二次函数的图像与系数的关系,二次函数与一元二次方程教案

二次函数的图像与系数的关系,二次函数与一元二次方程教案
二次函数的图像与系数的关系,二次函数与一元二次方程教案

数学个性化教学教案

授课时间:年月日备课时间年月日年级九学科数学课时 2 h 学生姓名

授课主题22.2二次函数与系数一元二次方程的关系授课教师胡能祥

教学目标1.掌握二次函数y=ax2+bx+c的图像与系数的关系.

2.掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的

情况之间的关系.

教学

重、难点

1.二次函数与系数一元二次方程之间的关系探索.

教学过程一、【历次错题讲解】

二、【基础知识梳理】

知识点1二次函数的图像与系数的关系

(1)a的符号由决定:

①开口向?a0;②开口向?a0.

(2)b的符号由决定:

①在y轴的?b

a、;

②在y轴的?b

a、;

③是?b0.

(3)c的符号由决定:

①点(0,c)在y轴正半轴?c0;

②点(0,c)在原点?c0;

③点(0,c)在y轴负半轴?c0.

知识点2二次函数与一元二次方程的关系

[归纳概括]如果抛物线)0

(

2≠

+

+

=a

c

bx

ax

y与x轴有公共点,公共点的横坐

标是

x,那么当x= 时,函数的值是0,因此x= 就是方程

2=

+

+c

bx

ax的一个根.

[归纳概括]函数)0

(

2≠

+

+

=a

c

bx

ax

y的图像与x轴交点的个数

(1)当0

4

2>

-ac

b时,有交点;

(2)当0

4

2=

-ac

b时,有交点;

(3)当0

4

2<

-ac

b时,没有交点;

学习札记

三、【典型例题剖析】

例1 已知二次函数)0(2

≠++=a c bx ax y 的图像如图所示,试确定代数式①a ;②b ;③c ;④b 2-4ac ;⑤2a+b ;⑥a+b+c ;⑦a-b+c ;⑧4a+2b+c 的符号.

解析:①∵抛物线开口向下,∴a<0 ②∵抛物线的对称轴在y 轴右侧, ∴a 与b 异号(02>-

a

b

),∴b>0 ③∵抛物线与y 轴交于y 轴负半轴,∴c<0 ④∵抛物线与x 轴有两个交点,∴b 2-4ac>0 ⑤∵对称轴为x=1,∴12=-

a

b

,2a+b=0 ⑥∵当x=1时,y>0,∴a+b+c>0 ⑦∵当x=-1时,y<0,∴a-b+c<0 ⑧∵当x=2时,y<0,∴4a+2b+c<0 点评:对照二次函数的图像与系数的关系,得出关于a 、b 、c 的关系式,从而确定某些代数式的符号. 举一反三:根据图象填空:

(1)a _____0;(2)b 0;(3)c 0; (4)ac b 42

- 0 ; (5)2a b +______0; (6)0a b c ++???? ; (7)0a b c -+????;

例2 已知抛物线的解析式为m m x m x y -+--=2

2)12( (1)求证:此抛物线与x 轴必有两个不同的交点;

(2)若此抛物线与直线y=x-3m+4的一个交点在y 轴上,求m 的值.

举一反三:利用抛物线图象求解一元二次方程及二次不等式 (1)方程02

=++c bx ax 的根为___________; (2)方程2

3ax bx c ++=-的根为__________; (3)方程24ax bx c ++=-的根为__________;

(4)不等式20ax bx c ++>的解集为 ; (5)不等式20ax bx c ++<的解集为 ;

课堂练习

课堂练习

本课小结

课后作业布置

课后赏识

评价

课后反馈本节课教学计划完成情况:□照常完成□提前完成

□延后完成,原因___________________________________ 学生的接受程度:□完全能接受□基本能接受

□不能接受,原因___________________________________________ 学生的课堂表现:□很积极□比较积极□一般

□不积极,原因_____________________________________________ 学生上次作业完成情况:完成数量____% 已完成部分的质量____分(5分制)

存在问题_______________________________________配合需求:家长________________________________________________ 学管师________________________________________________

提交时间教研组长

签名

学管师签收

二次函数与根与系数关系综合运用(可编辑修改word版)

中考压轴题之——二次函数与根与系数关系 (黄冈市 2011)24.(14 分)如图所示,过点 F (0,1)的直线 y =kx +b 与抛物线 y = 1 x 2 4 交于 M (x 1,y 1)和 N (x 2,y 2)两点(其中 x 1<0,x 2<0). ⑴求 b 的值. ⑵求 x 1?x 2 的值 ⑶分别过 M 、N 作直线 l :y =-1 的垂线,垂足分别是 M 1、N 1,判断△M 1FN 1 的形状,并证明你的结论. ⑷对于过点 F 的任意直线 MN ,是否存在一条定直线 m ,使 m 与以MN 为直径的圆相切.如果有,请法度出这条直线m 的解析式;如果没有,请说明理由. 第 22 题图 (株洲市 2011 年)24.(本题满分 10 分)孔明是一个喜欢探究钻研的同学,他在和同学 们一起研究某条抛物线 y = ax 2 (a < 0) 的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O ,两直角边与该抛物线交于 A 、 B 两点,请解答以下问题: (1) 若测得OA = OB = 2 (如图 1) ,求 a 的值; (2) 对同一条抛物线,孔明将三角板绕点O 旋转到如图 2 所示位置时,过 B 作 BF ⊥ x 轴于点 F ,测得OF = 1,写出此时点 B 的坐标,并求点 A 的横坐标; (3) 对该抛物线,孔明将三角板绕点O 旋转任意角度时惊奇地发现,交点 A 、 B 的连 线段总经过一个固定的点,试说明理由并求出该点的坐标. 图 1 2 y F N M x l M 1 F 1 N 1 O 图 2

