地图中最短路径的搜索算法研究综述

地图中最短路径的搜索算法研究综述
地图中最短路径的搜索算法研究综述

地图中最短路径的搜索算法研究

学生:李小坤导师:董峦

摘要:目前为止, 国内外大量专家学者对“最短路径问题”进行了深入的研究。本文通过理论分析, 结合实际应用,从各个方面较系统的比较广度优先搜索算法(BFS)、深度优先搜索算法(DFS)、A* 算法的优缺点。

关键词:最短路径算法;广度优先算法;深度优先算法;A*算法;

The shortest path of map's search algorithm Abstract:So far, a large number of domestic and foreign experts and scholars on the" shortest path problem" in-depth study. In this paper, through theoretical analysis and practical application, comprise with the breadth-first search algorithm ( BFS ), depth-first search algorithm ( DFS ) and the A * algorithms from any aspects of systematic.

Key words: shortest path algorithm; breadth-first algorithm; algorithm; A * algorithm;

前言:

最短路径问题是地理信息系统(GIS)网络分析的重要内容之一,而且在图论中也有着重要的意义。实际生活中许多问题都与“最短路径问题”有关, 比如: 网络路由选择, 集成电路设计、布线问题、电子导航、交通旅游等。本文应用深度优先算法,广度优先算法和A*算法,对一具体问题进行讨论和分析,比较三种算的的优缺点。

在地图中最短路径的搜索算法研究中,每种算法的优劣的比较原则主要遵循以下三点:[1]

(1)算法的完全性:提出一个问题,该问题存在答案,该算法能够保证找到相应的答案。算法的完全性强是算法性能优秀的指标之一。

(2)算法的时间复杂性: 提出一个问题,该算法需要多长时间可以找到相应的答案。算法速度的快慢是算法优劣的重要体现。

(3)算法的空间复杂性:算法在执行搜索问题答案的同时,需要多少存储空间。算法占用资源越少,算法的性能越好。

地图中最短路径的搜索算法:

1、广度优先算法

广度优先算法(Breadth-First-Search),又称作宽度优先搜索,或横向优先搜索,是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型,Dijkstra单源最短路径算法和Prim最小生成树算法都采用了和宽

度优先搜索类似的思想。广度优先算法其别名又叫BFS,属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。换句话说,它并不考虑结果的可能位址,彻底地搜索整张图,直到找到结果为止。BFS 并不使用经验法则算法。

广度优先搜索算法伪代码如下:[2-3]

BFS(v)//广度优先搜索G,从顶点v开始执行

//所有已搜索的顶点i都标记为Visited(i)=1.

//Visited的初始分量值全为0

Visited(v)=1;

Q=[];//将Q初始化为只含有一个元素v的队列

while Q not null do

u=DelHead(Q);

for邻接于u的所有顶点w do

if Visited(w)=0 then

AddQ(w,Q);//将w放于队列Q之尾

Visited(w)=1;

endif

endfor

endwhile

end BFS

这里调用了两个函数:AddQ(w,Q)是将w放于队列Q之尾;DelHead(Q)是从队列Q取第一个顶点,并将其从Q中删除。重复DelHead(Q)过程,直到队列Q空为止。

完全性:广度优先搜索算法具有完全性。这意指无论图形的种类如何,只要目标存在,则BFS一定会找到。然而,若目标不存在,且图为无限大,则BFS将不收敛(不会结束)。

时间复杂度:最差情形下,BFS必须寻找所有到可能节点的所有路径,因此其时间复杂度为()E

V

O+,其中|V|是节点的数目,而 |E| 是图中边的数目。

空间复杂度:因为所有节点都必须被储存,因此BFS的空间复杂度为

()E

V

O+,其中|V|是节点的数目,而|E|是图中边的数目。另一种说法称

BFS的空间复杂度为O(B),其中B是最大分支系数,而M是树的最长路径长度。由于对空间的大量需求,因此BFS并不适合解非常大的问题。[4-5]

2、深度优先算法

深度优先搜索算法(Depth First Search)英文缩写为DFS,属于一种回溯算法,正如算法名称那样,深度优先搜索所遵循的搜索策略是尽可能“深”地搜索图。

[6]其过程简要来说是沿着顶点的邻点一直搜索下去,直到当前被搜索的顶点不再有未被访问的邻点为止,此时,从当前辈搜索的顶点原路返回到在它之前被搜索的访问的顶点,并以此顶点作为当前被搜索顶点。继续这样的过程,直至不能执行为止。

深度优先搜索算法的伪代码如下:[7]

DFS(v) //访问由v到达的所有顶点

Visited(v)=1;

for邻接于v的每个顶点w do

if Visited(w)=0 then

DFS(w);

endif

endfor

end DFS

作为搜索算法的一种,DFS对于寻找一个解的NP(包括NPC)问题作用很大。但是,搜索算法毕竟是时间复杂度是O(n!)的阶乘级算法,它的效率比较低,在数据规模变大时,这种算法就显得力不从心了。[8]关于深度优先搜索的效率问题,有多种解决方法。最具有通用性的是剪枝,也就是去除没有用的搜索分支。有可行性剪枝和最优性剪枝两种。

BFS:对于解决最短或最少问题特别有效,而且寻找深度小,但缺点是内存耗费量大(需要开大量的数组单元用来存储状态)。

DFS:对于解决遍历和求所有问题有效,对于问题搜索深度小的时候处理速度迅速,然而在深度很大的情况下效率不高。

3、A*算法

1968年的一篇论文,“P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost paths in graphs. IEEE Trans. Syst. Sci. and Cybernetics, SSC-4(2):100-107, 1968”。[9]从此,一种精巧、高效的算法——A*算法问世了,并在相关领域得到了广泛的应用。A* 算法其实是在宽度优先搜索的基础上引入了一个估价函数,每次并不是把所有可扩展的结点展开,而

是利用估价函数对所有未展开的结点进行估价, 从而找出最应该被展开的结点,将其展开,直到找到目标节点为止。

A*算法主要搜索过程伪代码如下:[10]

创建两个表,OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。

算起点的估价值;

