常见汽车悬挂解析

常见汽车悬架解析

汽车常见悬架 一、汽车悬架的功用 悬架是车架(或承载式车身)与车桥(或车轮)之间的一起传力连接装置的总称。其功用是把路面作用于车轮上的垂直反力(支承力)、纵向反力(驱动力和制动力)和侧向力以及这些反力所造成的力矩传递到车架(或承载式车身)上,以保证汽车的正常行驶。 二、悬挂系统的基本构成 汽车的悬架机构各有不同,但一般都由弹性元件、减振器、导向机构等三部分组成,分别起缓冲、减振和受力传递的作用。弹性元件即弹簧,承受垂直载荷,缓和及抑制不平路面对车体的冲击。减振器又指液力减振器,其功能是为加速衰减车身的振动,它也是悬挂系统中最精密和复杂的机械件。传力装置则是指车架的上下摆臂等叉形钢架、转向节等元件,用来传递纵向力、侧向力及力矩,并保证车轮相对于车架有确定的相对运动规律。此外,还铺设了缓冲块和横向稳定器。 三、汽车悬挂的分类 悬架按导向机构的基本形式分,有两大类,分别是独立悬挂和非独立悬挂。 1、非独立悬挂 非独立悬架其特点是两侧车轮安装于一整体式车桥上,当一侧车轮受冲击力时会直接影响到另一侧车轮上,当车轮上下跳动时定位参数变化小。若采用钢板弹簧作弹性元件,它可兼起导向作用,使结构大为简化,降低成本。目前广泛应用于货车和大客车上,有些轿车后悬架也有采用的。非独立悬架由于非簧载质量比较大,高速行驶时悬架受到冲击载荷比较大,平顺性较差。 非独立悬架的结构,特别是导向机构的结构,随所采用的弹性元件不同而有所差异,而且有时差别很大。采用螺旋弹簧、气体弹簧时,需要有较为复杂的导向机构;而采用钢板弹簧时,由于钢板弹簧本身可兼起导向机构的作用,并有一定的减振作用,使得悬架结构大为简化。因此,在非独立悬架中大多数采用钢板弹簧作为弹性元件。它中部用U型螺栓将钢板弹簧固定在车桥上。悬架前端为固定铰链,也叫死吊耳。它由钢板弹簧销钉将钢板弹簧前端卷耳部与钢板弹簧前支架连接在一起,前端卷耳孔中为减少摩损装有衬套。后端卷耳通过钢板弹簧吊

汽车悬挂系统结构原图解

汽车悬挂系统结构原理图解 系统结构, 汽车, 原理, 图解, 悬挂 汽车悬挂系统结构原理图解教程 什么是悬挂系统 舒适性是轿车最重要的使用性能之一。舒适性与车身的固有振动特性有关,而车身的固有振动特性又与悬架的特性相关。所以,汽车悬架是保证乘坐舒适性的重要部件。同时,汽车悬架做为车架(或车身)与车轴(或车轮)之间作连接的传力机件,又是保证汽车行驶安全的重要部件。因此,汽车悬架往往列为重要部件编入轿车的技术规格表,作为衡量轿车质量的指标之 一。 汽车车架(或车身)若直接安装于车桥(或车轮)上,由于道路不平,由于地面冲击使货物和人会感到十分不舒服,这是因为没有悬架装置的原因。汽车悬架是车架(或车身)与车轴(或车轮)之间的弹性联结装置的统称。它的作用是弹性地连接车桥和车架(或车身),缓和行驶中车辆受到的冲击力。保证货物完好和人员舒适;衰减由于弹性系统引进的振动,使汽车行驶中保持稳定的姿势,改善操纵稳定性;同时悬

架系统承担着传递垂直反力,纵向反力(牵引力和制动力)和侧向反力以及这些力所造成的力矩作用到车架(或车身)上,以保证汽车行驶平顺;并且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对 车身跳动的导向作用。 悬架结构形式和性能参数的选择合理与否,直接对汽车行驶平顺性、操纵稳定性和舒适性有很大的影响。由此可见悬架系统在现代汽车上是重要的总成之 一。

一般悬架由弹性元件、导向机构、减振器和横向稳定杆组成。弹性元件用来承受并传递垂直载荷,缓和由于路面不平引起的对车身的冲击。弹性元件种类包括钢板弹簧、螺旋弹簧、扭杆弹簧、油气弹簧、空气弹簧和橡胶弹簧。减振器用来衰减由于弹性系统引起的振,减振器的类型有筒式减振器,阻力可调式新式减振器,充气式减振器。导向机构用来传递车轮与

汽车悬挂分类及特点

1、悬挂的分类 (l)非独立式悬挂:两侧车轮安装于一根整体式车桥上,车桥通过悬挂与车架相连。这种悬挂结构简单,传力可靠,但两轮受冲击震动时互相影响。而且由于非悬挂质量较重,悬挂的缓冲性能较差,行驶时汽车振动,冲击较大。该悬挂一般多用于载重汽车、普通客车和一些其他车辆上。 (2)独立式悬挂:每个车轮单独通过一套悬挂安装于车身或者车桥上,车桥采用断开式,中间一段固定于车架或者车身上;此种悬挂两边车轮受冲击时互不影响,而且由于非悬挂质量较经;缓冲与减震能力很强,乘坐舒适。各项指标都优于非独立式悬挂,但该悬挂结构复杂,而且还会便驱动桥、转向系变得复杂起来。采用此种悬挂的有下面两大类车辆。 ①轿车、客车及载人车辆。可明显提高乘坐舒适性,并且在高速行驶时提高汽车的行驶稳定性。 ②越野车辆、军用车辆和矿山车辆。在坏路和无路的情说下,可保证全部车轮与地面的接触,提高汽车的行驶稳定性和附着性,发挥汽车的行驶速度。 2.弹性元件的种类 (1)钢板弹簧:由多片不等长和不等曲率汽车悬架那种比较好的钢板叠合而成。安装好后两端自然向上弯曲。钢板弹簧除具有缓冲作用外,还有一定的减震作用,纵向布置时还具有导向传力的作用,非独立悬挂大多采用钢板弹簧做弹性元件,可省去导向装置和减震器,结构简单。 (2)螺旋弹簧:只具备缓冲作用,多用于轿车独立悬挂装置。由于没有减震和传力的功能,还必须设有专门的减震器和导向装置。 (3)油气弹簧:以气体作为弹性介质,液体作为传力介质,它不但具有良好的缓冲能力,还具有减震作用,同时还可调节车架的高度,适用于重型车辆和大客车使用。 (4)扭杆弹簧;将用弹簧杆做成的扭杆一端固定于车架,另一端通过摆臂与车轮相连,利用车轮跳动时扭杆的扭转变形起到缓冲作用,适合于独立悬挂使用。 3、减震器

