4.154[ MPa

3.157 MPa )]4

4.1(9.155[)r3()r3(31)r3(=?===--==--=-=ηζζζζζc b a

它们均小于许用应力,故知梁满足强度要求。

9-8 图示油管,内径D =11 mm ,壁厚δ= 0.5 mm ,内压p = 7.5 MPa ,许用应力[σ]=100

MPa 。试校核油管的强度。

题9-8图

解:油管工作时,管壁内任一点的三个主应力依次为

002r 32t 1≈====

=ζζζζδ

pD

ζζx ,, 按照第三强度理论,有

][ MPa 5.82 Pa 1025.8m 0005.02N 011.0105.727

2

631r3ζδpD ζζζ<=?=???==-= 计算结果表明,该油管满足强度要求。

9-9 图示圆柱形容器,受外压p = 15 MPa 作用。材料的许用应力[σ]= 160 MPa ,试按

第四强度理论确定其壁厚。

题9-9图

解:根据第四强度理论,圆柱形薄壁容器的强度条件为 ][43r4ζδ

pD

ζ≤=

由此得

mm 25.3m 1025.3m 101604080.010153][433

6

6=?=?????=≥-ζpD δ

所得20/D δ<,属于薄壁容器,上述计算有效。

9-10 图a 所示车轮,由轮毂与套于其上的薄钢圈组成。钢圈的内径d 比轮毂的外径

D 略小,安装时先将钢圈适当加热,以使二者套合,冷却后钢圈即紧套在轮毂上。钢圈的厚度

为δ,弹性模量为E ,轮毂的刚度很大,分析时可忽略其变形。试求钢圈与轮毂间的相互作用力,以及钢圈横截面上的初应力。

题9-10图 解:在内压p 作用下(图b ),钢圈的周向正应变为

δ

σεE pD

E 2t t =

= (a)

安装前后,钢圈的直径由d 变为D ,其周向正应变为

d d

D d d D -=

-=

πππt ε (b)

比较式(a)与(b),得

Dd

d D E p )

(2-=

δ

由此得钢圈横截面上的正应力为

d

d D E pD )

(2t -=

=

δσ 9-11 图示铸铁构件,中段为一内径D =200 mm 、壁厚δ= 10 mm 的圆筒,圆筒内的

压力p =1 MPa ,两端的轴向压力F = 300 kN ,材料的泊松比μ= 0.25,许用拉应力[t σ]=30 MPa 。

试校核圆筒部分的强度。

题9-11图

解:1.应力计算

圆筒的20/D δ=,属于薄壁圆筒。故由内压引起的轴向应力和周向应力分别为

MPa

10Pa 1010Pa 010

.02200.01012MPa

5Pa 105Pa 010.04200.01014 66

tp 66p =?=???===?=???==δpD ζδpD ζx

由轴向压力引起的轴向应力为

MPa 7.47 Pa 10774m

010.02000πN

10300π72

3F =?=???==..D δF ζx (压) 筒壁内任一点的主应力依次为

MPa 7.42 MPa )7.475(0 MPa 10321-=-=≈=ζζζ,,

2.强度校核

由于该铸铁构件的最大压应力超过最大拉应力,且超过较多,故宜采用最大拉应变理论对其进行强度校核,即要求

][)(321r2ζζζμζζ≤+-=

将上述各主应力值代入上式,得

][ MPa 7.20 MPa )]7.42(25.010[r2ζζ<=-?-=

可见,该铸铁构件满足强度要求。

9-12 图示圆球形薄壁容器,其内径为D ,壁厚为δ,承受压强为p 之内压。试证明

壁内任一点处的主应力为0),4/(321≈==δδσσpD 。

题9-12图

证明:用截面法取该容器的一半(连同内压)示如图9-12a 。

图9-12

由图a 所示半球的平衡方程 04ππ02

t =-=∑p D D δF x σ,

δ

pD ζ4t =

球壁内任一点的应力状态如图b 所示,由此可得三个主应力依次为

043t 21≈=

==ζδ

pD

ζζζ, 9-13 图示组合圆环,内、外环分别用铜与钢制成,已知铜环与钢环的壁厚分别为δ

1

与δ2,交接面的直径为D ,铜与钢的弹性模量分别为E 1与E 2,线胀系数分别为α1与α2,且α1>α2。

试问当温度升高T ?时,环的周向正应力为何值。

题9-13图

解:内、外环的受力情况示如图9-13a 和b 。

图9-13

设铜环的轴力(绝对值)为N1F ,钢环的轴力为N2F ,由图c 与d 所示各半个薄圆环的平衡条件可得

2

N2N1pD F F =

= (a)

变形协调条件为

21ΔΔD D =

(b)

物理关系为

??

??

???+

=-

=22N22211N111ΔΔΔΔA E D F T D αD A E D F T D αD (c)

将式(c)代入式(b),得

2

2t 11t 22N211N121)Δ(E ζE ζA E F A E F T αα+=+=

- (d)

由式(a)可知, 1

2

122t 1t 22t 11t

δδA A ζζA ζA ζ===, 即

2t 1

2

1t

ζδδζ= (e)

将方程(e)与方程(d)联立求解,得铜环和钢环内的周向正应力依次为

T δE δE δE E ααζΔ)(

2

2112

21211t +-=

(f)

T δE δE δE E ααζΔ)(

2

2111

21212t +-=

(g)

式(f)亦可写成

T δE δE δE E ααζΔ)(

2

2112

21121t +-=

(f)’

9-14 图示薄壁圆筒,同时承受内压p 与扭力偶矩M 作用。由实验测得筒壁沿轴向

及与轴线成45°方位的正应变分别为 450εε和,筒的内径D 、壁厚δ、材料的弹性模量E 与泊松比μ均为已知。试求内压p 与扭力偶矩M 之值。

题9-14图

解:圆筒壁内任意一点的应力状态如图9-14所示。

图9-14

图中所示各应力分量分别为 δ

τδσδσ2t π2 ,2 ,4D M pD pD x ===

由此可得

ηδ

pD

ζδpD ηζζζζζx -=+

===+83 ,83 , ,4545t 900 根据广义胡克定律,贴片方向的正应变为

E δ

pD

E x 4)2(1][1

t 0μμσσε-=

-=

(a)

