ZX7-250长条版原理图MOS管

L6203直流电机驱动设计原理图及例程

L6203直流电机控制驱动器 【简要说明】 一、尺寸:长66mmX宽33mm X高28mm 二、主要芯片:L6203 三、工作电压:控制信号直流4.5~5.5V;驱动电机电压7.2~30V 四、可驱动直流(7.2~30V之间电压的电机) 五、最大输出电流4A 六、最大输出功率20W 七、特点:1、具有信号指示 2、转速可调 3、抗干扰能力强 4、具有续流保护 5、可单独控制一台直流电机 6、PWM脉宽平滑调速(可使用PWM信号对直流电机调速) 7、可实现正反转 8、此驱动器非常时候控制飞思卡尔智能车,驱动器压降小,电流大,驱动能力强。【标注图片】

直流电机的控制实例 使用驱动器可以控制一台直流电机。电机分别为OUT1和OUT2。输入端EN可用于输入PWM脉宽调制信号对电机进行调速控制。(如果无须调速可将EN使能端,接高低电平,高电平启动,低电平停止。也可由单片机输出直接控制)实现电机正反转就更容易了,输入信号端IN1接高电平输入端IN2接低电平,电机正转。(如果信号端IN1接低电平,IN2接高电平,电机反转。)可参考下图表: 直流电机测试程序 【原理图】

【测试程序】 /******************************************************************** 汇诚科技 实现功能:调试程序 使用芯片:AT89S52 或者 STC89C52 晶振:11.0592MHZ 编译环境:Keil 作者:zhangxinchun 淘宝店:汇诚科技 *********************************************************************/ #include #define uchar unsigned char//宏定义无符号字符型 #define uint unsigned int //宏定义无符号整型 sbit P2_0=P2^0;//启动 sbit P2_1=P2^1;//停止 sbit P2_2=P2^2;//正转 sbit P2_3=P2^3;//反转 sbit P1_0=P1^0;//使能 sbit P1_1=P1^1;//IN1 sbit P1_2=P1^2;//IN2 /******************************************************************** 延时函数 *********************************************************************/ void delay(uchar t)//延时程序

场效应管和mos管的区别

功率场效应晶体管MOSFET 1.概述 MOSFET的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导体),FET(Field Effect Transistor场效应晶体管),即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。 功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的MOS型(Metal Oxide Semiconductor FET),简称功率MOSFET(Power MOSFET)。结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT)。其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。 2.功率MOSFET的结构和工作原理 功率MOSFET的种类:按导电沟道可分为P沟道和N沟道。按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET主要是N沟道增强型。 2.1功率MOSFET的结构 功率MOSFET的内部结构和电气符号如图1所示;其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。导电机理与小功率MOS管相同,但结构上有较大区别,小功率MOS管是横向导电器件,功率MOSFET大都采用垂直导电结构,又称为VMOSFET (Vertical MOSFET),大大提高了MOSFET器件的耐压和耐电流能力。 按垂直导电结构的差异,又分为利用V型槽实现垂直导电的VVMOSFET和具有垂直导电双扩散MOS结构的VDMOSFET(Vertical Double-diffused MOSFET),本文主要以VDMOS 器件为例进行讨论。 功率MOSFET为多元集成结构,如国际整流器公司(International Rectifier)的HEXFET 采用了六边形单元;西门子公司(Siemens)的SIPMOSFET采用了正方形单元;摩托罗拉公司(Motorola)的TMOS采用了矩形单元按“品”字形排列。 2.2功率MOSFET的工作原理 截止:漏源极间加正电源,栅源极间电压为零。P基区与N漂移区之间形成的PN结J1 反偏,漏源极之间无电流流过。 导电:在栅源极间加正电压UGS,栅极是绝缘的,所以不会有栅极电流流过。但栅极的正电压会将其下面P区中的空穴推开,而将P区中的少子—电子吸引到栅极下面的P区表面 当UGS大于UT(开启电压或阈值电压)时,栅极下P区表面的电子浓度将超过空穴浓度,使P型半导体反型成N型而成为反型层,该反型层形成N沟道而使PN结J1消失,漏极和源极导电。 2.3功率MOSFET的基本特性

三极管MOS管原理(很详细)

双极型晶体管
双极型晶体管又称三极管。电路表示符号: B J T 。根据功率的不同具有不同的外形结构。
(a )小功率管 (b )小功率管 (c )中功率管 (d )大功率管
1
双极型晶体管的几种常见外形