全面解析5种常见悬挂—双叉臂式独立悬挂附件

全面解析5种常见悬挂—双叉臂式独立悬挂 2007-07-19 09:19:19来源: (北京) ?很多朋友都对悬挂很感兴趣,希望了解更多相关知识,那么不要着急,下面我们就来介绍:双叉臂式独立悬挂。 本田思域的双横臂式悬挂 另外需要说明的是,双横臂式悬挂和双叉臂式悬挂有着许多的共性,只是结构比双叉臂式简单些可以称之为简化版的双叉臂式悬挂。同双叉臂式悬挂一样双横臂式悬挂的横向刚度也较大,一般也采用上下不等长摇臂设置。

后悬采用双横臂式悬挂的思域具有不错的运动性 卖的很好的中型轿车本田雅阁和马自达6都采用了双横臂前悬挂 双横臂式悬挂设计偏向运动性,其性能优于麦弗逊式式悬挂、但比起真正的双叉臂式悬挂以及多连杆前悬挂要稍差一些。国内采用双横臂式前悬挂的主要有:广州本田雅阁、一汽轿车马自达6以及北京奔驰-戴克的克莱斯勒300C。而采用双横臂式后悬挂的有东风本田思域。

大众豪华SUV途锐前后悬均采用了双叉臂式独立悬挂 主要优点:横向刚度大、抗侧倾性能优异、抓地性能好、路感清晰; 主要缺点:制造成本高、悬架定位参数设定复杂; 适用车型:运动型轿车、超级跑车以及高档SUV前后悬架。 以上就是有关双叉臂式独立悬挂的相关知识,您应该对悬挂有了进一步的了解。那么,明天我们将继续为大家介绍的是多连杆式独立悬挂,敬请关注。 ?很多朋友都对悬挂很感兴趣,希望了解更多相关知识,那么不要着急,下面我们就来介绍:双叉臂式独立悬挂。

典型的双叉臂式独立悬挂结构图 双叉臂式悬挂又称双A臂式独立悬挂,双叉臂悬挂拥有上下两个叉臂,横向力由两个叉臂同时吸收,支柱只承载车身重量,因此横向刚度大。双叉臂式悬挂的上下两个A字形叉臂可以精确的定位前轮的各种参数,前轮转弯时,上下两个叉臂能同时吸收轮胎所受的横向力,加上两叉臂的横向刚度较大,所以转弯的侧倾较小。 阿尔法·罗密欧159的前悬采用了双叉臂式悬挂

汽车悬挂系统结构原理详细图解

汽车悬挂系统结构原理图解 Post by:2010-10-419:48:00 什么是悬挂系统 舒适性是轿车最重要的使用性能之一。舒适性与车身的固有振动特性有关,而车身的固有振动特性又与悬架的特性相关。所以,汽车悬架是保证乘坐舒适性的重要部件。同时,汽车悬架做为车架(或车身)与车轴(或车轮)之间作连接的传力机件,又是保证汽车行驶安全的重要部件。因此,汽车悬架往往列为重要部件编入轿车的技术规格表,作为衡量轿车质量的指标之一。 汽车车架(或车身)若直接安装于车桥(或车轮)上,由于道路不平,由于地面冲击使货物和人会感到十分不舒服,这是因为没有悬架装置的原因。汽车悬架是车架(或车身)与车轴(或车轮)之间的弹性联结装置的统称。它的作用是弹性地连接车桥和车架(或车身),缓和行驶中车辆受到的冲击力。保证货物完好和人员舒适;衰减由于弹性系统引进的振动,使汽车行驶中保持稳定的姿势,改善操纵稳定性;同时悬架系统承担着传递垂直反力,纵向反力(牵引力和制动力)和侧向反力以及这些力所造成的力矩作用到车架(或车身)上,以保证汽车行驶平顺;并且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对车身跳动的导向作用。 悬架结构形式和性能参数的选择合理与否,直接对汽车行驶平顺性、操纵稳定性和舒适性有很大的影响。由此可见悬架系统在现代汽车上是重要的总成之一。

一般悬架由弹性元件、导向机构、减振器和横向稳定杆组成。弹性元件用来承受并传递垂直载荷,缓和由于路面不平引起的对车身的冲击。弹性元件种类包括钢板弹簧、螺旋弹簧、扭杆弹簧、油气弹簧、空气弹簧和橡胶弹簧。减振器用来衰减由于弹性系统引起的振动,减振器的类型有筒式减振器,阻力可调式新式减振器,充气式减振器。导向机构用来传递车轮与车身间的力和力矩,同时保持车轮按一定运动轨迹相对车身跳动,通常导向机构由控制摆臂式杆件组成。种类有单杆式或多连杆式的。钢板弹簧作为弹性元件时,可不另设导向机构,它本身兼起导向作用。有些轿车和客车上,为防止车身在转向等情况下发生过大的横向倾斜,在悬架系统中加设横向稳定杆,目的是提高横向刚度,使汽车具有不足转向特性,改善汽车的操纵稳定性和行驶平顺性。 悬挂系统的分类 现代汽车悬架的发展十分快,不断出现,崭新的悬架装置。按控制形式不同分为被动式悬架和主动式悬架。目前多数汽车上都采用被动悬架,如下图所示,也就是汽车姿态(状态)只能被动地取决于路面及行驶状况和汽车的弹性元件,导向机构以及减振器这些机械零件。20世纪80年代以来主动悬架开始在一部分汽车上应用,并且目前还在进一步研究和开发中。主动悬架可以能动地控制垂直振动及其车 身姿态,根据路面和行驶工况自动调整悬架刚度和阻尼。