]8)3(1π)12([1][1

2

454545δμδμμσσεpD

D M

E E

-++=-=

+ (b)

由式(a)可得圆筒所承受的内压为

)21(4εD μE δ

p -=

(c)

将式(c)代入式(b),可得扭力偶矩为

])1(3)21[2()

21)(14(π0452 εμεμμμδ

ED M ----+=

9-15 如图(a)所示,在直径为D =40mm 的铝质圆柱体外,光滑套合一壁厚δ=2mm

的钢管,圆柱体承受轴向载荷F =40kN 作用,铝与钢的弹性模量分别为E 1=70GPa 与E 2=210GPa ,泊松比分别为μ1=0.35与μ2=0.25。试计算钢管的周向正应力。

题9-15图

解:圆柱体与外管横截面上的正应力分别为

21π4D F

x -=σ

02=x σ

设圆柱体与外管间的相互作用力的压强为p ,在其作用下,外管纵截面上的周向正应力为

δ

σ2t2pD =

(a)

在外压p 作用下(图b ,尺寸已放大),圆柱体内任一点处的径向与周向正应力均为

p -==t1r1σσ

根据广义胡克定律,圆柱体外表面的周向正应变为

()??

?

??++-=--=

p D F p E E x 1211r1111t11t1π411μμσμσμσε 外管内表面的周向正应变则为

δ

σε22

t2

t22E pD

E =

=

变形协调条件为 2t 1t εε=

于是有 δ

μμ212112π41E pD

p D F p E =

??? ??++- 由此得

[]

δμδμ211221)1(2π8E D E D F

E p -+=

将上式代入式(a ),于是得钢管的周向正应力为 []

MPa 28)1(2π421121t2=-+=

δμμσE D E D F

E

四大强度理论

第10章强度理论 10.1 强度理论的概念 构件的强度问题是材料力学所研究的最基本问题之一。通常认为当构件承受的载荷达到一定大小时,其材料就会在应力状态最危险的一点处首先发生破坏。故为了保证构件能正常地工作,必须找出材料进入危险状态的原因,并根据一定的强度条件设计或校核构件的截面尺寸。 各种材料因强度不足而引起的失效现象是不同的。如以普通碳钢为代表的塑性材料,以发生屈服现象、出现塑性变形为失效的标志。对以铸铁为代表的脆性材料,失效现象则是突然断裂。在单向受力情 况下,出现塑性变形时的屈服点 σ和发生断裂时的强度极限bσ可由实 s 验测定。 σ和bσ统称为失效应力,以安全系数除失效应力得到许用应s 力[]σ,于是建立强度条件 可见,在单向应力状态下,强度条件都是以实验为基础的。 实际构件危险点的应力状态往往不是单向的。实现复杂应力状态下的实验,要比单向拉伸或压缩困难得多。常用的方法是把材料加工成薄壁圆筒(图10-1),在内压p作用下,筒壁为二向应力状态。如再配以轴向拉力F,可使两个主应力之比等于各种预定的数值。这种薄壁筒

试验除作用内压和轴力外,有时还在两端作用扭矩,这样还可得到更普遍的情况。此外,还有一些实现复杂应力状态的其他实验方法。尽管如此,要完全复现实际中遇到的各种复杂应力状态并不容易。况且复杂应力状态中应力组合的方式和比值又有各种可能。如果象单向拉伸一样,靠实验来确定失效状态,建立强度条件,则必须对各式各样的应力状态一一进行试验,确定失效应力,然后建立强度条件。由于技术上的困难和工作的繁重,往往是难以实现的。解决这类问题,经常是依据部分实验结果,经过推理,提出一些假说,推测材料失效的原因,从而建立强度条件。 图10-1 经过分析和归纳发现,尽管失效现象比较复杂,强度不足引起的失效现象主要还是屈服和断裂两种类型。同时,衡量受力和变形程度的量又有应力、应变和变形能等。人们在长期的生产活动中,综合分析材料的失效现象和资料,对强度失效提出各种假说。这类假说认为,材料之所以按某种方式(断裂或屈服)失效,是应力、应变或变形能等因素中某一因素引起的。按照这类假说,无论是简单应力状态还是复杂应力状态,引起失效的因素是相同的。也就是说,造成失效的原因与应力状态无关。这类假说称为强度理论。利用强度理论,便可由简单应力状态的实验结果,建立复杂应力状态下的强度条件。至于某种强

试按第三和第四强度理论计算单元体的相当应力。图中应力

一、从低碳钢零件中某点取出一单元体,其应力状态如图所示,试按第三和第四强度理论计算单元体的相当应力。图中应力单位是MPa 。 (1)、40=ασ,40090=+ασ,60=ατ (2)、60=ασ,80090-=+ασ,40-=ατ (1) max min 123r313r41004040MPa 202σ=100MPa,σ=0MPa,σ=-20MPa σσσ120MPa σ111.3MPa σ+= ±=-=-== (2) max min 123r313r470.66080MPa 90.6σ=70.6MPa,σ=0MPa,σ=-90.6MPa σσσ161.2MPa σ140.0MPa σ=-±=-=-== 二、上题中若材料为铸铁,试按第一和第二强度理论计算单元体的相当应力。图中应力单位是MPa ,泊松比3.0=μ。 (1) r11r2123σσ100MPa σσ(σσ)106.0MPa μ===-+= (2) r11r2123σσ70.6MPa σσ(σσ)97.8MPa μ===-+= α σ