将起点放入OPEN表;

while(OPEN!=NULL) //从OPEN表中取估价值f最小的节点n;

if(n节点==目标节点) break;

endif

for(当前节点n 的每个子节点X)

算X的估价值;

if(X in OPEN)

if(X的估价值小于OPEN表的估价值)

把n设置为X的父亲;

更新OPEN表中的估价值; //取最小路径的估价值;

endif

endif

if(X inCLOSE)

if( X的估价值小于CLOSE表的估价值)

把n设置为X的父亲;

更新CLOSE表中的估价值;

把X节点放入OPEN //取最小路径的估价值

endif

endif

if(X not inboth)

把n设置为X的父亲;

求X的估价值;

并将X插入OPEN表中; //还没有排序

endif

end for

将n节点插入CLOSE表中;

按照估价值将OPEN表中的节点排序; //实际上是比较OPEN表内节点f的大小,从最小路径的节点向下进行。

end while(OPEN!=NULL)

保存路径,即从终点开始,每个节点沿着父节点移动直至起点,这就是你的路径;

A *算法分析:

DFS和BFS在展开子结点时均属于盲目型搜索,也就是说,它不会选择哪个结点在下一次搜索中更优而去跳转到该结点进行下一步的搜索。在运气不好的情形中,均需要试探完整个解集空间, 显然,只能适用于问题规模不大的搜索问题中。而A*算法与DFS和BFS这类盲目型搜索最大的不同,就在于当前搜索结点往下选择下一步结点时,可以通过一个启发函数来进行选择,选择代价最少的结点作为下一步搜索结点而跳转其上。[11]A *算法就是利用对问题的了解和对问题求解过程的了解, 寻求某种有利于问题求解的启发信息, 从而利用这些启发信息去搜索最优路径.它不用遍历整个地图, 而是每一步搜索都根据启发函数朝着某个方向搜索.当地图很大很复杂时, 它的计算复杂度大大优于D ijks tr a算法, 是一种搜索速度非常快、效率非常高的算法.但是, 相应的A*算法也有它的缺点.启发性信息是人为加入的, 有很大的主观性, 直接取决于操作者的经验, 对于不同的情形要用不同的启发信息和启发函数, 且他们的选取难度比较大,很大程度上找不到最优路径。

总结:

本文描述了最短路径算法的一些步骤,总结了每个算法的一些优缺点,以及算法之间的一些关系。对于BFS还是DFS,它们虽然好用,但由于时间和空间的局限性,以至于它们只能解决规模不大的问题,而最短或最少问题应该选用BFS,

遍历和求所有问题时候则应该选用DFS。至于A*算法,它是一种启发式搜索算法,也是一种最好优先的算法,它适合于小规模、大规模以及超大规模的问题,但启发式搜索算法具有很大的主观性,它的优劣取决于编程者的经验,以及选用的启发式函数,所以用A*算法编写一个优秀的程序,难度相应是比较大的。每种算法都有自己的优缺点,对于不同的问题选择合理的算法,才是最好的方法。

参考文献:

[1]陈圣群,滕忠坚,洪亲,陈清华.四种最短路径算法实例分析[J].电脑知识与技术(学术交流),2007(16):1030-1032

[2]刘树林,尹玉妹.图的最短路径算法及其在网络中的应用[J].软件导

刊,2011(07):51-53

[3]刘文海,徐荣聪.几种最短路径的算法及比较[J].福建电脑,2008(02):9-12

[4]邓春燕.两种最短路径算法的比较[J].电脑知识与技术,2008(12):511-513

[5]王苏男,宋伟,姜文生.最短路径算法的比较[J].系统工程与电子技

术,1994(05):43-49

[6]徐凤生,李天志.所有最短路径的求解算法[J].计算机工程与科学,2006(12):83-84

[7]李臣波,刘润涛.一种基于Dijkstra的最短路径算法[J].哈尔滨理工大学学

报,2008(03):35-37

[8]徐凤生.求最短路径的新算法[J].计算机工程与科学,2006(02).

[9] Y anchunShen . An improved Graph-based Depth-First algorithm and Dijkstra algorithm program of police patrol [J] . 2010 International Conference on Electrical Engineering and Automatic Control , 2010(3) : 73-77

[10]部亚松.VC++实现基于Dijkstra算法的最短路径[J].科技信息(科学教

研),2008(18):36-37

[11]杨长保,王开义,马生忠.一种最短路径分析优化算法的实现[J]. 吉林大学学报(信息科学版),2002(02):70-74

地图中最短路径的搜索算法研究综述 (1)

地图中最短路径的搜索算法研究 学生:李小坤导师:董峦 摘要:目前为止, 国内外大量专家学者对“最短路径问题”进行了深入的研究。本文通过理论分析, 结合实际应用,从各个方面较系统的比较广度优先搜索算法(BFS)、深度优先搜索算法(DFS)、A* 算法的优缺点。 关键词:最短路径算法;广度优先算法;深度优先算法;A*算法; The shortest path of map's search algorithm Abstract:So far, a large number of domestic and foreign experts and scholars on the" shortest path problem" in-depth study. In this paper, through theoretical analysis and practical application, comprise with the breadth-first search algorithm ( BFS ), depth-first search algorithm ( DFS ) and the A * algorithms from any aspects of systematic. Key words: shortest path algorithm; breadth-first algorithm; algorithm; A * algorithm; 前言: 最短路径问题是地理信息系统(GIS)网络分析的重要内容之一,而且在图论中也有着重要的意义。实际生活中许多问题都与“最短路径问题”有关, 比如: 网络路由选择, 集成电路设计、布线问题、电子导航、交通旅游等。本文应用深度优先算法,广度优先算法和A*算法,对一具体问题进行讨论和分析,比较三种算的的优缺点。 在地图中最短路径的搜索算法研究中,每种算法的优劣的比较原则主要遵循以下三点:[1] (1)算法的完全性:提出一个问题,该问题存在答案,该算法能够保证找到相应的答案。算法的完全性强是算法性能优秀的指标之一。 (2)算法的时间复杂性: 提出一个问题,该算法需要多长时间可以找到相应的答案。算法速度的快慢是算法优劣的重要体现。 (3)算法的空间复杂性:算法在执行搜索问题答案的同时,需要多少存储空间。算法占用资源越少,算法的性能越好。 地图中最短路径的搜索算法: 1、广度优先算法 广度优先算法(Breadth-First-Search),又称作宽度优先搜索,或横向优先搜索,是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型,Dijkstra单源最短路径算法和Prim最小生成树算法都采用了和宽

