双极性脉冲调制的抗脉冲干扰解调

双极性脉冲调制的抗脉冲干扰解调
双极性脉冲调制的抗脉冲干扰解调

随机信号雷达抗干扰性能分析

第23卷第1期电波科学学报 2008年2月CHINESEJOURNALOFRADIOSCIENCEV01.23。No.1February。2008 文章编号1005—0388(2008)Ol一0189—06 随机信号雷达抗干扰性能分析 张新相1吴铁平2陈天麒1 (1.电子科技大学电子工程学院.四川成都610054; 2.空军装备研究院雷达所,北京100085) 摘要研究了采用带限高斯白噪声波形的随机信号雷达在噪声和欺骗干扰环境下的工作性能。通过研究接收机输入/输出信噪比关系和检测性能,分析了随机信号波形抗噪声干扰的性能;采用仿真方法,分析了抗欺骗干扰性能。仿真和分析结果表明,随机信号波形比线性调频脉冲压缩波形具有更好的抗欺骗干扰能力。 关键词随机信号雷达;抗干扰≯噪声干扰;欺骗干扰 中图分类号TN911文献标识码A ECCMcapabilitiesofrandomsignalradar ZHANGXin-xiangWUTie-pingCHENTian-qi (1.CollegeofE.E.,Univ.ofElectronicScienceandTechno(ogyofChina.Chengdu Sichuan610054,China2.RadarInst.,AirforceEquipment Academy,Beijing100085,China) AbstractThepedormanceofrandomsignalradar(RSR)isanalyzedbyemplo—yingaband-limitedwhitegaussnoisewaveforminactivejammingenvironments.Theinputandoutputsignal-to-noiseratioandprobabilityofdetectionofthereceiv—erarediscussed.SimulationisperformedtOshowtheperformanceindeceptivejam—mingcondition.Analysisandsimulationindicatethatrandomsignalwaveformpos—sessesbetterelectroniccounter-countermeasure(ECCM)capabilitiesthanlinearfrequencymodulated(LFM)waveform. Keywordsrandomsignalradar;ECCM;noisejamming;deceptivejamming 1引言 随机信号雷达(RSR)采用射频噪声或噪声调制 信号作为发射波形[1],其最佳接收一般采用相关接 收机。对随机信号雷达的试验研究始于20世纪中期,Horton[2]首先提出了一种噪声测距雷达,此后 CopperC33等研究了一种实验型随机信号雷达。由于 随机信号波形的低截获(LPI)性和优良的检测性能,近年来出现了一些随机信号雷达的研究和试验 系统[1“石],涵盖了探地、SAR/ISAR成像、雷达截面 积测量等方面的应用。 随机信号雷达采用非周期的噪声或类噪声波 收稿日期:2006-i0-20 189形,其模糊函数接近理想的图钉型,除具有良好的距离、速度分辨力和低截获性能【6]外,随机信号雷达的抗干扰能力也是其受到众多关注的主要原因之一.现有文献中,针对随机信号雷达抗干扰性能分析的较少见,其研究对象主要是连续波随机信号波形,研究方法侧重于定性分析、仿真分析和对比试验。刘国岁教授[7]等以对比试验方式,比较了随机二相码调制和伪随机二相码调制两种连续波随机信号雷达的抗干扰性能,实验数据表明,随机二相码调制波形具有更强的抗各类干扰的能力。Garmatyuk[8]对随机信号SAR在杂波/噪声和欺骗式干扰环境下的成像性能进行了仿真研究,通过与线性调频波形比较,  万方数据

雷电电磁脉冲干扰与防护要点

科目:电磁干扰与兼容 任课老师:崔志伟 作业:雷电电磁脉冲干扰与防护姓名:朱传帅 学号:1505122194

雷电电磁脉冲干扰与防护 绪论 雷电是由带电的云在空中对地放电导致的一种特殊的自然现象,其具有选择性、随机性、不可预测性以及破坏性。雷电存在的形式除了可以直观感受到的发光、发热、发声的雷电流以外,在雷电流形成的同时由于电磁效应还会产生雷电电磁脉冲。在当今信息化的时代,强大的雷电电磁脉冲是造成电子设备损坏的重要原因,可导致各种微电子设备的运行失效甚至损坏,成为威胁航空航天、国防军事、铁路运输、计算机与通信等领域的一大公害。 电子设备包括信息电子设备和电力电子设备两大类,信息电子设备基本采用微电子控制技术,电力电子设备相对于信息电子设备无信号传输线路外,其控制单元也大多采用微电子控制技术。近20 年来新发现的电子设备雷灾的起因是闪电的电磁脉冲(LEMP)辐射造成的,电子设备越先进、耐压等级越低、能耗越小,灵敏度越高、体积越小,则雷电电磁脉冲的危害范围越大。电子设备抗雷电电磁脉冲的干扰危害已是一个不可回避的问题。 雷电电磁脉冲既是雷电,又是电磁脉冲,但它既有别于直击雷,又有别于普通意义上的电磁脉冲干扰信号。现在对直击雷的防护技术已相当成熟,由于直击雷包含着巨大的能量,通常采用避雷针、避雷网等引雷入地,其实这就是将所接收到的雷电能量直接引向大地而起到分流雷电流的作用,但避雷针引下线由于电感的作用,最多也只能将5 0 % 的雷电流入地,余下的雷电流将通过其他途径或四处扩散后入地。扩散入地的雷电流就以雷电电磁脉冲的形式出现,对雷电电磁脉冲的防护,要从干扰和所具有的巨大能量两个方面来综合考虑。直击雷的强大能量需要入地释放,同理,雷电电磁脉冲的能量也必须旁路泄放入地,在入侵通道上将雷电电磁脉冲引起的过电压、电流加以阻挡,且直接或间接泄放入地,从而达到保护电子。 正文 雷电防护系统( Lightning Protection System(LPS))是指用以对某一空间进行雷电效应防护的整套装置,它由外部雷电防护系统和内部雷电防护系统两部分组成。 注:在特定的情况下,雷电防护系统可以仅由外部防雷装置或内部防雷装置组成。 目前雷电电磁脉冲防护技术即防雷技术已经发展成熟,国内各大防雷企业都能够实现从设计、产品提供到施工及售后服务的防雷一体化体系解决方案(防雷体系)。在一个完整的防雷体系按照功能的不同分为以下五个部分: 1、直击雷防护(Direct Lightning Protection) 直击雷防护是防止雷闪直接击在建筑物、构筑物、电气网络或电气装置上。直击雷防护技术主要是保护建筑物本身不受雷电损害,以及减弱雷击时巨大的雷电流沿着建筑物泄入大地的过程中对建筑物内部空间产生影响的防护技术,是防