三、图示短柱受载荷kN 251=F 和kN 52=F 的作用,试求固定端截面上角点A 、B 、C 及D 的正应力,并确定其中性轴的位置。 121i 33 121260025100150150100101012121.66106.750F F y F z Z y z σ---??=++????=-++ 1.668.0 2.58.84MPa 1.668.0 2.5 3.84MPa 1.668.0 2.512.16MPa 1.668.0 2.57.16MPa A B C D σσσσ=-++==-+-==---=-=--+=- -1.66+106.7y +50z =0 当z =0时,31.66 1015.5mm 106.70y -=?= 当y =0时,31.66 1033.3mm 50 y -=?=

806材料力学复习大纲

806《材料力学》复习大纲 一、考试的基本要求 要求学生系统地理解材料力学的基本概念和基本理论,掌握材料力学的研究方法,并要求考生具有一定的计算能力、逻辑推理能力和综合运用所学的知识分析问题和解决实际问题的能力。 二、考试方式和考试时间 闭卷考试,总分150,考试时间为3小时。 三、参考书目(仅供参考) 《材料力学》(Ⅰ)、(Ⅱ)第五版,刘鸿文主编,高等教育出版社,2011年。 四、试题类型: 主要包括填空题、选择题、是非题、计算题等类型,并根据每年的考试要求做相应调整。 五、考试内容及要求 第一部分材料力学基本概念 掌握:强度、刚度和稳定性的概念;内力与应力(正应力和切应力)的概念;变形与应变(线应变和切应变)的概念;截面法的概念;能正确运用截面法计算杆件的内力。 熟悉:材料力学的研究对象和基本假设。 第二部分基本变形的强度和刚度设计 掌握:(1)掌握轴向拉伸与压缩的概念;熟练作出杆件轴向拉伸与压缩时的轴力图;熟练计算杆件轴向拉伸与压缩时横截面上的正应力并进行相关强度设计;熟练计算杆件轴向拉伸与压缩时的变形。(2)熟练分析各种连接接头的剪切变形和挤压变形;熟练计算剪切应力和挤压应力,并进行剪切强度和挤压强度的设计。(3)掌握扭转的概念;熟练作出杆件的扭矩图;熟练计算圆截面和圆环截面杆扭转时横截面上的切应力并进行扭转强度设计;熟练计算圆截面和圆环截面杆扭转时的扭转角并进行扭转刚度设计。(4)掌握对称弯曲和平面弯曲的概念;熟练写出梁的剪力方程和弯矩方程并作出梁的剪力图和弯矩图;熟练计算平面弯曲时梁横截面上的正应力,并运用弯曲正应力强度条件进行梁的强度设计;正确理解梁的挠曲线近似微分方程,熟练运用积分法和叠加法计算梁的弯曲变形,并

材料力学四个强度理论

四大强度准则理论: 1、最大拉应力理论(第一强度理论): 这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是: σ1=σb。σb/s=[σ] 所以按第一强度理论建立的强度条件为: σ1≤[σ]。 2、最大伸长线应变理论(第二强度理论): 这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。 εu=σb/E;ε1=σb/E。由广义虎克定律得: ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。 按第二强度理论建立的强度条件为: σ1-u(σ2+σ3)≤[σ]。 3、最大切应力理论(第三强度理论): 这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。 τmax=τ0。 依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力) 由公式得:τmax=τ1s=(σ1-σ3)/2。 所以破坏条件改写为σ1-σ3=σs。 按第三强度理论的强度条件为:σ1-σ3≤[σ]。 4、形状改变比能理论(第四强度理论): 这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。 发生塑性破坏的条件为: 所以按第四强度理论的强度条件为:sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]

第四节 岩石强度理论

第四节岩石的强度理论?研究岩石破坏原因、过程及条件的理论—岩石的强度理论。 ?将表征岩石强度条件的函数称为岩石的强度准则, ?而将表征岩石破坏条件的函数称为岩石的破坏判据。

一、一点的应力状态 ?1、正负号的规定 ①压为正,拉为负; ②剪应力是使物体产生逆时针转为正,反之为负; ③角度以X轴正向沿逆时针方向转动所形 成的夹角为正,反之为负。 ?2、一点的应力的表示方法 三个正应力:σ x 、σ y 、σ z ,正应力的 角标为正应力作用面的外法线方向;

剪应力的角标为: 第一个角标表示剪应力作用面的外法线方向;第二个角标表示剪应力作用的方向。三对剪应力:在平面问题中,独立的应力分量只有三个, 即: σx 、σy 、τxy τxy =τyx τyz =τzy τzx =τxz

3、平面问题的简化 ?①平面应力问题(垂直于平面方向应力为零),?如薄板问题; ?②平面应变问题(垂直于平面方向应变为零),?如大坝、路堤、隧道横断面等问题。 ?不论那一种平面问题,用弹性力学的方法进行分析所得的结果,可以互相转换: 平面应力计算公式中的E用E/(1-μ2)、μ用μ/ (1-μ)代入,即可将平面应力问题的 计算公式转换成平面应变问题的计算公式。

4、基本应力公式 如图所示: 以二维平面问题为例任意角度倾斜截面上的应力计算公式下: τ xy τ yx τ yx τ xy σ x σ y σ y σ x σ n τ n α

α τ-ασ-σ+ σ+σ= σ2sin 2cos 2 2 xy y x y x n α τ+ασ-σ= τ2cos 2sin 2 xy y x n 若上述公式对求导,即可求得最大、最小主应力的表达式如下: 2 2 3 122 xy y x y x τ+??? ? ? ?σ+σ±σ+σ= σσ

练习题四——强度理论

第四部分 应力分析和强度理论 一 选择题 1、所谓一点处的应力状态是指( ) A 、受力构件横截面上各点的应力情况; B 、受力构件各点横截面上的应力情况; C 、构件未受力之前,各质点之间的相互作用情况; D 、受力构件中某一点在不同方向截面上的应力情况。 2、对于图示各点应力状态,属于单向应力状态的是( ) A 、a 点 B 、b 点 C 、c 点 D 、d 点 3、对于单元体中max ,正确的答案是( ) A 、100MPa B 、0 MPa C 、50MPa D 、200 MPa 4、关于图示梁上a 点的应力状态,正确的是( ) 5、关于图示单元体属于哪种应力状态,正确的是( ) A 、单向应力状态 B 、二向应力状态 C 、三向应力状态 D 、纯剪切应力状态