前轮最常见悬挂形式 麦弗逊独立悬挂详解

前轮最常见悬挂形式麦弗逊独立悬挂详解 2010年10月14日 15:11:14 来源: Che168 麦弗逊悬挂(macphersan),是现在非常常见的一种独立悬挂形式,大多应用在车辆的前轮。简单地说,麦弗逊式悬挂的主要结构即是由螺旋弹簧加上减震器以及A字下摆臂组成,减震器可以避免螺旋弹簧受力时向前、后、左、右偏移的现象,限制弹簧只能作上下方向的振动,并且可以通过对减震器的行程、阻尼以及搭配不同硬度的螺旋弹簧对悬挂性能进行调校。麦弗逊悬挂最大的特点就是体积比较小,有利于对比较紧凑的发动机舱布局。不过也正是由于结构简单,对侧向不能提供足够的支撑力度,因此转向侧倾以及刹车点头现象比较明显。下面就为大家详细的介绍一下麦弗逊悬挂的构造以及性能表现。 麦弗逊悬挂的历史: 麦弗逊式悬挂是应前置发动机前轮驱动(ff)车型的出现而诞生的。ff车型不仅要求发动机要横向放置,而且还要增加变速箱、差速器、驱动机构、转向机,以往的前悬挂空间不得不加以压缩并大幅删掉,因此工程师才设计出节省空间、成本低的麦弗逊式悬挂,以符合汽车需求。

麦弗逊(Macphersan)是这套悬挂系统发明者的名字,他是美国伊利诺伊州人,1891年生。大学毕业后他曾在欧洲搞了多年的航空发动机,并于1924年加入通用汽车公司的工程中心。30年代,通用的雪佛兰公司想设计一种真正的小型汽车,总设计师就是麦弗逊。他对设计小型轿车非常感兴趣,目标是将这种四座轿车的质量控制在0.9吨以内,轴距控制在2.74米以内,设计的关键是悬挂。麦弗逊一改当时盛行的板簧与扭杆弹簧的前悬挂方式,创造性地将减振器和螺旋弹簧组合在一起,装在前轴上。实践证明这种悬架形式的构造简单,占用空间小,而且操纵性很好。后来,麦弗逊跳槽到福特,1950年福特在英国的子公司生产的两款车,是世界上首次使用麦弗逊悬架的商品车。 麦弗逊悬挂的构造: 麦弗逊悬挂构造图 麦弗逊式悬挂由螺旋弹簧、减震器、A字形下摆臂组成,绝大部分车型还会加上横向稳定杆。麦弗逊式独立悬架的物理结构为支柱式减震器兼作主销,承受来自于车身抖动和地面冲击的上下预

详解汽车悬挂系统资料讲解

详解汽车悬挂系统

结构稳定优势突出详解多连杆独立悬挂 曾几何时,结构复杂、成本高昂的多连杆式独立悬架还只应用于豪华轿车,而随着近些年汽车制造技术的不断提升,零部件单位生产成本逐步降低,这种悬挂已广泛应用于中级车型和一些强调操控性的紧凑车型上,相比传统麦弗逊式和拖拽臂式,其结构上的优势是显而易见的。

追根溯源一下,最早应用多连杆悬挂的应该是这款1979年下线的奔驰S-Class W126车型 没有像麦弗逊,整体桥等结构渊源的发展历史。多连杆结构的盛行只是近这二、三十年的事,追溯一下,最早使用这种悬挂形式的量产车的是奔驰的S-Class W126车系,但在当时,这种悬挂形式还处于萌芽阶段,结构相对简单,因此很多人会认为它是“双叉臂结构”的变种,因为它的外观结构甚至特性与双叉臂系统非常相近,但后来推出的多连杆形式不断地出现四连杆,甚至五连杆,人们才发现这种结构具有很高的可塑性和延展性,而结构也越来越复杂。 ■多连杆悬挂的工作结果是由各个连杆共同作用的组合而成

顾名思义,多连杆式悬挂就是指由三根或三根以上连杆拉杆构成的悬挂结构,以提供多个方向的控制力,使车轮具有更加可靠的行驶轨迹。常见的有三连杆、四连杆、五连杆等。但由于三连杆结构已不能满足人们对于底盘操控性能的更高追求。因此结构更为精确、定位更加准确的四连杆式和五连杆式悬架才能称得上是真正的多连杆式,这两种悬架结构通常应用于前轮和后轮。

在结构上以常见的五连杆式后悬挂为例,其五根连杆分别为:主控制臂、前置定位臂、后置定位臂、上臂和下臂。它们分别对各个方向产生作用力。比如,当车辆进行左转弯时,后车轮的位移方向正好与前转向轮相反,如果位移过大则会使车身失去稳定性,摇摆不定。此时,前后置定位臂的作用就开始显现,它们主要对后轮的前束角进行约束,使其在可控范围内;相反,由于后轮的前束角被约束在可控范围内,如果后轮外倾角过大则会使车辆的横向稳定性减低,所以在多连杆悬架中增加了对车轮上下进行约束的控制臂,一方面是更好的使车轮定位,另一方面则使悬架的可靠性和韧性进一步提高。