脉冲干扰抗扰度及测试技术

脉冲干扰抗扰度及测试技术 摘要:电气或电子电路和系统中所遇到的多种电磁干扰并不是连续波干扰,而是脉冲或瞬态形式的干扰。传统的连续波测试并不能在较短的时间间隙内聚集足够的能量以有效地模拟脉冲或瞬态干扰。因此,应该使用脉冲干扰的电磁抗扰度测试方法。分别介绍了ESD、EFT、Surge原理和测试方法及注意事项。 关键字:电磁干扰静电放电电快速瞬变脉冲浪涌 Abstract:Electrical or electronic circuits and systems encountered in a variety of electromagnetic interference is not continuous waves interference, but the pulse or transient forms of interference. The traditional continuous wave test can not gather enough energy in order to effectively simulate the pulse or transient interference in a short period of time. Therefore, we should use the pulsed electromagnetic interference immunity test methods. Introduced the ESD, EFT, Surge principles and testing methods and precautions. Keywords: EMI ESD EFT/burst Surge 电磁骚扰是指可能引起一个器件、一台设备或一个系统性能下降的任何一种电磁现象。电磁骚扰可以是自然界的电磁噪声、无用信号或在媒质中传播时自身发生的改变。 电磁干扰(EMI)是电磁骚扰造成的器件、设备或系统的性能下降现象,从它的源到达接收机的主要机制是传导和辐射,如图1所示。传导干扰是指通过导电介质把一个电网络上的信号耦合(干扰)到另一个电网络。辐射干扰是指干扰源通过空间把其信号耦合(干扰)到另一个电网络,在高速PCB及系统设计中,高频信号线、集成电路的引脚、各类接插件等都可能成为具有天线特性的辐射干扰源,能发射电磁波并影响其他系统或本系统内其他子系统的正常工作。 图1 电磁干扰耦合机制 1静电放电 静电放电(ESD)即累积的静电电荷放电,是一种自然现象,这种放电产生电磁干扰。当两种不同介电常数的材料互相摩擦时、加热或与带电物体接触将产生静电。静电放电是把累积的电荷泄放给具有较低对地电阻的另一个物体,这

脉冲干扰群的抑制

6. 脉冲群干扰的抑制 本节叙述脉冲群干扰的抑制,包括本讲座一开始就提到的由机械联切换电感性负载所引起的电火花干扰,以及真正意义上的对脉冲群干扰的处理。 6.1 开关切换瞬变的抑制 6.1.1 对继电器绕组(电感性负载)的处理 对直流继电器来说,可以在绕组上并联一些电阻、电容和二极管等元件来达到干扰抑制的目的,如下图所示。 对a,二极管近乎理想的顺向导通状态阻止了开关切换瞬间绕组电感对分布电容的充电,避免自谐振的发生。线路中电流表达式为I=I0e-t/τ。式中I0为继电器绕组的稳态工作电流;τ为时间常数,τ=L/R,L和R分别为绕组本身的电感和电阻。当L很大而R很小时,τ 将很大,这意味线路中电流衰减很慢,故此继电器控制的触点将延时释放。该线路最大优点是产生的瞬变电压最低。 对b,与a不同,在二极管回路中串入了电阻R。就电感能量释放通路来说,它与绕组电阻同处一条串联回路,所以电路b的总电阻比a要大,其结果是电路b的τ比a小。故b的触点释放过程将比a快。串联电阻R值要适中,太大了,相当抑制回路开路,对瞬变无抑制作用;太小了,就变得与电路a一样。所以对R的值要通过试验来加以折衷。 对c,并联电容C的存在,是人为地加大了继电器绕组中分布电容对瞬变形成的影响。今假定电容C的值为0.5μF,且不计串联电阻的存在,则新电路绕组两端可感应出的电压峰值为 U=I×(L2/(C+C2))1/2=98.7V 可见瞬变干扰的幅度被大大降低了(原先为3130.5V)。此外,自谐振频率也将降低为226Hz。线路中的附加电阻R将为自谐振提供额外的功率消耗,使振荡经过几周后被很快衰减至零。对d,在继电器绕组上并联一对背对背联接的TVS管,TVS管的击穿电压要大于继电器绕组工作电压。继电器工作时,TVS管不导通。但当机械开关S切断继电器的绕组电流瞬间,只要绕组上感生的瞬变电压超过TVS管限定电压,TVS管便导通,并把绕组电压箝制在TVS 管的限定电压上,阻止了绕组电压的续继升高,亦即阻止了瞬变电压的产生。TVS管对功率的消耗使继电器绕组的能量释放很快得以完成。 对e,在继电器绕组上并联一个电阻R,此电阻用以消耗瞬变的能量,阻止高瞬变电压的形成。线路e的特点是简单,但在继电器工作时有附加能量消耗。阻值小,附加消耗大,但抑制作用明显;阻值大,消耗小,但抑制作用不明显。 实用中可将a~e的线路进行适当组合,以便对瞬变干扰的抑制更加有利。同时要注意,瞬变抑制元件要尽量靠近继电器绕组,元件引线也要尽可能地短,避免寄生振荡的发生。 上述a~e的线路是针对直流供电线路设计的。对交流线路,因a、b两线路中二极管的单向导电性而不能适用,其余线路仍可适用。 6.1.2 对开关触点的处理 除了在继电器绕组上并联电阻、电容和二极管的办法来抑制瞬变干扰的产生外,还通过对开关触点的处理,来达到抑制开关切换瞬变形成的目的,可能采取的方案如下图所示。