6、对于图示悬臂梁中,A 点的应力状态正确的是( ) 7、单元体的应力状态如图,关于其主应力,正确的是( ) A 、1230,0σσσ>>= B 、321,0σσσ<<= C 、123130,0,0,||||σσσσσ>=<< D 、123130,0,0,||||σσσσσ>=<> 8、对于图示三种应力状态(a )、(b )、(c )之间的关系,正确的是( ) A 、三种应力状态均相同; B 、三种应力状态均不同 C 、(b )和(c )相同; D 、(a )和(c )相同 9、已知某点平面应力状态如图,1σ和2σ为主应力, 在下列关系正确的是( ) A 、12x y σσσσ+>+ B 、12x y σσσσ+=+ C 、12x y σσσσ+<+ D 、12x y σσσσ-=-

强度理论-压力极限.

受均匀外压时是否存在使材料破坏的极限压力? 1.主题词 材料强度,强度理论,压力,破坏, 2.问题背景 水是有压力的,水深每增加10米,水的压力就增加一个大气压,那么在几千米的大海深处物体所受到的压力之大是在地球表面难以模拟和想象的。为什么在深海海底的软泥中还能完好无损地保存着史前微生物的遗体,一些海底生物也没有因为海水的压力而消亡? 类似地,土层对于埋藏在土中的物体也有压力作用,而且比水的压力更大,每4米土深就相当于10米水深。恐龙作为7000万年前的生物早已成为化石沉入地底,并随着底层下降,同样承受着巨大的土压力,为什么如今的考古学家居然可以发掘出完整的恐龙骨架?它为什么没有被土压碎? 这两个疑问可以归纳为同一个力学问题:即受均匀外压时,是否存在着一个使材料发生强度破坏的极限压力?如果答案是肯定的,那末就需要有试验验证对于确定的物体材料测出确定的极限压力。如果答案是否定的,那么需要给出一个令人信服的理论解释。 南京地质学校的教师李泰来在十几年的时间里做了无数个试验,包括在4600米深海的水压试验。在这样的深度,被抽成真空的热水瓶胆由于比重比海水小,被轻易地压得粉碎;但是,一块普通的豆腐乳由于比重比海水大,居然丝毫无损(在地面上,仅用一个装满水的矿泉水瓶就可以把这种豆腐乳压碎压扁)。大量的试验过后,李泰来得出了如下结论: “水其实只对比重比它小的物体有压力;对于比重和它一样的物体是没有压力的。而对于比重大的物体,水不仅产生不了压力,而且反过来被对方‘压’”。 基于新的比重理论和大量精确的试验数据,最终得出了更惊人的结论:物体自由落体理论、单摆振动理论、万有引力定律和流体静压定律、浮力定律等五大经典定律全部在精密的实验面前被推翻! 本案例只讨论在外压下材料的强度问题。 3.问题与思考题 (1)你相信这个关于水压力与比重相关的结论吗? (2)物体的强度和材料的强度有何区别?是否存在着一个使材料发生强度破坏的极限压力? (3)试设计一个试验方案可以验证问题(3)的答案 4.问题分析与参考答案 (1)这个关于水压力与比重相关的结论确实是前所未闻的。为了使问题明确起见,让我们首先讨论上文提到的两个试验。对于试验的结果,可能并不值得怀疑,但如何解释这一结果却是大不一样。抽真空的热水瓶胆在深海下被压碎属于外压失稳破坏,失稳是结构或构件的一种特定的失效形式,这与实心物体的强度破坏完全是两回事,两者间不具备什么可比性,因此以此事实归纳出的结论是难以令

(完整版)四大强度理论基本内容介绍

四大强度理论基本内容介绍: 1、最大拉应力理论(第一强度理论): 这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是: σ1=σb。σb/s=[σ] 所以按第一强度理论建立的强度条件为:σ1≤[σ]。 2、最大伸长线应变理论(第二强度理论): 这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。 εu=σb/E;ε1=σb/E。由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。 3、最大切应力理论(第三强度理论): 这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。 依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)

由公式得:τmax=τ1s=(σ1-σ3)/2。所以破坏条件改写为σ1-σ3=σs。 按第三强度理论的强度条件为:σ1-σ3≤[σ]。 4、形状改变比能理论(第四强度理论): 这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。 四大强度理论适用的范围 各种强度理论的适用范围及其应用 第一理论的应用和局限 1、应用 材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。 2、局限 没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。 第二理论的应用和局限 1、应用 脆性材料的二向应力状态且压应力很大的情况。 2、局限 与极少数的脆性材料在某些受力形势下的实验结果相吻合。

工程力学中四种强度理论

为了探讨导致材料破坏的规律,对材料破坏或失效进行了假设即为强度理论,简述工程力学中四大强度理论的基本内容 一、四大强度理论基本内容介绍: 1、最大拉应力理论(第一强度理论): 这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是: σ1=σb。σb/s=[σ] 所以按第一强度理论建立的强度条件为: σ1≤[σ]。 2、最大伸长线应变理论(第二强度理论): 这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。 εu=σb/E;ε1=σb/E。由广义虎克定律得: ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。 按第二强度理论建立的强度条件为: σ1-u(σ2+σ3)≤[σ]。 3、最大切应力理论(第三强度理论): 这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。 依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力) 由公式得:τmax=τ1s=(σ1-σ3)/2。 所以破坏条件改写为σ1-σ3=σs。 按第三强度理论的强度条件为:σ1-σ3≤[σ]。 4、形状改变比能理论(第四强度理论): 这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力