1、如图,已知抛物线 y=-x2+3x+6 交 y 轴于 A 点,点 C(4,k)在抛物线上,将抛物线向右平移 n 个单位长度后与直线 AC 交于心对称,求 n 的值。 3、如图,已知抛物线 y=x2-4x+3,过点 D(0, 的直线与抛物线交于点 M 、N , - ) 2 与 x 轴交于点 E ,且点 M 、N 与 X 轴交于 E 点,且 M 、N 关于点 E 对称, 求直线 MN 的解析式。 * 例 7 如图,在平面直角坐标系中,抛物线 y =- 2 x 2 + b x + c 经过 A (0,-4)、 3 B ( x 1 ,0)、 C ( x 2 ,0)三点,且 x 2 - x 1 =5. (1) 求b 、c 的值; (2) 在抛物线上求一点 D ,使得四边形 BDCE 是以 BC 为对角线的菱形; (3) 在抛物线上是否存在一点 P ,使得四边形 B P O H 是以 OB 为对角线的菱形?若存在,求

二次函数图像与系数关系

二次函数图象与系数的关系 知识点 一、二次函数错误!未找到引用源。的图象与性质 二次函数错误!未找到引用源。图象可由抛物线错误!未找到引用源。平移个单位,再平移个单位而得到. 平移规律如下: (1)平移时与上、下、左、右平移的先后顺,既可以先左右移再上下移,也可以先上下移再左右移; (2)抛物线的移动主要看的移动,即在平移时只要抓住的位置变化就可以了; (3)平移规律:“上加下减,左加右减”. (4)抛物线错误!未找到引用源。经过反向平移也可以得到错误!未找到引用源。; (5)抛物线错误!未找到引用源。的对称轴是直线,顶点坐标是. 二次函数错误!未找到引用源。的性质列表如下: 函数 错误!未找到引 用源。的符号 错误!未找到引用源。错误! 未找到引用源。 错误!未找到引用源。错误! 未找到引用源。 图象 开口方向 对称轴 顶点坐标 最值

函数的增减性 二、错误!未找到引用源。与错误!未找到引用源。的互相转化 1.通过、可以将错误!未找到引用源。化为错误!未找到引用源。. 2.利用可以将错误!未找到引用源。转化为错误!未找到引用源。.简记为“一提,二配,三计算”.即错误!未找到引用源。错误!未找到引用源。. 因此,二次函数错误!未找到引用源。的图象是一条抛物线,它的对称轴是直线,顶点坐标 是. 三、二次函数错误!未找到引用源。的图象及性质 函数 错误!未找到引用源。的符号错误!未找到引用源。错误!未找 到引用源。 错误!未找到引用源。错误!未找 到引用源。 图象 开口方向 对称轴 顶点坐标 增减性 最值 拓展:对于抛物线错误!未找到引用源。. (1)若已知在直线错误!未找到引用源。的一侧,图象上升或下降,(能/不能)确定直线错误!未找到引用源。是该抛物线的对称轴. (2)若已知在直线错误!未找到引用源。的两侧,图象一侧上升而另一侧下降,则(能/不能)确定该直线

二次函数的图像教学设计

《二次函数的图像(1)》教学设计 教学目标: 1、经历描点法画函数图像的过程; 2、学会观察、归纳、概括函数图像的特征; 3、掌握2ax y =型二次函数图像的特征; 4、经历从特殊到一般的认识过程,学会合情推理。 教学重点: 2ax y =型二次函数图像的描绘和图像特征的归纳 教学难点: 选择适当的自变量的值和相应的函数值来画函数图像,该过程较为复杂。 教学设计: 一、回顾知识 前面我们在学习正比例函数、一次函数和反比例函数时时如何进一步研究这些函数的?先(用描点法画出函数的图像,再结合图像研究性质。) 引入:我们仿照前面研究函数的方法来研究二次函数,先从最特殊的形式即 2ax y =入手。因此本节课要讨论二次函数2ax y =(0≠a )的图像。 板书课题:二次函数2ax y =(0≠a )图像 二、探索图像 1、 用描点法画出二次函数2x y =和2x y -=图像 ①无论x 取何值,对于2x y =来说,y 的值有什么特征?对于2x y -=来说,又有什么特征? ②当x 取 1,2 1 ±±等互为相反数时,对应的y 的值有什么特征? (2) 描点(边描点,边总结点的位置特征,与上表中观察的结果联系起来). (3) 连线,用平滑曲线按照x 由小到大的顺序连接起来,从而分别得到

2x y =和2x y -=的图像。 2、 练习:在同一直角坐标系中画出二次函数22x y =和22x y -=的图像。 学生画图像,教师巡视并辅导学困生。(利用实物投影仪进行讲评) 3、二次函数2ax y =(0≠a )的图像 由上面的四个函数图像概括出: (1) 二次函数的2ax y =图像形如物体抛射时所经过的路线,我们把它叫做抛物线, (2) 这条抛物线关于y 轴对称,y 轴就是抛物线的对称轴。 (3) 对称轴与抛物线的交点叫做抛物线的顶点。注意:顶点不是与y 轴的交点。 (4) 当o a 时,抛物线的开口向上,顶点是抛物线上的最低点,图像在x 轴的上方(除顶点外);当o a 时,抛物线的开口向下,顶点是抛物线上的最高点图像在x 轴的下方(除顶点外)。 (最好是用几何画板演示,让学生加深理解与记忆) 三、 课堂练习 观察二次函数2x y =和2x y -=的图像 (2)在同一坐标系内,抛物线2x y =和抛物线2x y -=的位置有什么关系?如果在同一个坐标系内画二次函数2ax y =和2ax y -=的图像怎样画更简便? (抛物线2x y =与抛物线2x y -=关于x 轴对称,只要画出2ax y =与2 ax y -=中的一条抛物线,另一条可利用关于x 轴对称来画) 四、例题讲解 例题:已知二次函数2ax y =(0≠a )的图像经过点(-2,-3)。 (1) 求a 的值,并写出这个二次函数的解析式。 (2) 说出这个二次函数图像的顶点坐标、对称轴、开口方向和图像的位置。 练习:(1)课本第31页课内练习第2题。 (2)已知抛物线y=ax2经过点A (-2,-8)。 (1)求此抛物线的函数解析式;