雷电电磁脉冲场

第四章雷电电磁脉冲场 人类研究雷电已有200多年的历史,到目前为止,对直击雷和传导浪涌的防护技术已经发展得较为成熟,相对而言,对雷电电磁脉冲的研究还有待深入。雷电电磁脉冲(LEMP)是伴随雷电放电产生的电流瞬变和强电磁辐射,属于雷电二次效应之一,它是最常见的一种天然强电磁脉冲干扰源。直到20世纪70年代以后,雷电的电磁辐射效应才逐渐引起重视。LEMP的发生频率远大于核电磁脉冲和高功率微波、超宽带等非核电磁脉冲,其峰值场强大,波形上升沿陡,对周围空间的各类敏感电子设备构成严重威胁,国内外相关事故报道不胜枚举。LEMP的危害区域远大于直击雷,它既可以由云地闪电产生,也可以由云内闪电和云间闪电产生,影响区域遍布对流层以下至大地表层,对空中飞行的火箭、飞机、导弹、地面架空运输电线、各种电子设备都有不同程度的危害,因雷电电磁脉冲造成室内电磁设备损坏、失效、误动作等造成的间接损失更是难以估计。随着电子设备的高集成化、智能化、低功耗化、LEMP的危害日益突出。 因此,LEC研究报告指出:“雷电电磁脉冲是信息化时代的公害。”对LEMP的防护是目前雷电防护研究领域的热点和难点,对LEMP进行详细研究,有利于有针对性地做好设备防护工作。 4.1 雷电电磁脉冲分类 根据IEC61312-1标准的定义,LEMP包括非直击雷产生的电磁场和电流瞬变。以此为依据,LEMP可以划分为3种形式:静电脉冲、地电流浪涌和电磁脉冲辐射场。以往防雷工程中强调的LEMP通常是指地电流瞬变和架空输电线的传导浪涌,而现在对电磁脉冲辐射场的危害越来越严重了。 4.1.1 静电脉冲 大气电离层带正电荷,与大地之间形成了大气静电场,通常情况下,平原地区地面附近电场强度约150V/m。雷雨云的下部静电荷较为集中,其电位较高,因此其下方地面局部静电场强远高于平时的大气静电场强,雷雨降临之前,该区域地面场强可达10000V/m~30000V/m。 雷雨云形成的电场,在地面物体表面磁感应出异号电荷,其电荷密度和电位随附近近大气场强而变化。例如地面上10m处的架空线,可感应出100kV~300kV的对地电压。落雷的瞬间,雷雨云电荷被释放,大气静电场急剧减小,地面物体的感应电荷失去束缚,会沿接地通路流向大地,由于电流流经的通道存在电阻,因而出现电压,这种瞬时高电压称为静电脉冲(Electrostatic Pulse),也称天电瞬变(Atmospheric Transients),如图4—1所示。对于接地良好的导体而言,静电脉冲极小,可以忽略。但静电接电阻较大的孤立导体,其放电时间常数大于雷电持续时间,静电脉冲的危害尤为明显。 静电放电脉冲的危害形式,只要表现为以下两种: (1)电压(流)浪涌。输电线路上的静电高压脉冲会沿导线向两边传播,形成高压浪涌,对相连的电气设备造成危害。 (2)高压电击。垂直安放的导体,如果接地电阻较大,会在尖端出现火花放电,能点燃易燃易爆物品;如果人,畜在闪电过后的短暂时间内触摸或接近这类物体(如 木门框上的铁门),可能遭电击身亡。 图4-1 静电脉冲的形成原理 4.1.2 地电流瞬变 地电流瞬变是由落雷点附近区域的地面电荷中和过程形成的。以常见的负地闪为例,如图4-2所示,主要电通道建立后,产生回击电流,即雷雨云中的负电荷会流向大地,

局部放电测试中的干扰及抗干扰措施

局部放电测试中的干扰及抗干扰措施 一、局放干扰的来源 广义的局放干扰是指除了与局放信号一起通过电流传感器进入监测系统的干扰以外,还包括影响监测系统本身的干扰,诸如接地、屏蔽、以及电路处理不当所造成的干扰等。现场局放干扰特指前者,它可分为连续的周期型干扰、脉冲型干扰和白噪声。周期型干扰包括系统高次谐波、载波通讯以及无线电通讯等。脉冲型干扰分为周期脉冲型干扰和随机脉冲型干扰。周期脉冲型干扰主要由电力电子器件动作产生的高频涌流引起。随机脉冲型干扰包括高压线路上的电晕放电、其他电气设备产生的局部放电、分接开关动作产生的放电、电机工作产生的电弧放电、接触不良产生的悬浮电位放电等。白噪声包括线圈热噪声、地网的噪声和动力电源线以及变压器继电保护信号线路中耦合进入的各种噪声等。 电磁干扰一般通过空间直接耦合和线路传导两种方式进入测量点。测量点不同,干扰耦合路径会不同,对测量的影响也不同;测量点不同,干扰种类、强度也不相同。 二、局放干扰的分类 由种种原因引起的干扰将严重地影响局部放电试验。假使这些干扰是连续的而且其幅值是基本相同的(背景噪声),它们将会降低检测仪的有效灵敏度,即最小可见放电量比所用试验线路的理论最小值要大。这种形式的干扰会随电压而增大,因而灵敏度是按比例下降的。在其他的一些情况中,随电压的升高而在试验线路中出现的放电,可以认为是发生在试验样品的内部。因此,重要的是将干扰降低到最小值,以及使用带有放电实际波形显示的检测仪,以最大的可能从试样的干扰放电中鉴别出假的干扰放电响应。根据测量试验回路中可能的干扰源位置可将干扰源分为两类:第一类与外施高压大小无关的干扰,第二类是仅在高压加于回路时才产生的干扰。 干扰的主要形式如下: (1)来自电源的干扰,只要控制部分、调压器与变压器等是接通的(不必升压)即可能影响测量; (2)来自接地系统的干扰,通常指接地连接不好或多重接地时,不同接地点的电位差在测量仪器上造成的干扰偏转; (3)从别的高压试验或者电磁辐射检测到的干扰,它是由回路外部的电磁场对回路的电磁耦合引起的包括电台的射频干扰,邻近的高压设备,日光灯、电焊、电弧或火花放电的干扰; (4)试验线路的放电; (5)由于试验线路或样品内的接触不良引起的接触噪声。 三、常用的抑制干扰方法 局部放电产生的检测信号十分微弱,仅为微伏量级,就数值大小而言,很容易被外界干扰信号所淹没,因此必须考虑抑制干扰信号的影响,采取有效的抗干扰措施。 对上述这些干扰的抑制方法如下:

电快速瞬变脉冲群抑制方法

电快速瞬变脉冲群(EFT)抑制方法 一、电快速瞬变脉冲群特点 电快速瞬变脉冲群EFT是电气和机电设备中常见的一种瞬态干扰,是由继电器、接触器、电动机、变压器等电感器件产生的,是时间很短但幅度很大的电磁干扰,是一连串的脉冲,可以在电路输入端产生累计效应,使干扰电平的幅度最终超过电路的噪声门限,对电路形成干扰。 电快速瞬变脉冲群由大量脉冲组成,具有如下特点: 1)幅值在100V至数千伏; 2)脉冲频率在1kHz至1MHz; 3)单个脉冲的上升沿在纳秒级,脉冲持续时间在几十纳秒至数毫秒; 4)EFT所形成的骚扰信号频谱分补非常宽,数字电路对它比较敏感,易受到干扰。 相关标准: GB/T 17626.4-2008《电磁兼容试验和测量技术电快速瞬变脉冲群抗扰度试验》 二、电快速瞬变脉冲群常见抑制方法 1) 减小PCB接地线公共阻抗:增加PCB接地导线的面积,减小电感量成分; 2) 加接EFT电感瞬态干扰抑制网络:在电感元件上并接压敏电阻、阻容电路、二极管、TVS 管、背靠连接的稳压二极管等; 3) 电源或信号干扰源输入口,使用滤波器或吸收器等滤波元器件,选用磁珠的内径越小、外径越大、长度越长越好; 4) 电子元器件选择时,选用性能可靠的关键器件;最好做过芯片级的电磁兼容仿真试验,质量可靠的元器件选用可提升对电快速瞬变脉冲信号的抑制能力; 4) PCB布局时,将干扰源远离敏感电路; 5) PCB布线时注意线缆的隔离,强弱电的布线隔离、信号线与功率线的隔离,各类走线要尽量短, 6) 正确使用接地技术,减小环路面积; 7) 安装瞬态干扰吸收器; 8) 软件设计时,考虑避免干扰对系统的影响,软件上应正确检测和处理告警信息,及时恢复产品的状态; 9) I/O信号进出由完全隔离的变压器或光耦连接,更好的实现隔离; 10) 使用高阻抗的共模或差模电感滤波器 11) 使用铁氧体磁环; 12) 在PCB层电源输入位置要做好滤波,通常采用的是大小电容组合,根据实际情况可以酌情再添加一级磁珠来滤除高频信号; 13) 组装生产环节中应严把质量关,做好生产工艺流程控制,尽量保证产品质量的一致性,减少因个别产品质量问题带来的测试不合格现象; 三、PCB抗干扰设计 1、电源电路抗干扰设计 1) 变压器及稳压模块应就近安装在交流电源进入系统的地方; 2) 强电输送线绝不能在系统内乱布; 3) 电源供电线应尽量短,板间连接线使用双绞线; 4) 交流输入、功率继电器、电源滤波器、电源变压器等干扰源电路应与系统稳压后的5V、3.3V等布线严格分开并进行有效隔离;

改善交流伺服系统脉冲接口抗干扰能力(精)

改善交流伺服系统脉冲接口抗干扰能力的几种典型接口方法 由于交流伺服电机驱动器内部对脉冲指令和方向控制输入采用了高速光耦。为增强其抗干扰及提高工作可靠性,建议对脉冲指令和方向控制输入采用如下接线方式。 (1)采用差分信号输入方式 该方式具有最好的抗干扰能力,适合于较高工作频率。 (2)控制器为集电极开路输出形式时的推荐接法 (3)控制器为射极跟随输出形式时的推荐接法 图3

注:当VC=24V时,R=1.2K~1.8K。当VC=12V时,R=510。 ?浅析伺服系统中电磁兼容性设计和抗干扰措施 发布时间:2010-06-18 16:36:25 今天,伺服系统和CNC、PLC、变频器、等其它自动化产品一样,已经成熟应用于工业生产的各个领域。但是在实际应用中,总会出现一些干扰因素,影响伺服系统的正常工作,如脉冲不准,驱动器误报等等,甚至造成设备失控和误动作,威胁到人和机械的安全。出现这些问题后,设备厂家总会认为是产品缺陷,要求自动化供应商协助解决,甚至更换其它品牌的工控产品,现有工控产品便成了无辜的“替罪羔羊”。其实这种情况不论在进口产品和国产产品都会有发生的机率,只是在进口的设备中,特别是欧美机械设备,比较注意产品的电磁兼容性(EMC)设计和安装的规范,采取了必要的抗干扰措施,从而大大降低了干扰因素带来的影响。 工业控制设备的可靠性和稳定性,不但取决于工业控制类产品的可靠设计、更取决于设备生产厂家的方案设计和施工安装响。本文浅析了工控领域中伺服系统中常见的干扰因素,并结合笔者多年来的实际工作经验阐述了常用的抗干扰措施,以希望帮助工程师和设备厂家能够正确的使用我们的产品,来实现设备稳定可靠的运行。 何谓EMC EMC直译就是电磁兼容性,是Electro Magnetic Compatibility的缩写。国际电工委员会(IEC 对EMC的定义是指“设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力”。因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值(EMI);另一方面是指组件对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性(EMS。简单的说,就是电子设备的干扰性和抗干扰能力。 无论是CNC、PLC、伺服系统、变频器都会产生电磁干扰,同时也受到其它设备的干扰。如变频器、伺服驱动器等PWM设备自身就是大的干扰源,但同时他们也是电子设备,控制板也同样会受到其它产品的干扰。CNC和PLC自身产生的电磁干扰小,但要注意它们的抗干扰性。 很多工程师在设计时,往往会忽略这些细节。当后期到达客户现场后,才发现无法抵御外部干扰或者产生了干扰其它设备的情况,到时再“亡羊补牢”。

