数学期望与方差

数学期望与方差
数学期望与方差

第三章 随机变量的数字特征

学习目的与要求:

本章主要讨论随机变量的数字特征,概率分布全面地描述随机变量取值的统计规律性,而数字特征则描述这种统计规律性的某些重要特征。本章总的要求是:理解期望与方差的概念,掌握期望与方差的性质与计算,会计算随机变量函数的期望;掌握两点分布、二项分布、泊松分布、均匀分布、指数分布和正态分布的期望与方差;了解协方差、相关系数的概念和性质,会求相关系数,知道矩与协方差阵的概念及求法。重点内容是:期望、方差、协方差的计算,随机变量函数的数字期望;难点内容是:随机变量函数的数学期望。 3.1 数学期望与方差

3.2 协方差、相关系数、协方差矩阵 3.3 条件数学期望与回归 3.4 特征函数及其性质

3.1 数学期望与方差

1. 随机变量的期望

1)离散型随机变量的期望

设离散型随机变量X 的分布律为 ,2,1,}{===k p x X P k k , 则X 的数学期望(简称均值或期望)为∑=i

i

i p

x X E )(。

2)连续型随机变量的期望

1设连续型随机变量X 的概率密度为)(x f ,

则随机变量X 的数学期望(或称期望或均值),记为)(X E ,即dx x xf X E ?

+∞

-=

)()( 。

2连续型随机变量函数的数学期望

设X 为连续型随机变量,其概率密度为)(x f X ,又随机变量)(X g Y =,则

dx x f x g X g E Y E X )()())(()(?+∞

-== 。

3)二维随机变量函数的期望

1

),(Y X 为离散型随机变量,若其分布律为

)

,2,1,(},{ ====j i p y Y x X P ij j i ,

2,1,}{.====∑i p x X P p j

ij i i 和 2,1,}{.====∑j p y Y P p i

ij j j

则ij

i

i

j

i

i i p

x p x X E ∑∑∑==

.

)(,ij

j

i

j

i

j

i p

y p y Y E ∑∑∑==

.)(

2 若),(Y X 为二维连续型随机变量,),(y x f ,)(x f X ,)(y f Y 分别为),(Y X 的

概率密度与边缘概率密度,则?

?

?

+∞

-+∞∞-+∞

-==

dxdy y x xf dx x xf X E X ),()()(,

??

?

+∞∞

-+∞∞-+∞

-==dxdy y x yf dy y yf Y E Y ),()()(。

3 设),(Y X g 为连续函数,对于二维随机变量),(Y X 的函数),(Y X g ,

若),(Y X 为离散型随机变量,则∑∑=i

j

ij

j

i

p

y x g Y X g E ),()),((;

若),(Y X 为连续型随机变量,则??

+∞∞-+∞

-=dxdy y x f y x g Y X g E ),(),()),((。

2. 期望的性质

1)常数的期望等于这个常数,即C C E =)(,其中C 为常数。

2)常数与随机变量X 乘积的期望等于该常数与随机变量X 的期望的乘积,即

)()(X E C CX E ?=

3)随机变量和的期望等于随机变量期望的和,即)()()(Y E X E Y X E +=+, 若X ,Y 是相互独立的随机变量,则)()()(Y E X E XY E = 3. 随机变量的方差

1)随机变量X 的方差:设随机变量2

))((X E X -的期望存在,则称2

))((X E X E -为随机变量X 的方差,记作)(X D ,即)(X D =2

))((X E X E -,称)(X D 为X 的标准差(或均方差)。 2)离散型随机变量的方差

设X 为离散型随机变量,其分布律为 2,1,}{===k p x X P k k ,则

i n

i i p X E x X D 2

1

))(()(∑=-=

3)连续型随机变量的方差

设X 为连续型随机变量,其概率密度为)(x f ,则dx x f X E x X D )())(()(2?

+∞

--=

4)方差计算的重要公式:

22)]([)()(X E X E X D -=

4 方差的性质

1)常数的方差等于零,随机变量与常数之和的方差等于随机变量的方差,即

0)(=C D ,)()(X D C X D =+ 。

2)常数与随机变量乘积的方差等于这个常数的平方与随机变量方差的乘积,即

)()(2X D C CX D =,其中C 为常数。

3)若X ,Y 是相互独立的随机变量,则)()()(Y D X D Y X D +=+。 5. 几种重要的随机变量的数字特征汇总表

3.2 协方差、相关系数、协方差矩阵

1. 协方差

设有二维随机变量),(Y X ,且)(),(Y E X E 存在,如果))]())(([(Y E Y X E X E --存

在,则称此值为X 与Y 的协方差,记为),(Y X Cov ,即

),(Y X C o v =))]())(([(Y E Y X E X E --。

1 当),(Y X 为二维离散型随机变量时,

其分布律为 ),2,1,,2,1}(,{ =====j i y Y x X P p j i ij

离散型

分布 期望 方差

X 服从参数为p 的

0-1分布

p pq

X 服从二项分布

),(~p n B X

np npq

X 服从泊松分布

)(~λP X

λ

λ

连续型

),(~b a U X

2b

a + 12

)(2

a b - 指数分布)(~λE X λ

1 2

1

λ

),(~2

σμN X

μ

则),(Y X Cov ij j

i

j

i

p Y E y

X E x ))(())((--=

∑∑。

2 当),(Y X 为二维连续型随机变量时,),(y x f 为),(Y X 的概率密度,则

),(Y X Cov dxdy y x f Y E y X E x ),())(())((--=?

?