二次函数和根与系数的关系

精心整理 1:已知关于x的二次函数y=x2﹣2mx+m2+m的图象与关于x的函数y=kx+1的图象交于两点A(x )、B(x2,y2);(x1<x2) 1)当k=1,m=0,1时,求AB的长;(2)当k=1,m为任何值时,猜想AB的长是否不变?并证明猜想. 平面内两点间的距离公式 得 AB=AC=|x|==;同理,当 AB=.理由如下: ,得 AB=AC=|x|==; ,得

,得B= AC= |x |= = ,∴,得(k x 1+2kx 1+1)+(k x 2+2kx 2+1)=(1+k +2x =-b a =4+k m y + n y =0=k(4+k) k=1或-5(舍) 直线MN 的解析式为y=x- 2 5

如图,抛物线y=x 2 ﹣2x ﹣3与坐标轴交于A 、B 、三点,直线y=kx-1与抛物线交于P 、Q 两点,且y 轴平分△ 的面积,求k 的值。(答案:k=-2) 已知:二次函数m x m x y ++-=)1(2的图象交x 轴于)0,(1x A 、)0,(2x B 两点, 轴正半轴于点C ,且102 2 21=+x x 。 (1)求此二次函数的解析式; (2)是否存在过点D (0,2 5)的直线与抛物线交于点M 、N ,与x 轴交于点 明理由。 2向上平 抛物线于M 图,抛物线P ,当S △PE ,求E 、F 图,抛物线C ,抛物线的顶M A1B1≦4,求 的最大距离图,抛物线n 个单位长度后 线AC 交于M :∵点A 、C 抛物线y=-x2+3x+6的顶点G(1.5,8.25) 物线向右平移n 个单位后,G 点对应点G ’坐标为(1.5+n,8.25),设新抛物线解析式 -[x-(1.5+n)]2+8.25 立:2( 1.5)8.256 y x n y x ?=---+?=-+?∴x2-(4+2n)x+n2+3n=0∴M N X X +=4+2n

二次函数和根与系数的关系

二次函数和根与系数的 关系 SANY GROUP system office room 【SANYUA16H-

例1:已知关于x的二次函数y=x2﹣2mx+m2+m的图象与关于x的函数y=kx+1的图象交于两点A (x1,y1)、B(x2,y2);(x1<x2)(1)当k=1,m=0,1时,求AB的长;(2)当k=1,m为任何值时,猜想AB的长是否不变?并证明你的猜想. (3)当m=0,无论k为何值时,猜想△AOB的形状.证明你的猜想. (平面内两点间的距离公式). 解:(1)当k=1,m=0时,如图. 由得x2﹣x﹣1=0,∴x1+x2=1,x1?x2=﹣1, 过点A、B分别作x轴、y轴的平行线,两线交于点C.∵直线AB的解析式为y=x+1, ∴∠BAC=45°,△ABC是等腰直角三角形,∴AB=AC=|x2﹣x1|==;同理,当k=1,m=1时,AB=; (2)猜想:当k=1,m为任何值时,AB的长不变,即AB=.理由如下: 由,得x2﹣(2m+1)x+m2+m﹣1=0, ∴x1+x2=2m+1,x1?x2=m2+m﹣1,∴AB=AC=|x2﹣x1|==; (3)当m=0,k为任意常数时,△AOB为直角三角形,理由如下: ①当k=0时,则函数的图象为直线y=1, 由,得A(﹣1,1),B(1,1),显然△AOB为直角三角形;

②当k=1时,则一次函数为直线y=x+1, 由,得x 2 ﹣x ﹣1=0,∴x 1+x 2=1,x 1?x 2=﹣1, ∴AB= AC= |x 2﹣x 1|= =,∴AB 2 =10, ∵OA 2 +OB 2 =x 12 +y 12 +x 22 +y 22 =x 12 +x 22 +y 12 +y 22 =x 12 +x 22 +(x 1+1)2 +(x 2+1)2 =x 12 +x 22 +(x 12 +2x 1+1)+(x 22 +2x 2+1)=2(x 12 +x 22 ) +2(x 1+x 2)+2=2(1+2)+2×1+2=10,∴AB 2=OA 2+OB 2 ,∴△AOB 是直角三角形; ③当k 为任意实数,△AOB 仍为直角三角形. 由 ,得x 2﹣kx ﹣1=0,∴x 1+x 2=k ,x 1?x 2=﹣1,∴AB 2=(x 1﹣x 2)2+(y 1﹣y 2)2=(x 1﹣x 2)2+(kx 1﹣kx 2)2 = (1+k 2 )(x 1﹣x 2)2 =(1+k 2 )[(x 1+x 2)2 ﹣4x 1?x 2]=(1+k 2 )(4+k 2 )=k 4 +5k 2 +4, ∵OA 2 +OB 2 =x 12 +y 12 +x 22 +y 22 =x 12 +x 22 +y 12 +y 22 =x 12 +x 22 +(kx 1+1)2 +(kx 2+1)2 =x 12 +x 22 +(k 2 x 12 +2kx 1+1)+(k 2 x 22 +2kx 2+1)= (1+k 2)(x 12+x 22)+2k (x 1+x 2)+2=(1+k 2)(k 2+2)+2k?k+2=k 4+5k 2 +4, ∴AB 2 =OA 2 +OB 2 , ∴△AOB 为直角三角形. 如图,已知抛物线y=x2-4x+3,过点D(0,- 2 5 )的直线与抛物线交于点M 、N ,与x 轴交于点E ,且点M 、N 与X 轴交于E 点,且M 、N 关于点E 对称,求直线MN 的解析式。 解:∵D (0,- 2 5) ∴设直线MN 的解析式为y=kx-2 5 ∴252 43 y kx y x x ? =-???=-+? ∴kx-2 5 =x2-4x+3 ∴x2-(4+k)x+11 2=0 1x +2x =-b a =4+k 4 2 2 5 E M N D O