最短路径算法—dijkstra总结

最短路径算法—D i j k s t r a 总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

Dijkstra 算法解释 本文引用三篇文章:分别是谢光新-Dijkstra 算法, zx770424 -Dijkstra 算法, 中华儿女英雄 -Dijkstra 算法 有兴趣的朋友请引用原文,由于分类很不相同难以查找,此处仅作汇总。 谢光新的文章浅显易懂,无需深入的数学功力,每一步都有图示,很适合初学者了解。 zx770424将每一步过程,都用图示方式和公式代码\伪代码对应也有助于,代码的理解。 中华儿女英雄从大面上总结了Dijkstra 的思想,并将演路图描叙出来了。起到总结的效果。 希望这篇汇总有助于大家对Dijkstra 算法的理解。

Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。 简介 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。Dijkstra一般的表述通常有两种方式,一种用永久和临时标号方式,一种是用OPEN, CLOSE表的方式,这里均采用永久和临时标号的方式。注意该算法要求图中不存在负权边。 算法描述 (这里描述的是从节点1开始到各点的dijkstra算法,其中Wa->b表示a->b的边的权值,d(i)即为最短路径值) 1.置集合S={2,3,...n}, 数组d(1)=0, d(i)=W1->i(1,i之间存在边) or +无穷大(1.i之间不存在边) 2.在S中,令d(j)=min{d(i),i属于S},令S=S-{j},若S为空集则算法结束,否则转3 3.对全部i属于S,如果存在边j->i,那么置d(i)=min{d(i), d(j)+Wj->i},转2 Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。 算法具体步骤 (1)初始时,S只包含源点,即S=,v的距离为0。U包含除v外的其他顶点,U中顶点u距离为边上的权(若v与u有边)或)(若u不是v的出边邻接点)。 (2)从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。 (3)以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u(u U)的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k 的距离加上边上的权。 (4)重复步骤(2)和(3)直到所有顶点都包含在S中。 复杂度分析 Dijkstra 算法的时间复杂度为O(n^2) 空间复杂度取决于存储方式,邻接矩阵为O(n^2)

一种快速神经网络路径规划算法概要

文章编号 2 2 2 一种快速神经网络路径规划算法α 禹建丽? ∏ √ 孙增圻成久洋之 洛阳工学院应用数学系日本冈山理科大学工学部电子工学科 2 清华大学计算机系国家智能技术与系统重点实验室日本冈山理科大学工学部信息工学科 2 摘要本文研究已知障碍物形状和位置环境下的全局路径规划问题给出了一个路径规划算法其能量函数 利用神经网络结构定义根据路径点位于障碍物内外的不同位置选取不同的动态运动方程并针对障碍物的形状设 定各条边的模拟退火初始温度仿真研究表明本文提出的算法计算简单收敛速度快能够避免某些局部极值情 况规划的无碰路径达到了最短无碰路径 关键词全局路径规划能量函数神经网络模拟退火 中图分类号 ×°文献标识码 ΦΑΣΤΑΛΓΟΡΙΤΗΜΦΟΡΠΑΤΗΠΛΑΝΝΙΝΓ ΒΑΣΕΔΟΝΝΕΥΡΑΛΝΕΤ? ΟΡΚ ≠ 2 ? ? ≥ 2 ≥ ∏ ΔεπαρτμεντοφΜατηεματιχσ ΛυοψανγΙνστιτυτεοφΤεχηνολογψ Λυοψανγ

ΔεπαρτμεντοφΕλεχτρονιχΕνγινεερινγ ΦαχυλτψοφΕνγινεερινγ ΟκαψαμαΥνι?ερσιτψοφΣχιενχε 2 Ριδαι2χηο 2 ?απαν ΔεπαρτμεντοφΧομπυτερΣχιενχε Τεχηνολογψ ΣτατεΚεψΛαβοφΙντελλιγεντΤεχηνολογψ Σψστεμσ ΤσινγηυαΥνι?ερσιτψ Βει?ινγ ΔεπαρτμεντοφΙνφορματιον ΧομπυτερΕνγινεερινγ ΦαχυλτψοφΕνγινεερινγ ΟκαψαμαΥνι?ερσιτψοφΣχιενχε 2 Ριδαι2χηο 2 ?απαν Αβστραχτ ∏ √ √ √ × ∏ ∏ ∏ ∏ ∏ ∏ 2 ∏ √ × ∏ ∏ ∏ ∏ √ ∏ Κεψωορδσ ∏ ∏ ∏ 1引言Ιντροδυχτιον 机器人路径规划问题可以分为两种一种是基于环境先验完全信息的全局路径规划≈ 另一种是基于传感器信息的局部路径规划≈ ?后者环境是未知或者部分未知的全局路径规划已提出的典型方法有可视图法 ! 图搜索法≈ ! 人工势场法等可视图法的优点是可以求得最短路径但缺乏灵活性并且存在组合爆炸问题图搜索法比较灵活机器人的起始点和目标点的改变不会造成连通图的重新构造但不是任何时候都可以获得最短路径可视图法和图搜索法适用于多边形障碍物的避障路径规划问题但不适用解决圆形障碍物的避障路径规划问题人工势场法的基本思想是通过寻找路径点的能量函数的极小值点而使路径避开障碍物但存在局部极小值问题且不适于寻求最短路径≈ 文献≈ 给出的神经网络路径规划算法我们称为原算法引入网络结构和模拟退火等方法计算简单能避免某些局部极值情况且具有并行性及易于从二维空间推广到三维空间等优点对人工势场法给予了较大的改进但在此算法中由于路径点的总能量函数是由碰撞罚函数和距离函数两部分的和构成的而路径点 第卷第期年月机器人ΡΟΒΟΤ? α收稿日期