【开题报告】脉冲控制的随机系统周期解的存在性与稳定性

开题报告 数学与应用数学 脉冲控制的随机系统周期解的存在性与稳定性 一、选题的背景与意义 近年来,以细胞神经网络为代表的随机系统,由于其许多重要的应用,如模型识别,联想记忆,图形辨别和组合优化等,越来越受到人们关注。在神经网络系统中,因信息的传递和存储所带来的时滞是不可避免的,并且它通常是造成系统产生振荡和不稳定现象的重要原因,也是动态图像处理等相关应用的重要影响因素,所以研究时滞神经网络的稳定条件对神经网络的设计具有重要意义;而且在实际应用中,系统经常受到外部很多不定因素的影响,它们往往可以看成是随机的,因此,考虑随机因素对神经网络动力学行为的影响也是非常有必要的;同时,脉冲效应也大量存在于神经网络系统中,如电子网络的实施过程中,会因某个时刻的即时干扰或突变而发生交换和频繁转变等现象。但实际上,对具有脉冲和随机效应的细胞神经网络与时滞细胞神经网络方面的研究成果却很少见,因此研究脉冲控制的随机系统的周期解的存在性与稳定性具有一定的理论意义和实用价值。 二、研究的基本内容与拟解决的主要问题 本文综合考虑随机系统的理论热点和研究现状,分析总结其研究背景跟意义,同时综述已有结论的优缺点,以引出本文的研究方向。 另外,本文从随机效应和脉冲效应的角度出发,通过建立具有脉冲的时滞微分不等式的L算子,以及随机分析方法的运用,并结合不动点理论,来进一步讨论时滞细胞神经网络周期解的存在性与全局指数稳定性,并给出相应的证明过程,以期得到一些简单的充分条件,以确保随机系统周期解的存在性和稳定性。 本文还将给出两个数值模拟的实例,以此来验证本文结论的可行性与有效性。同时,通过与以往结论的对比,突出强调本文的不同之处,以突显其价值。 三、研究的方法与技术路线 在准备阶段,我们利用网络与图书资料,通过综合分析与总结随机系统的研究现状与理论热点,来最终确定论文的研究方向。 正式行文时,我们根据伊藤公式给出的模型,先用不动点理论证明了系统周期解的存在性与唯一性;再通过建立具有脉冲的时滞微分不等式的L算子,以及随机分析

TVS瞬态干扰抑制器性能与应用

TVS瞬态干扰抑制器性能与应用 作者:山东莱芜钢铁集团公司动力部周志敏摘要:本文阐述了电子设备瞬态干扰产生的机理,介绍了TVS瞬态干扰抑制器件的工作原理、特性参数及在电子设备中的设计应用。 关键词:瞬态干扰;TVS;设计应用 瞬态干扰 瞬态干扰指交流电网上出现的浪涌电压、振铃电压、火花放电等瞬间干扰信号,其特点是作用时间极短,但电压幅度高、瞬态能量大。瞬态干扰会造成控制系统的电源电压的波动;当瞬态电压叠加在控制系统的输入电压上,使输入控制系统的电压超过系统内部器件的极限电压时,便会损坏控制系统内部的设备,因此必须采用抑制措施。 硅瞬变吸收二极管 硅瞬变吸收二极管的工作有点象普通的稳压管,是箝位型的干扰吸收器件;其应用是与被保护设备并联使用。硅瞬变电压吸收二极管具有极快的响应时间(亚纳秒级)和相当高的浪涌吸收能力,及极多的电压档次。可用于保护设备或电路免受静电、电感性负载切换时产生的瞬变电压,以及感应雷所产生的过电压。 TVS管有单方向(单个二极管)和双方向(两个背对背连接的二极管)两种,它们的主要参数是击穿电压、漏电流和电容。使用中TVS管的击穿电压要比被保护电路工作电压高10%左右,以防止因线路工作电压接近TVS击穿电压,使TVS漏电流影响电路正常工作;也避免因环境温度变化导致TVS管击穿电压落入线路正常工作电压的范围。 TVS管有多种封装形式,如轴向引线产品可用在电源馈线上;双列直插的和表面贴装的适合于在印刷板上作为逻辑电路、I/O总线及数据总线的保护。 TVS的特性 TVS的电路符号和普通的稳压管相同。其电压-电流特性曲线如图1所示。其正向特性与普通二极管相同,反向特性为典型的PN结雪崩器件。图2是TVS的电流-时间和电压-时间曲线。在浪涌电压的作用下,TVS两极间的电压由额定反向关断电压V WM上升到击穿电压VBR,而被击穿。随着击穿电流的出现,流过TVS的电流将达到峰值脉冲电流IPP,同时在其两端的电压被箝位到预定的最大箝位电压VC以下。其后,随着脉冲电流按指数衰减,TVS两极间的电压也不断下降,最后恢复到初态,这就是TVS抑制可能出现的浪涌脉冲功率,保护电子元器件的过程。当TVS两极受到反向高能量冲击时,它能以10~12s级的速度,将其两极间的阻抗由高变低,吸收

1_TVS瞬态干扰抑制器 (1)