+∞∞-+∞

-。

3 协方差有下列计算公式:(重要公式)

),(

Y X C o v )()()(Y E X E XY E -=,特别的取Y X =时, 有)())]())(([(),(X D X E X X E X E X X Cov =--=

),(2)()()(Y X Cov Y D X D Y X D ++=+

2. 协方差的性质

1)),(),(X Y Cov Y X Cov =;

2)),(),(Y X abCov bY aX Cov =,其中b a ,为任意常数; 3)),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+;

4)若X ,Y 是相互独立的随机变量,则),(Y X Cov 0=。 3. 相关系数

若0)(,0)( Y D X D ,称)

()()

,(Y D X D Y X Cov 为X 与Y 的相关系数,记为

XY ρ,即XY ρ=

)

()(),(Y D X D Y X Cov 。

4. 相关系数的性质 1)1≤XY ρ ;

2)

1=XY ρ的充分必要条件是存在常数b a ,使1}{=+=b aX X P 且0≠a 。

两个随机变量的相关系数是两个随机变量间线性联系密切程度的度量,XY ρ越接近1,

X 与Y 之间的线性关系越密切。当1=XY ρ时,Y 与X 存在完全的线性关系,即

b aX Y +=;0=XY ρ时,X 与Y 之间无线性关系。

若相关系数

0=XY ρ,则称X 与Y 不相关。

很明显,当0)(,0)( Y D X D 时,随机变量X 与Y 不相关的充分必要条件是

),(Y X Cov 0=。

注意: 1若随即变量X 与Y 相互独立,则),(Y X Cov 0= ,因此X 与Y 不相关,

反之,随机变量X 与Y 不相关,但X 与Y 不一定相互独立。

2若二维随机变量),(Y X 服从二维正态分布),,,,(2

22121ρσσμμN ,X 与Y 的相

关系数XY ρρ=,从而X 与Y 不相关的充要条件是X 与Y 相互独立,因此X 与Y 不相关和X 与Y 相互独立都等价于0=ρ。

3.3 条件数学期望与回归

随机变量的数学期望与方差

第9讲随机变量的数学期望与方差 教学目的:1.掌握随机变量的数学期望及方差的定义。 2.熟练能计算随机变量的数学期望与方差。 教学重点: 1.随机变量的数学期望 For personal use only in study and research; not for commercial use 2.随机变量函数的数学期望 3.数学期望的性质 4.方差的定义 For personal use only in study and research; not for commercial use 5.方差的性质 教学难点:数学期望与方差的统计意义。 教学学时:2学时。 For personal use only in study and research; not for commercial use 教学过程: 第三章随机变量的数字特征 §3.1 数学期望 For personal use only in study and research; not for commercial use 在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X的概率分布,那么X的全部概率特征也就知道了。然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。

1.离散随机变量的数学期望 我们来看一个问题: 某车间对工人的生产情况进行考察。车工小张每天生产的废品数X 是一个随机变 量,如何定义X 取值的平均值呢? 若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品, 21天每天出三件废品。这样可以得到这100天中每天的平均废品数为 27.1100 213100172100301100320=?+?+?+? 这个数能作为X 取值的平均值吗? 可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的 天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是 1.27。 对于一个随机变量X ,若它全部可能取的值是 ,,21x x , 相应的概率为 ,,21P P , 则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。但是,如果试验次数 很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近 ∑∞=1k k k p x 由此引入离散随机变量数学期望的定义。 定义1 设X 是离散随机变量,它的概率函数是 ,2 ,1,)()(====k P x X P x p K K k 如果 ∑∞ =1||k k k p x 收敛,定义X 的数学期望为 ∑∞ ==1)(k k k p x X E 也就是说,离散随机变量的数学期望是一个绝对收敛的级数的和。 例1 某人的一串钥匙上有n 把钥匙,其中只有一把能打开自己的家门,他随意地 试用这串钥匙中的某一把去开门。若每把钥匙试开一次后除去,求打开门时试开次数 的数学期望。

离散型随机变量的期望与方差

开锁次数的数学期望和方差 例 有n 把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数ξ的数学期望和方差. 分析:求)(k P =ξ时,由题知前1-k 次没打开,恰第k 次打开.不过,一般我们应从简单的地方入手,如3,2,1=ξ,发现规律后,推广到一般. 解:ξ的可能取值为1,2,3,…,n . Λ;12112121)111()11()3(;111111)11()2(,1)1(n n n n n n n n n P n n n n n n P n P =-?--?-=-?--?-===-?-=-?-====ξξξ n k n k n k n n n n n n n k n k n n n n k P 111212312111)211()211()111()11()(=+-?+-+---?--?-=+-?+----?--?-==ΛΛξ;所以ξ的分布列为: 2 31211=?++?+?+?=n n n n n E Λξ; n n n n n k n n n n n n D 1)21(1)21(1)213(1)212(1)211(22222?+-++?+-++?+-+?+-+?+- =ΛΛξ ?? ?????+++++++-++++=n n n n n n 22222)21()321)(1()321(1ΛΛ 1214)1(2)1()12)(1(611222-=?? ????+++-++=n n n n n n n n n 说明:复杂问题的简化处理,即从个数较小的看起,找出规律所在,进而推广到一般,方差的公式正确使用后,涉及一个数列求和问题,合理拆项,转化成熟悉的公式,是解决的关键. 次品个数的期望

高考纠错专题29离散型随机变量的分布列、期望与方差(解析版)