一. 基本结构
由两个掺杂浓度不同且背靠背排列的PN结组成, 根据排列方式的不同可分为NPN型和PNP型两种,每个 PN结所对应区域分别称为发射区、基区和集电区。
C NPN型 B
基极
集电极
集电极
C P N P E
2
N P N E 发射极
PNP型
B
基极 发射极

C B IB E
IC B IE IB
C
IC
E
IE
NPN型三极管
PNP型三极管
制成晶体管的材料可以为Si或Ge。
3

集电区: 面积较大
C N P N E
集电极
基区:较薄, 掺杂浓度低
基极
B
发射区:掺 杂浓度较高
4
发射极

C N P N E
集电极
集电结
B J T 是非线性元 件,其工作特性与其 工作模式有关: 当E B 结加正偏,C B 结 加反偏时, B J T 处于放 大模式;
基极
B
发射结 发射极
当E B 结和C B 结均加正偏时, B J T 处于饱和模式; 当E B 结加零偏或反偏、C B 结加反偏时, B J T 处于截止 模式。 B J T 主要用途是对变化的电流、电压信号进行放大, 饱和模式和截止模式主要用于数字电路中。
5

三相双速异步电动机控制电路

三相双速异步电动机控制电路

————————————————————————————————作者:————————————————————————————————日期:

一、双速电机控制原理调速原理 根据三相异步电动机的转速公式:n1=60f/p 三相异步电动机要实现调速有多种方法,如采用变频调速(YVP变频调速电机配合变频器使用),改变励磁电流调速(使用YCT电磁调速电机配合控制器使用,可实现无极调速),也可通过改变电动机变极调速,即是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的(这也是常见的2极电机同步转速为3000rpm,4极电机同步转速1500rpm,6极电机同步转速1000rpm等)。这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机,这就是双速电机的调速原理。下图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。 ∴转速比=2/1=2 双速电机的变速原理是: 电机的变速采用改变绕组的连接方式,也就是说用改变电机旋转磁场的磁极对数来改变它的转速。 如你单位的双速电机(风机),平时转速低,有时风机就高速转,主要是通过外部控制线路的切换来改变电机线圈的绕组连接方式来实现。 1、在定子槽内嵌有两个不同极对数的共有绕组,通过外部控制线路的切换来改变电机定子绕组的接法来实现变更磁极对数; 2、在定子槽内嵌有两个不同极对数的独立绕组; 3、在定子槽内嵌有两个不同极对数的独立绕组,而且每个绕组又可以有不同的联接。 (一)双速电机定子接线图 三相双速异步电动机的定子绕组有两种接法:△接和YY接法,如下图所示。

三极管与MOS管区别

1.场效应管和三极管输入电阻的差异? 答:1.场效应管是单极、三极管是双极区别. 2.解决问题方面: 场效应管是电压控制电流源,控制电压和电流属于不同的支路,因而电压的求解一般不难,进而根据漏极电流表达式来求出电流值,然后进行模型分析,求出跨导和输出电阻. 而三极管要先建立模型,然后进行电路分析,求解过程特别是计算很复杂,容易出错; 总体而言,我觉得场效应管的分析要比三极管简单一些. 3.三极管和场效应管的比较可以归纳以下几点: 一、在三极管中,空穴和自由电子都参与导电,称为双极型器件,用BJT表示;而场效应管只有多子导电,称为单极型器件,用FET表示.由于多子浓度不受外界温度、光照、辐射的影响,在环境变化剧烈的条件下,选用FET比较合适. 这也就是我们通常所说的场效应管比较稳定的原因. 二、在放大状态工作时,三极管发射结正偏,有基极电流,为电流控制器件,相应的输入电阻较小,约103Ω;FET在放大状态工作时无栅极电流,为电压控制器件,输入电阻很大,JFET的输入电阻大于107Ω,MOS管的输入电阻大于109Ω. 三、场效应管的源极和漏极在结构上对称,可以互换使用(但应注意,有时厂家已将MOS管的源极与衬底在管内已经短接,使用时就不能互换).对耗尽型MOS 管的VGS可正、可负、可为零,使用时比较灵活.三极管的集电极和发射