外文翻译---汽车悬架系统概述

附录Ⅰ:外文资料 Automotive Suspension System Overview The impact of the Vehicle in many aspects, Suspension plays a very important role . The components of the suspension system perform six basic functions: 1.Maintain correct vehicle ride height. 2.Reduce the effect of shock forces. 3.Maintain correct wheel alignment. 4.Support vehicle weight. 5.Keep the tires in contact with the road. 6.Control the vehicle’s direction of travel. Most suspension systems have the same basic parts and operate basically in the same way. They differ, however, in the way the parts are arranged. The vehicle wheel is attached to a steering knuckle. The steering knuckle is attached to the vehicle frame by two control arms, which are mounted so they can pivot up and down. A coil spring is mounted between the lower control arm and the frame. When the wheel rolls over a bump, the control arms move up and compress the spring. When the wheel rolls into a dip, the control arms move down and the springs expand. The spring force brings the control arms and the wheel back into the normal position as soon as the wheel is on flat pavement. The idea is to allow the wheel to move up and down while the frame, body, and passengers stay smooth and level. The unequal length control arm or short, long arm (SLA) suspension system has been common on American vehicles for many years. Because each wheel is independently connected to the frame by a steering knuckle, ball joint assemblies, and upper and lower control arms, the system is often described as an independent suspension. The short, long arm suspension system gets its name from the use of two control arms from the frame to the steering knuckle and wheel assembly. The two control arms are of unequal length with a long control arm on the bottom and a short control arm on the top. The control arms are sometimes called A arms because in the top view they are shaped like the letter A. In the short, long arm suspension system, the upper control arm is attached to a cross shaft through two combination rubber and metal bushings. The cross shaft, in turn, is bolted to the frame. A ball joint, called the upper ball joint, is attached to the outer end of the upper arm and connects to the steering knuckle through a tapered stud held in position with a nut. The inner ends of the lower control arm have pressed-in

全面解析5种常见悬挂

全面解析5种常见悬挂麦弗逊式独立悬挂 随着汽车产销量的高速发展,国内汽车的保有量也达到了空前的规模,消费者在购车的时候也不再简单把汽车看成是面子工程,而是越来越关心其汽车的各项性能,尤其是汽车的操控性能受到了极大关注。 在这个言必谈操控、论必说运动的年代里,几乎所有汽车品牌多在大力的宣传自己产品优秀的操控性能,从欧系的宝马、奥迪、萨伯到日系的讴歌、英菲尼迪等高端品牌无不在极力宣传自己良好的操控性和运动性,就连一向以舒适性能为取向的奔驰、凯迪拉克、雷克萨斯等高端品牌也在新近的设计中加入了更多的运动取向。从以福克斯为代表的紧凑型轿车到以迈腾为代表的中级车到以宝马5系Li为代表的高档车无不标榜自己的运动性能。那么他们是否如宣传所说这么优秀,此次汽车探索就为大家解读影响汽车运动性能的汽车底盘的核心——悬挂系统,并分析不同悬挂对汽车操控性及舒适性的影响。 『悬挂在汽车底盘安放位置的示意图』 ● 悬挂的概念和分类 首先让我们来了解一下什么是悬挂:悬挂是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,悬架的主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的振动、保证乘员的舒适性、减小货物和车辆本身的动载荷。典型的汽车悬挂结构由弹性元件、减震器以及导向机构等组成,这三部分分别起缓冲,减振和力的传递作用。绝大多数悬挂多具有

螺旋弹簧和减振器结构,但不同类型的悬挂的导向机构差异却很大,这也是悬挂性能差异的核心构件。根据结构不同可分为非独立悬挂和独立悬挂两种。 『奥迪S4前后均采用了独立悬挂』 非独立悬挂由于是用一根杆件直接刚性地连接在两侧车轮上,一侧车轮受到的冲击、振动必然要影响另一侧车轮,这样自然不会得到较好的操纵稳定性及舒适性,同时由于左右两侧车轮的互相影响,也容易影响车身的稳定性,在转向的时候较易发生侧翻。独立悬挂底盘扎实感非常明显。由于采用独立悬挂汽车的两侧车轮彼此独立地与车身相连,因此从使用过程来看,当一侧车轮受到冲击、振动后可通过弹性元件自身吸收冲击力,这种冲击力不会波及另一侧车轮,使得厂家可在车型的设计之初通过适当的调校使汽车在乘坐舒适性、稳定性、操纵稳定性三方面取得合理的配置。选用独立悬挂汽车一般来说其操控性和舒适性均要明显好于选用非独立悬挂的汽车。

汽车悬架史上最全介绍(图文)

悬架 定义:汽车的车架与车桥或车轮之间的一切传力连接装置的总称 作用:传递作用在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,并衰减由此引起的震动,以保证汽车能平顺地行驶。 组成:(1)减振器 功能: 减振器是产生阻尼力的主要元件,其作用是迅速衰减汽车的振动,改善汽车的行驶平顺性,增强车轮和地面的附着力.另外,减振器能够降低车身部分的动载荷,延长汽车的使用寿命.目前在汽车上广泛使用的减振器主要是筒式液力减振器,其结构可分为 双筒式,单筒充气式和双筒充气式三种。 工作原理:在车轮上下跳过程中,减振器活塞在工作腔内往复运动,使减振器液体通 过活塞上的节流孔,由于液体有一定的粘性和液体通过节流孔时与孔壁间产生摩擦, 使动能转化成热能散发到空气中,从而达到衰减振动功能。 (2)弹性元件 功能:支撑垂直载荷,缓和和抑止不平路面引起的振动和冲击.弹性元件主要有钢板弹簧,螺旋 弹簧,扭杆弹簧,气弹簧和橡胶弹簧等。 原理:用具有弹性较高材料制成的零件,在车轮受到大的冲击时,动能转化为弹性势能储存 起来,在车轮下跳或回复原行驶状态时释放出来。 (3)导向机构 作用:传递力和力矩,同时兼起导向作用。在汽车的行驶过程当中,能够控制车轮的运动轨迹。 轿车悬架是一个较难达到完美要求的汽车总成,这是因为悬架既要满足汽车的舒适性要求,又要满足其操纵稳定性的要求,而这两方面又是互相对立的。比如,为了取得良好的舒适性,需要大大缓冲汽车的震动,这样弹簧就要设计得软些,但弹簧软了却容易使汽车发生刹车“点头”、加速“抬头”以及左右侧倾严重的不良倾向,不利于汽车的转向,容易导致汽车操纵不稳定等。