专题29 离散型随机变量的分布列、期望与方差(解析版) 易错点1:二项式展开式的通项公式、n 次独立重复试验中事件A 发生k 次的概率与二项分布的分布列三者易记混; 通项公式:1r n r r r n T C a b -+= (它是第r+1项而不是第r项); 事件A 发生k 次的概率:()(1)k k n k n n P k C p p -=-; ()=,0,1,2,3,01,1k k n k n p k C p q k n p p q 且ξ-==<<+=; 易错点2:混淆二项分布和超几何分布的期望和方差; 题组一 1.(2018全国卷Ⅲ)某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,(4)(6)P X P X =<=,则p = A .0.7 B .0.6 C .0.4 D .0.3 【解析】由题意,X~B(10,p),所以DX=10×p×(1-p)=2.4,p=0.4或0.6,又(4)(6)P X P X =<=,即()()644466101011C p p C p p -<-,得1,0.62 p p >=所以 2.(2017新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,表示抽到的二等品件数,则DX = . 【解析】由题意,X~B(100,0.02),所以DX=100×0.02×(1-0.02)=1.96 题组二 3.(2019全国I 理21)为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;

高考中的分布列、期望、方差问题

几种常见题型的解法 一、从分类问题角度求概率 例2(日本高考题)袋内有9个白球和3个红球,从袋中任意地顺次取出三个球(取出的球不再放回),求第三次取出的球是白球的概率。 二、从不等式大小比较的角度看概率 例3 “幸运52”知识竞猜电视节目,为每位选手准备5道试题,每道题设“Yes ”与“No ”两个选项,其中只有一个是正确的,选手每答对一题,获得一个商标,假设甲、乙两位选手仅凭猜测独立答题,是否有99%的把握断定甲、乙两位选手中至少有一位获得1个或1个以上的商标? 三、从“至多”、“至少”的角度看概率. 例4、有三种产品,合格率分别是0.90、0.95和0.95,各取一件进行检验。(I )求恰有一件不合格的概率;(II )求至少有两件不合格的概率(精确到0.001)。 四、从“或”、“且”的角度看概率 例5甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或被乙解出的概率为0.92。 (1)求该题被乙独立解出的概率; (2)求解出该题的人数 的数学期望和方差。 相关练习 1.(山东卷7)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为 (A ) 51 1 (B ) 681(C )3061 (D )408 1 2.(福建卷5)某一批花生种子,如果每1粒发牙的概率为4 5,那么播下4粒种子恰有2粒发芽的概率是 A. 16 625 B. 96625 C. 192 625 D. 256 625 3.(辽宁卷7)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A . 13 B . 12 C . 23 D . 34 4.甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为 2 1 与p ,且乙投球2

正态分布的数学期望与方差

正态分布的数学期望与方差 正态分布: 密度函数为:分布函数为 的分布称为正态分布,记为N(a, σ2). 密度函数为: 或者 称为n元正态分布。其中B是n阶正定对称矩阵,a是任意实值行向量。 称N(0,1)的正态分布为标准正态分布。 (1)验证是概率函数(正值且积分为1) (2)基本性质: (3)二元正态分布: 其中, 二元正态分布的边际分布仍是正态分布: 二元正态分布的条件分布仍是正态分布:

即(其均值是x的线性函数) 其中r可证明是二元正态分布的相关系数。 (4)矩,对标准正态随机变量,有 (5)正态分布的特征函数 多元正态分布 (1)验证其符合概率函数要求(应用B为正定矩阵,L为非奇异阵,然后进行向量线性变换) (2)n元正态分布结论 a) 其特征函数为: b) 的任一子向量,m≤n 也服从正态分布,分布为其中,为保留B 的第,…行及列所得的m阶矩阵。 表明:多元正态分布的边际分布还是正态分布 c) a,B分别是随机向量的数学期望及协方差矩阵,即 表明:n元正态分布由它的前面二阶矩完全确定 d) 相互独立的充要条件是它们两两不相关 e) 若,为的子向量,其中是,的协方差矩阵,则是,相应分量的协方差构成的相互协方差矩阵。则相互独立的充要条件为=0 f) 服从n元正态分布N(a,b)的充要条件是它的任何一个线性组合服

从一元正态分布 表明:可以通过一元分布来研究多元正态分布 g) 服从n元正态分布N(a,b),C为任意的m×n阶矩阵,则服从m元正态分布 表明:正态变量在线性变换下还是正态变量,这个性质简称正态变量的线性变换不变性 推论:服从n元正态分布N(a,b),则存在一个正交变化U,使得是一个具有独立正态分布分量的随机向量,他的数学期望为Ua,而他的方差分量是B的特征值。 条件分布 若服从n元正态分布N(a,b),,则在给定下,的分布还是正态分布,其条件数学期望: (称为关于的回归) 其条件方差为: (与无关)

新课标高考期望与方差经典高考题

期望与方差 1.某射手有5发子弹,射击一次命中概率为0.9,如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的分布列. 2.某一中学生心理咨询中心服务电话接通率为 4 3 ,某班3名同学商定明天分别就同一问题询问该服务中心.且每人只拨打一次,求他们中成功咨询的人数ξ的分布列. 3.一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以ξ 表示取出的3只球中的最大号码,写出随机变量ξ 的分布列. 4.一批零件中有9个合格品与3个不合格品.安装机器时,从这批零件中任取一个.如果每次取出的不合格品不再放回去,求在取得合格品以前已取出的不合格品数的分布列.