极一般不能互换使用. 四、在低电压小电流状态下工作时,FET可作为压控可变线性电阻器和导通电阻很小的无触点电子开关. 五、MOS管工艺简单,功耗小,适合于大规模集成.三极管的增益高,非线性失真小,性能稳定.在分立元件电路和中、小规模集成电路中,三极管仍占优势. 六、三极管的转移特性(ic-vbe的关系)按指数规律变化,场效应管的转移特性按平方规律变化,因此场效应管的非线性失真比三极管的非线性失真大.七、场效应管的三种基本组态电路(共源、共漏和共栅)可以对照三极管的共发、共集和共基电路,由于场效应管的栅极无电流,所以输入电阻R'i≈∞.跨导gm 比三极管的小一个数量级,gm我们可以用转移特性求导得到 4.三极管可以说是电流控制电流源的器件,而电流是通过输入电阻的大小来体现的;但场效应管是电压控制电流源的器件 5.记住四种mos管的特性曲线的方法:只需记住n沟道的emos管的曲线,它的Vgs是大于0的,且曲线呈递增趋势.而p沟道的emos的Vgs是小于0的,且呈现递减趋势.dmos的Vgs既有大于0的部分,又有小于0的部分,按照n沟道递增,p沟道递减的曲线特征就可以将dmos的特性曲线记住了 6.1)场效应管是电压控制元件,而三级管是电流控制元件; 2)场效应管是利用多数载流子导电,所以称为单极性器件,而三级管既有多子,

步进电机驱动器以及原理图

` 基于L297系列芯片的步进电机驱动器 设计说明书 一:概述 步进电动机是用脉冲信号进行控制,将点脉冲信号转换成相应的角位移和线位移的微电机,广泛地应用于打印机等办公知道设备以及各种控制装置。 步进电机和一般的电机不同,之接电源步进电机不能转动,而每加一个点脉冲仅转动一定的角度,另外,改变脉冲的频率时,步进电机的速率也跟着改变。 步进电机按电磁转距产生机理的不同可以分为反应式步进电机,永磁式步进电机和混合式步进电机,而按绕组的相数又可以分为单相,两相,三相。五相……… 二:步进电机的驱动方式 由于篇幅有限和设计的实际情况,在这我只介绍和设计方式相关的二相步进电机的励磁方式和驱动方式。 (一)驱动器结构简介 步进电机驱动器主要结构可以由下图表示 各部分的主要作用为 1:环行分配器:根据输入信号的要求产生电机在不同状态下的开关波形 2:信号处理:对环行分配器产生的开关信号波形进行PWM调制以及对相关的波形进行滤波整形处理 3:推动级:对开关信号的电压,电流进行放大提升 4:主开关电路:用功率元器件直接控制电机的各相绕组 5:保护电路:当绕组电流过大时产生关断信号对主回路进行关断,以保护电机驱动器和电机绕组 6:传感器:对电机的位置和角度进行实时监控,传回信号的产生装置。 (二):励磁方式

本设计对二相双极性电机进行的,所以介绍二相电机的励磁方式 1:一相励磁:通电的绕组只有一相,依次切换相电流产生旋转步距角为1。8度,对这种励磁方式,每个脉冲到来时的旋转角的响应有振动,若频率过高,有时会产生失步现象 2:两相励磁:两相同时流通电流,也采用依次切换相电流的方法,二相励磁的步距角为1.8度,二相历次的总电流增大2倍,则最高启动频率增大,能获得高的转速,另外,过度性能也好。 3:一,二相励磁:这是一种交替进行一相励磁,二相励磁的方法,启动电流每两个始终切换依次,因此步距角为0。9度,励磁电流变大,过度性能也好,最大启动频率也高。 (三):驱动方式 单极性和双极性是步进电机最常采用的两种驱动架构。单极性驱动电路使用四颗晶体管来驱动步进电机的两组相位,电机结构则如图1所示包含两组带有中间抽头的线圈,整个电机共有六条线与外界连接。这类电机有时又称为四相电机,但这种称呼容易令人混淆又不正确,因为它其实只有两个相位,精确的说法应是双相位六线式步进电机。六线式步进电机虽又称为单极性步进电机,实际上却能同时使用单极性或双极性驱动电路。 单极性步进电机驱动电路 双极性步进电机的驱动电路则如图2所示,它会使用八颗晶体管来驱动两组相位。双极性驱动电路可以同时驱动四线式或六线式步进电机,虽然四线式电机只能使用双极性驱动电路,它却能大幅降低量产型应用的成本。双极性步进电机驱动电路的晶体管数目是单极性驱动电路的两倍,其中四颗下端晶体管通常是由微控制器直接驱动,上端晶体管则需要成本较高的上端驱动电路。双极性驱动电路的晶体管只需承受电机电压,所以它不像单极性驱动电路一样需要箝位电路。

