比例求和运算电路实验报告

比例求和运算电路实验报告
比例求和运算电路实验报告

实验四比例求和运算电路

一、实验目的

①掌握用集成运算放大器组成比例\求和电路的特点和性能;

②学会用集成运算放大电路的测试和分析方法。

二、实验仪器

①数字万用表;②示波器;③信号发生器。

三、实验内容

Ⅰ.电压跟随器

实验电路如图1所示:

图1 电压跟随器

按表1内容实验并记录。

V i(V)-2-0.50+0.51 R L=∞-2.001-0.5050.0030.507 1.002 V O(V)

R L=5K1-2.001-0.5050.0030.507 1.002

表1

Ⅱ.反相比例放大电路

实验电路如图2所示:

图2 反相比例放大器

1)按表2内容实验并测量记录:

直流输入电压U i(mV)3010030010003000

输出电压

U O 理论估算(mV)-300-1000-3000-10000-30000实测值(mV)-320-1046-3004-9850-9940误差(mV)20464-150-20060

表2

发现当U i=3000 mV时误差较大。

2)按表3要求实验并测量记录:

测试条件

理论估算值

(mV)实测值(mV)

ΔU O

R L开路,直流输入信号U i

由0变为800mV -8000-8030

ΔU AB00

ΔU R28000

ΔU R100

ΔU OL

U=800mV,

R L由开路变为5K1

00.02

表3

其中R L接于V O与地之间。表中各项测量值均为U i=0及U i=800mV

时所得该项测量值之差。

Ⅲ.同相比例放大器

电路如图3所示。理论值:U i/10K=(U i-U O)/100K故U O=11U i

图3 同相比例放大电路

1)按表4和5实验测量并记录。

直流输入电压U i(mV)3010030010003000

输出电压U O 理论估算(mV)3001000300010000 30000实测值(mV)3281129329010980 12360误差(mV)28 129290980 17640

表4

测试条件

理论估算值

(mV)

实测值

(mV)

ΔU O

R L开路,直流输入信号U i

由0变为800mV 88008700

ΔU AB00ΔU R2800830ΔU R1-800-813

U=800mV,

ΔU OL

88008900 R L由开路变为5K1

表5

Ⅳ.反相求和放大电路

实验电路如图4所示。理论值:U O=-R F/R*(U i1+U i2)

图4 反相求和放大器

按表6内容进行实验测量,并与预习计算比较。

直流输入电压V i1(V)0.3-0.3

直流输入电压V i2(V)0.20.2

输出电压V O(V)-5.07-0.87

Ⅴ.双端输入差放放大电路

实验电路如图5所示。

理论值:U O=(1+R F/R1)*R3/(R2+R3)*U2-R F/R1*U1

图5 双端输入求和放大器

按表7要求实验并测量记录:

表7

V i1(V)120.2

V i2(V)0.5 1.8-0.2

V O(V)测量值-7.29-1.02-2.84

表7

四、实验总结:

通过这次实验,掌握了利用集成运算放大器组成比例\求和电路的方法,学会集成运算放大电路的测试和分析方法。在实验过程中,在同相和反相放大电路中测量数据的误差比较大,这应该是实验时的输入信号调的误差较大所造成的。

基本运算电路实验报告

实报告 课程名称:电路与模拟电子技术实验指导老师:成绩: 实验名称:基本运算电路设计实验类型:同组学生姓名: 一、实验目的和要求: 实验目的: 1、掌握集成运算放大器组成的比例、加法和积分等基本运算电路的设计。 2、了解集成运算放大器在实际应用中应考虑的一些问题。 实验要求: 1、实现两个信号的反向加法运算 2、用减法器实现两信号的减法运算 3、用积分电路将方波转化为三角波 4、实现同相比例运算(选做) 5、实现积分运算(选做) 二、实验设备: 双运算放大器LM358 三、实验须知: 1.在理想条件下,集成运放参数有哪些特征? 答:开环电压增益很高,开环电压很高,共模抑制比很高,输入电阻很大,输入电流接近于零,输出电阻接近于零。2.通用型集成运放的输入级电路,为啥均以差分放大电路为基础? 答:(1)能对差模输入信号放大 (2)对共模输入信号抑制 (3)在电路对称的条件下,差分放大具有很强的抑制零点漂移及抑制噪声与干扰的能力。 3.何谓集成运放的电压传输特性线?根据电压传输特性曲线,可以得到哪些信 息? 答:运算放大器的电压传输特性是指输出电压和输入电压之比。4.何谓集成运放的输出失调电压?怎么解决输出失调? 答:失调电压是直流(缓变)电压,会叠 加到交流电压上,使得交流电的零线偏移 (正负电压不对称),但是由于交流电可 以通过“隔直流”电容(又叫耦合电容) 输出,因此任何漂移的直流缓变分量都不 能通过,所以可以使输出的交流信号不受 失调电压的任何影响。 专业: 姓名: 日期: 地点:紫金港东

5.在本实验中,根据输入电路的不同,主要有哪三种输入方式?在实际运用中这三种输入方式都接成何种反馈形式,以实现各种模拟运算? 答:反相加法运算电路,反相减法运算电路,积分运算电路。都为负反馈形式。 四、实验步骤: 1.实现两个信号的反相加法运算 实验电路: R′= Rl//R2//RF 电阻R'的作用:作为平衡电阻,以消除平均偏置电流及其漂移造成的运算误差 输入信号v s1v s1输出电压v o ,1kHz 0 2.减法器(差分放大电路) 实验电路: R1=R2、R F=R3 输入信号v s1v s1输出电压v o ,1kHz 0 共模抑制比850 3.用积分电路转换方波为三角波 实验电路: 电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。 在t<<τ2(τ2=R2C)的条件下,若v S为常数,则v O与t 将近似成线性关系。 因此,当v S为方波信号并满足T p<<τ2时(T p为方波半个周期时间),则v O将转变