5.(2012年高考(安徽理))某单位招聘面试,每次从试题库随机调用一道试题,若调用的是A 类型试题,则使用后该试题回库,并增补一道A 类试题和一道B 类型试题入库,此次调题工作结束;若调用的是B 类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有n m +道 试题,其中有n 道A 类型试题和m 道B 类型试题,以X 表示两次调题工作完成后,试题库中A 类试题的数量. (Ⅰ)求2X n =+的概率; (Ⅱ)设m n =,求X 的分布列和均值(数学期望). 6.(2012年高考(天津理))现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (Ⅰ)求这4个人中恰有2人去参加甲游戏的概率: (Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率: (Ⅲ)用,X Y 分别表示这4个人中去参加甲、乙游戏的人数,记=||X Y ξ-,求随机变量ξ的分布列与数学期望E ξ.

k52006年高考第一轮复习数学:12.2 离散型随机变量的期望值和方差

知识就是力量
本文为自本人珍藏
版权所有 仅供参考
12.2
离散型随机变量的期望值和方差
●知识梳理 1.期望:若离散型随机变量ξ ,当ξ =xi 的概率为 P(ξ =xi)=Pi(i=1,2,…,n,…) , 则称 Eξ =∑xi pi 为ξ 的数学期望,反映了ξ 的平均值. 2.方差:称 Dξ =∑(xi-Eξ )2pi 为随机变量ξ 的均方差,简称方差. D? 叫标准差, 反映了ξ 的离散程度. 3.性质: (1)E(aξ +b)=aEξ +b,D(aξ +b)=a2Dξ (a、b 为常数). (2)若ξ ~B(n,p) ,则 Eξ =np,Dξ =npq(q=1-p). ●点击双基 1.设投掷 1 颗骰子的点数为ξ ,则 A.Eξ =3.5,Dξ =3.52 C.Eξ =3.5,Dξ =3.5 解析:ξ 可以取 1,2,3,4,5,6. P(ξ =1)=P(ξ =2)=P(ξ =3)=P(ξ =4)=P(ξ =5)=P(ξ =6)= ∴Eξ =1× B.Eξ =3.5,Dξ = D.Eξ =3.5,Dξ =
35 12 35 16
1 , 6
1 1 1 1 1 1 +2× +3× +4× +5× +6× =3.5, 6 6 6 6 6 6 2 2 2 Dξ =[ (1-3.5) +(2-3.5) +(3-3.5) +(4-3.5)2+(5-3.5)2+(6-3.5)2] 1 17.5 35 = = . 6 6 12 答案:B 2.设导弹发射的事故率为 0.01,若发射 10 次,其出事故的次数为ξ ,则下列结论正确 的是 A.Eξ =0.1 B.Dξ =0.1
× C.P(ξ =k)=0.01k·0.9910
-k
k D.P(ξ =k)=C 10 ·0.99k·0.0110
-k
解析:ξ ~B(n,p) ,Eξ =10×0.01=0.1. 答案:A 3.已知ξ ~B(n,p) ,且 Eξ =7,Dξ =6,则 p 等于 A.
1 7
B.
1 6
C.
1 5 1 . 7
D.
1 4
解析:Eξ =np=7,Dξ =np(1-p)=6,所以 p=
答案:A 4.一牧场有 10 头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为 0.02.设发 病的牛的头数为ξ ,则 Dξ 等于 A.0.2 B.0.8 C.0.196 D.0.804

离散型随机变量的期望值和方差

离散型随机变量的期望值和方差 一、基本知识概要: 1、 期望的定义: 一般地,若离散型随机变量ξ的分布列为 则称E ξ=x 1P 1+x 2P 2+x 3P 3+…+x n P n +…为ξ的数学期望或平均数、均值,简称期望。 它反映了:离散型随机变量取值的平均水平。 若η=a ξ+b(a 、b 为常数),则η也是随机变量,且E η=aE ξ+b 。 E(c)= c 特别地,若ξ~B(n ,P ),则E ξ=n P 2、 方差、标准差定义: D ξ=(x 1- E ξ)2·P 1+(x 2-E ξ)2·P 2+…+(x n -E ξ)2·P n +…称为随机变量ξ的方差。 D ξ的算术平方根ξD =δξ叫做随机变量的标准差。 随机变量的方差与标准差都反映了:随机变量取值的稳定与波动、集中与离散的程度。 且有D(a ξ+b)=a 2D ξ,可以证明D ξ=E ξ2- (E ξ)2。 若ξ~B(n ,p),则D ξ=npq ,其中q=1-p. 3、特别注意:在计算离散型随机变量的期望和方差时,首先要搞清其分布特征及分布列,然后要准确应用公式,特别是充分利用性质解题,能避免繁琐的运算过程,提高运算速度和准确度。 二、例题: 例1、(1)下面说法中正确的是 ( ) A .离散型随机变量ξ的期望E ξ反映了ξ取值的概率的平均值。 B .离散型随机变量ξ的方差D ξ反映了ξ取值的平均水平。 C .离散型随机变量ξ的期望E ξ反映了ξ取值的平均水平。 D .离散型随机变量ξ的方差D ξ反映了ξ取值的概率的平均值。 解:选C 说明:此题考查离散型随机变量ξ的期望、方差的概念。 (2)、(2001年高考题)一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出两个,则其中含红球个数的数学期望是 。 解:含红球个数ξ的E ξ=0× 101+1×106+2×10 3=1.2 说明:近两年的高考试题与《考试说明》中的“了解……,会……”的要求一致,此部分以重点知识的基本 题型和内容为主,突出应用性和实践性及综合性。考生往往会因对题意理解错误,或对概念、公式、性质应用错误等,导致解题错误。 例2、设ξ是一个离散型随机变量,其分布列如下表,试求E ξ、D ξ 剖析:应先按分布列的性质,求出q 的值后,再计算出E ξ、D ξ。 解:因为随机变量的概率非负且随机变量取遍所有可能值时相应的概率之和等于1,所以??? ? ???≤≤-≤=+-+11 2101212122 q q q q