状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。 二、四大强度理论适用的范围 1、各种强度理论的适用范围及其应用 第一理论的应用和局限 1、应用 材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。 2、局限 没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。 第二理论的应用和局限 1、应用 脆性材料的二向应力状态且压应力很大的情况。 2、局限 与极少数的脆性材料在某些受力形势下的实验结果相吻合。 第三理论的应用和局限 1、应用 材料的屈服失效形势。 2、局限 没考虑σ2对材料的破坏影响,计算结果偏于安全。 第四理论的应用和局限 1、应用 材料的屈服失效形势。 2、局限 与第三强度理论相比更符合实际,但公式过于复杂。 2、总结来讲: 第一和第二强度理论适用于:铸铁、石料、混凝土、玻璃等,通常以断裂形式失效的脆性材料。 第三和第四强度理论适用于:碳钢、铜、铝等,通常以屈服形式失效的塑性材料。 以上是通常的说法,在实际中,有复杂受力条件下,哪怕同种材料的失效形

四大强度理论对比

四大强度理论 1、最大拉应力理论(第一强度理论): 这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是: σ1=σb。σb/s=[σ] 所以按第一强度理论建立的强度条件为: σ1≤[σ]。 2、最大伸长线应变理论(第二强度理论): 这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。 εu=σb/E;ε1=σb/E。由广义虎克定律得: ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。 按第二强度理论建立的强度条件为: σ1-u(σ2+σ3)≤[σ]。 3、最大切应力理论(第三强度理论): 这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。 τmax=τ0。 依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力) 由公式得:τmax=τ1s=(σ1-σ3)/2。

所以破坏条件改写为σ1-σ3=σs。 按第三强度理论的强度条件为:σ1-σ3≤[σ]。 4、形状改变比能理论(第四强度理论): 这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力 状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。 发生塑性破坏的条件为: 所以按第四强度理论的强度条件为: 2、sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ] 四个强度理论的比较

081406桥梁与隧道工程考试大纲

081406桥梁与隧道工程考试大纲 《材料力学》考试大纲 一、考试要求 材料力学是变形固体力学入门的专业基础课。要求考生对构件的强度、刚度、稳定性等问题有明确的认识,全面系统地掌握材料力学的基本概念、基本定律及必要的基础理论知识,同时具备一定的计算能力及较强的分析问题及解决问题的能力。 二、考试内容 1、基本变形形式下杆件的强度及刚度计算问题 ·轴向拉伸及压缩的概念、轴力图、横截面上的应力、许用应力及强度条件、轴向拉压杆的变形计算及胡克定律、材料拉伸及压缩时的力学性能,应力-应变曲线 ·剪切的概念及实例。剪切与挤压的实用计算 ·扭转的概念。圆轴横截面上的应力及切应力强度条件、切应力互等定理、剪切胡克定律。圆轴扭转角的计算公式及刚度条件 ·平面弯曲的概念及实例。熟练绘制剪力图与弯矩图。梁横截面上的正应力、切应力计算公式及强度条件。用积分法及叠加法计算弯曲变形 2、超静定问题 ·轴向拉伸压缩超静定计算,温度应力 ·求解超静定梁及其弯曲内力、弯曲应力 3、平面图形的几何性质 ·静矩、惯性矩、惯性积的定义、形心位置 ·惯性矩与惯性积的平行移轴公式,形心主轴的概念 4、应力状态及强度理论 ·应力状态的概念 ·运用解析法求平面应力状态下任意斜截面上的应力、主应力、最大切应力·应力圆的概念 ·平面应力状态下的广义胡克定律及其综合应用 ·空间应力状态下任一点主应力与最大切应力及三向应力圆 ·体积应变、体积改变比能与形状改变比能 ·材料的两种失效形式 ·四个古典强度理论的相当应力及强度条件的应用 5、组合变形 ·斜弯曲、偏心压缩、拉伸与弯曲等组合变形时应力的计算及强度条件

·弯扭组合及拉(压)弯扭组合时的应力计算及强度条件6、压杆稳定 ·稳定的概念 ·压杆的稳定校核、安全因数法、稳定系数法

四种强度理论(1)

由于材料的破坏按其物理本质分为脆断和屈服两类形式,所以,强度理论也就相应地分为两类,下面就来介绍目前常用的四个强度理论。 1、最大拉应力理论: 这一理论又称为第一强度理论。这一理论认为破坏主因是最大拉应力。不论复杂、简单的应力状态,只要第一主应力达到单向拉伸时的强度极限,即断裂。 破坏形式:断裂。 破坏条件:σ1 =σb 强度条件:σ1≤[σ] 实验证明,该强度理论较好地解释了石料、铸铁等脆性材料沿最大拉应力所在截面发生断裂的现象;而对于单向受压或三向受压等没有拉应力的情况则不适合。 缺点:未考虑其他两主应力。 使用范围:适用脆性材料受拉。如铸铁拉伸,扭转。 2、最大伸长线应变理论 这一理论又称为第二强度理论。这一理论认为破坏主因是最大伸长线应变。不论复杂、简单的应力状态,只要第一主应变达

到单向拉伸时的极限值,即断裂。破坏假设:最大伸长应变达到简单拉伸的极限(假定直到发生断裂仍可用胡克定律计算)。 破坏形式:断裂。 脆断破坏条件:ε1=εu=σb/E ε1=1/E[σ1?μ (σ2+σ3)] 破坏条件:σ1?μ(σ2+σ3) =σb 强度条件:σ1?μ(σ2+σ3)≤[σ] 实验证明,该强度理论较好地解释了石料、混凝土等脆性材料受轴向拉伸时,沿横截面发生断裂的现象。但是,其实验结果只与很少的材料吻合,因此已经很少使用。 缺点:不能广泛解释脆断破坏一般规律。 使用范围:适于石料、混凝土轴向受压的情况。 3、最大切应力理论: 这一理论又称为第三强度理论。这一理论认为破坏主因是最大切应力 maxτ。不论复杂、简单的应力状态,只要最大切应力达到单向拉伸时的极限切应力值,即屈服。破坏假设:复杂应力状态危险标志最大切应力达到该材料简单拉、压时切应力极限。 破坏形式:屈服。 破坏因素:最大切应力。 τmax=τu=σs/2 屈服破坏条件:τmax=1/2(σ1?σ3)