TVS瞬态干扰抑制器 写于2008-09-09 14:06:06 瞬态干扰 瞬态干扰指交流电网上出现的浪涌电压、振铃电压、火花放电等瞬间干扰信号,其特点是作用时间极短,但电压幅度高、瞬态能量大。瞬态干扰会造成控制系统的电源电压的波动;当瞬态电压叠加在控制系统的输入电压上,使输入控制系统的电压超过系统内部器件的极限电压时,便会损坏控制系统内部的设备,因此必须采用抑制措施。 硅瞬变吸收二极管TVS(TRANSIENT VOLTAGE SUPPRESSOR)硅瞬变吸收二极管的工作有点象普通的稳压管,是箝位型的干扰吸收器件;其应用是与被保护设备并联使用。硅瞬变电压吸收二极管具有极快的响应时间(亚纳秒级)和相当高的浪涌吸收能力,及极多的电压档次。可用于保护设备或电路免受静电、电感性负载切换时产生的瞬变电压,以及感应雷所产生的过电压。TVS管有单方向(单个二极管)和双方向(两个背对背连接的二极管)两种,它们的主要参数是击穿电压、漏电流和电容。使用中TVS管的击穿电压要比被保护电路工作电压高10%左右,以防止因线路工作电压接近TVS击穿电压,使TVS漏电流影响电路正常工作;也避免因环境温度变化导致TVS管击穿电压落入线路正常工作电压的范围。TVS管有多种封装形式,如轴向引线产品可用在电源馈线上;双列直插的和表面贴装的适合于在印刷板上作为逻辑电路、I/O总线及数据总线的保护。 TVS的特性 TVS的电路符号和普通的稳压管相同。其电压-电流特性曲线如图1所示。其正向特性与普通二极管相同,反向特性为典型的PN结雪崩器件。图2是TVS的电流-时间和电压-时间曲线。在浪涌电压的作用下,TVS两极间的电压由额定反向关断电压VWM上升到击穿电压V BR,而被击穿。随着击穿电流的出现,流过TVS的电流将达到峰值脉冲电流IPP,同时在其两端的电压被箝位到预定的最大箝位电压VC以下。其后,随着脉冲电流按指数衰减,TVS两极间的电压也不断下降,最后恢复到初态,这就是TVS抑制可能出现的浪涌脉冲功率,保护电子元器件的过程。当TVS两极受到反向高能量冲击时,它能以10~12s级的速度,将其两极间的

随机脉位序列调制的脉冲多普勒引信抗有源干扰分析

随机脉位序列调制的脉冲多普勒引信 抗有源干扰分析 冯春环 " 中国空空导弹研究院#河南洛阳$%&’’()摘要*以对无线电引信危害较大的阻塞式有源干扰和转发式有源干扰模式为例#通过与等宽等周期调制脉冲多普勒引信的对比仿真#对随机脉位序列调制引信的抗有源干扰性能进行分析+ 关键词*脉冲多普勒引信,随机脉位脉冲序列,抗干扰 中图分类号*-.$/$文献标识码*0文章编号* &’’12&&($"3’’/)’&2’’&(2’/’引言 无线电近炸引信的调制波形对提高引信探测目标的能力4对杂波的抑制4距离分辨力等都不同程度地起着重要的作用+目前广泛应用于无线电引信的等宽等周期调制信号#由于特征参数少#存在严重的距离副瓣#易被敌方侦收并施加干扰的问题#已很难满足现代空战对无线电近炸引信作战性能的要求+ 随机脉位脉冲采用随机信号调制#不会出现距离模糊#它同时又具有低截获概率的特点和良好的抗干扰性能+&随机脉位序列信号分析 图5随机脉位脉冲序列波形图随机脉位序列信号的数学表达式为* 6"7)8597:;<9=5 >8?65"7=>@A =B >7;)#"5) 65"7)85?C7C7;D E F ?G H I J K #@A 为脉冲重复周期,7;为脉冲宽度+ 图L 调制范围较大时随机脉位序列模糊图 为分析方便#设序列M B >N 是在O ?#P Q 间均匀分布的随机变量#P7;为调制范围#@A 8R7; #且?S P S R #P #R 均为整数+该脉冲串波形如图5所示+ 通过TU H V U W 语言计算#当调制范围较大时"P7;8 ?X Y @A )该信号的模糊图如图L 所示+由图L 可知#该体制可以很好地消除距离模糊+当 调制范围较大时#在距离轴上旁瓣很低#而且在多普勒 轴上已经不存在明显的副瓣#其模糊图为近似图钉型# 有较尖锐的主峰#具有良好的距离速度的鉴别能力+第L Z 卷第5期 L ??[年[月探测与控制学报.\]^_‘a \b c d e d f e g \_h i \_e ^\a j G V X L Z X k G X 5TU K X L ??[ !收稿日期*L ??L l ?m l L n 作者简介*冯春环"5n o p q)#男#河南唐河人#硕士#工程师 #研究方向*雷达信号处理+万方数据