比例求和运算电路知识讲解

比例求和运算电路

实验八 比例求和运算电路 —、实验目的 1、掌握用集成运算放大器组成比例、求和电路的特点及性能。 2、学会上述电路的测试和分析方法。 二、实验原理 1、比例运算放大电路包括反相比例,同相比例运算电路,是其他各种运算电路的基础,我们在此把它们的公式列出: 反相比例放大器 10R R V V A F i f -== 1R r if = 同相比例放大器 1 01R R V V A F i f +== ()id Od r F A r +=1 式中Od A 为开环电压放大倍数F R R R F +=11 id r 为差模输入电阻 当0=F R 或∞=1R 时,0=f A 这种电路称为电压跟随器 2、求和电路的输出量反映多个模拟输入量相加的结果,用运算实现求和运算时,可以采用反相输入方式,也可以采用同相输入或双端输入的方式,下面列出他们的计算公式。 反相求和电路 22110i F i F V R R V R R V ?+?-= 若 21i i V V = ,则 ()210i i F V V R R V += 双端输入求和电路 ?? ? ??-'=∑∑21120i i F V R R V R R R R V 式中: F R R R //1=∑ 32//R R R ='∑ 三、实验仪器 l 、数字万用表 2、示波器 3、信号发生器 4、集成运算放大电路模块 四、预习要求 1、计算表8-l 中的V 0和A f 2、估算表8-3的理论值 3、估算表8- 4、表8-5中的理论值 4、计算表8-6中的V 0值 5、计算表8-7中的V 0值

五、实验内容 1、电压跟随器 实验电路如图8-l所示. 图8-l电压跟随器 按表8-l内容实验并测量记录。 V i (V)-2 -0.5 0 0.5 0.98 V (V) R L =∞ R L = 5K1 4,96 2、反相比例放大器 实验电路如图8-2所示。 图8-2反相比例放大器 (l) 按表8-2内容实验并测量记录. 直流输入电压U i (mV)30 100 300 9803000 输出电压U 理论估算 (mV) 实测值(mV)10800 误差 (2) 按表8-3要求实验并测量记录. 测试条件理论估算值实测值 ΔU R L 开路,直流输入信号

电路仿真实验报告要求

电路计算机仿真分析 实验指导 武汉大学电气工程学院 电工仿真实验室 2006.11 PSPICE 简介 PSPICE 简介 1984年,美国MicroSim公司推出了基于SPICE的微机版PSPICE(Personal-SPICE).可以说在同类产品中,它是功能最为强大的模拟和数字电路混合仿真EDA软件,在国内普遍使用.它可以进行各种各样的电路仿真,激励建立,温度与噪声分析,模拟控制,波形输出,数据输出,并在同一窗口内同时显示模拟与数字的仿真结果.无论对哪种器件哪些电路进行仿真,都可以得到精确的仿真结果,并可以自行建立元器件及元器件库. 在目的个人电脑广使用的向用的商用仿真软件中,以Pspice A/D系列最受人众欢迎. PSPICE 是面向PC 机的通用电路仿真软件, 该软件具有强大的电路图绘制功能,电路模拟仿真功能,图形后处理功能和元器件符号制作功能,模拟仿真快速准确,并提供了良好的人机交互环境,操作方便,易学易用.软件的用途非常广泛,不仅可用于电路分析和优化设计,还可用于电子线路,电路,信号与系统等课程的计算机辅助教学.与印刷线路板设计软件配合使用,还可以实现电子设计自动化.这些特点使得PSPICE 受到广大电子设计工作者,科研人员和高校师生的热烈欢迎,国内许多高校已将PSPICE 列入电子类本科生和硕士生的辅修课程. PSPICE 软件在国外非常流行.在大学里,它是工科类学生必会的分析与设计电路的工具;在公司中,它是产品从设计,实验到定型过程中不可缺少的设计工具.世界各国的半导体元件公司为它提供了上万种模拟和数字元件组成的元件库,使PSPICE 软件的仿真更可信,更真实. PSPICE 软件几乎完全取代了电路和电子电路实验中的元件,面包板,信号源,示波器和万用表.有了PSPICE 软件就相当有了电路和电子学实验室. PSPICE 的功能 PSPICE 用于模拟电路,数字电路及模数混合电路的分析以及电路的优化设计. PSPICE 的分析功能主要体现在以下几方面: 直流分析:当电路中某一参数(称为自变量)在一定范围内变化时,对自变量的每一个取值,计算电路的直流偏置特性(称为输出变量). 交流分析:作用是计算电路的交流小信号频率响应特性. 噪声分析:计算电路中各个器件对选定的输出点产生的噪声等效到选定的输入源(独立的电压或电流源)上.即计算输入源上的等效输入噪声. 瞬态分析:在给定输入激励信号作用下,计算电路输出端的瞬态响应. 基本工作点分析:计算电路的直流偏置状态. 蒙特卡罗统计分析:为了模拟实际生产中因元器件值具有一定分散性所引起的电路特性分散性,PSpice提供了蒙特卡罗分析功能.进行蒙特卡罗分析时,首先根据实际情况确定元器件值分布规律,然后多次"重复"进行指定的电路特性分析,每次分析时采用的元器件值是从元器件