十年高考理科数学真题 专题十一 概率与统计 三十五离散型随机变量的分布列、期望与方差及答案

专题十一 概率与统计 第三十五讲离散型随机变量的分布列、期望与方差 2019年 1.(2019天津理16)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立. (Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望; (Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率. 2.(2019全国I 理21)为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列; (2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =L 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =L ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=. (i)证明:1{}i i p p +-(0,1,2,,7)i =L 为等比数列; (ii)求4p ,并根据4p 的值解释这种试验方案的合理性. 3.(2019北京理17) 改革开放以来,人们的支付方式发生了巨大转变。近年来,移动支付已成为主要支付方式之一。为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机

概率分布以及期望和方差

概率分布以及期望和方差 上课时间: 上课教师: 上课重点:掌握两点分布、超几何分布、二项分布、正态分布的概率分布及其期望和方差 上课规划:解题技巧和方法 一 两点分布 ⑴两点分布 如果随机变量X 的分布列为 X 1 0 P p q 其中01p <<,1q p =-,则称离散型随机变量X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布. X 1 0 P 0.8 0.2 两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布. (2)典型分布的期望与方差: 二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np . 1、在抛掷一枚图钉的随机试验中,令10X ?=? ? ,针尖向上; ,针尖向下.,如果针尖向上的 概率为p ,试写出随机变量X 的概率分布. 2、从装有6只白球和4只红球的口袋中任取一只球,用X 表示“取到的 知识内容 典例分析

白球个数”,即???=,当取到红球时, ,当取到白球时, 01X ,求随机变量X 的概率分布. 3、若随机变量X 的概率分布如下: X 1 P 29C C - 38C - 试求出C ,并写出X 的分布列. 3、抛掷一颗骰子两次,定义随机变量 ?? ?=)(,1)(,0的点数数等于第二次向上一面当第一次向上一面的点 面的点数数不等于第二次向上一当第一次向上一面的点 ξ 试写出随机变量ξ的分布列. 4、篮球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为P . ⑴ 记投篮1次得分X ,求方差()D X 的最大值; ⑵ 当⑴中()D X 取最大值时,甲投3次篮,求所得总分Y 的分布列及Y 的期望与方差. 二 超几何分布

数学期望(均值)、方差和协方差的定义与性质

均值、方差和协方差的定义和基本性质 1 数学期望(均值)的定义和性质 定义:设离散型随机变量X 的分布律为 {}, 1,2,k k P X x p k === 若级数 1k k k x p ∞=∑ 绝对收敛,则称级数1k k k x p ∞=∑的和为随机变量X 的数学期望,记为()E X 。即 ()1k k k E X x p ∞==∑。 设连续型随机变量X 的概率密度为()f x ,若积分 ()xf x dx ∞?∞? 绝对收敛,则称积分 ()xf x dx ∞?∞?的值为随机变量X 的数学期望,记为()E X 。即 ()()E X xf x dx ∞ ?∞=? 数学期望简称期望,又称为均值。 性质:下面给出数学期望的几个重要的性质 (1)设C 是常数,则有()E C C =; (2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =; (3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推 广至任意有限个随机变量之和的情况; (4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。 2 方差的定义和性质 定义:设X 是一个随机变量,若(){}2E X E X ?????存在,则称(){}2E X E X ?????为X

的方差,记为()D X 或()Var X ,即 性质:下面给出方差的几个重要性质 (1)设C 是常数,则有()0D C =; (2)设X 是一个随机变量,C 是常数,则有 ()()2D CX C D X =,()()D X C D X +=; (3)设X 和Y 是两个随机变量,则有 ()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++?? 特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。 3 协方差的定义和性质 定义:量()(){} E X E X Y E Y ??????????称为随机变量X 与Y 的协方差。记为(),Cov X Y ,即 ()()(){},Cov X Y E X E X Y E Y =?????????? 性质:下面给出协方差的几个重要性质 (1)()(),,Cov X Y Cov Y X = (2)()(),Cov X X D X = (3)()()()(),Cov X Y E XY E X E Y =? (4)()(),,,,Cov aX bY abCov X Y a b =是常数 (5)()()()1212,,,Cov X X Y Cov X Y Cov X Y +=+ 参考文献 [1]概率论与数理统计(第四版),浙江大学

离散型随机变量的期望值和方差

12.2
离散型随机变量的期望值和方差
一、知识梳理 1.期望:若离散型随机变量ξ ,当ξ =xi 的概率为 P(ξ =xi)=Pi(i=1,2,…,n,…) , 则称 Eξ =∑xi pi 为ξ 的数学期望,反映了ξ 的平均值. 期望是算术平均值概念的推广,是概率意义下的平均.Eξ 由ξ 的分布列唯一确定. 2.方差:称 Dξ =∑(xi-Eξ )2pi 为随机变量ξ 的均方差,简称方差.
D?
叫标准差,反
映了ξ 的离散程度. 3.性质: (1)E(aξ +b)=aEξ +b,D(aξ +b)=a2Dξ (a、b 为常数). (2)二项分布的期望与方差:若ξ ~B(n,p) ,则 Eξ =np,Dξ =npq(q=1-p). Dξ 表示ξ 对 Eξ 的平均偏离程度,Dξ 越大表示平均偏离程度越大,说明ξ 的取值越分 散. 二、例题剖析 【例 1】 设ξ 是一个离散型随机变量,其分布列如下表,试求 Eξ 、Dξ .
ξ P -1
1 2
0 1-2q
1 q2
拓展提高
既要会由分布列求 Eξ 、Dξ ,也要会由 Eξ 、Dξ 求分布列,进行逆向思维.如:若ξ 是 离散型随机变量,P(ξ =x1)=
3 5 2 5 7 5
,P(ξ =x2)=
,且 x1,Dξ =
6 25
.求ξ
的分布列. 解:依题意ξ 只取 2 个值 x1 与 x2,于是有 Eξ = Dξ =
3 5 3 5
x1+
2 5
x2=
2 5
7 5