典型电动机控制原理图及解说

1、定时自动循环控制电路 说明: 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器K A吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并 联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合 触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时 开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电 延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电 。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止 。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动 合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触 点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此

时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮 SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次 起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断 开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理: 图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2, KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机 的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2 电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件 ,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制 KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路 只有满足M1电动机先起动的条件,才能起动M2电动机。 3、电动机顺序控制电路

电机驱动电路的设计

《电子线路CAD》课程论文题目:电机驱动电路的设计

1 电路功能和性能指标 此电路是用MCU发出的PWM波来控制电机的转速的电路,电路输入电压是7.2V。 2 原理图设计 2.1原理图元器件制作 元器件截图: 图1 这个是图中的BTN7971的原理图,是一款电机驱动半桥芯片。 制作步骤: 1.点击菜单栏的放置,然后点击弹出的窗口中的矩形,如下图: 图2 2.然后鼠标光标下就会出现一个黄色的矩形边框,自己就可以随意设置边框的大小,之后框图的大小可以拖动修改,如下图:

图3 3.框图定好后,点击下图的图标,可以进行画引脚: 图4 4.放引脚时可以按table键设置引脚属性: 图5 2.2 原理图设计 ①原理图设计过程: 首先简历里一个PCB工程项目,保存命名为BTN驱动,然后在这个工程下面

建立一个原理图文件和一个PCB文件,并将其保存并重命名为BTN在与工程相同的目录下面,然后开始绘制原理图了,将所有设置默认为初始状态不需要更改,然后开始画原理图了,将其模块化绘图比较方便好看。 ②下面就是绘制成功后的原理图: 图6 ③下图为massage框图: 图7 其操作步骤为: 1.点击system中的message, 2.然后点击下图中高亮部分 图8

3.最后打开message就可以看见编译信息了 4.之后根据错误提示进行查找修改,直至没有错误和警告,如下图: 图9 ④该项目的元器件库截图如下: 图10 图11

生成原理图库的步骤为: 1.点击界面右下角的design compiler,然后点击如图高亮部分: 图12 2.点击界面上面的工具栏中的设计,然后点击高亮部分: 图13 3.最后可以查看刚才打开的navigater,如图:

三极管和MOS管做开关用时的区别

三极管和MOS管做开关用时的区别 ?我们在做电路设计中三极管和MOS管做开关用时候有什么区别工作性质: 1.三极管用电流控制,MOS管属于电压控制. 2、成本问题:三极管便宜,MOS管贵。 3、功耗问题:三极管损耗大。 4、驱动能力:MOS管常用来电源开关,以及大电流地方开关电路。 实际上就是三极管比较便宜,用起来方便,常用在数字电路开关控制。 MOS管用于高频高速电路,大电流场合,以及对基极或漏极控制电流比较敏感的地方。 一般来说低成本场合,普通应用的先考虑用三极管,不行的话考虑MOS管 实际上说电流控制慢,电压控制快这种理解是不对的。要真正理解得了解双极晶体管和MOS晶体管的工作方式才能明白。三极管是靠载流子的运动来工作的,以npn管射极跟随器为例,当基极加不加电压时,基区和发射区组成的pn结为阻止多子(基区为空穴,发射区为电子)的扩散运动,在此pn结处会感应出由发射区指向基区的静电场(即内建电场),当基极外加正电压的指向为基区指向发射区,当基极外加电压产生的电场大于内建电场时,基区的载流子(电子)才有可能从基区流向发射区,此电压的最小值即pn结的正向导通电压(工程上一般认为0.7v)。但此时每个pn结的两侧都会有电荷存在,此时如果集电极-发射极加正电压,在电场作用下,发射区的电子往基区运动(实际上都是电子的反方向运动),由于基区宽度很小,电子很容易越过基区到达集电区,并与此处的PN的空穴复合(靠近集电极),为维持平衡,在正电场的作用下集电区的电子加速外集电极运动,而空穴则为pn结处运动,此过程类似一个雪崩过程。集电极的电子通过电源回到发射极,这就是晶体管的工作原理。三极管工作时,两个pn结都会感应出电荷,当做开关管处于导通状态时,三极管处于饱和状态,如果这时三极管截至,pn结感应的电荷要恢复到平衡状态,这个过程需要时间。而MOS三极管工作方式不同,没有这个恢复时间,因此可以用作高速开关管。 ?(1)场效应管是电压控制元件,而晶体管是电流控制元件。在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管。 (2)场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电。被称之为双极型器件。