电工电子实验报告实验4.6 运算放大器的线性应用

实验4.6 运算放大器的线性应用 一、实验目的 1.进一步理解运算放大器线性应用电路的结构和特点。 2.掌握电子电路设计的步骤,学会先用电子设计软件进行电路性能仿真和优化设计,再进行实际器件构成电路的连接与测试方法。 3.掌握运算放大器线性应用电路的设计及测试方法。 二、实验仪器与器件 1.双路稳压电源1台 2.示波器1台 3. 数字万用表1台 4. 集成运算放大器μA741 2块 5. 定值电阻若干 6.电容若干 7.DC信号源3块 8.电位器2只 三、实验原理及要求 运算放大器是高放大倍数的直流放大器。当其成闭环状态时,其输入输出在一定范围内为线性关系,称之为运算放大器的线性应用。运放线性应用时选择合理的电路结构和外接器件,可构成各种信号运算电路和具有各种特定功能的应用电路。选择适当个数的运算放大器和阻容元件构成电路实现以下功能: 1. U o=Ui 2.U O= 5U i1+U i2(R f=100k); 3.U O= 5U i2-U i1(R f=100k); 4.U O= - (0.1ui+1000∫u idt)(C f=0.1μF); 5.用运放构成一个输出电压连续可调的恒压源(要求用一个运放实现); 6.用运放构成一个恒流源(要求用一个运放实现); 7. 用运放构成一个RC正弦波振荡器(振荡频率为500Hz)。 四、实验电路图及实验数据 1. U o=Ui Ui(V)0.3 0 -0.3 计算Uo(V) 0.3 0 -0.3 测量Uo(V) 0.302 0.001 -0.301

2.U O= 5U i1+U i2(R f=100k)

3.U O = 5U i2-U i1 (R f=100k ); Ui1(V) 0.3 0.3 -0.3 Ui2(V) -0.1 0.1 0.1 计算Uo(V) 1.4 1.6 -1.4 测量Uo(V) 1.407 1.608 -1.396 Ui1(V) 0.3 0.3 -0.3 Ui2(V) -0.1 0.1 0.1 计算Uo(V) 1.6 1.4 -1.6 测量Uo(V) 1.735 1.533 -1.703

1比例求和运算电路

实验报告(1) 学院: 课程名称: 实验项目:比例、求和运算电路专业班级: 小组成员: 姓名: 学号: 指导老师:

学生实验报告 一、实验目的 1.掌握运算放大器组成比例求和电路的特点性能及输出电压与输入电压的函数关系。 2.学会上述电路的测试和分析方法。 二、实验仪器及设备 示波器、TB型模拟电路实验仪和⑤号实验板等。 三、实验电路原理 集成运算放大器是具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元件组成输入和负反馈电路时,可以实现各种特定的函数关系。 四、实验内容及步骤 每个比例、求和运算电路实验,都应先进行以下两项: 1.按电路图接好线后,仔细检查,确保正确无误。 将各输入端接地,接通电源,用示波器观察是否出现自激振荡。若有自激振荡,则需更换集成运算放大电路。

2. 调零:各输入端仍接地,调节调零电位器,使输出电压为零(用示波器测量) ⑴ 反相比例放大器 实验电路如图J5-1所示 图J5-1 反相比例放大器 预习要求: 分析图J5-1反相比例放大器的主要特点(包括反馈类型),求出表J5-1的理论估算值。 表J5-1 实验内容: 在5号实验模板上按图J5-1“反相比例放大器”连好线,并接上电源线,做表J5-1中的内容。 将反相比例放大器的输入端接DC 信号源的输出,将DC 信号源的转换开关置于合适位置,调节电位器,使i V 分别为表J5-1中所列各值,分别测出o V 的值,填在该表中。 ⑵ 同相比例放大器

实验电路如图J5-2所示。 预习要求: ①分析图J5-2同相比例放大器的主要特点(包括反馈类型),求出表J5-2各理论估算值。 ②熟悉实验任务,自拟实验步骤,并做好实验记录准备工作。 图J5-2同相比例放大器 表J5-2 ⑶电压跟随器 实验电路如图J5-3所示 预习要求: ①分析图J5-3电路的特点,求出表J5-3中各理论估算值。 ②熟悉实验任务,自拟实验步骤,并做好实验记录准备工作。

运算放大电路实验报告

实验报告 课程名称:电子电路设计与仿真 实验名称:集成运算放大器的运用 班级:计算机18-4班 姓名:祁金文 学号:5011214406

实验目的 1.通过实验,进一步理解集成运算放大器线性应用电路的特点。 2.掌握集成运算放大器基本线性应用电路的设计方法。 3.了解限幅放大器的转移特性以及转移特性曲线的绘制方法。 集成运算放大器放大电路概述 集成电路是一种将“管”和“路”紧密结合的器件,它以半导 体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、 二极管、电阻和电容等元件及它们之间的连线所组成的完整电路 制作在一起,使之具有特定的功能。集成放大电路最初多用于各 种模拟信号的运算(如比例、求和、求差、积分、微分……)上, 故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟 信号的处理和产生电路之中,因其高性价能地价位,在大多数情 况下,已经取代了分立元件放大电路。 反相比例放大电路 输入输出关系: i o V R R V 12-=i R o V R R V R R V 1 212)1(-+=

输入电阻:Ri=R1 反相比例运算电路 反相加法运算电路 反相比例放大电路仿真电路图

压输入输出波形图 同相比例放大电路 输入输出关系: i o V R R V )1(12+=R o V R R V R R V 1 2i 12)1(-+=

输入电阻:Ri=∞ 输出电阻:Ro=0 同相比例放大电路仿真电路图 电压输入输出波形图

差动放大电路电路图 差动放大电路仿真电路图 五:实验步骤: 1.反相比例运算电路 (1)设计一个反相放大器,Au=-5V,Rf=10KΩ,供电电压为±12V。

北京邮电大学电路实验报告-(小彩灯)

北京邮电大学电路实验报告-(小彩灯)