二次函数中各项系数abc与图像的关系

二次函数中各项系数a ,b ,c 与图像的关系 一、首先就y=ax 2+bx+c (a≠0)中的a ,b ,c 对图像的作用归纳如下: 1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下; 决定张口的大小:∣a ∣越大,抛物线的张口越小. 2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关. b 与a 同号,说明02<- a b ,则对称轴在y 轴的左边; b 与a 异号,说明?b 2a >0,则对称轴在y 轴的右边; 特别的,b = 0,对称轴为y 轴. 3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c ) c > 0 抛物线与y 轴的交点在y 轴的正半轴; c < 0 抛物线与y 轴的交点在y 轴的负半轴; 特别的,c = 0,抛物线过原点. 4 a,b,c 共同决定判别式?=b 2?4ac 的符号进而决定图象与x 轴的交点 b 2?4a c >0 与x 轴两个交点 b 2?4a c =0 与x 轴一个交点 b 2?4a c <0 与x 轴没有交点 5 几种特殊情况:x=1时,y=a + b + c ; x= -1时,y=a - b + c . 当x = 1时,① 若y > 0,则a + b + c >0;② 若y < 时0,则a + b + c < 0 当x = -1时,① 若y > 0,则a - b + c >0;② 若y < 0,则a - b + c < 0. 扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c 。 一.选择题(共8小题) 1.已知二次函数y=ax 2+bx +c 的图象大致如图所示,则下列关系式中成立的是( ) A .a >0 B .b <0 C .c <0 D .b +2a >0 2.如果二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,那么下列不等式成立的是( ) A .a >0 B .b <0 C .ac <0 D .bc <0. 3.已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:① abc >0;②b <a +c ;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论有 ( ) A .1个 B .2个 C .3个 D .4个 4.二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,对于下列结论:①a <0; ②b <0;③c >0;④2a +b=0;⑤a ﹣b +c <0,其中正确的个数是( ) A .4个 B .3个 C .2个 D .1个 第3题图 第4题图 第5题图 第6题图 5.二次函数y=ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论::①a <0; ②b >0;③b 2﹣4ac >0;④a +b +c <0;其中结论正确的个数有( ) A .1个 B .2个 C .3个 D .4个 6.如图所示,抛物线y=ax 2+bx +c 的顶点为(﹣1,3),以下结论:①b 2﹣4ac <0;②4a ﹣2b +c <0;

二次函数教案设计(全)

课题:1.1二次函数 教学目标: 1、从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。 2、理解二次函数的概念,掌握二次函数的形式。 3、会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围。 4、会用待定系数法求二次函数的解析式。 教学重点:二次函数的概念和解析式 教学难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。 教学设计: 一、创设情境,导入新课 问题1、现有一根12m 长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时 ,它的面积最大,他说的有道理吗? 问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度? 这些问题都可以通过学习俄二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题) 二、 合作学习,探索新知 请用适当的函数解析式表示下列问题中情景中的两个变量y 与x 之间的关系: (1)面积y (cm 2)与圆的半径 x ( Cm ) (2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文 x 两年后王先生共得本息y 元; (3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12Om , 室内通道的尺寸如图,设一条边长为 x (cm), 种植面积为 y (m2) (一)教师组织合作学习活动: 1、先个体探求,尝试写出y 与x 之间的函数解析式。 2、上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨。 (1)y =πx 2 (2)y = 2000(1+x)2 = 20000x 2+40000x+20000 (3) y = (60-x-4)(x-2)=-x 2+58x-112 (二)上述三个函数解析式具有哪些共同特征? 让学生充分发表意见,提出各自看法。 x

二次函数根系数关系

一元二次方程的根与系数的关系也称为韦达定理,其逆定理也成立,它是由16世纪的法国数学家韦达发现的.它揭示了实系数一元二次方程的根与系数的关系,它形式简单但内涵丰富,在数学解题中有着广泛的应用. 【知识要点】 1.如果方程(a≠O)的两根为,,那么,, 这就是一元二次方程的根与系数的关系. 2.如果两个数的和为m,积为n,则以这两个数为根的一元二次方程为.3.若已知一元二次方程的一个根,可不直接解原方程,利用根与系数关系,求出另一根.4.求一元二次方程根的对称式的值,关键在于利用两根和及两根积表示所给对称式. 5.当一元二次方程(a≠O)有两根,时:(1)若,则方 程有一正一负根;(2)若,,则方程有两个正根;(3)若 ,,则方程有两个负根. 【趋势预测】 利用根与系数关系,可以解决许多有关方程的问题,有些非方程类的问题我们也可以通过根与系数关系构造一元二次方程,然后用一元二次方程的知识来解.因此预测以后竞赛的重点在以下几个方面: ①求方程中字母系数的值或取值范围; ②求代数式的值; ③结合根的判别式,判断根的符号特征;