基于人工智能的路径查找优化算法【精品毕业设计】(完整版)

毕业设计[论文] 题目:基于人工智能的路径查找优化算法 学生姓名: Weston 学号:090171021XXX 学部(系):信息科学与技术学部 专业年级:计算机应用技术 指导教师:XXX 职称或学位: XX 2012 年 5 月 18 日

目录 摘要............................................................... II ABSTRACT ........................................................... III KEY WORDS .......................................................... III 1.前言 (1) 2.概述 (2) 2.1遗传算法优缺点 (2) 2.2遗传算法应用领域 (3) 2.3遗传算法基本流程 (3) 3.传统遗传算法解决旅行商问题 (5) 3.1常用概念 (5) 3.2基本过程 (5) 3.3关键步骤 (5) 3.4总结 (8) 4.改进后的遗传算法 (9) 4.1编码、设计遗传算子 (9) 4.2种群初始化 (9) 4.3评价 (10) 4.4选择复制 (10) 4.5交叉 (11) 4.6变异 (12) 4.7终结 (13) 5.系统设计与实现 (14) 5.1系统设计 (14) 5.2系统实现 (17) 5.3结果分析 (20) 6.总结 (21) 参考文献 (22) 致谢 (23)

基于人工智能的路径查找优化算法 摘要 旅行商是一个古老且有趣的问题它可以描述为:给定n个城市以及它们之间的距离(城市i到城市j的距离),求解从其中一个城市出发对每个城市访问,且仅访问一d ij 次,最后回到出发的城市,应当选取怎样的路线才能使其访问完所有的城市后回到初始的城市且走过的路程最短。 旅行商问题已被证明是属优化组合领域的NP难题,而且在现实中的许多问题都可以转化为旅行商问题来加以解决。解决旅行商问题最一般的方法就是枚举出所有可能的路线然后对每一条进行评估最后选取出路程最短的一条即为所求解。 解决旅行商问题的各种优化算法都是通过牺牲解的精确性来换取较少的耗时,其他一些启发式的搜索算法则依赖于特定的问题域,缺乏通用性,相比较而言遗传算法是一种通用性很好的全局搜索算法。 遗传算法GA( genetic algorithm) 最早由美国密歇根大学的John Holland 提出。具有自组织、自适应、自学习和群体进化功能有很强的解决问题的能,在许多领域都得到了应用。 遗传算法以其广泛的适应性渗透到研究与工程的各个领域,已有专门的遗传算法国际会议,每两年召开一次,如今已开了数次,发表了数千篇论文,对其基本的理论、方法和技巧做了充分的研究。今天,遗传算法的研究已成为国际学术界跨学科的热门话题之一。 关键词:人工智能;遗传算法;TSP;旅行商问题

目标跟踪相关研究综述

Artificial Intelligence and Robotics Research 人工智能与机器人研究, 2015, 4(3), 17-22 Published Online August 2015 in Hans. https://www.360docs.net/doc/8d12545555.html,/journal/airr https://www.360docs.net/doc/8d12545555.html,/10.12677/airr.2015.43003 A Survey on Object Tracking Jialong Xu Aviation Military Affairs Deputy Office of PLA Navy in Nanjing Zone, Nanjing Jiangsu Email: pugongying_0532@https://www.360docs.net/doc/8d12545555.html, Received: Aug. 1st, 2015; accepted: Aug. 17th, 2015; published: Aug. 20th, 2015 Copyright ? 2015 by author and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/8d12545555.html,/licenses/by/4.0/ Abstract Object tracking is a process to locate an interested object in a series of image, so as to reconstruct the moving object’s track. This paper presents a summary of related works and analyzes the cha-racteristics of the algorithm. At last, some future directions are suggested. Keywords Object Tracking, Track Alignment, Object Detection 目标跟踪相关研究综述 徐佳龙 海军驻南京地区航空军事代表室,江苏南京 Email: pugongying_0532@https://www.360docs.net/doc/8d12545555.html, 收稿日期:2015年8月1日;录用日期:2015年8月17日;发布日期:2015年8月20日 摘要 目标跟踪就是在视频序列的每幅图像中找到所感兴趣的运动目标的位置,建立起运动目标在各幅图像中的联系。本文分类总结了目标跟踪的相关工作,并进行了分析和展望。

遗传算法与机器人路径规划

遗传算法与机器人路径规划 摘要:机器人的路径规划是机器人学的一个重要研究领域,是人工智能和机器人学的一个结合点。对于移动机器人而言,在其工作时要求按一定的规则,例如时间最优,在工作空间中寻找到一条最优的路径运动。机器人路径规划可以建模成在一定的约束条件下,机器人在工作过程中能够避开障碍物从初始位置行走到目标位置的路径优化过程。遗传算法是一种应用较多的路径规划方法,利用地图中的信息进行路径规划,实际应用中效率比较高。 关键词:路径规划;移动机器人;避障;遗传算法 Genetic Algorithm and Robot Path Planning Abstract: Robot path planning research is a very important area of robotics, it is also a combine point of artificial intelligence and robotics. For the mobile robot, it need to be worked by certain rulers(e.g time optimal),and find a best movement path in work space. Robot path planning can be modeled that in the course of robots able to avoid the obstacles from the initial position to the target location,and it ruquire to work under ertain constraints. Genetic algorithm used in path planning is very common, when planning the path ,it use the information of map ,and have high eficient in actual. Key words: Path planning,mobile robot, avoid the obstacles, genetic algorithm 1路径规划 1.1机器人路径规划分类 (1)根据机器人对环境信息掌握的程度和障碍物的不同,移动机器人的路径规划基本上可分为以下几类: 1,已知环境下的对静态障碍物的路径规划; 2,未知环境下的对静态障碍物的路径规划; 3,已知环境下对动态障碍物的路径规划; 4,未知环境下的对动态障碍物的路径规划。 (2)也可根据对环境信息掌握的程度不同将移动机器人路径规划分为两种类型: 1,基于环境先验完全信息的全局路径规划; 2,基于传感器信息的局部路径规划。 (第二种中的环境是未知或部分未知的,即障碍物的尺寸、形状和位置等信息必须通过传感器获取。) 1.2路径规划步骤 无论机器人路径规划属于哪种类别,采用何种规划算法,基本上都要遵循以下步骤: 1, 建立环境模型,即将现实世界的问题进行抽象后建立相关的模型; 2, 路径搜索方法,即寻找合乎条件的路径的算法。 1.3路径规划方法