雷电电磁脉冲及其防护

雷电电磁脉冲及其防护 1 、雷电电磁脉冲的物理特性(1)物理特性从积雨云的密布到发生闪电,会出现三种物理现象。①云中静止电荷产生的静电场,产生静电感应现象,地面及各种导体会产生感应电荷,呈观静电场的作用。这种作用随着距离的增大而迅速减小,与距离的三次方成反比。②积雨云中电荷的移动(包括闪电)会产生磁场,若磁场强度发生变化就会出现电磁感应现象,这就是感应场产生的作用。这种作用随着距离的增大而减小较快,与距离的平方成反比。③闪电发生时,会出现电磁波辐射。这种辐射场也随距离增大而减小,但比较缓慢,它与距离的一次方成反比。除了注意上述三种物理现象,更应密切注意雷电流的变化特性,因为雷电的破坏作用与雷电流的峰值和波形密切相关。现代防雷装臵正是根据雷电流的物理特性设计的,其主要的物理特性是:①峰值电流决定闪电的机械力和电力的作用大小以及雷灾的危害程度;②到达峰值的时间,数值愈小,冲击力愈大,在选用防雷元器件时应考虑响应速度;③最大电流变化率决定了闪电的电磁感应强弱,是电子设备防雷技术中应特别重视的参量,因为电子设备防雷技术中主要是对感应雷的防护;④半峰值时间或到达波尾中间的时间,是指回击电流减小到峰值一半时的时间,这个时间越长,热效应越大,容易造成元器件的损坏,也容易引起火灾。超过lOO}上s就属于热闪电了。(2)雷电电磁脉冲的频谱分析雷电电磁脉冲的频谱是研究避雷的重要依据,从频谱结构可以获得雷电电磁脉冲电压、电流的能量在各频段的分布。根据这些资料可以估算通信设备或系统在其频率范围内可能遭受到的雷电冲击的幅度和能量大小,并以此作为确定避雷措施的参数。①雷电流峰值比率的频率分析雷电流峰值比率的频率分布是指在雷电流的频谱范围内,每一个频率的电流峰值与雷电流峰值之比的频率分布。雷电流主要贫布在低频部分,随频率升高迅速递减。电波的波头越陡,高次谐波越丰富,波尾越长,低频部分越丰富。②电流峰值比率积累的频率分布雷电流的破坏作用主要表现在对设备的过电压击穿和冲击能量过大的热击穿。研究雷电过电压比率集中的频段,一旦设备对大地的阻抗测知后,便可转变为通过研究雷电流峰值比率集中的频段来获得。通过研究可见,波头越陡,受雷电影响的频率范围越宽。(3)雷电电磁脉冲能量比率积累的频率分布若负载为纯电阻,那么在同一负载上,功率只与通过它的电流平方成正比。雷电电磁脉冲能量比率积累的频率分布表明,低频部分增值快,频率

EFT测试时干扰施加方式以及原理

EFT测试时干扰施加方式以及原理 来源:认证之家论坛作者:bovey 时间:2008-10-15 Tag:EFT点击:13 EFT测试时,有L1、L2、L3、N及PE等端口。PE和大地是两个概念,电快速脉冲干扰是共模 性质的,在标准提供的实验设置图中可以看到从试验发生器来的信号电缆芯线通过可供选择的耦合电容加到相应的电源线(L1、L2、L3、N及PE)上,信号电缆的屏蔽层则和耦合/去 耦网络的机壳相连,机壳则接到参考接地端子上。 这就表明脉冲群干扰实际上是加在电源线与参考大地之间,因此加在电源线上的干扰是共模干扰 而对于采用耦合夹的实验方式来说,电快速脉冲将通过耦合板与受试电缆之间的分布电容进入受试电缆,而受试电缆所接收到的脉冲仍然是相对参考接地板来说的。 因此,通过耦合夹对受试电缆所施加的干扰仍然是共模性质的。确定了干扰的性质,那么我们就可以采取相应的措施使设备顺利通过实验。那么我们不难看出,电源滤波器中所使用的X电容(差模电容)对于EFT干扰是没有抑制作用的。(这段本人不同意作者的提法,eft表面看是共模,实际上有耦合到线上的干扰不平衡,这就是差模。Cx差模电容作用不大,是因为,脉冲群主要是高频,差模电容在高频是已经谐振完了,不再是纯容性器件了--刘渊正注) 如果设备是金属外壳,Y电容(共模电容)会起作用,将高频EFT旁路到外壳上面,然后通过设备外壳和参考地间的分布电容回到信号源,从而不会进入电路。 电快速脉冲干扰导致设备失效的机理根据国外学者对脉冲群干扰造成设备失效的机理 的研究,单个脉冲的能量较小,不会对设备造成故障。但脉冲群干扰信号对设备线路结电容充电,当上面的能量积累到一定程度之后,就可能引起线路(乃至系统)的误动作。 因此,线路出错会有个时间过程,而且会有一定偶然性(不能保证间隔多少时间,线路一定出错,特别是当试验电压达到临界点附近时)。而且很难判断究竟是分别施加脉冲,还是一起施加脉冲,设备更容易失效。也很难下结论设备对于正向脉冲和负向脉冲哪个更为敏感。 实践表明,一台设备往往是某一条电缆线,在某一种试验电压,对某个极性特别敏感。实验显示,信号线要比电源线对电快速脉冲干扰敏感得多。 设备通过电快速脉冲测试的有效措施首先我们先分析一下干扰的注入方式:EFT干扰信号是通过耦合去耦网络中的33nF的电容耦合到主电源线上面(而信号或控制电缆是通过电 容耦合夹施加干扰,等效电容是100pF)。对于33nF的电容,它的截止频率为100K,也就 是100KHZ以上的干扰信号可以通过;而100pF的电容,截止频率为30M,仅允许30MHz频 率以上的干扰通过。电快速脉冲的干扰波形为5ns/50ns,重复频率5K,脉冲持续时间15ms,脉冲群重复周期300ms。根据傅立叶变换,它的频谱是从5K--100M的离散谱线,每根谱线

雷电电磁脉冲的防护

https://www.360docs.net/doc/8314104368.html, 国际电工委员会 标准 IEC61312-1 1995-02 第一版 雷电电磁脉冲的防护 第一部分:通则 Protection against lightning electromagnetic Impulse — Part 1: General principles 国际电工委员会 雷电电磁脉冲的防护 第一部分:通则 前言 1) IEC (国际电工委员会)是一个由各国电工委员会(IEC 国家委员会)组成的全球性的标准化组织。IEC 的目标是促进在电气和电子领域内涉及标准化的所有问题的国际间的合作。为此,除其它的工作外,IEC 还出版国际标准。这些标准的编制是委托给合技术委员会的,对所涉课题感兴趣的任何一个IEC 国家委员会,均可参一标准的编制工作。与IEC 保持联系的国际的政府及非政府组织也参与此编制工作。IEC 根据与国际标准化组织(ISO )双方之间的协议所确定的条件与该组织紧密协作。 2)IEC 就有关的技术问题所通过的正式决定或协议(由代表了对相关问题有特别兴趣的所有国家委员会的各个技术委员会所编制),尽可能接近地表达了对所涉主题国际上的一致看法。 3)IEC 所通过的决定或协议,以标准、技术报告或指南的形式出版,并以推荐的形式供国际使用,在此意义上它们是为和国家委员会所接受的。 4)为了促进国际上的统一,各个IEC 国家委员会应致力于将IEC 国际标准尽可能最大程度地透明地应用于其国家标准及区域标准中去。IEC 标准与相应的国家标准或区域标准中去。IEC 标准与相应的国家标准或区域标准间的任何分歧应在后者中明确地指出。IEC61312-1国际标准已由IEC 81 技术委员会(“防雷”)制订。 此标准的正文根据以下的文件写成: DIS (国际标准草案) 投票报告 81(CO )21 81/66/RVD 本标准的认可投票的详尽信息可在上表所示的投票报告上找到。 IEC61312-1构成了总标题为“雷电电磁脉冲的防护”的系列出版物的一部分。 附录A 、B 、C 、D 及E ,仅供参考。