④构造一元二次方程解题; ⑤证明代数等式,不等式; ⑥与一元二次方程的整数根有关的问题. 【范例解读】 题1(1997·陕西)已知二次方程(ac≠0)有两异号实根m和n,且m0,从而,. 方程的判别式: ,故方程 必有两实根. 设这两个实根为,,则由根与系数关系得 ,,可知,均为负数,故选(A). 题2(1997·上海)若a和b是方程的两个实根,c和d是方程 的两个实根,e和f是方程的两个实根,则

二次函数图像与系数的关系

二次函数图像与系数的关系 1. 如图,是二次函数图象的一部分,图象过点,对称轴为,给出四个结论:① ;②;③;④。其中正确结论的个数是()。 A. 个 B. 个 C. 个 D. 个 2. 小轩从如图所示的二次函数()的图象中,观察得出了下面五条信息:①;② ;③;④;⑤。你认为其中正确信息的个数有()。 A. 个 B. 个 C. 个 D. 个 3. 设二次函数,当时,,当时,,那么的取值范围是()。 A. B. C. D. 4. 如图,抛物线与轴交于点,顶点坐标为,与轴的交点在,之间 (包含端点),则下列结论:①当时,;②;③;④中,正确的是()。 A. ①② B. ③④ C. ①④ D. ①③ 5. 已知二次函数的图象如图所示。下列结论:①;②;③;④ ,其中正确的个数有()。 A. B. C. D.

6. 已知二次函数()的图象如图所示,有下列结论: ①;②;③;④。其中,正确结论的个数是()。 A. B. C. D. 7. 如图所示,二次函数的图象中,王刚同学观察得出了下面四条信息:(1) ;(2);(3);(4),其中错误的有()。 A. 个 B. 个 C. 个 D. 个 8. 二次函数()的图象如图所示,若,,。则 ,,中,值小于的数有()。 A. 个 B. 个 C. 个 D. 个 9. 如图,已知二次函数()的图象与轴交于点,对称轴为直线,与轴 的交点在和之间(包括这两点),下列结论:①当时,;②; ③;④。其中正确的结论是()。 A. ①③④ B. ①②③ C. ①②④ D. ①②③④ 10. 已知二次函数()的图象如图所示,下列结论错误的是()。 A. B. C. (为任意实数) D.

2.2 二次函数的图象与性质(第3课时)教学设计

第二章 二次函数 《二次函数的图象与性质(第3课时)》 教学设计说明 深圳市翠园中学初中部 黄缨 梁成 一、学生知识状况分析 学生的知识技能基础 学生在前几节课中,已学习过了二次函数的概念和函数2ax y =、函数c ax y +=2的图象和性质,学生在此过程中,已学会用列表、描点的方法作出二次函数的图象,并积累了如何从图象的角度研究函数性质的经验.另外,学生在初二学过图形平移变换的知识,这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能.因此,在本节课中,他们可以联系初二已学图形平移变换知识,运用图象变换的观点把二次函数2ax y =的图象经过一定的平移变换,从特殊到一般,得到二次函数k h x a y +-=2)( 的图象和性质. 学生活动经验基础 在上两节课,学生进行了列表、画图等操作活动,引导了学生积极动手、动口、动脑来进行归纳整理;学生已初步具备自已通过画图,直观地探索二次函数图象和性质的方法.在本节课中,学生可以继续沿用上节课的活动经验来进一步探索二次函数的图象和性质. 二、教学任务分析 根据教材内容和学生已经具备的知识储备和能力,制定三维目标如下: 知识与技能:学生会画出特殊二次函数2)(h x a y -=和k h x a y +-=2)(的图象,正确地说出它们的开口方向,对称轴和顶点坐标,能理解它们的图象与抛物线2ax y =的图象的关系,理解k h a ,,对二次函数图象的影响. 过程与方法:经历探索二次函数的图象的作法和性质的过程,培养学生动手

作图的能力,观察、类比、归纳的能力,以及用数形结合的方法思考并解决问题的能力. 情感态度与价值观:体会建立二次函数的图象与表达式之间联系的必要性,发展几何直观.经历观察、猜想、总结等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点. 教学重点:二次函数k h x a y +-=2)(的图象与性质. 教学难点:二次函数k h x a y +-=2)(图象与图象2ax y =之间的关系,k h a ,,对二次函数图象的影响. 三、教学过程分析 学习数学的过程是一个不断探索、发现、验证的过程,根据“以人为本,以学定教”的教学理念, 在本节课的教学过程中,设计了5个环节:①提出问题,引入新课;②合作探究,发现和验证;③启发引导,形成结论;④巩固提高,拓展延伸;⑤当堂检测.这五个环节环环相扣、层层深入,注重关注整个过程和全体学生,充分调动学生的参与性. 第一环节: 提出问题,引入新课 1、回忆一下: 二次函数22x y =的开口方向 ,对称轴 ,顶点坐标 . 二次函数322+=x y 的开口方向 ,对称轴 ,顶点坐标 .它图象可以由22x y =的图象向 平移 个单位得到. 2、提出问题:我们已学习过两种类型的二次函数,2ax y =与 c ax y +=2,知道它们都是轴对称图形,对称轴是y 轴,顶点都是原点.还知道 c ax y +=2的图象是函数2ax y =的图象经过上下移动得到的,那么如果将函数2 ax y =的图象左右移动呢?它左右移动后又会得到什么样的函数形式,它又有哪些性质呢?本节课我们就来研究有关问题.