双速电机原理及接线图

双速电机接线图 一、双速电动机简介 双速电动机属于异步电动机变极调速,是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n 1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的。这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机。 此图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。 ∴转速比=2/1=2 二、控制电路分析 1、合上空气开关QF引入三相电源 2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、W2悬空。电动机在△接法下运行,此时电动机p=2、n1=1500转/分。

3、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p= 1,n1=3000转/分。KM2的辅助常开触点断开,防KM1误动。 4、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。 5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM2线圈串联,这种控制就是按钮的互锁控制,保证△与YY两种接法不可能同时出现,同时KM2辅助常闭触点接入KM1线圈回路,KM1辅助常闭触点接入K M2线圈回路,也形成互锁控制。 三、定子接线图如下 低速时绕组的接法高速时绕组的接法

三极管和MOS管的区别

工作性质:三极管用电流控制,MOS管属于电压控制. 2、成本问题:三极管便宜,mos管贵。 3、功耗问题:三极管损耗大。 4、驱动能力:mos管常用来电源开关,以及大电流地方开关电路。 实际上就是三极管比较便宜,用起来方便,常用在数字电路开关控制。 MOS管用于高频高速电路,大电流场合,以及对基极或漏极控制电流比较敏感的地方。 一般来说低成本场合,普通应用的先考虑用三极管,不行的话考虑MOS管 实际上说电流控制慢,电压控制快这种理解是不对的。要真正理解得了解双极晶体管和mos 晶体管的工作方式才能明白。三极管是靠载流子的运动来工作的,以npn管射极跟随器为例,当基极加不加电压时,基区和发射区组成的pn结为阻止多子(基区为空穴,发射区为电子)的扩散运动,在此pn结处会感应出由发射区指向基区的静电场(即内建电场),当基极外加正电压的指向为基区指向发射区,当基极外加电压产生的电场大于内建电场时,基区的载流子(电子)才有可能从基区流向发射区,此电压的最小值即pn结的正向导通电压(工程上一般认为0.7v)。但此时每个pn结的两侧都会有电荷存在,此时如果集电极-发射极加正电压,在电场作用下,发射区的电子往基区运动(实际上都是电子的反方向运动),由于基区宽度很小,电子很容易越过基区到达集电区,并与此处的PN的空穴复合(靠近集电极),为维持平衡,在正电场的作用下集电区的电子加速外集电极运动,而空穴则为pn结处运动,此过程类似一个雪崩过程。集电极的电子通过电源回到发射极,这就是晶体管的工作原理。三极管工作时,两个pn结都会感应出电荷,当做开关管处于导通状态时,三极管处于饱和状态,如果这时三极管截至,pn结感应的电荷要恢复到平衡状态,这个过程需要时间。而mos三极管工作方式不同,没有这个恢复时间,因此可以用作高速开关管。 (1)场效应管是电压控制元件,而晶体管是电流控制元件。在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管。 (2)场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电。被称之为双极型器件。 (3)有些场效应管的源极和漏极可以互换使用,栅压也可正可负,灵活性比晶体管好。 (4)场效应管能在很小电流和很低电压的条件下工作,而且它的制造工艺可以很方便地把很多场效应管集成在一块硅片上,因此场效应管在大规模集成电路中得到了广泛的应用。 (5)场效应晶体管具有较高输入阻抗和低噪声等优点,因而也被广泛应用于各种电子设备中。尤其用场效管做整个电子设备的输入级,可以获得一般晶体管很难达到的性能。

电机驱动电路详细经典

先给大家介绍个技术交流QQ群有什么不能搞好的可以大家交流 28858693 技术交流QQ群 H桥驱动电路原理 2008-09-05 16:11 一、H桥驱动电路 图4.12中所示为一个典型的直流电机控制电路。电路得名于“H桥驱动电路”是因为它的形状酷似字母H。4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图4.12及随后的两个图都只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。 如图所示,H桥式电机驱动电路包括4个三极管和一个电机。要使电机运转,必须导通对角线上的一对三极管。根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。 图4.12 H桥驱动电路 要使电机运转,必须使对角线上的一对三极管导通。例如,如图4.13所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经 Q4回到电源负极。按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。