兰州大学网络教育工程力学命题作业四种强度理论的详细说明

详细说明四种强度理论的破坏标志、基本假设内容、建立的强度条件公式以及适用的范围。 一、四大强度理论基本内容介绍: 1、最大拉应力理论(第一强度理论): 这一理论认为引起材料脆性断裂破坏的因素最大拉应力,无论什么应力状态,只要第一主应力达到单向拉伸时的强度极限,即断裂。 破坏形式:断裂。 破坏条件:σ1=σb。 强度条件:σ1≤[σ]。 缺点:未考虑其他两主应力。 使用范围:适用脆性材料受拉。如:铸铁拉伸、扭转。 2、最大伸长线应变理论(第二强度理论): 这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。破坏假设:最大拉伸应变达到简单拉伸的极限(假定直到发生断裂仍可用胡克定律计算)。 破坏形式:断裂。 脆断破坏条件: ε1=εu=σb/E ε1=[σ1-μ(σ2+σ3)]/E 破坏条件:σ1-μ(σ2+σ3)=σb。 强度条件:σ1-μ(σ2+σ3)≤[σ]。 缺点:不能广泛解释脆断破坏一般规律。 使用范围:适于石料、混凝土轴向受压的情况。 3、最大切应力理论(第三强度理论): 这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。破坏假设:复杂应力状态危险标志最大切应力达到该材料简单拉、压时切应力极限。 破坏形式:屈服。 破坏因素:最大切应力。 屈服破坏条件:τmax=τu=σs/2 τmax=(σ1-σ3)/2。 破坏条件:σ1-σ3=σs。 强度条件:σ1-σ3≤[σ]。 缺点:无σ2影响。

损伤力学读书报告

《损伤力学》读书报告 随着现代工业的飞速发展,大型机械和复杂构件的日益增加,金属构件的疲劳失效已经成为工程领域中,关系到安全、可靠以及经济性的一个重要因素。 一般认为金属的疲劳破坏形式分为如下几个阶段:裂纹形核、小裂纹扩展、长裂纹扩展以及瞬时失效阶段,一般将裂纹形核和小裂纹扩展归为第一阶段,对于这阶段的研究,其主要方法是试验与统计相结合的方法,目前较多的研究室基于细观力学、分子动力学以及断裂物理的研究较多,对于裂纹的扩展阶段,一般是采用试验与断裂力学相结合的方法,这对于飞行器以及工程构件的损伤容限设计是非常必要的手段。但是这些方法也存在于若干不足之处: (1)、对于裂纹的曲线扩展路径的描述困难。 (2)、二维裂纹扩展和三维裂纹扩展的描述难以统一。 (3)、把第一阶段与裂纹扩展阶段视为独立的阶段。 为止,就需要一个新的固体力学工具,将裂纹形成与扩展的描述进行统一,将二维和三维裂纹的扩展研究进行统一,将裂纹的直线扩展与曲线扩展进行统一。 此时,损伤力学就应运而生,从80年代初期,到目前为止,这方面出版了许多专著,他们对损伤力学的理论以及发展做出了巨大的贡献;下面就介绍损伤力学的一些先关内容: 一、破坏力学的发展及损伤力学定义 破坏力学发展的三个阶段 1)、古典强度理论:以材料的强度作为设计指标:[]σσ<*,即只要材料的应力*σ小于材料的许用应力[]σ就不会破坏。 2)、断裂力学:以材料的韧度为设计指标:IC IC J K J K , ,<。 3)、损伤力学:以渐进衰坏程度作为为指标:C ωω<。 损伤力学定义 损伤力学是研究材料的细(微)结构在载荷历史过程中产生不可逆劣化(衰坏)过程,从而引起材料(构件)性能变化、以及变形破坏的力学规律。 二、传统材料力学的强度问题 对于传统的力学材料研究首先满足:材料均匀性和连续性假设,即认为材料是 各处性质相同的连续体。 其研究理论和思想如下图所示:

第三强度理论.

第七章 应力和应变分析 强度理论 §7.1应力状态概述 过构件上一点有无数的截面,这一点的各个截面上应力情况的集合,称为这点的应力状态 §7.2二向和三向应力状态的实例 §7.3二向应力状态分析—解析法 1.任意斜截面上的应力 在基本单元体上取任一截面位置,截面的法线n 。 在外法线n 和切线t 上列平衡方程 αασαατσc o s )c o s (s i n )c o s (dA dA dA x xy a -+ 0s i n )s i n (c o s )s i n (=-+αασαατdA dA y yx αασαατ τsin )cos (cos )cos (dA dA dA x xy a -- 0sin )sin (cos )sin (=++ααταασdA dA yx y 根据剪应力互等定理,yx xy ττ=,并考虑到下列三角关系 22sin 1sin ,22cos 1cos 22 α ααα-=+= , ααα2sin cos sin 2= 简化两个平衡方程,得 ατασσσσσα2sin 2cos 2 2 xy y x y x --+ += xy τyx τn α t

ατασστα2cos 2sin 2 xy y x +-= 2.极值应力 将正应力公式对α取导数,得 ?? ????+--=ατασσασα 2cos 2sin 22xy y x d d 若0αα=时,能使导数 0=α σα d d ,则 02cos 2sin 2 00=+-ατασσxy y x y x xy tg σστα-- =220 上式有两个解:即0α和 900±α。在它们所确定的两个互相垂直的平面上,正应力取得极值。且绝对值小的角度所对应平面为最大正应力所在的平面,另一个是最小正应力所在的平面。求得最大或最小正应力为 2 2min max )2 (2xy y x y x τσσσσσσ+-±+= ??? 0α代入剪力公式,0ατ为零。这就是说,正应力为最大或最小所在的平面,就是主平 面。所以,主应力就是最大或最小的正应力。 将切应力公式对α求导,令 02sin 22cos )(=--=ατασσα τα xy y x d d 若1αα=时,能使导数0=α τα d d ,则在1α所确定的截面上,剪应力取得极值。通过求导可得 02sin 22cos )(11=--ατασσxy y x xy y x tg τσσα221-= 求得剪应力的最大值和最小值是: 2 2min max )2 ( xy y x τσσττ+-±=??? 与正应力的极值和所在两个平面方位的对应关系相似,剪应力的极值与所在两个平面方