二次函数的图像与系数的关系

二次函数的图像与系数的关系 1.已知二次函数y=ax 2 +bx+c (a ≠0)的图象如图,有下列5个结论:①abc <0;②3a+c >0;③4a+2b+c >0;④2a+b=0;⑤b 2 >4ac.其中正确的结论的有( ) A. 1个 B. 2个 C. 3个 D. 4个 2.如图,二次函数y =ax 2 +bx +c (a ≠0)的大致图象,关于该二次函数下列说确的是( ) A. a >0,b <0,c >0 B. b 2 ﹣4ac <0 C. 当﹣1<x <2时,y >0 D. 当x >2时,y 随x 的增大而增大 3.如图,二次函数 图象,过点A (3,0),二次函数图象的对称轴是直线 x=1,下列结论正确的是( ) A. 2a+b=0 B. ac>0 C. D. 4.已知函数y=mx 2 -6x+1(m 是常数),若该函数的图象与x 轴只有一个交点,则m 的值为( ) A. 9 B. 0 C. 9或0 D. 9或1 5.如图,二次函数2 y ax bx c =++的图象的对称轴是直线1x =,则下列理论:①0a <, 0b <②20a b ->,③0a b c ++>,④0a b c -+<,⑤当1x >时, y 随x 的增大

而减小,其中正确的是(). A. ①②③ B. ②③④ C. ③④⑤ D. ①③④ 6.已知y=ax+b的图象如图所示,则y=ax2+bx的图象有可能是() A. B. C. D. 7.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论: ①4a+b=0; ②9a+c<3b; ③25a+5b+c=0; ④当x>2时,y随x的增大而减小. 其中正确的结论有() A. 1个 B. 2个 C. 3个 D. 4个 8.如下图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=-1,下列结论中①ab>0,②a+b+c>0,?③当-2<x<0时,y<0.正确的个数是()

二次函数图像与系数的关系

教学设计—— 二次函数的系数与图像 长葛六中刘晓金 目标:1、通过观察二次函数的图像的形成过程,导出二次函数的图像与系数的关系。 2、理解和探索相关二次函数的图像之间的关系。 3、会用学习的知识判断相关二次函数的图像之间的关系。 4、运用相关知识解决平移、对称、翻转图像的抛物线解析式。 重点:1、探索和总结二次函数的图像与系数之间的关系。 2、运用相关知识解决问题。 难点:运用相关知识解决问题。 学法:1、通过观察发现相关知识。 2、通过合作探索知识的运用。 教法:运用课件对知识由浅入深地进行展示,不断引导学生观察、探索、总结和应用。 教学过程 一、课堂导入 1、导言:不同的二次函数,图像也不相同,即使有时形状相同,在坐标系中的位置也不尽相同。你知道这是为什么吗?本节我们就一起来探讨一下。 (展示幻灯片1) 2、展示本节教学主要过程。 (展示幻灯片2) 二、师生互动过程 1、a的符号与抛物线开口方向

①、学生在练习本上画出y=x2,y=-x2的草图,观察抛物线的开口方向。 ②、(展示幻灯片3) ③、学生对着幻灯片,检查自己的发现。 ④、总结出:a>0时抛物线开口方向向上,a<0时抛物线开口方向向下。 ⑤、练习在抛物线y=(k-1)x2+x+1中k 时开口向上,k 时开口向下。 2、a的绝对值与图像开口的大小 ①、导言:我们知道二次函数的图像虽然是抛物线,但是形状却不尽相同,这究竟是为什么呢? ②、(展示幻灯片4)引导学生认真观察不同函数图像的形状(开口大小)与什么相关联? ③、引导学生总结出:a的绝对值相等,抛物线开口方向不同,大小相同。 ④、练习k取时,抛物线y=(k+3)x2-x+6可以由抛物线y=2x2变化而来。 3、C与图像和y轴的交点位置 ①、(展示幻灯片5) ②、通过引导学生,使学生总结出:C=0时抛物线与y轴相交于原点;C >0时抛物线与y轴相交于X轴上方;C<0时抛物线与y轴相交于x轴下方。 (C的值决定抛物线与y轴相交的位置) 4、a.b与对称轴的位置 ①、学生写出y=x2, y=x2+2x, y=x2-2x, y=-x2+2x, y=-x2-2x 中各个式子中a、b的值,并计算出ab 的值。 ②、(展示幻灯片6) ③、引导学生探讨幻灯片中各个图像的形成过程,总结出:ab=0时对称轴与y 轴重合;ab>0时对称轴在y轴的左边;ab<0时对称轴在y轴的右边。