雷电电磁脉冲(LEMP)的特性分析及屏蔽

雷电电磁脉冲(LEMP)的特性分析及屏蔽 王庆祥1姚烨1崔喆1孙冬迪1薛文安2 (1.天津市中力防雷技术有限公司,天津300384;2.中国民航大学,天津300384) 摘要本文讨论了雷电电磁脉冲的危害,包括传导浪涌、辐射电磁场、感应电压,分析雷电电磁脉冲的特性;并以磁屏蔽为主介绍雷电电磁脉冲的防护,以及磁屏蔽的材料选择。 关键词雷电流;雷电电磁脉冲(LEMP);电磁屏蔽 引言 雷电是由带电的云在空中对地放电导致的一种特殊的天气现象,其具有选择性、随机性、不可预测性以及破坏性。雷电存在的形式除了可以直观感受到的发光、发热、发声的雷电流以外,在雷电流形成的同时由于电磁效应还会产生雷电电磁脉冲。在当今信息化的时代,强大的雷电电磁脉冲是造成电子设备损坏的重要原因,可导致各种微电子设备的运行失效甚至损坏,成为威胁航空航天、国防军事、铁路运输、计算机与通信等领域的一大公害。本文以磁屏蔽内容为主,介绍雷电电磁脉冲的防护。 1、雷电电磁脉冲(LEMP)的特性 雷电电磁脉冲(LEMP)是由雷电流的电磁效应产生,它包括传导浪涌和辐射脉冲电磁场辐射作用。传导浪涌又会在附近回路中产生感应电压;辐射脉冲磁场干扰附近电气电子设备正常工作。 1.1 传导浪涌 雷电流是雷电造成各种损害的损害源,它表现为以下四种情况:S1:雷击建筑物;S2:雷击建筑物附近;S3:雷击连接到建筑物的线路;S4:雷击连接到建筑物的线路附近。雷电流通过这四种形式在线路中产生传导浪涌。 表1 雷击低压系统浪涌过电流的预期值 表2 雷击通信系统浪涌过电流的预期值 过电流预期值,其中S3(直接雷击)是雷电直接击在了连接建筑物的线路上,在线路的两个方向上均有分流,与此同时,强大的直接雷击电流会产生强大的电磁场,在线路上再次产生浪涌,造成叠加性的伤害。 1.2 辐射电磁场 1.2.1 附近雷击时LPZ1格栅形空间屏蔽 如图1所示为附近雷击时的情况。LPZ1屏蔽空间周围的入射场可以近似地当作平面波。

雷电电磁脉冲防护分级计算方法

雷电电磁脉冲防护分级计算方法 雷电过电压对电子设备的危害 随着通信技术、计算机技术、信息技术的飞速发展,今日已是电子化时代,日益繁忙庞杂的事物通过高速电脑、自动化设备及通信发展得到井然有序、而这些敏感电子设备的工作电压却在不断降低,其数量和规模不断扩大,因而它们受到过电压特别是雷电袭击而受到损坏的可能性就大大增加,这是由于以雷击中心 1.5km —2km范围内都可能产生危险过电压,损坏线路上 设备;其后果可能使整个系统的运行中断,并造成难以估计的经济损失,雷电和浪涌电压成了电子化时代的一大公害。防雷器就是在最短时间 (纳秒级)内将被保护线路连入等电位系统中, 使设备各端口等电位,同时释放电路上因雷击而产生的大量脉冲能量短路泄放到大地,降低设备各接口端的电位差,从而保护线路上用户的设备。对系统设备而言,电源线路和信号线路是雷电袭击产生过电压并传导的两条主要通道,因此防雷器就分电源系统避雷器和信号系统防雷器。 防雷区域的划分 一、LPZOA区:本区内的各物体都可能遭到直接雷击和导走全部雷击电流;本区内的电磁场强度 没有衰减。 二、LPZ0B区:本区内的各种物体不可能遭到大于所选滚球半径对应的雷电流直接雷击,但本区内的电磁场强度没有衰减。 三、LPZ1区:本区内的各种物体不可能遭到直接雷击,流经各导体的电流比LPZOE区更小;本区 内的电磁场强度可能衰减,这取决于屏蔽措施。 四、LPZn+1后续防雷区:当需要进一步减小流入的电流和电磁场强度时,应增设后续防雷区,并按照需要保护的对象所要求的环境去选择后续防雷区的要求条件。 注:n=1、2、..... 。 雷电电磁脉冲防护分级计算方法 1 ?建筑物年预计雷击次数N: N=K-( 0.024 ? Td1.3 )?( Ae+Ae' 式中:K——校正系数,一般取1。 Td——年平均雷暴日 Ae——建筑物截收相同雷击次数的等效面积( KM2 Ae'――建筑物入户设施的截收面积(电源线、信号线) 2 ?等效面积Ae的计算 当建筑物高度HV100M D= [ H ?( 200-H ) ]1/2 (M) Ae=[L ? W+2( L+W ? D+n?H( 200-H ) ] ? 10-6 ( KM2式中:L, W , H分别为建筑物的长,宽,高(米)。 (见规范)

相关文档
最新文档