6 25
x12+
x22-Eξ 2=
.
从而得方程组 ?
?3 x1 ? 2 x 2 ? 7 , ? ?3 x1 ?
2
? 2x2
2
? 11 .
【例 2】 人寿保险中(某一年龄段) 在一年的保险期内, , 每个被保险人需交纳保费 a 元, 被保险人意外死亡则保险公司赔付 3 万元,出现非意外死亡则赔付 1 万元.经统计此年龄段一 年内意外死亡的概率是 p1,非意外死亡的概率为 p2,则 a 需满足什么条件,保险公司才可能 盈利? 【例 3】 把 4 个球随机地投入 4 个盒子中去,设ξ 表示空盒子的个数,求 Eξ 、Dξ .
特别提示
求投球的方法数时,要把每个球看成不一样的.ξ =2 时,此时有两种情况:①有 2 个空盒 子,每个盒子投 2 个球;②1 个盒子投 3 个球,另 1 个盒子投 1 个球. 【例 4】 若随机变量 A 在一次试验中发生的概率为 p(02D? ? 1 E?
的最大值.
【例 5】 袋中装有一些大小相同的球,其中有号数为 1 的球 1 个,号数为 2 的球 2 个, 号数为 3 的球 3 个,…,号数为 n 的球 n 个.从袋中任取一球,其号数作为随机变量ξ ,求ξ
1

数学期望和方差的应用

2QQ2±:箜!塑工 -学术-理论现代衾案一 数学期望和方差的应用 陈奕宏张鑫 (武警广州指挥学院广东广州510440) 摘要:本文主要讨论随机变量的数学期望和方差的性质,利用随机变量的对称性可简化求数学期望和方差的计算过程: 关键词:对称性数学期望方差 在教学过程中,由于很多同学对概牢论巾的定义和性质认识不深刻,冈此对概率论巾的问题存在许多认识误区,进一步影响了计算、证明能力。 性质l对随机变量x和y,则有E(nn簟Ⅸ+Ey①性质2设随机变量x和y相互独立,贝咿育层陇n=Ex?Ey②定义l设X是一个随机变量,若EI肛删Iz存在,则称其为X的方差,记为Dx。即 Dx=坦Ix—Ex】2③显然可得:们,-ElX一以】2 =E瞄2—2xEX+(踊2] =麟z一(删):④性质3设随机变量x和y相互独立,则有层孵y:净E孵?Ey2⑤证明:设随机变量X和y的联合分布密度为m砂),|jl《为x和y相互独立,有 “r,y)=^(掌)。,r(y) .’.E(x2y2)=J一。J一。工2y2“r,j,)d膏咖 =eex2y2以(r)厂r(y)如咖 =Cx2^(工)如Cy2加)咖 :Ex2E】,2⑥性质4设随机变量x和l,,n和西为常数,则有E(口X2+6y2)=n露x2+6曰y2(D证明:设随机变量x和l,的联合分布密度为厂(x,j,),则有 E似x2+6y2)=J+。J一。(口工2+6j,2)“r,j,)d_咖 =e仁nx2flx,,Mxdy+e仁b矿fIx,yⅪxdy ,+∞,+∞r十o,+∞ =n\一。\一亭2fIx,如dxd,+b1.。1一。旷fIx,,Ⅺxdy =口f)2【e№j,)dy】dr拍ej,2【C“础)dx协 =口仁量2【e,(Ⅵ)dyJdx柏ej,2【C,(础)dx坳 =n尽2以(r)dy拍D2加)dy =口EX2+西Ey2 掣狮,=∥茗引m,=驴㈣’翟引 求E伍2+y2)。 解:E(x2+y2)=Ex2+Eyz(南公式⑦) =I:一4r3出+炒.12y2(1+y)咖《 性质5设随机变量x和y卡H互独立,则有 D(x的=Dx?Dy+(E幻2?Dl,+(层y)2?Dx⑧ 证明:ODⅨy)=层(xy)2一IE(xy)J2 =E(X2y2)一(EX)2(E】,)2 南公式⑤,所以 D(Xn=EX2Ey2一(EX)2(E”2 =曰x2El,2一(E的2EP+(E的2(El,)2一(E抑2僻y)2 =【层x2一(EX)2】EP+(Ex)2【(E】,)2一(日y)2】 矗剪陋妒+(雕净汗钮曙(联)辚苦帮 =n碰Iy+(EY)2Dy+(Ey)2蹦 显然,若随机变量x和y独立,则可得D(xn>Dx?Dy⑨例设随机变量x和l,相互独立,均服从Ⅳ(O,1)分布,f=x—y,叩=xy,试求1)D叩;2)p£。。 解:1)方法一 OX和y相互独立 .‘.D即=D(xy)=E(xl,)2一【层(x聊】2 =E(r—l,)2一(以E的2 =E舻EP(由公式⑤) =【脚“(E的2】【Dy;(E玢2】=1 方法二 0X和y相互独立 .?.Dq=D(x】,)=似Dy+(E柳2Dy+(目】,)2Dx=l(由公式⑧)2)op。:』业 q厩丽 又OcoV(f,'7)=层【(f—Ef)('7一露77)j =层(x2y)一E(xP)(把f=x—y,’7=xy代人) 曲(南x与r鹃对称性)综上所述,本文主要讨论连续型随机变量的数字特征的性质,结合对随机变量的对称性可解决存概率论巾一些常见的求数[字特征的问题。 参考文献: …盛骤等编概率论与数理统计高等教育出版社2001.12口 现代企业教育MODERNENTERPRISEEDUCATION117 万方数据