二次函数的图像与性质的教案

二次函数的图像与性质的教案(3) 【目标】 1. 经历探索二次函数y =ax 2(a ≠0)及y =a(x-h)2 (a ≠0)的图象作法和性质 的过程; 2. 能够理解函数y =a(x-h)2 (a ≠0)与y =ax 2的图象的关系,了解a,h,k 对 二次函数图象的影响。 3.能正确说出函数 y =a(x-h)2的图象的开口方向,顶点坐标和对称轴。 【重点】 理解函数y =a(x-h)2 (a ≠0)与y =ax 2的图象的关系及性质; 【难点】 理解函数y =a(x-h)2 (a ≠0)与y =a x 2的图象的关系及性质; 同学们还记得一次函数y=2x 与y=2(x-1)的图象的关系吗? 你能由此推测二次函数2 x y =与y =(x-1)2的图象之间的关系吗?那么 2x y =与y=(x-1)2的图象之间又有何关系? 动手操作、探究: 在同一平面内画出函数2 x y =与y=(x-1)2的图象。比较它们的性质,你可以 得到什么结论? 【探究问题1】 形如 的二次函数的开口方向,对称轴,顶点坐标各是什么? 我们已经了解到,函数k ax y +=2的图象,可以由函数2ax y =的图象上下 平移所得,那么函数2)2(2 1-=x y 的图象,是否也可以由函数221x y =平移 而得呢?画图试一试,你能从中发现什么规律吗? 1、在平面直角坐标系中,并画出函数2)1(+=x y 的图象。 2、比较它与函数2 x y =的图象之间的关系。 结论: (1)抛物线y=a(x-h)2(a ≠0)与抛物线y =ax 2(a ≠0)的形状一样,只是位置不 同,因此抛物线y=a(x-h)2可通过平移抛物线y =ax 2(a ≠0)得到。当h >0时, 把抛物线y =ax 2(a ≠0)向左平移|h|个单位得到抛物线y=a(x-h)2,当h<0时, 把抛物线y =ax 2(a ≠0)向右平移|h|个单位得到抛物线y=a(x-h)2

二次函数图像和系数的关系

二次函数图像与系数的关系 1.如图,是二次函数图象的一部分,图象过点,对称轴为,给出四个结论:① ;②;③;④。其中正确结论的个数是()。 A.个 B.个 C.个 D.个 2.小轩从如图所示的二次函数()的图象中,观察得出了下面五条信息:①;② ;③;④;⑤。你认为其中正确信息的个数有()。 A.个 B.个 C.个 D.个 3.设二次函数,当时,,当时,,那么的取值范围是()。 A. B. C. D. 4.如图,抛物线与轴交于点,顶点坐标为,与轴的交点在,之间 (包含端点),则下列结论:①当时,;②;③;④中,正确的是()。 A.①② B.③④ C.①④ D.①③ 5.已知二次函数的图象如图所示。下列结论:①;②;③;④ ,其中正确的个数有()。 A. B. C. D.

6.已知二次函数()的图象如图所示,有下列结论: ①;②;③;④。其中,正确结论的个数是()。 A. B. C. D. 7.如图所示,二次函数的图象中,王刚同学观察得出了下面四条信息:(1) ;(2);(3);(4),其中错误的有()。 A.个 B.个 C.个 D.个 8.二次函数()的图象如图所示,若,,。则 ,,中,值小于的数有()。 A.个 B.个 C.个 D.个 9.如图,已知二次函数()的图象与轴交于点,对称轴为直线,与轴 的交点在和之间(包括这两点),下列结论:①当时,;②; ③;④。其中正确的结论是()。 A.①③④ B.①②③ C.①②④ D.①②③④ 10.已知二次函数()的图象如图所示,下列结论错误的是()。 A. B. C. (为任意实数) D.

11. 已知二次函数()的图象如图所示,对称轴为。下列结论中,正确的是 ()。 A. B. C. D. 12. 如图,二次函数()的图象经过点和,下列结论中正确的是()。 A. B. C. D. 13. 如图,二次函数的图象与轴正半轴相交,其顶点的坐标为,下列结论: ①;② ;③;④。其中错误的是()。 A.① B.② C.③ D.④ 14. 如图,抛物线()过点和点,且顶点在第四象限,设, 则的取值范围是()。 A. B. C. D. 15. 已知二次函数的图象如图,则下列叙述正确的是()。 A. B. C. D.将该函数图象向左平移个单位后所得到抛物线的解析式为

二次函数图像与系数关系含答案

二次函数图像与系数关系 一.选择题(共9小题) 1.(2013?义乌市)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y 轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论: ①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中, 正确的是() A.①②B.③④C.①④D.①③ 考点:二次函数图象与系数的关系. 专题:计算题;压轴题. 分析:①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断; ②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入 (3a+b),并判定其符号; ③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值 范围; ④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.解答:解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0), ∴根据图示知,当x>3时,y<0. 故①正确; ②根据图示知,抛物线开口方向向下,则a<0. ∵对称轴x=﹣=1, ∴b=﹣2a, ∴3a+b=3a﹣2a=a<0,即3a+b<0. 故②错误; ③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0), ∴﹣1×3=﹣3, ∴=﹣3,则a=﹣. ∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点), ∴2≤c≤3, ∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣. 故③正确;

④根据题意知,a=﹣,﹣=1, ∴b=﹣2a=, ∴n=a+b+c=c. ∵2≤c≤3, ∴≤c≤4,即≤n≤4. 故④错误. 综上所述,正确的说法有①③. 故选D. 点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定. 2.(2013?烟台)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是() A.①②B.②③C.①②④D.②③④ 考点:二次函数图象与系数的关系. 专题:压轴题. 分析:根据图象得出a>0,b=2a>0,c<0,即可判断①②;把x=2代入抛物线的解析式即可判断 ③,求出点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),根据当x>﹣1时,y随x的 增大而增大即可判断④. 解答:解:∵二次函数的图象的开口向上, ∴a>0, ∵二次函数的图象y轴的交点在y轴的负半轴上, ∴c<0, ∵二次函数图象的对称轴是直线x=﹣1, ∴﹣=﹣1, ∴b=2a>0,