汽车悬架系统中英文对照外文翻译文献

汽车悬架系统中英文对照外文翻译文献(文档含英文原文和中文翻译) 汽车悬架 现代汽车中的悬架系统有两种,一种是从动悬架,另一种是主动悬架。 从动悬架即传统式的悬架,是由弹簧、减振器(减振筒)、导向机构等组成,它的功能是减弱路面传给车身的冲击力,衰减由冲击力而引起的承载系统的振动。其中弹簧主要起减缓冲击力的作用,减振器的主要作用是衰减振动。由于这种悬架是由外力驱动而起作用的,所以称为从动悬架。 而主动悬架的控制环节中安装了能够产生抽动的装置,采用一种以力抑力的方式来抑制路面对 车身的冲击力及车身的倾斜力。由于这种悬架能够自行产生作用力,因此称为主动悬架。 主动悬架是近十几年发展起来的,由电脑控制的一种新型悬架,具备三个条件: (1)具有能够产生作用力的动力源;

(2)执行元件能够传递这种作用力并能连续工作; (3)具有多种传感器并将有关数据集中到微电脑进行运算并决定控制方式。因此,主动悬架汇集了力学和电子学的技术知识,是一种比较复杂的高技术装置。 例如装置了主动悬架的法国雪铁龙桑蒂雅,该车悬架系统的中枢是一个微电脑,悬架上有5 种 传感器,分别向微电脑传送车速、前轮制动压力、踏动油门踏板的速度、车身垂直方向的振幅及频率、转向盘角度及转向速度等数据。电脑不断接收这些数据并与预先设定的临界值进行比较,选择相应的悬架状态。同时,微电脑独立控制每一只车轮上的执行元件,通过控制减振器内油压的变化产生抽动,从而能在任何时候、任何车轮上产生符合要求的悬架运动。因此,桑蒂雅桥车备有多种驾驶模式选择,驾车者只要扳动位于副仪表板上的“正常”或“运动”按钮,轿车就会自动设置在最佳的悬架状态,以求最好的舒适性能。 另外,主动悬架具有控制车身运动的功能。当汽车制动或拐弯时的惯性引起弹簧变形时,主动悬架会产生一个与惯力相对抗的力,减少车身位置的变化。例如德国奔驰2000 款CL 型跑车,当车辆拐弯时悬架传感器会立即检测出车身的倾斜和横向加速度,电脑根据传感器的信息,与预先设定的临界值进行比较计算,立即确定在什么位置上将多大的负载加到悬架上,使车身的倾斜减到最小。 汽车主动悬架—液压和空气式 从控制力的角度划分,悬架可分为被动悬架,半主动悬架和主动悬架。目前,大多数汽车的悬架系统装有弹簧和减振器,悬架系统内无能源供给装置,其弹性和阻尼不能随外部工况变化,因此称这种悬架是被动悬架。 主动悬架有作为直接力发生器的动作器,可以根据输入与输出进行最优的反馈控制,使悬架有最好的减震特性,以提高汽车的平顺性和操纵稳定性。它由弹性元件C和一个力发生器Fe组成。 半主动悬架可看作由可变特性的弹簧和减振器组成的悬架系统,虽然它不能随外界的输入进行最优的控制和调节,但它可按存储在计算机的各种条件下最优弹簧和减振器的优化参数指令来调节弹簧的刚度和减振器的阻尼状态。它由弹性元件 C 和一个一个阻尼系数能在较大范围内调节的阻尼器组成。

常见的悬挂系统

福特汽车常见的悬挂系统 通常我们选车时,汽车销售员总会向我们介绍说这车是什么发动机,什么变速箱,什么悬架等等。说起发动机大家都懂得许多,说起变速箱也无外乎是自动的,还是手动的,而说起悬架有时就有点让人发蒙。今天我们就来像大家介绍一下悬挂的知识,从而让大家更了解福特汽车的悬挂: 一、什么是汽车悬架 所谓悬架就是指连接车身(车架)和车轮(车轴)的弹性构件,这个构件虽为弹性结构,但它的刚度足以保证汽车的行驶舒适性和稳定性。在汽车行驶过程中,悬架既能抵消减弱路面不平带来的生硬冲击,又能确保车身的横向和纵向稳定性,使车辆在悬架设计的自由行程内时刻都可以保持一个较大范围的动态可控姿态。因此,悬架是关系到车辆操控性和舒适性的重要组成部件之一。 二、汽车悬架的分类 按照汽车悬架缓震的原理来说,现代汽车中的悬架有两种,一种是被动悬架,另一种是主动悬架。被动悬架即传统式的悬架,是由弹簧、减振器(减振筒)、导向机构等组成,其中弹簧主要起减缓冲击力的作用,减振器的主要作用是衰减振动。由于这种悬架是由外力驱动而起作用的,所以称为从动悬架。主动悬架的控制环节中安装了能够产生抽动的装置,采用一种以力抑力的方式来抑制路面对车身的冲击力及车身的倾斜力。由于这种悬架能够自行产生作用力,因此称为主动悬架。主动悬架是由电脑控制的一种新型悬架,具有能够产生反作用力的动力源,主要用于高档轿车,这里不讨论。基本上除了特殊用途与豪华型产品外,我们面对的绝大部分车辆都是被动悬架,因此下面按结构上的分类对我们显得意义重大; 根据汽车导向机构不同悬架种类又可分为独立悬架,非独立悬架。如下图所示。(半独立悬架单独介绍)