高考复习数学期望试题及详解.docx

高考复习考点自测含答案 1.(2017·山东)样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( ). A. 65 B.6 5 C. 2 D .2 解析 由题意知a +0+1+2+3=5×1,解得,a =-1. s 2 =-1-12+0-12+1-12+2-12+3-12 5 =2. 答案 D 2.已知X 的分布列为 X -1 0 1 P 12 13 16 设Y =2X +3,则E (Y )的值为( ). A.7 3 B .4 C .-1 D .1 解析 E (X )=-12+16=-1 3 , E (Y )=E (2X +3)=2E (X )+3=-23+3=7 3 . 答案 A 3.(2017·湖北)ξ 7 8 9 10 P x 0.1 0.3 y 已知ξ的期望E (ξ)=8.9,则y A .0.4 B .0.6 C .0.7 D .0.9 解析 x +0.1+0.3+y =1,即x +y =0.6.① 又7x +0.8+2.7+10y =8.9,化简得7x +10y =5.4.② 由①②联立解得x =0.2,y =0.4. 答案 A 4.设随机变量X ~B (n ,p ),且E (X )=1.6,D (X )=1.28,则( ). A .n =8,p =0.2 B .n =4,p =0.4 C .n =5,p =0.32 D .n =7,p =0.45 解析 ∵X ~B (n ,p ),∴E (X )=np =1.6, D (X )=np (1-p )=1.28,∴??? n =8, p =0.2. 答案 A 5.(2017·上海)随机变量ξξ 7 8 9 10 P 0.3 0.35 0.2 0.15 该随机变量ξ的均值是解析 由分布列可知E (ξ)=7×0.3+8×0.35+9×0.2+10×0.15=8.2. 答案 8.2 6.有一批产品,其中有12件正品和4件次品,从中任取3件,若ξ表示取到次品的个数,则E (ξ)=________. 解析 ξ的取值为0,1,2,3,则 P (ξ=0)=C 312C 316=1128;P (ξ=1)=C 212C 14C 316=33 70; P (ξ=2)=C 112C 24C 316=970;P (ξ=3)=C 34C 316=1 140 .

期望-方差公式

期望与方差的相关公式 -、数学期望的来由 早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目,题目是这样的:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平? 用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。 这个故事里出现了“期望”这个词,数学期望由此而来。 定义1 若离散型随机变量ξ可能取值为i a (i =1,2,3 ,…),其分布列为i p (i =1,2,3, …),则当i i i p a ∑∞ =1 <∞时,则称ξ存在数学期望,并且数学期望为E ξ=∑∞ =1 i i i p a , 如果i i i p a ∑∞ =1 =∞,则数学期望不存在。[]1 定义2 期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1,2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值. 期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定. 二、数学期望的性质 (1)设C 是常数,则E(C )=C 。 (2)若k 是常数,则E (kX )=kE (X )。 (3))E(X )E(X )X E(X 2121+=+。 三、 方差的定义 前面我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,

高考数学离散型随机变量的期望与方差题型归纳

高考数学离散型随机变量的期望与方差解答题 考点预测和题型解析 在高考中,离散型随机变量的期望与方差试题的出题背景大多数源于课本上,有时也依赖于历年的高考真题、资料中的典型题例为背景,涉及主要问题有:产品检验问题、射击、投篮问题选题、选课,做题,考试问题、试验,游戏,竞赛,研究性问题、旅游,交通问题、摸球球问题、取卡片,数字和入座问题、信息,投资,路线等问题。属于基础题或中档题的层面。高考中一定要尽量拿满分。 ● 考题预测 离散型随机变量的期望与方差涉及到的试题背景有:产品检验问题、射击、投篮问题选题、选课,做题,考试问题、试验,游戏,竞赛,研究性问题、旅游,交通问题、摸球球问题、取卡片,数字和入座问题、信息,投资,路线等问题。 从近几年高考试题看,离散型随机变量的期望与方差问题还综合函数、方程、数列、不等式、导数、线性规划等知识主要考查能力。 ● 知识点回顾 1.离散型随机变量的期望: (1)若离散型随机变量ξ的概率分布为 则称 ++++=n n p x p x p x E 2211ξ为ξ的数学期望(平均值、均值) 简称为期望。 ① 期望反映了离散型随机变量的平均水平。 ② ξE 是一个实数,由ξ的分布列唯一确定。 ③ 随机变量ξ是可变的,可取不同值。 ④ ξE 是不变的,它描述ξ取值的平均状态。 (2)期望的性质: ① C C E =)(为常数)C ( ② b aE b a E +=+ξξ)( 为常数)b a ,( ③ 若),(~p n B ξ,则np E =ξ (二项分布)