第四强度理论推导深水厚壁管道的等效应力

应用第四强度理论推导深水厚壁管道的等效应力 海底管道由于较高的操作温度和内部压力,会产生很大的轴力,温度和压差是轴力的两个主要影响因素。温度作为输送油质的必要条件,对于国内现在设计都要求在100℃以上,随着深海开发,长距离输送也避免不了增大输送压力,一般都超过了10MPa 。假定一管道横截面积为A ,杨氏模量为E ,线性热胀系数为a ,轴力为o p ,温差为T ?,管道完全约束情况下可得: T EA ?=αo p 在内外压差P 作用下管道产生的轴向应变为: )2(1t pv v t pr E -=ε 其中 v 为泊松比,t 为管道厚度,r 为管道半径。如果管道轴向应变受到限制,那么管道就会产生轴向力,就有可能引起管道的屈曲。压力差引起的管道轴力可以表示为: )5.0(t Apr EA v p o -==ε 厚壁管道与薄壁管道的最大区别在于,厚壁管道的环向应力和径向应力沿管壁径向分布不均匀,我们只研究厚壁管道的弹性分析 。深水厚壁管道应力主要分为轴向力引起的厚壁管道应力、弯矩引起的厚壁管道应力、内外压引起的厚壁管道应力。 对于深水厚壁管道的等效应力则根据管道所受的所有应力叠加后转化为三维主应力,利用第四强度理论求出等效应力。 1、轴向力引起的厚壁管道应力:A T = 1σ 2、弯矩引起的厚壁管道应力:z I My = 2σ 3、内外压引起的厚壁管道应力: 径向应力:()() 2222 22222r a b b a p p a b b p a p o i o i r -----=σ 环向应力:()() 2222 22222r a b b a p p a b b p a p o i o i h --+--=σ 由于()[]01=+-=h r z z E σσνσε其中25.0=ν

四种强度理论

1、最大拉应力理论: 这一理论又称为第一强度理论。这一理论认为破坏主因是最大拉应力。不论复杂、简单的应力状态,只要第一主应力达到单向拉伸时的强度极限,即断裂。 破坏形式:断裂。 破坏条件:σ1 =σb 强度条件:σ1≤[σ] 实验证明,该强度理论较好地解释了石料、铸铁等脆性材料沿最大拉应力所在截面发生断裂的现象;而对于单向受压或三向受压等没有拉应力的情况则不适合。 缺点:未考虑其他两主应力。 使用范围:适用脆性材料受拉。如铸铁拉伸,扭转。 2、最大伸长线应变理论 这一理论又称为第二强度理论。这一理论认为破坏主因是最大伸长线应变。不论复杂、简单的应力状态,只要第一主应变达到单向拉伸时的极限值,即断裂。破坏假设:最大伸长应变达到简单拉伸的极限(假定直到发生断裂仍可用胡克定律计算)。 破坏形式:断裂。

脆断破坏条件:ε1= εu=σb/E ε1=1/E[σ1?μ (σ2+σ3)] 破坏条件:σ1?μ(σ2+σ3) = σb 强度条件:σ1?μ(σ2+σ3)≤[σ] 实验证明,该强度理论较好地解释了石料、混凝土等脆性材料受轴向拉伸时,沿横截面发生断裂的现象。但是,其实验结果只与很少的材料吻合,因此已经很少使用。 缺点:不能广泛解释脆断破坏一般规律。 使用范围:适于石料、混凝土轴向受压的情况。 3、最大切应力理论: 这一理论又称为第三强度理论。这一理论认为破坏主因是最大切应力 maxτ。不论复杂、简单的应力状态,只要最大切应力达到单向拉伸时的极限切应力值,即屈服。破坏假设:复杂应力状态危险标志最大切应力达到该材料简单拉、压时切应力极限。 破坏形式:屈服。 破坏因素:最大切应力。 τmax=τu=σs/2 屈服破坏条件:τmax=1/2(σ1?σ3 ) 破坏条件:σ1?σ3= σs 强度条件:σ1?σ3≤[σ]

材料力学强度理论

9 强度理论 1、 脆性断裂和塑性屈服 脆性断裂:材料无明显的塑性变形即发生断裂,断面较粗糙,且多发生在垂直于最大正应力的截面上,如铸铁受拉、扭,低温脆断等。 塑性屈服:材料破坏前发生显著的塑性变形,破坏断面较光滑,且多发生在最大剪应力面上,例如低碳钢拉、扭,铸铁压。 2、四种强度理论 (1)最大拉应力理论(第一强度理论) 材料发生脆性断裂的主要因素是最大拉应力达到极限值,即:0 1σσ= (2)最大伸长拉应变理论(第二强度理论): 无论材料处于什么应力状态,只要发生脆性断裂,都是由于最大拉应变(线变形)达 到极限值导致的,即: 0 1εε= (3)最大切应力理论(第三强度理论) 无论材料处于什么应力状态,只要发生屈服,都是由于最大切应力达到了某一极限 值, 即: 0 max ττ=

(4)形状改变比能理论(第四强度理论) 无论材料处于什么应力状态,只要发生屈服,都是由于单元体的最大形状改变比能达到一个极限值,即:u u0 d d = 强度准则的统一形式[]σ σ≤ * 其相当应力: r11 σ=σ r2123 () σ=σ-μσ+σ r313 σ=σ-σ 222 r4122331 1 ()()() 2 ?? σ=σ-σ+σ-σ+σ-σ ?? 3、摩尔强度理论的概念与应用; 4、双剪强度理论概念与应用。 9.1图9.1所示的两个单元体,已知正应力 =165MPa,切应力τ=110MPa。试求两个单元体的第三、第四强度理论表达式。 图9.1 [解](1)图9.1(a)所示单元体的为空间应力状态。注意到外法线为y及-y的两个界面上没有切应力,因而y方向是一个主方向,是主应力。显然,主应力对与y轴平行的斜截面上的应力没有影响,因此在xoz坐标平面可以按照平面应力状态问题对待。外法线为x、z轴两对平面上只有切应力,为纯剪切状态,可知其最大和最小正应力绝对值均为,则图9.1(a)所示单元体的三个主应力为: τ σ τ σ σ σ- = = = 3 2 1 、 、 , 第三强度理论的相当应力为 解题范例r4σ=