电子电路综合实验报告课题名称:基于运算放大器的彩灯显示电路的设计与实现 姓名:班级:学号: 一、摘要: 运用运算放大器设计一个彩灯显示电路,通过迟滞电压比较器和反向积分器构成方波—三角波发生器,三角波送入比较器与一系列直流电平比较,比较器输出端会分别输出高电平和低电平,从而顺序点亮或熄灭接在比较器输出端的发光管。 关键字: 模拟电路,高低电平,运算放大器,振荡,比较 二、设计任务要求: 利用运算放大器LM324设计一个彩灯显示电路,让排成一排的5个红色发光二极管(R1~R5)重复地依次点亮再依次熄灭(全灭→R1→R1R2→R1R2R3→R1R2R3R4→R1R2R3R4R5→R1R2R3R4→R1R2R3→R1R2→R1→全灭),同时让排成一排的6个绿色发光二极管(G1~G6)单光

三角波振荡电路可以采用如图2-28所示电路,这是一种常见的由集成运算放大器构成的方波和三角波发生器电路,图2-28中运放A1接成迟滞电压比较器,A2接成反相输入式积分器,积分器的输入电压取自迟滞电压比较器的输出,迟滞电压比较器的输入信号来自积分器的输出。假设迟滞电压比较器输出U o1初始值为高电平,该高电平经过积分器在U o2端得到线性下降的输出信号,此线性下降的信号又反馈至迟滞电压比较器的输入端,当其下降至比较器的下门限电压U th-时,比较器的输出发生跳变,由高电平跳变为低电平,该低电平经过积分器在U o2端得到线性上升的输出信号,此线性上升的信号又反馈至迟

滞电压比较器的输入端,当其上升至比较器的上门限电压U th+时,比较器的输出发生跳变,由低电平跳变为高电平,此后,不断重复上述过程,从而在迟滞电压比较器的输出端U o1得到方波信号,在反向积分器的输出端U o2得到三角波信号。假设稳压管反向击穿时的稳定电压为U Z,正向导通电压为U D,由理论分析可知,该电路方波和三角波的输出幅度分别为: 式(5)中R P2为电位器R P动头2端对地电阻,R P1为电位器1端对地的电阻。 由上述各式可知,该电路输出方波的幅度由稳压管的稳压值和正向导通电压决定,三角波的输 出幅度决定于稳压管的稳压值和正向导通电压以及反馈比R1/R f,而振荡频率与稳压管的稳压值和正向导通电压无关,因此,通过调换具有不同稳压值和正向 导通电压的稳压管可以成比例地改变方波和三角波的幅度而不改变振荡频率。 电位器的滑动比R P2/R P1和积分器的积分时间常数R2C的改变只影响振荡频率而 不影响振荡幅度,而反馈比R1/R f的改变会使振荡频率和振荡幅度同时发生变化。因此,一般用改变积分时间常数的方法进行频段的转换,用调节电位器滑动头 的位置来进行频段内的频率调节。

数电逻辑门电路实验报告doc

数电逻辑门电路实验报告 篇一:组合逻辑电路实验报告 课程名称:数字电子技术基础实验指导老师:樊伟敏 实验名称:组合逻辑电路实验实验类型:设计类同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)五、实验数据记录和处理七、讨论、心得 一.实验目的 1.加深理解全加器和奇偶位判断电路等典型组合逻辑电路的工作原理。 2.熟悉74LS00、74LS11、74LS55等基本门电路的功能及其引脚。 3.掌握组合集成电路元件的功能检查方法。 4.掌握组合逻辑电路的功能测试方法及组合逻辑电路的设计方法。 二、主要仪器设备 74LS00(与非门) 74LS55(与或非门) 74LS11(与门)导线电源数电综合实验箱 三、实验内容和原理及结果 四、操作方法和实验步骤 六、实验结果与分析(必填)

实验报告 (一) 一位全加器 1.1 实验原理:全加器实现一位二进制数的加法,输入有被加数、加数和来自相邻低位的进位;输出有全加和与向高位的进位。 1.2 实验内容:用 74LS00与非门和 74LS55 与或非门设计一个一位全加器电路,并进行功能测试。 1.3 设计过程:首先列出真值表,画卡诺图,然后写出全加器的逻辑函数,函数如下: Si = Ai ?Bi?Ci-1 ;Ci = Ai Bi +(Ai?Bi)C i-1 异或门可通过Ai ?Bi?AB?AB,即一个与非门; (74LS00),一个与或非门(74LS55)来实现。Ci = Ai Bi +(Ai?Bi)C 再取非,即一个非门( i-1 ?Ai Bi +(Ai?Bi)C i-1 ,通过一个与或非门Ai Bi +(Ai?Bi)C i-1 ,

比例求和运算电路

实验八 比例求和运算电路 —、实验目的 1、掌握用集成运算放大器组成比例、求和电路的特点及性能。 2、学会上述电路的测试和分析方法。 二、实验原理 1、比例运算放大电路包括反相比例,同相比例运算电路,是其他各种运算电路的基础,我们在此把它们的公式列出: 反相比例放大器 10R R V V A F i f -== 1R r if = 同相比例放大器 1 01R R V V A F i f +== ()id Od r F A r +=1 式中Od A 为开环电压放大倍数F R R R F +=11 id r 为差模输入电阻 当0=F R 或∞=1R 时,0=f A 这种电路称为电压跟随器 2、求和电路的输出量反映多个模拟输入量相加的结果,用运算实现求和运算时,可以采用反相输入方式,也可以采用同相输入或双端输入的方式,下面列出他们的计算公式。 反相求和电路 22 110i F i F V R R V R R V ?+?-= 若 21i i V V = ,则 ()210i i F V V R R V += 双端输入求和电路 ??? ??-'=∑∑21120i i F V R R V R R R R V 式中: F R R R //1=∑ 32//R R R ='∑ 三、实验仪器 l 、数字万用表 2、示波器 3、信号发生器 4、集成运算放大电路模块