a.独立悬架 b.非独立悬架 非独立悬架如上图(a)所示 其特点是两侧车轮安装于一整体式车桥上,当一侧车轮受冲击力时会直接影响到另一侧车轮上,当车轮上下跳动时定位参数变化小。若采用钢板弹簧作弹性元件,它可兼起导向作用,使结构大为简化,降低成本。目前广泛应用于货车和大客车上,有些轿车后悬架也有采用的。非独立悬架由于非簧载质量比较大,高速行驶时悬架受到冲击载荷比较大,平顺性较差。 独立悬架如上图(b)所示 其特点是两侧车轮分别独立地与车架(或车身)弹性地连接,当一侧车轮受冲击,其运动不直接影响到另一侧车轮,独立悬架所采用的车桥是断开式的。这样使得发动机可放低安装,有利于降低汽车重心,并使结构紧凑。独立悬架允许前轮有大的跳动空间,有利于转向,便于选择软的弹簧元件使平顺性得到改善。同时独立悬架非簧载质量小,可提高汽车车轮的附着性。 四、独立悬架特点和种类 每个车轮单独通过一套悬挂安装于车身或者车桥上,车桥采用断开式,中间一段固定于车架或者车身上;此种悬挂两边车轮受冲击时互不影响,而且由于非悬挂质量较轻;缓冲与减震能力很强,乘坐舒适。各项指标都优于非独立式悬挂,但该悬挂结构复杂,而且还会使驱动桥、转向系变得复杂起来。采用此种悬挂的有下面两大类车辆。 目前采用较多的有以下三种形式:(1)双横臂式,(2)麦弗逊式,(3)多杆式独立悬架 (1)双横臂式(双叉式)独立悬架(我们的小福就属于此列)

汽车悬架控制系统发展概述综述

汽车悬架控制系统发展概述 1.前言 悬架依据其可控性可以分为不可控的被动悬架和可控的智能悬架两大类。在多变环境或性能要求高且影响因素复杂的情况下,被动悬架难以满足期望的性能要求;而智能悬架能够对行驶路面、汽车的工况和载荷等状况进行监测,进而控制悬架本身特性及工作状态,使汽车的整体行驶性能达到最佳。智能悬架中主动、半主动悬架在近年来得到了迅速发展,较好地解决了安全性和舒适性这一对卜矛盾,将其缓和至相对较低。 2.主动悬架与半主动悬架 主动悬架是一个动力驱动系统,包括测量系统、反馈控制中心、能量源和执行器四个部分。其原理是测量系统通过传感器获得车辆振动信息,传递给控制中心进行处理,进而由控制中心发出指令给能量源产生控制力,再由执行器进行控制,衰减悬架的振动。由于主动悬架结构复杂,成本高,需要很大的能量消耗,它的发展受到了一定的制约,只在少数高级轿车中有所应用。与之相比,半主动悬架具有结构简单、成本较低、基本不需要消耗能量等优点,而对振动的控制效果在一定程度上却可以接近主动悬架,远远优于被动悬架,因而越来越受到业界的重视,得到了飞速发展。图1为主动悬架的原理图,其中F代表力发生器。图2为一种典型半主动悬架的结构示意图。 半主动悬架与主动悬架结构相似,只是半主动悬架用可调刚度的弹性元件或是可调阻尼的减振器代替主动悬架的力发生器。图2的半主动悬架系统中,一个连续可调的阻尼器与一个传统的普通弹簧并联,需要假定系统中的阻尼器能够完全独立于悬架的相对运动,且能根据力控制信号做出反应。 悬架控制系统的发展概况可以从控制策略、执行机构以及实际应用几个方面来分析。 3.控制策略研究 目前应用于悬架控制系统的控制理论比较多,主要有天棚控制、最优控制、预测控制、模糊控制、自适应控制、神经网络控制以及复合控制等等。 3.1 天棚阻尼与开关阴尼控制思想

全面解析种常见悬挂——连杆支柱悬挂

全面解析种常见悬挂——连杆支柱悬挂

————————————————————————————————作者:————————————————————————————————日期:

之前四天,为您详解了四种悬挂类型及其特点,今天我们为您介绍最后一种——连杆支柱悬挂,希望这一系列的介绍能为您带来帮助。 连杆支柱悬挂严格意义上来说没有这种称谓,但是随着国内广州丰田凯美瑞的热销(凯美瑞采用了这种悬挂),连杆支柱这个名字被越来越多的人熟悉,我们也就姑且把这种悬挂称为连杆支柱悬挂。 上一期说过拖曳臂式悬挂系统的最大优点是左右两轮的空间较大,而且车身的外倾角没有变化,避震器不发生弯曲应力,所以摩擦小。但当其刹车时除了车头较重会往下沉外,拖曳臂悬挂的后轮也会往下沉平衡车身,无法提供精准的几何控制,所以某些车厂就会结合一些连杆来解决,就形成了复杂的多连杆悬挂——连杆支柱式悬挂。

连杆支柱与麦弗逊悬挂一样,用来支撑车体也是减振器支柱,他把减振器,减振弹簧组装在一个总成中。连杆支柱悬挂也有一跟粗大的减振器支柱,与麦弗逊悬挂的主要区别在于,悬挂下部与车身连接的A字型控制臂改成了三根连杆定位。转弯时产生的横向力来,主要由减振器支柱和横拉杆来承担。它具有与麦弗逊悬挂相近的操控性能,又有比麦弗逊悬挂更高的连接刚度和相对较好的抗侧倾性能。但是同样也存在麦弗逊悬挂的缺点,就是稳定性不好,转向侧倾还是较大,需要加装平衡杆来减小转向侧倾。 相对纵臂扭转梁来说,它达到了全独立悬挂的结构要求,并且运动部件质量轻,悬挂响应性好,舒适性和操控性要优于纵臂扭转梁的,但比真正的多连杆悬架要差一些。不过其占有空间小于真正的多连杆式悬挂,成本也低于多连杆悬挂故被不少厂家采用。国内采用这种后悬挂的主要有昌河铃木利亚纳、东风悦达起亚赛拉图,北京现代伊兰特、广州丰田凯美瑞等。