模糊逻辑地图匹配算法

一个新颖的基于模糊逻辑的车辆导航地图匹配算法以及应用本文提出了一个新的实时的基于模糊逻辑的地图匹配算法。主要有3种因素影响了地图匹配的可靠性,包括车辆位置和匹配路段之间的距离,车辆方向与路段方向之间的夹角,当前路径的连通性。对于距离角度以及连通性的模糊规则被提出来预测匹配的可靠性。这样两个评估匹配可靠性的指标被引出了,一个是可信度的下限的低局限性,另一个是可信度的最大值与第二大的值之间差别的极限误差。因此,一个实时的基于模糊逻辑的地图匹配系统就出现了。应用在基于路径地图的GPS和基于导航的GIS的实时数据,这种方法已经被证实并且结果证明了改进方法的有效。 地图匹配;模糊逻辑;可信度;GPS;GIS;路径网络 地图匹配技术在车辆导航系统中已经成为关键的问题。研究地图匹配算法来改进车辆定位的精确性已经取得很多成就。在目前的研究中,一个基于地图匹配方法的可能性是使用统计理论代替确定性方法。在一个整体的陆地车辆定位系统中已经采纳了一种卡尔曼滤波器模型。对于自动车辆定位与导航,一个数字路径地图的数据库已经形成用以支持地图匹配。对于地图匹配的路径识别,加权2维平面测距已经应用到近似估算功能中。一种基于D-S证据理论的地图匹配被提出来应用于车辆位置和方向的信息的概率分布功能。然而,由于道路因素的复杂性,传统的地图算法不能够处理更加困难环境,因此已经改进的实时地图匹配算法仍需更深的研究。 本文中,一种新颖的基于模糊逻辑地图匹配方法被提出来。有3个影响地图匹配可靠性的因素。对于距离,角度以及连通性的模糊规则已经被提出,并且估计匹配可靠性的指标也已经获得。大量的来自于GPS与GIS地图匹配的数据已被统计的分析。 可靠性指标的测定以及它们之间的权重是地图匹配的关键问题。有许多影响地图匹配可靠性的因素,包括移动跟踪,路径相似度以及弯曲度。在本篇文章中,主要涉及三个影响匹配可靠性的因素,即车辆位置与匹配路段之间的距离,车辆方向与路段方向之间的夹角,路径连通性。在地图匹配过程中,认定路径连通性,距离以及夹角被构建用来测定不同观察数据间的权重。路径可靠性被预测,并且具有最大可靠性值的路径被选作匹配路段,且匹配结果被核实。 假设在一个任意的时间点,车辆的位置是P i(Xi,Y i),当前路段端点是A(Xa,Y a)和B(Xb,Yb),被匹配的路段的函数表示如下: Y=k(X-Xa)+Y a (1) 这里k=(Yb-Y a)/(Xb-Xa)且Xa不等于Xb。 从车辆位置到匹配路段的垂直点的横坐标为 X=Xi+(Yi-Y a)k+Y a*k2/1+k2 (2) 当且仅当判定函数B满足B=(X-Xa)(X-Xb)<=0,这个车辆位置到匹配路段的投影点在匹配路段上,且距离为 D i=|k(Xi-Xa)-Yi+Y a|/开根号1+k的平方(3) 如果判定函数B满足B>0,投影点将在路段的延长线上,因此此路段将被排除。在Xa=Xb的情况下,判定函数B即为B=(Yi-Y a)(Yi-Yb),而如果满足B<=0,那么距离将变成Di=|Xi-Xa|。 如果距离大于30米的话,路径成为匹配路段的可能性很小;如果距离接近于零,那么匹配的可能性很大。因此根据以上规则,影响匹配可靠性的距离函数可以表达为

GPS车辆导航中的实时地图匹配算法

< <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<c d b ;’e ^0-f :b >g f 4b ; A h i j k l m n o p k iq i r p i s s l p i rt i p u s l v p o wk jx y z ’{|s i }|k ~C ?""")’!|p i n B U "[L W I Q L =,##$$%‘b ;5$5f 4;‘&4bg $:$#4d b %’d 5f 4’d 5‘#’$%4%$c ’d 5#f ‘b ;4$$$$’dd %;$$‘5f ’c $$$4d %>5‘’4’d 5#f ‘b ;$c /79($g ‘5‘$b ‘b ;$4g :%5g d b %%‘;‘5d %’d (g ‘g (:5c $$)d $%&.f 4d %;$$‘5f ’‘g ‘’($$&4%g $5f d 55f 4($4#‘g ‘$b$c &4f ‘#%4b d &‘;d 5‘$b‘g ’:#ff ‘;f 4$)‘5f5f 4*d g ‘#f d $%)d $4(%d 5c $$’g d &d ‘%d *%4&+‘b d %%,5f 4g 5d 5‘g >5‘#$4g :%5g $c $$d %54g 5d $4;‘&4b &-H Z .V W /[=&4f ‘#%4b d &‘;d 5‘$b 0/790/390(d 554$b $4#$;b ‘5‘$b 04$$$$$4#5‘c ,0c :11,%$;‘# 摘 要=通过误差来源的分析和误差模型的建立’提出了一种车辆导航中/79定位测量与数字地图实时配准的地图匹配算法2 这使得在现有的基本硬件配置条件下’车辆导航定位精度更高2最后对算法进行了分析’并给出了统计结果2 收稿日期=)""">"+>*30修回日期=)""">*)>!" 作者简介=苏洁A *@4+>B ’ 女’湖南邵阳人’工学硕士’现从事汽车导航系统的研究2关键词=车辆导航0/790/39 0模式识别0误差矫正0模糊逻辑5引 言 /79技术的成熟与发展’ 为各类运动载体的精密实时定位提供了有力保障2特别是在智能交通系统A 3b 54%%‘;4b 5.$d b g ($$5d 5‘$b 9,g 54’g ’3.9B 中’基于/79的车辆自动定位6导航与监控系统的开发与应用正日益受到国内外各部门的重视’并显示出巨大的技术7经济和社会效益2在发达国家’由于经济实力雄厚’通讯基础设施完善’/796/39集成技术支持下的车辆导航与监控应用已经非常普及2目前国内车辆自主导航系统随着/39技术的提高和应用普及也已经有很大的 发展2 对于车载导航系统’获得车辆的精确定位是最基本的要求2目前国外的车载导航系统采用了航位推算A 24d %64#8$b ‘b ;’26B ’差分/79技 术’无线电信标’用高精度的载波相位接收机等提高定位精度的方法等等2但这些方法要求成本较高’ 技术实现复杂’且不太适合中国国土辽阔7地形复杂的国情’所以实际系统中通常采用地图匹配算法来提高车辆导航系统的定位精度2 地图匹配方法是借助/39电子地图库中的 高精度道路信息作为分类模板来进行模式识别’ 根据识别结果来矫正/79接收数据的定位误差2 测绘信息网网友提供http://www.othermap.com