图4.13 H桥电路驱动电机顺时针转动 图4.14所示为另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。 图4.14 H桥驱动电机逆时针转动 二、使能控制和方向逻辑 驱动电机时,保证H桥上两个同侧的三极管不会同时导通非常重要。如果三极管Q1和Q2同时导通,那么电流就会从正极穿过两个三极管直接回到负极。此时,电路中除了三极管外没有其他任何负载,因此电路上的电流就可能达到最大值(该电流仅受电源性能限制),甚至烧坏三极管。基于上述原因,在实际驱动电路中通常要用硬件电路方便地控制三极管的开关。 图4.155 所示就是基于这种考虑的改进电路,它在基本H桥电路的基础上增加了4个与门和2个非门。4个与门同一个“使能”导通信号相接,这样,用这一个信号就能控制整个电路的开关。而2个非门通过提供一种方向输人,可以保证任何时候在H桥的同侧腿上都只有一个三极管能导通。(与本节前面的示意图一样,图4.15所示也不是一个完整的电路图,特别是图中与门和三极管直接连接是不能正常工作的。)

MOS管与三极管做开关用法比较

Kevin pen 1/1 MOS 管(MOSFET )的压降 是指MOSFET 饱和导通的时候,VDS=I*RDS(on)的电压。VDS 表示场效应管的漏极和源极的电压,G 表示栅极,I 表示流过DS 的电流,RDS(on)表示导通电阻,一般为几百毫欧。 MOSFET 的管压降,一般指的是静态压降。只要知道导通阻抗和通过的电流的话用上面的公式就可以计算出来压降是多少了。 三极管管压降 三极管的管压降Uce 就是指集电极与发射极的电压。一般情况下,CE 极电压在0.3或者0.3V 以下时,三极管进入饱和区的工作状态,集电极电流不随着基集电流增加而增加了,也叫饱和电压。 正常三极管管压降为0.1-0.7V 。 由于管压降Uce 与集电极电流ic 具有非线性的函数关系,Uce 的大小随着Ice 的增大,在一定的范围内增大。 通过Ic 与Uce (饱和压降)的曲线图,就可以清晰的知道Uce 的大小了。 对比应用 通过初步计算,在流过相同的电流(小于100MA )的情况下,场效应管的管压降要比三极管的管压降略低。一般小于0.1V 。随着电流增大,三极管管压降最大达到0.7V 左右。 下图为三极管的管压降示例图,一般在DATASHEET 中都有给出。 对于场效应管(MOSFET ),VDS 取决于电流和导通电阻RDS(on)。导通电阻一般变化不大,但是与VGS 有关,VGS 大导通程度也大,导通电阻就小。 如果RDS(on)=250M Ω,流过电流为100MA ,管压降VDS=0.025V 。图一为0.05V ,图二为0.03V 。 因此,可以看出,在实际开关应用中,如果要使被控的电压的压降尽量小,MOSFET 比三极管有略微的优势。

双速电机接线图及控制原理分析

双速电机接线图及控制原理分析 一、双速电机控制原理调速原理 根据三相异步电动机的转速公式:n1=60f/p 三相异步电动机要实现调速有多种方法,如采用变频调速(YVP变频调速电机配合变频器使用),改变励磁电流调速(使用YCT电磁调速电机配合控制器使用,可实现无极调速),也可通过改变电动机变极调速,即是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的(这也是常见的2极电机同步转速为3000rpm,4极电机同步转速1500rpm,6极电机同步转速1000rpm等)。这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机,这就是双速电机的调速原理。 下图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。 ∴转速比=2/1=2 二、控制电路分析(双速电机接线图如下图)

1、合上空气开关QF引入三相电源 2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、W2悬空。电动机在△接法下运行,此时电动机p=2、n1=1500转/分。 3、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。 4、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。KM2的辅助常开触点断开,防KM1误动。 5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM2线圈串联,这种控制就是按钮的