汽车前后悬架系统有哪些种类

汽车前后悬架系统有哪些种类 悬挂系统是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,其作用是传递作用在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,并衰减由此引起的震动,以保证汽车能平顺地行驶。它不但影响汽车的乘坐舒适性(平顺性)、还对其他性能诸如通过性、稳定性以及附着性能都有重大影响。每一个悬架都由弹性元件(起缓冲作用)、导向机构(起传力和稳定作用)以及减震器(起减震作用)组成。但并非所有的悬挂都必须有上述三种元件。只要能起到上述三种作用即可。个别结构则还有缓冲块、横向稳定杆等。弹性元件又有钢板弹簧、空气弹簧、螺旋弹簧以及扭杆弹簧等形式,而现代轿车悬挂系统多采用螺旋弹簧和扭杆弹簧,个别高级轿车则使用空气弹簧。悬挂系统是汽车中的一个重要总成,它把车架与车轮弹性地联系起来,关系到汽车的多种使用性能。从外表上看,轿车悬挂系统仅是由一些杆汽车悬架图、筒以及弹簧组成,但千万不要以为它很简单,相反轿车悬架是一个较难达到完美要求的汽车总成,这是因为悬挂系统既要满足汽车的舒适性要求,又要满足其操纵稳定性的要求,而这两方面又是互相对立的。比如,为了取得良好的舒适性,需要大大缓冲汽车的震动,这样弹簧就要设计得软些,但弹簧软了却容易使汽车发生刹车“点头”、加速“抬头”以及左右侧倾严重的不良倾向,不利于汽车的转向,容易导致汽车操纵不稳定等。 1、悬挂的分类 (l)非独立式悬挂:两侧车轮安装于一根整体式车桥上,车桥通过悬挂与车架相连。这种悬挂结构简单,传力可靠,但两轮受冲击震动时互相影响。而且由于非悬挂质量较重,悬挂的缓冲性能较差,行驶时汽车振动,冲击较大。该悬挂一般多用于载重汽车、普通客车和一些其他车辆上。 (2)独立式悬挂:每个车轮单独通过一套悬挂安装于车身或者车桥上,车桥采用断开式,中间一段固定于车架或者车身上;此种悬挂两边车轮受冲击时互不影响,而且由于非悬挂质量较经;缓冲与减震能力很强,乘坐舒适。各项指标都优于非独立式悬挂,但该悬挂结构复杂,而且还会便驱动桥、转向系变得复杂起来。采用此种悬挂的有下面两大类车辆。 ①轿车、客车及载人车辆。可明显提高乘坐舒适性,并且在高速行驶时提高汽车的行驶稳定性。 ②越野车辆、军用车辆和矿山车辆。在坏路和无路的情说下,可保证全部车轮与地面的接触,提高汽车的行驶稳定性和附着性,发挥汽车的行驶速度。 2.弹性元件的种类 (1)钢板弹簧:由多片不等长和不等曲率汽车悬架那种比较好的钢板叠合而成。安装好后两端自然向上弯曲。钢板弹簧除具有缓冲作用外,

典型的多连杆独立悬挂结构图

全面解析5种常见悬挂 在这个言必谈操控、论必说运动的年代里,几乎所有汽车品牌多在大力的宣传自己产品优秀的操控性能,从欧系的宝马、奥迪、萨伯到日系的讴歌、英菲尼迪等高端品牌无不在极力宣传自己良好的操控性和运动性,就连一向以舒适性能为取向的奔驰、凯迪拉克、雷克萨斯等高端品牌也在新近的设计中加入了更多的运动取向。从以福克斯为代表的紧凑型轿车到以迈腾为代表的中级车到以宝马5系Li为代表的高档车无不标榜自己的运动性能。那么他们是否如宣传所说这么优秀,此次汽车探索就为大家解读影响汽车运动性能的汽车底盘的核心——悬挂系统,并分析不同悬挂对汽车操控性及舒适性的影响。 『悬挂在汽车底盘安放位置的示意图』 ●悬挂的概念和分类 首先让我们来了解一下什么是悬挂:悬挂是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,悬架的主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的振动、保证乘员的舒适性、减小货物和车辆本身的动载荷。典型的汽车悬挂结构由弹性元件、减震器以及导向机构等组成,这三部分分别起缓冲,减振和力的传递作用。绝大多数悬挂多具有螺旋弹簧和减振器结构,但不同类型的悬挂的导向机构差异却很大,这也是悬挂性能差异的核心构件。根据结构不同可分为非独立悬挂和独立悬挂两种。

『奥迪S4前后均采用了独立悬挂』 非独立悬挂由于是用一根杆件直接刚性地连接在两侧车轮上,一侧车轮受到的冲击、振动必然要影响另一侧车轮,这样自然不会得到较好的操纵稳定性及舒适性,同时由于左右两侧车轮的互相影响,也容易影响车身的稳定性,在转向的时候较易发生侧翻。独立悬挂底盘扎实感非常明显。由于采用独立悬挂汽车的两侧车轮彼此独立地与车身相连,因此从使用过程来看,当一侧车轮受到冲击、振动后可通过弹性元件自身吸收冲击力,这种冲击力不会波及另一侧车轮,使得厂家可在车型的设计之初通过适当的调校使汽车在乘坐舒适性、稳定性、操纵稳定性三方面取得合理的配置。选用独立悬挂汽车一般来说其操控性和舒适性均要明显好于选用非独立悬挂的汽车。 『多连杆悬挂是独立悬挂的典型代表』