游戏路径算法

A*寻路初探 译者序:很久以前就知道了A*算法,但是从未认真读过相关的文章,也没有看过代码,只是脑子里有个模糊的概念。这次决定从头开始,研究一下这个被人推崇备至的简单方法,作为学习人工智能的开始。 这篇文章非常知名,国内应该有不少人翻译过它,我没有查找,觉得翻译本身也是对自身英文水平的锻炼。经过努力,终于完成了文档,也明白的A*算法的原理。毫无疑问,作者用形象的描述,简洁诙谐的语言由浅入深的讲述了这一神奇的算法,相信每个读过的人都会对此有所认识(如果没有,那就是偶的翻译太差了--b)。 原文链接:https://www.360docs.net/doc/8d12545555.html,/reference/articles/article2003.asp 以下是翻译的正文。(由于本人使用ultraedit编辑,所以没有对原文中的各种链接加以处理(除了图表),也是为了避免未经许可链接的嫌疑,有兴趣的读者可以参考原文。 会者不难,A*(念作A星)算法对初学者来说的确有些难度。 这篇文章并不试图对这个话题作权威的陈述。取而代之的是,它只是描述算法的原理,使你可以在进一步的阅读中理解其他相关的资料。 最后,这篇文章没有程序细节。你尽可以用任意的计算机程序语言实现它。如你所愿,我在文章的末尾包含了一个指向例子程序的链接。压缩包包括C++和Blitz Basic两个语言的版本,如果你只是想看看它的运行效果,里面还包含了可执行文件。 我们正在提高自己。让我们从头开始。。。 序:搜索区域 假设有人想从A点移动到一墙之隔的B点,如下图,绿色的是起点A,红色是终点B,蓝色方块是中间的墙。

[图1] 你首先注意到,搜索区域被我们划分成了方形网格。像这样,简化搜索区域,是寻路的第一步。这一方法把搜索区域简化成了一个二维数组。数组的每一个元素是网格的一个方块,方块被标记为可通过的和不可通过的。路径被描述为从A 到B我们经过的方块的集合。一旦路径被找到,我们的人就从一个方格的中心走向另一个,直到到达目的地。 这些中点被称为“节点”。当你阅读其他的寻路资料时,你将经常会看到人们讨论节点。为什么不把他们描述为方格呢?因为有可能你的路径被分割成其他不是方格的结构。他们完全可以是矩形,六角形,或者其他任意形状。节点能够被放置在形状的任意位置-可以在中心,或者沿着边界,或其他什么地方。我们使用这种系统,无论如何,因为它是最简单的。 开始搜索 正如我们处理上图网格的方法,一旦搜索区域被转化为容易处理的节点,下一步就是去引导一次找到最短路径的搜索。在A*寻路算法中,我们通过从点A开始,检查相邻方格的方式,向外扩展直到找到目标。 我们做如下操作开始搜索: 1,从点A开始,并且把它作为待处理点存入一个“开启列表”。开启列表就像一张购物清单。尽管现在列表里只有一个元素,但以后就会多起来。你的路径可能会通过它包含的方格,也可能不会。基本上,这是一个待检查方格的列表。 2,寻找起点周围所有可到达或者可通过的方格,跳过有墙,水,或其他无法通过地形的方格。也把他们加入开启列表。为所有这些方格保存点A作为“父方格”。当我们想描述路径的时候,父方格的资料是十分重要的。后面会解释它的具体用途。 3,从开启列表中删除点A,把它加入到一个“关闭列表”,列表中保存所有不需要再次检查的方格。

地图匹配算法综述

地图匹配算法综述 一、地图匹配:现有算法 车辆导航系统实时接收GPS位置速度信息,以交通地图为背景显示车辆行驶轨迹。保证所显示的轨迹反映车辆的实际行驶过程,包括行驶路段,转弯过程及当前位置,就是地图匹配问题所要解决的目标。本节首先对地图匹配问题涉及到的基础概念、误差模型给出简要说明,同时介绍当前流行的一些地图匹配算法的思路与特点。 1.1 地图匹配问题介绍 利用车载GPS接收机实时获得车辆轨迹,进而确定其在交通矢量地图道路上的位置,是当前车载导航系统的基础。独立GPS车载导航系统中克服GPS误差以及地图误差显示车辆在道路网上的位置主要是通过地图匹配算法,也就是根据GPS信号中的数据和地图道路网信息,利用几何方法、概率统计方法、模式识别或者人工神经网路等技术将车辆位置匹配到地图道路上的相应位置[8-12]。由于行驶中的车辆绝大部分都是在道路上的,所以通常的地图算法都有一个车辆在道路上的默认前提。地图匹配的准确性决定了GPS车辆导航系统的准确性、实时性与可靠性。具体来说取决于两方面:确定当前车辆正在行驶的路段的准确性与确定车辆在行驶路段上的位置的准确性。前者是现有算法的研究重点,而后者涉及到沿道路方向的误差校正,在现有算法中还没有得以有效解决。地图匹配的目标是将轨迹匹配到道路上,当道路是准确的时,也就成了确定GPS的准确位置,然后利用垂直映射方法完成匹配。要实时获得车辆所在的道路及位置通过地图匹配来实现是一种比较普遍而且成本较低的方法。车辆导航与定位系统中的地图匹配问题概括来讲就是将车载GPS接收机获得的带有误差的GPS轨迹位置匹配到带有误差的交通矢量地图道路上的相应位置。下面我们通过具体的数学模型