步进电机及其驱动电路

第三节步进电动机及其驱动 一、步进电机的特点与种类 1.步进电机的特点 步进电机又称脉冲电机。它是将电脉冲信号转换成机械角位移的执行元件。每当输入一个电脉冲时,转子就转过一个相应的步距角。转子角位移的大小及转速分别与输入的电脉冲数及频率成正比,并在时间上与输入脉冲同步。只要控制输入电脉冲的数量、频率以及电机绕组通电相序即可获得所需的转角、转速及转向。 步进电动机具有以下特点: ?工作状态不易受各种干扰因素(如电压波动、电流大小与波形变化、温度等)的影响; ?步进电动机的步距角有误差,转子转过一定步数以后也会出现累积误差,但转子转过一转以后,其累积误差变为“零” ; ?由于可以直接用数字信号控制,与微机接口比较容易; ?控制性能好,在起动、停止、反转时不易“丢步”; ?不需要传感器进行反馈,可以进行开环控制; ?缺点是能量效率较低。 就常用的旋转式步进电动机的转子结构来说,可将其分为以下三种: (1)可变磁阻(VR-Variable Reluctance),也叫反应式步进电动机 (2)永磁(PM-Permanent Magnet)型 (3)混合(HB-Hybrid)型 (1)可变磁阻(VR-Variable Reluctance) 结构原理:该类电动机由定子绕组产生的反应电磁力吸引用软磁钢制成的齿形转子作步进驱动,故又称作反应式步进电动机。其结构原理如图3.5定子1 上嵌有线圈,转子2朝定子与转子之间磁阻最小方向转动,并由此而得名可变磁阻型。

图3.6 可变式阻步进电机 可变磁阻步进电机的特点: 反应式电动机的定子与转子均不含永久磁铁,故无励磁时没有保持力; 需要将气隙作得尽可能小,例如几个微米; 结构简单,运行频率高,可产生中等转矩,步距角小(0.09~9°) 制造材料费用低; 有些数控机床及工业机器人上使用。 (3)混合(HB-Hybrid)型 结构原理 这类电机是PM式和VR式的复合形式。其定子与VR类似,表面制有小齿,转子由永磁铁和铁心构成,同样切有小齿,为了减小步距角可以在结构上增加转子和定子的齿数。其结构如图3.7所示。 混合式步进电机特点: HB兼有PM和VR式步进电机的特点: 步距角可以做得较小(0.9~3.6°); 无励磁时具有保持力; 可以产生较大转矩,应用较广。

三极管MOS管复习题

习题3 客观检测题 一、填空题 2. 三极管的发射区 杂质 浓度很高,而基区很薄。 5. 处于放大状态的晶体管,集电极电流是 少数载流 子漂移运动形成的。 6. 工作在放大区的某三极管,如果当I B 从12μA 增大到22μA 时,I C 从1mA 变为2mA ,那么它的β约为 100 。 8. 双极型三极管是指它部的 参与导电载流子 有两种。 9. 三极管工作在放大区时,它的发射结保持 正向 偏置,集电结保持 反向 偏置。 11. 为了使高阻信号源与低电阻负载能很好的配合,可以在信号源与低电阻负载间接入 共 集电极 组态的放大电路。 12. 题图3.0.1所示的图解,画出了某单管共射放大电路中晶体管的输出特性和直流、交流负载线。由此可以得出: (1)电源电压CC V = 6V ; (2)静态集电极电流CQ I = 1mA ;集电极电压CEQ U = 3V ; (3)集电极电阻C R = 3k Ω ;负载电阻L R = 3k Ω ; (4)晶体管的电流放大系数β= 50 ,进一步计算可得电压放大倍数v A = -50 ;('bb r 取200Ω); (5)放大电路最大不失真输出正弦电压有效值约为 1.06V ; (6)要使放大电路不失真,基极正弦电流的振幅度应小于 20μA 。 13. 稳定静态工作点的常用方法有 射极偏置电路 和 集电极-基极偏置电路 。 14. 有两个放大倍数相同,输入电阻和输出电阻不同的放大电路A 和B ,对同一个具有阻的信号源电压进行放大。在负载开路的条件下,测得A 放大器的输出电压小,这说明A 的输入电阻 小 。 15. 三极管的交流等效输入电阻随 静态工作点 变化。 16. 共集电极放大电路的输入电阻很 大 ,输出电阻很 小 。 17. 放大电路必须加上合适的直流 偏置 才能正常工作。 题图3.0.1