二次函数的图像与性质教案

二次函数y= ax 2+bx+c 的图象与性质 年级:九年级 执教老师:田老师 【教学目标】 1. 知识与技能 会用配方法确定二次函数y= ax 2+bx+c 图象的开口方向、对称轴和顶点坐标。理解二次函数y= ax 2+bx+c 的性质。 2. 过程与方法 让学生经历配方的过程,掌握抛物线的对称轴和顶点坐标。 3. 情感态度与价值观 培养学生积极探索、合作交流的意识。 【教学重点】 理解、掌握对称轴a b x 2-= , 顶点坐标(a b 2- ,a b ac 442-) 【教学难点】 用配方法确定对称轴、顶点坐标。 【教学过程】 一、温故知新 1. 耐心填一填

2. 抛物线y =-2(x +3)2-6的开口 ,对称轴是 , 顶点坐标为 。 当x 时,y 随x 的增大而减小;当x 时,y 随x 的增大而增大; 当x 时,函数y 有最 值 。 3. 你能说出y =-2x 2+6x -1图象的开口方向、对称轴和顶点坐标吗? 二、探索新知 1.你能将二次函数 y =-2(x +3)2-6化成一般形式吗? 2. 怎样将二次函数一般式y =-2x 2+6x -1化成顶点式y=a(x -h)2+k ? y =-2x 2+6x -1 =-2(x 2-3x +21 ) 提:提取二次项系数 =-2[x 2-3x +223)(-223)(+21 ] 配:括号内配成完全平方 =-2[(x -23)2-47 ] (加上再减去一次项系数一半的平方) =-2(x -23)2+2 7 化:化成顶点式 3. 提问: ⑴ 对称轴是 , 顶点坐标是( ) ⑵ 当x 等于多少时,函数的值最大?最大值是多少? 4. 求函数122 12-+-=x x y 的最大值。

一元二次方程的根与系数的关系

一元二次方程的根与系数的关系 教材分析:中学阶段涉及的一元二次内容有函数的二次函数,研究几何图形中的有二次曲线,一元二次方程的求根公式向我们揭示了两根与系数间的的密切关系,而韦达定理介绍的根与系数的关系是在求根公式的基础上,根与系数的进一步发现,这一发现在数学学科中具有较强的实用价值,学生在处理有关一元二次方程的问题时,就会多一些思想和方法,同时,也为今后进一步学习方程理论打下基础. 学情分析:1.学生已学习用求根公式法解一元二次方程,自主探究根与系数的关系是完全可能的。2.学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征,3.向学生渗透认识事物的规律是由特殊到一般,再由一般到特殊,培养学生勇于探索、积极思维的精神. 教学目标 知识目标: 1.经历一元二次方程根与系数关系的探究过程培养学生的观察思考,归纳概括能力 2.掌握一元二次方程的根与系数的关系. 能力目标: 通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。 情感目标: 1.渗透由特殊到一般,再由一般到特殊的认识事物的规律; 2.经历观察、探索、猜想、证明的过程,得出一元二次方程根与系数的关系,让学生经历合情推理到演绎推理的认识事物的模式,培养学生用辨证思想认识事物. 教学重点和难点 重点:一元二次方程根与系数的关系; 难点:如何通过求根公式发现韦达定理,正确理解根与系数的关系.

教学关键:1.激发学生对根与系数关系的求知欲望; 2.引导启发学生来发现如何推导根与系数的关系 教学过程 一、课前游戏环节:你知道陈老师今年多大吗?猜猜,。。。,对于我来说年龄绝对是个秘密,我不能直接告诉你,我们现在在学习一元二次方程,我的年龄是0180272=+-x x 的两根之和,你们猜一猜,不解方程,能不能求出陈老师的年龄。 由求根公式可知,一元二次方程的根仅仅由系数a 、b 、c 确定,换句话,就是说根与系数有密切的关系,当然这种根与系数的关系不容易立刻被发现。我们用配方法、因式分解法等措施求出根。除此之外,一元二次方程的两个根与系数到底还有没有其他关系? 二、探索发现 活动任务:全班同学在课本中找出已经整理成一般式的一元二次方程,并且最好是已经确定两根的方程。一般来说,学生会优先选取一元二次方程系数a 、b 、c 为整数的并且跟也为整数的方程,教师在此进行引导,要求尽可能的找出各种类型的例子,例子包括系数a 、b 、c 为正数、负数、0;根为正数、负数顿好的。学生若没有提出,老师在表格中补充。小组讨论 前后间四人小组合作,老师思路引导:代数学科中数与式的结构编排,让我们想到了两根运算上的最简单的组合:和差积商。刚才所列举的数中,观察这两数的和差积商,思考根与系数还有什么密切关系?

二次函数系数abc与图像的关系28318

二次函数系数a、b、c与图像的关系 知识要点 二次函数y=ax2+bx+c系数符号的确定: (1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0. (2)b由对称轴和a的符号确定:由对称轴公式x=判断符号. (3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0. (4)b2-4ac的符号由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac <0. (5)当x=1时,可确定a+b+c的符号,当x=-1时,可确定a-b+c的符号. (6)由对称轴公式x=,可确定2a+b的符号. 一.选择题(共9小题) 1.(2014?威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法: ①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0 (m≠﹣1). 其中正确的个数是() A.1B.2C.3D.4 2.(2014?仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下 结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号 是() A.③④B.②③C.①④D.①②③3.(2014?南阳二模)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下 列四个结论: ①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有() A.1个B.2个C.3个D.4个 4.(2014?襄城区模拟)函数y=x2+bx+c与y=x的图象如图,有以下结论: ①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0. 其中正确结论的个数为() A.1B.2C.3D.4 5.(2014?宜城市模拟)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1, 且过点(﹣3,0)下列说法: ①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点, 则y1>y2. 其中说法正确的是()

相关文档
最新文档