四、预习要求 1、计算表8-l中的V0和A f 2、估算表8-3的理论值 3、估算表8- 4、表8-5中的理论值 4、计算表8-6中的V0值 5、计算表8-7中的V0值 五、实验内容 1、电压跟随器 实验电路如图8-l所示. 图8-l电压跟随器按表8-l内容实验并测量记录。 表 8-1 V i(V)-2 -0.5 0 0.5 0.98 V0(V)R L=∞ R L= 5K1 4,96 2、反相比例放大器 实验电路如图8-2所示。 图8-2反相比例放大器(l) 按表8-2内容实验并测量记录. 表8-2

基本运算电路实验报告

基本运算电路实验报告 实验报告 课程名称:电路与模拟电子技术实验 指导老师: 成绩: 实验名称: 基本运算电路设计 实验类型: 同组学生姓名: 实验目的: 1、掌握集成运算放大器组成的比例、加法和积分等基本运算电路的设计。 2、了解集成运算放大器在实际应用中应考虑的一些问题。 实验要求: 1、实现两个信号的反向加法运算 2、用减法器实现两信号的减法运算 3、用积分电路将方波转化为三角波 4、实现同相比例运算(选做) 5、实现积分运算(选做) 双运算放大器LM358 三、 实验须知: 1.在理想条件下,集成运放参数有哪些特征? 答:开环电压增益很高,开环电压很高,共模抑制比很高,输入电阻很大,输入电流接近于零,输出电阻接近于零。 2.通用型集成运放的输入级电路,为啥 均以差分放大电路为基础? 答:(1)能对差模输入信号放大 (2)对共模输入信号抑制 (3)在电路对称的条件下,差分放大具有很强的抑制零点漂移及抑制噪声与干扰的能力。 3.何谓集成运放的电压传输特性线?根据电压传输特性曲线,可以得到哪些信息? 答:运算放大器的电压传输特性是指输出电压和输入电压之比。 4.何谓集成运放的输出失调电压?怎么解决输出失调? 答:失调电压是直流(缓变)电压,会叠加到交流电压上,使得交流电的零线偏移(正负电压不对称),但是由于交 流电可以通过“隔直流”电容(又叫耦合电容)输出,因此任何漂移的直流缓变分量都不能通过,所以可以使输出的交流信号不受失调电压的任何影响。 5.在本实验中,根据输入电路的不同,主要有哪三种输入方式?在实际运用中这三种输入方式都接成何种反馈形式,以实现各种模拟运算? 答:反相加法运算电路,反相减法运算电路,积分运算电路。都为负反馈形式。 专业: 姓名: 日期: 地点:紫金港 东三--

电路实验报告

目录实验一电位、电压的测定及电路电位图的绘制实验二基尔霍夫定律的验证 实验三线性电路叠加性和齐次性的研究 实验四受控源研究 实验六交流串联电路的研究 实验八三相电路电压、电流的测量 实验九三相电路功率的测量

330口 R B 1— 1 2. 电路中相邻两点之间的电压值 在图1 — 1中,测量电压U AB :将电压表的红笔端插入 A 点,黑笔端插入B 点,读电压表读数,记入表 1 — 1中。按同样方法测量 U BC 、U CD 、U DE 、U EF 、及U FA ,测量数据记入表1 — 1中。 实验一 电位、电压的测定及电路电位图的绘制 1.学会测量电路中各点电位和电压方法。理解电位的相对性和电压的绝对性; 2?学会电路电位图的测量、绘制方法; 3.掌握使用直流稳压电源、直流电压表的使用方法。 .原理说明 在一个确定的闭合电路中, 各点电位的大小视所选的电位参考点的不同而异, 但任意两点之间的电 压(即两点之间的电位差)则是不变的,这一性质称为电位的相对性和电压的绝对性。据此性质,我们 可用一只电压表来测量出电路中各点的电位及任意两点间的电压。 若以电路中的电位值作纵坐标, 电路中各点位置(电阻或电源)作横坐标, 将测量到的各点电位在 该平面中标出,并把标出点按顺序用直线条相连接, 就可得到电路的电位图, 每一段直线段即表示该两 点电位的变化情况。而且,任意两点的电位变化,即为该两点之间的电压。 在电路中,电位参考点可任意选定, 对于不同的参考点, 所绘出的电位图形是不同,但其各点电位 变化的规律却是一样的。 三.实验设备 1.直流数字电压表、直流数字毫安表 2 .恒压源(EEL — I 、II 、III 、IV 均含在主控制屏上,可能有两种配置( 1) +6V ( +5V ) , +12 V , 0? 30V 可调或(2)双路0?30V 可调。) 四.实验内容 实验电路如图1 — 1所示,图中的电源U S 1用恒压源中的+6V (+5V )输出端, 输出端,并将输出电压调到 +12V 。 U S2用0?+30V 可调电源 1.测量电路中各点电位 以图1 — 1中的A 点作为电位参考点,分别测量 B 、C 、 用电压表的黑笔端插入 A 点,红笔端分别插入 B 、C 、 以D 点作为电位参考点,重复上述步骤,测得数据记入表 D 、E 、F 各点的电位。 D 、 E 、 F 各点进行测量,数据记入表 1 — 1 中。 1 — 1 中。 5100 S3 VCU 5100 5ion R4

实验报告:算术运算电路

电气工程及其自动化网络专升本 实验报告 实验课程:电工电子综合实践 实验名称:算术运算电路 班级:05秋电气工程及其自动化姓名: 学号: VH1052U2003 日期: 2007-9-4 实验内容: 一、实验目的 1、了解集成运算放大器开环放大倍数Av和最大输出电压 Vomax的测试方法。 2、掌握比例运算、加法运算、减法运算、积分运算电路的调整, 微分电路的连接与测试。 3、了解集成运算放大器非线性应用的特点。 二、实验器材 1、实物实验器材 (1)、HY177-30S双路可跟踪直流稳压电源 1台 (2)、AFG310函数发生器 1台