伺服电机工作原理图

伺服电机工作原理图 伺服电机工作原理——伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。 永磁交流伺服系统具有以下等优点:(1)电动机无电刷和换向器,工作可靠,维护和保养简单;(2)定子绕组散热快;(3)惯量小,易提高系统的快速性;(4)适应于高速大力矩工作状态;(5)相同功率下,体积和重量较小,广泛的应用于机床、机械设备、搬运机构、印刷设备、装配机器人、加工机械、高速卷绕机、纺织机械等场合,满足了传动领域的发展需求。 永磁交流伺服系统的驱动器经历了模拟式、模式混合式的发展后,目前已经进入了全数字的时代。全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等确定,还充分发挥了数字控制在控制精度上的优势和控制方法的灵活,使伺服驱动器不仅结构简单,而且性能更加的可靠。现在,高性能的伺服系统,大多数采用永磁交流伺服系统其中包括永磁同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。伺服驱动器有两部分组成:驱动器硬件和控制算法。控制算法是决定交流伺服系统性能好坏的关键技术之一,是国外交流伺服技术封锁的主要部分,也是在技术垄断的核心。 2 交流永磁伺服系统的基本结构 交流永磁同步伺服驱动器主要有伺服控制单元、功率驱动单元、通讯接口单元、伺服电动机及相应的反馈检测器件组成,其结构组成如图1所示。其中伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等等。我们的交流永磁同步驱动器其集先进的控制技术和控制策略为一体,使其非常适用于高精度、高性能要求的伺服驱动领域,还体现了强大的智能化、柔性化是传统的驱动系统所不可比拟的。 目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,其优点是可以实现比较复杂的控制算法,事项数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。

分享一个比较经典的MOS管驱动电路

问题提出: 现在的MOS驱动,有几个特别的需求, 1,低压应用 当使用5V电源,这时候如果使用传统的图腾柱结构,由于三极管的be有左右的压降,导致实际最终加在gate上的电压只有。这时候,我们选用标称gate电压的MOS管就存在一定的风险。 同样的问题也发生在使用3V或者其他低压电源的场合。 2,宽电压应用 输入电压并不是一个固定值,它会随着时间或者其他因素而变动。这个变动导致PWM电路提供给MOS管的驱动电压是不稳定的。 为了让MOS管在高gate电压下安全,很多MOS管内置了稳压管强行限制gate电压的幅值。在这种情况下,当提供的驱动电压超过稳压管的电压,就会引起较大的静态功耗。 同时,如果简单的用电阻分压的原理降低gate电压,就会出现输入电压比较高的时候,MOS管工作良好,而输入电压降低的时候gate电压不足,引起导通不够彻底,从而增加功耗。 3,双电压应用

在一些控制电路中,逻辑部分使用典型的5V或者数字电压,而功率部分使用12V 甚至更高的电压。两个电压采用共地方式连接。 这就提出一个要求,需要使用一个电路,让低压侧能够有效的控制高压侧的MOS 管,同时高压侧的MOS管也同样会面对1和2中提到的问题。 在这三种情况下,图腾柱结构无法满足输出要求,而很多现成的MOS驱动IC,似乎也没有包含gate电压限制的结构。 于是我设计了一个相对通用的电路来满足这三种需求。 电路图如下: ? 图1 用于NMOS的驱动电路 图2 用于PMOS的驱动电路 这里我只针对NMOS驱动电路做一个简单分析: Vl和Vh分别是低端和高端的电源,两个电压可以是相同的,但是Vl不应该超过Vh。 Q1和Q2组成了一个反置的图腾柱,用来实现隔离,同时确保两只驱动管Q3和Q4不会同时导通。

双速电机控制原理图及文字解析

双速电机控制原理图 一、双速电动机简介 双速电动机属于异步电动机变极调速,是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的。这种调速方法是有级的,不能平滑调速,而且只适 用于鼠笼式电动机。 此图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法, 磁极对数从p=2变为p=1。

∴转速比=2/1=2 二、控制电路分析 1、合上空气开关QF引入三相电源 2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L 3接W1;U2、V2、W2悬空。电动机在△接法下运行,此时电动机 p=2、n1=1500转/分。 3、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L 1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。KM2的辅助常开触点断开, 防KM1误动。 4、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。 5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM2线圈串联,这种控制就是按钮的互锁控制,

相关文档
最新文档