汽车各类悬架系统图解说明

汽车各类悬架系统图解说明 独立悬架与非独立悬架示意图13-4所示 独立悬架如图4-57(a)所示,其两侧车轮安装于断开式车桥上,两侧车轮分别独立地与车架(或车身)弹性地连接,当一侧车轮受冲击,其运动不直接影响到另一侧车轮。非独立悬架如图4-57(b)所示。其两侧车轮安装于一整体式车桥上,当一侧车轮受冲击力时会直接影响到另一侧车轮上。 钢板弹簧13-5

钢板弹簧可分为对称式钢板弹簧和非对称式钢板弹簧,对称式钢板弹簧其中心螺栓到两端卷耳中心的距离相等如图(a),不等的则为非对称式钢板弹簧如图(b)。钢板弹簧在载荷作用下变形,各片之间因相对滑动而产生摩擦,可促使车架的振动衰减,起到减振器的作用 扭杆弹簧 扭杆弹簧一般用铬钒合金弹簧钢制成。一端固定在车架上,另一端上的摆臂2与车轮相连。当车轮跳动时,摆臂绕扭杆轴线摆动,使扭杆产生扭转弹性变形,从而使车轮与车架的联接成为弹性联接。 扭杆的断面形式 断面常为圆形,少数是矩形或管形 空气弹簧 空气弹簧主要用橡胶件作为密闭容器,它分为囊式和膜式两种(如图4-61所示),工作气压为0.5~1Mpa。这种弹簧随着载荷的增加,容器内压缩空气压力升高,使其弹簧刚度也随之增加,载荷减少,弹簧刚度也随空气压力减少而下降,具有有理想的变刚度弹性特性。 油气弹簧简图

油气弹簧以气体(化学性质不太活泼的气体-氮)作为弹性介质,用油液作为传力介质。简单的油气弹簧(如图4-62(a)所示)不带油气隔膜。目前,这种弹簧多用于重型汽车,在部分轿车上也有采用的 1-活塞杆2-工作缸筒3-活塞4-伸张阀5-储油缸筒6-压缩阀7-补偿阀8-流通阀9-导向座-10-防尘罩11-油封 双向作用筒式减振器示意图p314 -4-51 横向稳定器的安装13-7copy.gif

汽车悬架系统常识——整理、综述.(DOC)

关于汽车悬架系统 ——简单知识了解 李良 车辆工程 说明: 1、单独的关于悬架的资料太多,将资料简化,尽可能简单些,写的不好,多多批评指正。第二部分对悬架的设计和选型很有参考价值,可以看看。 2、另外搜集了一些关于悬架方面的资料(太多了,提供部分),也很不错。 3、有什么问题或建议多多提,我喜欢~~~~~~~~ 第一部分简单回答您提出的问题 悬架的作用: 1、连接车体和车轮,并用适度的刚性支撑车轮; 2、吸收来自路面的冲击,提高乘坐舒适性; 3、有助于行驶中车体的稳定,提高操作性能; 悬架系统设计应满足的性能要点: 1、保证汽车有良好的行驶平顺性;相关联因素有:振动频率、振动加速度界限值 2、有合适的减振性能;应与悬架的弹性特性很好地匹配,保证车身和车轮在共振区的振幅小,振动衰减快 3、保证汽车具有良好的操纵稳定性;主要为悬架导向机构与车轮运动的协调,一方面悬架要保证车轮跳动时,车轮定位参数不发生很大的变化,另一方面要减小车轮的动载荷和车轮跳动量 4、汽车制动和加速时能保持车身稳定,减少车身纵倾(点头、后仰)的可能性,保证车身在制动、转弯、加速时稳定,减小车身的俯仰和侧倾 5、能可靠地传递车身与车轮之间的一切力和力矩,零部件质量轻并有足够的强度、刚度和寿命 悬架的主要性能参数的确定: 1、前、后悬架静挠度和动挠度; 2、悬架的弹性特性; 3、(货车)后悬架主、副簧刚度的分配; 4、车身侧倾中心高度与悬架侧倾角刚度及其在前、后轴的分配; 5、前轮定位参数的变化与导向机构结构尺寸的选择; 悬架系统与转向系统: 1、悬架机构位移的转向效应,悬架系对操纵性、稳定性的影响之一是悬架机构的位移随弹簧扰度而变所引起的转向效应。轴转向,使用纵置钢板弹簧的车轴式悬架的汽车在转弯时车体所发生侧摆的情况下,转弯外侧车轮由于弹簧被压缩而后退,内侧车轮由于弹簧拉伸而前进,其结果是整个车轴相当原来的车轴中心产生转角,这种现象称为周转向。前轮产生转向不足的效应,后轮产生转向过度的效应。独立悬架外侧成为前束(负前束),而产生轴转向效应。 2、车轮外倾角变化的转向效应,大多数独立悬架的车轮对面外倾角以及轮胎接地负荷都随着车体的倾斜而变化,这时外倾推力也发生变化,车轮被推向转弯的外侧,前轮有转向不足,后轮有转向过度的倾向。在这种情况下,其作用和离心对抗,所以产生相反效应。车轴式悬架在转弯时由于左右的负荷移动,轮胎的扰度不同也产生若干的外倾角的变化,其作用相同。 3、上述都是转弯时的情况,而直进时由于路面凹凸不平使车轮上下振动,也同时会产生这种效应,随着外倾角的变化也有产生轴转向的可能性。一般轴转向或因外倾角变化的转向效应都会改变原来的操纵特性,所以对操纵性,稳定性影响相当大,因此,在设计汽车时往往把这些效应计算在内面修正其操纵特性。

相关文档
最新文档