2.离散型随机变量的方差 (1)离散型随机变量的方差:设离散型随机变量ξ可能取的值为,,,,,21 n x x x 且这些值的概率分别为 ,,,,,321n p p p p 则称 +-+-=222121)()(p E x p E x D εεε…+-+n n p E x 2)(ε…;为ξ 的方差。 ① 反映随机变量取值的稳定与波动。 ② 反映随机变量取值的集中与离散的程度。 ③ ξD 是一个实数,由ξ的分布列唯一确定。 ④ ξD 越小,ξ取值越集中,ξD 越大,ξ取值越分散。 ⑤ ξD 的算术平均数ξD 叫做随机变量ξ的标准差, 记作σξ。 注:在实际中经常用期望来比较两个类似事件的水平,当水平相近时,再 用方差比较两个类似事件的稳定程度。 (2)方差的性质: ① 0)(=C D 为常数)C ( ② ξξD a b a D 2)(=+ 为常数)b a ,( ③ 若),(~p n B ξ,则npq D =ξ p q -=1其中 (二项分布) ⑤ 22)(ξξξE E D -= 考点预测 根据离散型随机变量的试题背景进行考题类型预测: 考点1:产品检验问题 【例1】已知:甲盒子内有3个正品元件和4个次品元件,乙盒子内有5个正品元件和4个次品元件,现从两个盒子内各取出2个元件,试求 (Ⅰ)取得的4个元件均为正品的概率; (Ⅱ)取得正品元件个数ε的数学期望. 【例2】 某车间在三天内,每天生产10件某产品,其中第一天,第二天分别生产出了1件、2件次品,而质检部每天要从生产的10件产品中随意抽取4件进行检查,若发现有次品,

概率、期望与方差的计算和性质

概率与统计 知识点一:常见的概率类型与概率计算公式; 类型一:古典概型; 1、 古典概型的基本特点: (1) 基本事件数有限多个; (2) 每个基本事件之间互斥且等可能; 2、 概率计算公式: A 事件发生的概率()A P A = 事件所包含的基本事件数 总的基本事件数 ; 类型二:几何概型; 1、 几何概型的基本特点: (1) 基本事件数有无限多个; (2) 每个基本事件之间互斥且等可能; 2、 概率计算公式: A 事件发生的概率()A P A = 构成事件的区域长度(或面积或体积或角度) 总的区域长度(或面积或体积或角度) ; 注意: (1) 究竟是长度比还是面积比还是体积比,关键是看表达该概率问题需要几个变量,如 果需要一个变量,则应该是长度比或者角度比;若需要两个变量则应该是面积比;当然如果是必须要三个变量则必为体积比; (2) 如果是用一个变量,到底是角度问题还是长度问题,关键是看谁是变化的主体,哪 一个是等可能的; 例如:等腰ABC ?中,角C= 23 π ,则: (1) 若点M 是线段AB 上一点,求使得AM AC ≤的概率; (2) 若射线CA 绕着点C 向射线CB 旋转,且射线CA 与线段AB 始终相交且交点是M ,求 使得AM AC ≤的概率; 解析:第一问中明确M 为AB 上动点,即点M 是在AB 上均匀分布,所以这一问应该是长度 之比,所求概率: 13P =; 而第二问中真正变化的主体是射线的转动,所以角度的变化是均匀的,所以这一问应该是角度之比的问题,所以所求的概率:2755 = =1208 P ?; 知识点二:常见的概率计算性质; 类型一:事件间的关系与运算; A+B (和事件):表示A 、B 两个事件至少有一个发生; A B ?(积事件) :表示A 、B 两个事件同时发生; A (对立事件) :表示事件A 的对立事件;

高考数学专题--概率及期望与方差

高考数学专题--概率及期望与方差 建知识网络明内在联系 [高考点拨]本专题涉及面广,往往以生活中的热点问题为依托,在浙江新高考中的考查方式十分灵活,背景容易创新.基于上述分析,本专题按照“古典概型”“随机变量及其分布”两个方面分类进行引导,强化突破. 突破点1、古典概型 [核心知识提炼] 提炼1古典概型问题的求解技巧 (1)直接列举:涉及一些常见的古典概型问题时,往往把事件发生的所有结果逐一 列举出来,然后进行求解. (2)画树状图:涉及一些特殊古典概型问题时,直接列举容易出错,通过画树状图, 列举过程更具有直观性、条理性,使列举结果不重、不漏. (3)逆向思维:对于较复杂的古典概型问题,若直接求解比较困难,可利用逆向思 维,先求其对立事件的概率,进而可得所求事件的概率. (4)活用对称:对于一些具有一定对称性的古典概型问题,通过列举基本事件个数 结合古典概型的概率公式来处理反而比较复杂,利用对称思维,可以快速解决. 提炼2求概率的两种常用方法 (1)将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概 率.

(2)若一个较复杂的事件的对立面的分类较少,可考虑利用对立事件的概率公式, 即“正难则反”.它常用来求“至少”或“至多”型事件的概率. [高考真题回访] 回访古典概型 1.(浙江高考)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( ) A. 1 10 B. 3 10 C.3 5 D. 9 10 D[“所取的3个球中至少有1个白球”的对立事件是“所取的3个球都不是白 球”,因而所求的概率P=1-C3 3 C3 5 =1- 1 10 = 9 10 .] 2.(浙江高考)在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是________. 1 3 [记“两人都中奖”为事件A, 设中一、二等奖及不中奖分别记为1,2,0,那么甲、乙抽奖结果有(1,2),(1,0),(2,1),(2,0),(0,1),(0,2),共6种. 其中甲、乙都中奖有(1,2),(2,1),2种,所以P(A)=2 6 = 1 3 .] 3.(浙江高考)从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于__________. 1 5 [用A,B,C表示三名男同学,用a,b,c表示三名女同学,则从6名同学中选出2人的所有选法为:AB,AC,Aa,Ab,Ac,BC,Ba,Bb,Bc,Ca,Cb,Cc,ab,ac,bc,共15种选法,其中都是女同学的选法有3种,即ab,ac,bc,故 所求概率为 3 15 = 1 5 .] 热点题型1 古典概型

相关文档
最新文档