移动机器人路径规划技术综述

第25卷第7期V ol.25No.7 控制与决策 Control and Decision 2010年7月 Jul.2010移动机器人路径规划技术综述 文章编号:1001-0920(2010)07-0961-07 朱大奇,颜明重 (上海海事大学水下机器人与智能系统实验室,上海201306) 摘要:智能移动机器人路径规划问题一直是机器人研究的核心内容之一.将移动机器人路径规划方法概括为:基于模版匹配路径规划技术、基于人工势场路径规划技术、基于地图构建路径规划技术和基于人工智能的路径规划技术.分别对这几种方法进行总结与评价,最后展望了移动机器人路径规划的未来研究方向. 关键词:移动机器人;路径规划;人工势场;模板匹配;地图构建;神经网络;智能计算 中图分类号:TP18;TP273文献标识码:A Survey on technology of mobile robot path planning ZHU Da-qi,YAN Ming-zhong (Laboratory of Underwater Vehicles and Intelligent Systems,Shanghai Maritime University,Shanghai201306, China.Correspondent:ZHU Da-qi,E-mail:zdq367@https://www.360docs.net/doc/8d12545555.html,) Abstract:The technology of intelligent mobile robot path planning is one of the most important robot research areas.In this paper the methods of path planning are classi?ed into four classes:Template based,arti?cial potential?eld based,map building based and arti?cial intelligent based approaches.First,the basic theories of the path planning methods are introduced brie?y.Then,the advantages and limitations of the methods are pointed out.Finally,the technology development trends of intelligent mobile robot path planning are given. Key words:Mobile robot;Path planning;Arti?cial potential?eld;Template approach;Map building;Neural network; Intelligent computation 1引言 所谓移动机器人路径规划技术,就是机器人根据自身传感器对环境的感知,自行规划出一条安全的运行路线,同时高效完成作业任务.移动机器人路径规划主要解决3个问题:1)使机器人能从初始点运动到目标点;2)用一定的算法使机器人能绕开障碍物,并且经过某些必须经过的点完成相应的作业任务;3)在完成以上任务的前提下,尽量优化机器人运行轨迹.机器人路径规划技术是智能移动机器人研究的核心内容之一,它起始于20世纪70年代,迄今为止,己有大量的研究成果报道.部分学者从机器人对环境感知的角度,将移动机器人路径规划方法分为3种类型[1]:基于环境模型的规划方法、基于事例学习的规划方法和基于行为的路径规划方法;从机器人路径规划的目标范围看,又可分为全局路径规划和局部路径规划;从规划环境是否随时间变化方面看,还可分为静态路径规划和动态路径规划. 本文从移动机器人路径规划的具体算法与策略上,将移动机器人路径规划技术概括为以下4类:模版匹配路径规划技术、人工势场路径规划技术、地图构建路径规划技术和人工智能路径规划技术.分别对这几种方法进行总结与评价,展望了移动机器人路径规划的未来发展方向. 2模版匹配路径规划技术 模版匹配方法是将机器人当前状态与过去经历相比较,找到最接近的状态,修改这一状态下的路径,便可得到一条新的路径[2,3].即首先利用路径规划所用到的或已产生的信息建立一个模版库,库中的任一模版包含每一次规划的环境信息和路径信息,这些模版可通过特定的索引取得;随后将当前规划任务和环境信息与模版库中的模版进行匹配,以寻找出一 收稿日期:2009-08-30;修回日期:2009-11-18. 基金项目:国家自然科学基金项目(50775136);高校博士点基金项目(20093121110001);上海市教委科研创新项目(10ZZ97). 作者简介:朱大奇(1964?),男,安徽安庆人,教授,博士生导师,从事水下机器人可靠性与路径规划等研究;颜明重(1977?),男,福建泉州人,博士生,从事水下机器人路径规划的研究.

有关路径搜索的一个算法

有关路径搜索的一个算法 由各个直线组成的路网,求一点到另一点的所有路径: FindRateWay.h文件代码如下: #include #include #include #include "GELNSG3D.h" typedef std::vector vecLineSeg; //死胡同点记录 struct DeadList { AcGePoint3d ptOri; //参照点 AcGePoint3dArray ptDeadAry; //死胡同点(即从参照点出发的不能走的下一点) }; typedef std::vector vecDeadPt; class CFindRateWay { public: CFindRateWay(std::list& lstRate,AcGePoint3d ptStart,AcGePoint3d ptEnd); virtual ~CFindRateWay(); //寻找所有路径(排除回路),没找到返回FALSE BOOL FindWay(std::vector& vecWay); private: //检查路径点是否可继续向下走,如果可走则返回TRUE并返回一个可走的邻接点ptNext BOOL IsValid(AcGePoint3d pt, std::stack& staRatePt,std::vector& vecWay, IN vecDeadPt& vecDead, OUT AcGePoint3d& ptNext); //查找某点的所有邻接点 void FindPtNear(AcGePoint3d pt,AcGePoint3dArray& PtAry); //从栈中寻找指定点,找到返回TRUE BOOL FindPtFromStack(AcGePoint3d pt, IN std::stack& staPt); //通过栈中轨迹记录到路径组中