复习题1

复习题1 Ⅰ。填空题: ⒈塑性材料拉伸试样应力超过屈服极限后逐渐卸除荷载,经过短时间后再重新加载 其――――――――――――――将得到提高,而塑性变形将减小。 ⒉四个常用的古典强度理论的相当表达式分别为--------------------------------、―――――――――――――、 ――――――――――――――、―――――――――――――-。 ⒊平面弯曲梁的中性轴过截面的――――――――心,与截面的对称轴垂直。 ⒋杆件的刚度代表了杆件抵抗―――――――――的能力。 Ⅱ。单项选择题: ⒈圆轴上装有四个齿轮,A为主动轮,传递的扭转外力偶矩M eA=60k。B、C、D为 从动轮,传递的扭转外力偶矩分别为M eB=30kNm、 M eC=15 kNm、M eD=15 kNm。四个齿轮自左向右合理的排列 是――――――――――――――――――-。 ⑴A、B、C、D;⑵B、A、C、D; ⑶C、B、A、D;⑷B、C、A、D; ⒉某直梁横截面面积一定,试问下图所示的四种截面形状中,那一种抗弯能力最 强――――――――――――――。 ⑴矩形⑵工字形⑶圆形⑷正方形 ⒊用截面法时――――――――――――――――――――。 ⑴必须保留杆件位于截面左边的部分; ⑵必须保留杆件位于截面右边的部分; ⑶保留杆件位于截面左、右两边哪一部分都可以; ⑷一个题目中要统一保留某一部分。 Ⅲ。简单计算题 单元体各面上的应力如题1-3图所示,试求指定截面上的应力。

题1-3图 二、长度相等的两根受扭元轴,一为空心圆轴,一为实心圆轴, 两者材料相同,受力情况也一样.实心轴直径为d,空心轴外径为D,内径为d0,且8.0 0= D d.试求当空心轴与实心轴的最大切应力均达到材料的许用应力([]τ = τmax),扭矩T相等时的重量比和刚度比。 题2图 三、图示外伸梁由25a号工字钢制成,其截面的抗弯截面模数3 88 . 401cm w z=,跨度l=6m,全梁受集度为q的均布荷载作用。当支座处截面A,B上及跨中截面C上的最大正应力均为MPa 140 = σ时,试问外伸部分的长度a及荷载集度q各等于多少?

第七章复杂应力和强度理论.

第七章复杂应力和强度理论 本章重点内容及对学生的要求: (1)主平面、主应力以及一点处的应力状态的概念和三种应力状态; (2)构件在二向应力状态下的解析法应力分析; (3)第一、第三和第四强度理论的概念以及相当应力的表达式; (4)弯扭组合的强度计算。 第一节应力状态与二向应力状态分析 1、问题的引出(questions) 前几章我们讨论构件的拉压、弯曲、剪切与扭转的强度时,计算的是杆横截面上的应力,受力状态比较简单,而当构件内危险点处的应力不是单一的一种应力,或者是过该点的两个相互垂直的截面内都有正应力,我们该怎么处理?(利用教材Page.120的例子和相关的图形进行说明) 2、一点的应力状态(state of stress at a given point) 一点处的应力状况就是指构件受力后,过一点有无数的截面,这一点的各个截面上应力情况的集合,称为这点的应力状态。 3、单元体 常采用围绕所要研究点的周围取出一个微小的正六面体,单元体,在知道了单元体的三个相互垂直的平面上的应力后,单元体上的任一斜截面上的应力都可以通过截面法求出。 单元体定义:构件内点的代表物,是包围被研究点的无限小的几何体,常用正六面体。 单元体的性质:a、在两个相互平行面上,应力均布; b、在两个相互平行面上,应力相等。 如果单元体的截取方法改变,那么单元体上的应力也随之改变(如图7-1所示),但是之间存在一定的关系,我们可以从一个单元体上的应力求出另一个与其方位不同的单元体上的应力。此即本节的理论基础。即主要解决从利用静力平衡求得已知应力状态的构件横截面相关的单元体确定主平面的位置和应力状况。 图7-1 不同方位截取的单元体上的应力图7-2三个主应力表示一点的应力状态 4、一点处的应力表达和主平面 在单元体上的三个相互垂直的平面上即可能是正应力,剪应力或者二者的组合。

四大强度理论

四种强度理论的破坏标志、基本假设内容、建立的强度条件 公式以及适用的范围。 一、四大强度理论基本内容介绍: 1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。σb/s=[σ]所以按第一强度理论建立的强度条件为:σ1≤[σ]。 2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。εu=σb/E;ε1=σb/E。由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E所以σ1-u(σ2+σ3)=σb。按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。 3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。所以破坏条件改写为σ1-σ3=σs。按第三强度理论的强度条件为:σ1-σ3≤[σ]。 4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。 二、四大强度理论适用的范围 1、各种强度理论的适用范围及其应用第一理论的应用和局限1、应用材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。 2、局限没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。 第二理论的应用和局限1、应用脆性材料的二向应力状态且压应力很大的情况。 2、局限与极少数的脆性材料在某些受力形势下的实验结果相吻合。 第三理论的应用和局限1、应用材料的屈服失效形势。2、局限没考虑σ2对材料的破坏影响,计算结果偏于安全。 第四理论的应用和局限1、应用材料的屈服失效形势。2、局限与第三强度理论相比更符合实际,但公式过于复杂。

相关文档
最新文档