(3)、FLUKE45数字万用表 1台 (4)TDS210数字式双踪示波器 1台 2、虚拟实验器材 (1)、操作系统为Windows95/98/ME的计算机 1台 (2)、Electronics Workbench Multisim 2001电子线路仿真软件 1套 三、实验原理 线性集成运算放大器在线性区工作时,是一种具有高放大倍数的放大器,加上负反馈网络,就可完成各种线性应用,其中运算放大器可以实现多种数学运算,其基本运算有比例、加法、减法、积分、微分等。 线性集成放大器在开环或引入正反馈的情况下,当其两个差动输入端之间存在着微小的失调电压时,放大器就处于正饱和或负饱和状态(即工作于非线性区),利用这种工作方式可以实现非线性应用,如信号比较器-采样保持电路等。 衡量线性集成放大器的性能指标很多,其中开环放大倍数Av反映了该器件在输出开路的条件下,输出电压对差模电压的放大能力。最大输出电压Vomax则反映输出电压与输入电压的线性应用范围,超过此界限则进入非线性区。 四、虚拟仿真实验内容及步骤 1、反相比例运算放大电路测试

(完整版)直流稳压电源电路的设计实验报告

直流稳压电源电路的设计实验报告 一、实验目的 1、了解直流稳压电源的工作原理。 2、设计直流稳压电路,要求输入电压:220V市电,50Hz,用单变压器设计并制作能够输出一组固定+15V输出直流电压和一组+1.2V~+12V连续可调的直流稳压电源电路,两组输出电流分别I O≥500mA。 3、了解掌握Proteus软件的基本操作与应用。 二、实验线路及原理 1、实验原理 (1)直流稳压电源 直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电的装置,它需要变压、整流、滤波、稳压四个环节才能完成。一般由电源变压器、整流滤波电路及稳压电路所组成,基本框图如下: 图2-1 直流稳压电源的原理框图和波形变换 其中: 1)电源变压器:是降压变压器,它将电网220V交流电压变换成符合需要的交流电压,并送给整流电路,变压器的变比由变压器的副边电压确定,变压器副边与原边的功率比为P2/P1=n,式中n是变压器的效率。 2)整流电路:利用单向导电元件,把50Hz的正弦交流电变换成脉动的直流电。 3)滤波电路:可以将整流电路输出电压中的交流成分大部分加以滤除,从而得到比较平滑的直流电压。滤波电路滤除较大的波纹成分,输出波纹较小的直流电压U1。 4)稳压电路:其工作原理是利用稳压管两端的电压稍有变化,会引起其电流有较大变化这一特点,通过调节与稳压管串联的限流电阻上的压降来达到稳定输出电压的目的。稳压电路的功能是使输出的直流电压稳定,不随交流电网电压和负载的变化而变化。 (2)整流电路 常采用二极管单相全波整流电路,电路如图2-2所示。在u2的正半周内,二极管D1、D2导通,D3、D4截止;u2的负半周内,D3、D4导通,D1、D2截止。正负半周内部都有电流流过的负载电阻RL,且方向是一致的。电路的输出波形如图2-3所示。 t

集成运放组成的基本运算电路实验报告

实验报告课程名称:电路与电子技术实验指导老师: 成绩: 实验名称:集成运放组成的基本运算电路实验实验类型:同组学生:一、实验目的和要求(必填)二、实验容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.研究集成运放组成的比例、加法和积分等基本运算电路的功能; 2.掌握集成运算放大电路的三种输入方式。 3.了解集成运算放大器在实际应用时应考虑的一些问题; 4.理解在放大电路中引入负反馈的方法和负反馈对放大电路各项性能指标的影响; 5.学会用集成运算放大器实现波形变换 二、实验容和原理 1.实现两个信号的反相加法运算 2.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值 3.实现单一信号同相比例运算(选做) 4.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值,测量闭环传输特性:Vo = f (Vs) 5.实现两个信号的减法(差分)运算 6.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值 7.实现积分运算(选做) 8.设置输出初态电压等于零;输入接固定直流电压,断开K2,进入积分;用示波器观察输出变化(如何设轴,Y轴和触发方式) 9.波形转换—方波转换成三角波 10.设:Tp为方波半个周期时间;τ=R2C 11.在T p<<τ、T p ≈τ、T p>>τ三种情况下加入方波信号,用示波器观察输出和输入波形,记录线性 三、主要仪器设备 1.集成运算电路实验板;通用运算放大器μA741、电阻电容等元器件; 2.MS8200G型数字多用表;XJ4318型双踪示波器;XJ1631数字函数信号发生器;DF2172B型交流电压表; 型可调式直流稳压稳流电源。

比例求和运算电路实验报告

实验四比例求和运算电路 一、实验目的 ①掌握用集成运算放大器组成比例\求和电路的特点和性能; ②学会用集成运算放大电路的测试和分析方法。 二、实验仪器 ①数字万用表;②示波器;③信号发生器。 三、实验内容 Ⅰ.电压跟随器 实验电路如图1所示: 图1 电压跟随器 按表1内容实验并记录。 V i(V)-2-0.50+0.51 R L=∞-2.001-0.5050.0030.507 1.002 V O(V) R L=5K1-2.001-0.5050.0030.507 1.002 表1 Ⅱ.反相比例放大电路 实验电路如图2所示:

图2 反相比例放大器 1)按表2内容实验并测量记录: 直流输入电压U i(mV)3010030010003000 输出电压 U O 理论估算(mV)-300-1000-3000-10000-30000实测值(mV)-320-1046-3004-9850-9940误差(mV)20464-150-20060 表2 发现当U i=3000 mV时误差较大。 2)按表3要求实验并测量记录: 测试条件 理论估算值 (mV)实测值(mV) ΔU O R L开路,直流输入信号U i 由0变为800mV -8000-8030 ΔU AB00 ΔU R28000 ΔU R100 ΔU OL U=800mV, R L由开路变为5K1 00.02 表3 其中R L接于V O与地之间。表中各项测量值均为U i=0及U i=800mV

时所得该项测量值之差。 Ⅲ.同相比例放大器 电路如图3所示。理论值:U i/10K=(U i-U O)/100K故U O=11U i 图3 同相比例放大电路 1)按表4和5实验测量并记录。 直流输入电压U i(mV)3010030010003000 输出电压U O 理论估算(mV)3001000300010000 30000实测值(mV)3281129329010980 12360误差(mV)28 129290980 17640 测试条件 理论估算值 (mV) 实测值 (mV) ΔU O R L开路,直流输入信号U i 由0变为800mV 88008700 ΔU AB00ΔU R2800830ΔU R1-800-813

相电路实验报告

实验一 一、实验名称 三相电路不同连接方法的测量 二、实验目的: 1. 理解三相电路中线电压与相电压、线电流与相电流之间的关系。 2. 掌握三相电路的正确连接方法与测量方法。 三、实验原理 1.三相电路 三相电路在生产上应用最为广泛,发电和输配电一般都采用三相制。在用电方面,许多负载是三相的或连接成三相形式的,如三相交流电动机。 三相电路是由三相电源供电的电路。三个频率相同且随时间按正弦函数变换的电动势,如果每相电动势的振幅相等,相位依次相差120o,则称为三相电动势。产生对称三相电动势且各阻抗相等的电源称为对称电源。当三相电动势的相序依次为U相、V相和W相时,称为正序或顺序,反之称为负序或逆序。本实验在三相电源的相序为正序的情况下进行测量。 三相电源由DDSZ-1型实验台台面左侧的DD01三相调压交流电源提供。如下图所示。

在三相电路中,负载一般也是三相的,即由三个部分组成,每一部分称为一个相。如三相负载各相阻抗值相同,则称为对称三相负载。三相负载有两种连接方式:星形联结和三角形联结。 在三相电路中,电源或负载各相的电压称为相电压,端线之间的电压称为线电压;流过电源或负载各相的电流称为相电流,流过各端线的电流称为线电流。星形联结时,各相电压源的负极连在一起称为三相电源的中性点或零点。各相负载的一端接在一起称为负载的中性点或零点。电源的中性点与负载中性点的连线称为中性线或零线。流过中性线的电流称为中性线电流。 2.三相负载的星形联结(三相四线制) 3.三相负载的三角形联结

ou 负载为三角形联结时,线电压等于相电压。当电源与负载对称时,线电流和相电流在数值上的关系为 L P I 。 四、实验设备 1.DDSZ-1型电机及电气技术实验装置 2.D42三相可调电阻器 3.D33交流电压表 4.D32交流电流表 五、实验内容与步骤 1. 组接实验电路; 2. 三相四线制,三相负载为星形联结时,分别测量线电压、相电压、线电流、相电流,记录实验数据。 3. 三相三线制,三相负载为星形联结时,分别测量线电压、相电压、线电流、相电流,记录实验数据。 表5-2

基本运算电路设计实验报告

实验报告 课程名称:电路与模拟电子技术实验 指导老师: 成绩: __________________ 实验名称: 基本运算电路设计 实验类型:______ _同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验目的和要求 1. 掌握集成运放组成的比例、加法和积分等基本运算电路的设计。 2. 掌握基本运算电路的调试方法。 3. 学习集成运算放大器的实际应用。 二、实验内容和原理(仿真和实验结果放在一起) 1、反相加法运算电路: 1212 12121 2 =( ) f o I I f f f o I I I I I u u u R R R R R u u u R R ++=-=-+ 当R1=R2时, 121 () f o I I R u u u R =- +,输出电压与Ui1,Ui2之和成正 比,其比例系数为1f R R ,电阻R ’=R1//R2//Rf 。 2、减法器(差分放大电路) 专业:机械电子工程 姓名:许世飞 学号: 日期: 桌号:

11o I f u u u u R R ----= 由于虚短特性有:2 3 23 321231 1233211 11,() I f f o I I f f o I I f u u u R R R R R R u u u R R R R R R R R R u u u R R R -+== ?+?? =+ - ?+??===-=因此解得:时,有可见,当时,输出电压等于出入电压值差。 3、由积分电路将方波转化为三角波: 电路中电阻R2的接入是为了抑制由IIO 、VIO 所造成的积分漂移,从而稳定运放的输出零点。在t<<τ2(τ2=R2C )的条件下,若vS 为常数,则vO 与t 将近似成线性关系。因此,当vS 为方波信号并满足Tp<<τ2时(Tp 为方波半个周期时间),则vO 将转变为三角波,且方波的周期越小,三角波的线性越好,但三角波的幅度将随之减小。 4 、同相比例计算电压运算特性:

基本运算电路实验报告

实验名称:基本运算电路设计实验类型:同组学生姓名: 三、实验须知:

四、实验步骤: 1.实现两个信号的反相加法运算 实验电路: R′= Rl//R2//RF 电阻R'的作用:作为平衡电阻,以消除平均偏置电流及其漂移造成的运算误差 输入信号v s1v s1输出电压v o 0.1V,1kHz 0 1.01V 0.1V 0.1V 2.03V 2.减法器(差分放大电路) 实验电路: R1=R2、R F=R3 输入信号v s1v s1输出电压v o 0.1V,1kHz 0 1.02V 0 0.1V 1.03V 0.1V 0.1V 0.12mV 共模抑制比850 3.用积分电路转换方波为三角波 实验电路:

电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。 在t<<τ2(τ2=R2C)的条件下,若v S为常数,则v O与t 将近似成线性关系。因此,当v S为方波信号并满足T p<<τ2时(T p为方波半个周期时间),则v O将转变为三角波,且方波的周期越小,三角波的线性越好,但三角波的幅度将随之减小。 根据电路参数求出τ2,确定三种情况下的方波信号频率,在坐标系中画出输入和输出波形。 v S方波周期v S幅值(峰峰值) v o波形v o周期v o幅值(峰峰值) T=0.1R2C 未测 T=R2C 1.000 如下图1ms 6.64V T=10R2C 1.000 如下图10ms 10.60V T=100R2C 1.000 如下图100ms 11.00V ①T=0.1R2C=0.1ms 未测 ②T=R2C=1ms ③T=10R2C=10ms

实验四比例求和运算电路实验报告

实验四 比例求和运算电路 一、实验目的 1.掌握用集成运算放大器组成比例、求和电路的特点及性能。 2.学会上述电路的测试和分析方法。 二、实验仪器 1.数字万用表 2.信号发生器 3.双踪示波器 其中,模拟电子线路实验箱用到直流稳压电源模块,元器件模组以及“比例求和运算电路”模板。 三、实验原理 (一)、比例运算电路 1.工作原理 a .反相比例运算,最小输入信号min i U 等条件来选择运算放大器和确定外围电路元件参数。 如下图所示。 A V i V o R 100k Ω R 1 10k Ω R 2 10k Ω A B 输入电压i U 经电阻R 1加到集成运放的反相输入端,其同相输入端经电阻R 2接地。输出电压O U 经R F 接回到反相输入端。通常有: R 2=R 1F o 1i u u u u -=---???????==-==1i i if 1F i o uf R i u R R R u u A A V i V o 100k Ω R 1 10k Ω R 210k ΩA B i U O U o F u R R R u ?+=-11i o F u u R R R =?+111F i o uf R R 1u u A +==∞==i i if i u R 1212i i o F u u u R R R +=- 1212()F F o i i R R u u u R R =-+12()F o i i R u u u R =-+压跟随电路 实验电路如图1所示。按表1内容进行实验测量并记录。 理论计算: 得到电压放大倍数:

即:Ui=U+=U-=U 图1 电压跟随器 直流输入电压Vi(v)-201 输出电 压Vo(v) Rl=∽ Rl= 从实验结果看出基本满足输入等于输出。 2、反相比例电路 理论值:(Ui-U-)/10K=(U--UO)/100K且U+=U-=0故UO=-10Ui。 实验电路如图2所示: 图2:反向比例放大电路 (1)、按表2内容进行实验测量并记录. 表2:反相比例放大电路(1) (2)、按表3进行实验测量并记录。 测试条件被测量理论估算实直流输入电压输入 Vi(mv)3010 30 10 00 30 00输出电 压 Vo(v) 理论值 实测值 误差

基本运算器实验报告

基本运算器实验报告

四川大学计算机学院、软件学院 实验报告 学号: 1143041061 姓名:高浩宇专业:计算机科学与技术班级:4 第:11 周 课 程名称计算机组成原理 实验 课时 2 实 验项目基本运算器实验 实验 时间 2013-11-18 实 验目的1.了解运算器的组成结构。2.掌握运算器的工作原理。 实 验 环 境 TDN-CM++计算机组成原理教学实验系统一台,排线若干

实验内容(算法、程序、步骤和方法)1.实验原理: 两片74LS181 芯片以并/串形式构成的8位字长的运算器。右方为低4位运算芯片,左方为高4位运算芯片。低位芯片的进位输出端Cn+4与高位芯片的进位输入端Cn相连,使低4位运算产生的进位送进高4位。低位芯片的进位输入端Cn可与外来进位相连,高位芯片的进位输出到外部。 两个芯片的控制端S0~S3 和M 各自相连,其控制电平按表2.6-1。为进行双操作数运算,运算器的两个数据输入端分别由两个数据暂存器DR1、DR2(用锁存器74LS273 实现)来锁存数据。要将内总线上的数据锁存到DR1 或DR2 中,则锁存器74LS273 的控制端LDDR1 或LDDR2 须为高电平。当T4 脉冲来到的时候,总线上的数据就被锁存进DR1 或DR2 中了。 为控制运算器向内总线上输出运算结果,在其输出端连接了一个三态门(用74LS245 实现)。若要将运算结果输出到总线上,则要将三态门 74LS245 的控制端ALU-B 置低电平。否则输出高阻态。数据输入单元(实验板上印有INPUT

DEVICE)用以给出参与运算的数据。其中,输入开关经过一个三态门(74LS245)和内总线相连,该三态门的控制信号为SW-B,取低电平时,开关上的数据则通过三态门而送入内总线中。 总线数据显示灯(在BUS UNIT 单元中)已与内总线相连,用来显示内总线上的数据。控制信号中除T4 为脉冲信号,其它均为电平信号。 由于实验电路中的时序信号均已连至“W/R UNIT”单元中的相应时序信号引出端,因此,需要将“W/R UNIT”单元中的T4 接至“STATE UNIT”单元中的微动开关KK2 的输出端。在进行实验时,按动微动开关,即可获得实验所需的单脉冲。 S3、S2、 S1、S0 、Cn、M、LDDR1、LDDR2、ALU-B、SW-B 各电平控制信号则使用“SWITCHUNIT”单元中的二进制数据开关来模拟,其中Cn、ALU-B、SW-B 为低电平有效,LDDR1、LDDR2 为高电平有效。 对于单总线数据通路,作实验时就要分时控制总线,即当向DR1、DR2 工作暂存器打入数据时,数据开关三态门打开,这时应保证运算器输出三态门关闭;同样,当运算器输出结果至总线时也

相关文档
最新文档