(完整word版)基于蚁群算法的路径规划

MATLAB 实现基于蚁群算法的机器人路径规划 1、问题描述 移动机器人路径规划是机器人学的一个重要研究领域。它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起 始状态到目标状态的能避开障碍物的最优路径。机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。 2 算法理论 蚁群算法(Ant Colony Algorithm ,ACA ),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。但是算法本身性能的评价等算法理论研究方面进展较慢。 Dorigo 提出了精英蚁群模型(EAS ),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。次年Dorigo 博士给出改进模型(ACS ),文中改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。 Stützle 与Hoos 给出了最大-最小蚂蚁系统(MAX-MINAS ),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。 下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例。如图2-1 所示,AE 之间有两条路ABCDE 与ABHDE ,其中AB ,DE,HD,HB 的长度为1,BC,CD 长度为0.5,并且,假设路上信息素浓度为0,且各个蚂蚁行进速度相同,单位时间所走的长度为1,每个单位时间内在走过路径上留下的信息素的量也相同。当t=0 时,从A 点,E 点同时各有30 只蚂蚁从该点出发。当t=1,从A 点出发的蚂蚁走到B 点时,由于两条路BH 与BC 上的信息素浓度相同,所以蚂蚁以相同的概率选择BH 与BC ,这样就有15 只蚂蚁选择走BH,有15 只蚂蚁选择走BC 。同样的从E 点出发的蚂蚁走到D 点,分别有15 只蚂蚁选择DH 和DC。当t=2 时,选择BC 与DC 的蚂蚁分别走过了BCD 和DCB ,而选择BH 与DH 的蚂蚁都走到了H 点。所有的蚂蚁都在所走过的路上留下了相同浓度的信息素,那么路径BCD 上的信息素的浓度是路径BHD 上信息素浓度的两倍,这样若再次有蚂蚁选择走BC 和BH 时,或选择走DC 与DH 时,都会以较大的概率选择信息素浓度高的一边。这样的过程反复进行下去,最短的路径上走过的蚂蚁较多,留下的信息素也越多,蚁群这样就可以找到一条较短的路。这就是它们群体智能的体现。 蚁群算法就是模拟蚂蚁觅食过程中可以找到最短的路的行为过程设计的一种仿生算法。在用蚁群算法求解组合优化问题时,首先要将组合优化问题表达成与信息素相关的规范形式,然后各个蚂蚁独立地根据局部的信息素进行决策构造解,并根据解的优劣更新周围的信息素,这样的过程反复的进行即可求出组合优化问题的优化解。 归结蚁群算法有如下特点: (1)分布式计算:各个蚂蚁独立地构造解,当有蚂蚁个体构造的解较差时,并不会影响整体的求解结果。这使得算法具有较强的适应性; (2)自组织性:系统学中自组织性就是系统的组织指令是来自系统的内部。同样的蚁群算法中的各个蚂蚁的决策是根据系统内部信息素的分布进行的。这使得算法具有较强的鲁棒性; (3)正反馈机制与负反馈机制结合:若某部分空间上分布的信息素越多,那么在这个空间上走过的蚂蚁也就越多;走过的蚂蚁越多,在那个空间上留下的信息素也就越多,这就是存在的正反馈机制。但蚁群算法中解的构造是通过计算转移概率实现的,也就是说构造解的时候可以接受退化解,这限制了正反馈机制,

路径规划概述

1.3.2路径规划方法的概述 路径规划是智能机器人领域中的一个重要分支,根据不同实验要求 规划出各自的最 优路径是路径规划研究的意义所在。在本实验系统中,路经规划主 要考虑一下两个方面 的问题:对于主臂,运动目标是在起始位置和目标位置间做直线运动,直线已是两点间 的最短距离,因此它的路经规划相对简单:对于从臂,在运动过程 中始终视主臂为其要 避碰的障碍物,它路径规划的目的则是要规划出一条与主臂无碰撞 的最短路径。 机器人的路径规划基本方法大体可分为3种类型112l: (1)基于环境模型的路径规划,它能够处理完全已知环境下机器人的 路径规划,但 当环境发生变化时,该方法无能为力。具体方法为:栅格法、可视 图法和自由空间法等。 (2)基于传感器信息的路径规划法,其实现了机器人在动态未知环境 中运动的重要 技术。具体方法为:人工势场法、栅格法、模糊逻辑法等。(3)基于 行为的路径规划法,它把导航问题分解为许多相对对立的导航单元,且这 些单元都有传感器和执行器,它们协调工作,共同完成运动任务。 栅格法将移动机器人工作环境分解成一系列具有二值信息的网格单元,用尺寸相同 的栅格对机器人运行环境进行划分,若某个栅格范围内不含任何障 碍物,则称此栅格为 自由栅格,反之称为障碍栅格。 人工势场法借鉴了物理势场的原理,把机器人所在的环境表示为一 种抽象的力场。

势场中包含斥力级和引力级,不希望机器人进入的区域和障碍物区域属于斥力级,目标 区和希望机器人进入的区域为引力级。引力级和斥力级的周围由一定的算法产生相应的 势场。机器人在势场中具有一定的抽象能力,它的负梯度方向表示机器人系统所受的抽 象力的方向,正是这个抽象力的作用,促使机器人绕过障碍物,朝目标前进。 模糊逻辑控制是以模糊集合论、模糊逻辑、模糊语言变量以及模糊推理为基础的一 种非线性的计算机数字控制技术。其特点为:可以将获得的不确定的数据经过处理得到 精确的数据结果。基于实时传感信息的模糊逻辑算法参考人的驾驶经验,通过查规则表 得到规划信息,实现局部路径的规划【B15l。该方法克服了势场法易产生局部极小问题, 适用于时变未知环境下的路径规划,实时性较好。 随着智能控制方法理论的逐渐成熟,当机器人面对比较复杂的工作环境时,将智能 控制方法应用到机器人的路径规划中可以大大提高机器人对环境的适应性。主要应用的 智能控制方法有人工神经网络法、遗传算法和蚁群算法等等。 人工神经网络是由大量简单的神经元相互连接而形成的自适应非线性动态系统,其 不依赖于被控模型,比较适合不确定和高度非线性的控制对象,并具有较强的学习和适应能力。采用神经网络的路径规划算法需要先将环境地图映射称神经元网络,并设置神 经元的值来表征不同的地图状况,在通过对神经网络的训练来获取最优的神经元集合以 组成最优路径。

相关文档
最新文档