电脑电源改12伏变压器的方法

电脑电源改12伏变压器的方法
电脑电源改12伏变压器的方法

电脑电源改12伏变压器的方法

找黑驴2015年6月29日

1】电脑电源采用开关电源结构,在其输出端有±12V电源输出,可以改作12V变压器使用。

2】改制电脑开关电源的关键点是:怎样使电脑开关电源通入交流市电后,能够自己启动输出12V交流。

因为电脑电源在电脑上使用时,电源必须接到主板发出的供电指令后才会输出各路电压。这个指令信号低电平有效,由PS-ON(Power Supply On (active low))接线完成信号传递。那么我们只要把PS-ON始终接地,就可以达到将电脑电源插上交流220V市电时,即可立即获得±12直流稳压输出。

3】下图是电脑电源的20孔(或24孔)的实际管脚功能图,用导线将图中7孔(绿线)与16脚(黑线)用导线短接,即PS-ON与地短接,电源就会接收到低电平的供电信号从而输出各路电压。实际改制中,可以在电路板上直接把PS-ON信号线焊接在黑色线的地端,保证电源工作可靠性。

实际上,短接PS-ON与地也是我们检修开关电源时的常用手段。

4】由图中可知,电脑电源提供有3.3V、5V、12V三种直流电压,可以作为多电压输出开关变压器使用。电源线必须有良好接地,否则外壳极易带电。

需注意的是,电脑电源的输出特性偏硬,不易直接用作蓄电池充电器使用,对蓄电池使用寿命不好。略为改进电路后再作为蓄电池充电器,会有很好的效果。

使用可调电源修笔记本

笔记本电脑起动过程和如何根据电流表指针判断故障 当按下电源开关,如供电系统正常(和5V和CPU供电正常输出),电源芯片就会产生出PG(电源好)信号分别送往南北桥和CPU。当南桥接收到PG信号后,就会产生出两路时钟控制信号PCISTOP和CPUSTOP送往时钟电路,时钟电路产生出的时钟信号,其中一路PCI时钟送往南桥,当南桥收到接到时钟信号后,就会产生出两路复位信号:PCIREST(信号复位)和DRVREST(设备复位)去复位主板上的各部分电路,其中一路PCIREST去复位北桥,当北板收到复位信号后,就会产生出CPUREST去复位CPU,当CPU收到复位信号后(这时CPU供电,时钟复位条件都具备了),标志着这台机器的硬起动过程已经完成,接下来将进行软起动。 CPU执行POST指令的过程: 1:检测一二级缓存和南北桥的完整性 2:检测640K基本内存是否完好 3:检测显卡,查找显卡的BIOS,并调用它们的初始化相关设备 4:查找其它设备的BIOS,并调用它们的初始化代码,初始化相关设备。 5:查找完其它设备的BIOS后,系统BIOS将显示自己的启动画面,并开始检测扩展内存并赋予相应地址。 6:检测一些标准设备,包括硬盘,光驱,串口,并口,软驱等。 7:标准设备检测完后,系统内部的支持即插即用代码将开始检测和配置系统中的即插即用设备,并为这些设备分配中断地址,DMA通道和I/O端口等资源。 8:所有硬件检测完后,并都分配了中断地址,也就是所有的硬件建立起了一个硬件系统,这时将生成一个“ESCD”文件(是系统BIOS用来与操作系统交换硬件配置信息的一种手段,这些数据存在CMOS中),CPU会把生成的ESCD和上次的ESCD进行比较,发现差别时,会更新ESCD中的数据。 9:ESCD更新后,CPU也就把POST和中断服务程序执行完毕,接着将进行系统的自举程序。 使用可调电源如何判断机器故障 1:插上可调电源,电流表指针可能出现以下变化: a:电流表指针无任何变化:主供电无输出,查待机和保护隔离电路,适配器接口 b:电流表指针摆到1A左右就不停地左右摆动:主供电电容漏电 c:电流表指针一直打到最大:主供电短路,查电容,二极管,和需要主供电的所有芯片,充电单元,CPU供电等 d:电流表指针有轻微摆动:说明保护和待机正常 2:待机正常后,按下开机键: a:电流表指针不动:一般是无和5V 输出 b:电流表指针摆到0.8A回落,又掉

开关电源的干扰及其抑制

开关电源的干扰及其抑制 开关电源产生EMI的原因较多,其中由基本整流器产生的电流高次谐波干扰和功率转换电路产生的尖峰电压干扰是主要原因. 基本整流器:基本整流器的整流过程是产生EMI最常见的原因.这是因为工频交流正弦波通过整流后不再是单一频率的电流,而变成一直流分量和一系列频率不同的谐波分量,谐波(特别是高次谐波)会沿着输电线路产生传导干扰和辐射干扰,使前端电流发生畸变,一方面使接在其前端电源线上的电流波形发生畸变,另一方面通过电源线产生射频干扰. 功率转换电路:功率转换电路是开关稳压电源的核心,它产生的尖峰电压是一种有较大幅度的窄脉冲,其频带较宽且谐波比较丰富. 产生这种脉冲干扰的主要原因是: ①开关管:开关管及其散热器与外壳和电源内部的引线间存在分布电容.当开关管流过大的脉冲电流时,大体上形成了矩形波,该波形含有许多高频成份.由于开关电源使用的元件参数如开关功率管的存储时间,输出级的大电流,开关整流二极管的反向恢复时间,会造成回路瞬间短路,产生很大短路电流.开关管的负载是高频变压器或储能电感,在开关管导通的瞬间,变压器初级出现很大的涌流,造成尖峰噪声. ②高频变压器:开关电源中的变压器,用作隔离和变压.但由于漏感地原因,会产生电磁感应噪声;同时,在高频状况下变压器层间的分布电容会将一次侧高次谐波噪声传递给次级,变压器对外壳的分布电容形成另一条高频通路,而使变压器周围产生的电磁场更容易在其他引线上耦合形成噪声. ③整流二极管:二次侧整流二极管用作高频整流时,要考虑反向恢复时间的因数.往往正向电流蓄积的电荷在加上反向电压时不能立即消除(因载流子的存在,还有电流流过).一旦这个反向电流恢复时的斜率过大,流过线圈的电感就产生了尖峰电压,在变压器漏感和其他分布参数的影响下将产生较强的高频干扰,其频率可达几十兆赫. ④电容、电感器和导线:开关电源由于工作在较高频率,会使低频的元器件特性发生变化,由此产生噪声. 开关电源外部干扰:开关电源外部干扰可以以“共模”或“差模”方式存在.干扰类型可以从持续期很短的尖峰干扰到完全失电之间进行变化.其中也包括电压变化、频率变化、波形失真、持续噪声或杂波以及瞬变等,在电源干扰的几种干扰类型中,能够通过电源进行传输并造成设备的破坏或影响其工作的主要是电快速瞬变脉冲群和浪涌冲击波,而静电放电等干扰只要电源设备本身不产生停振、输出电压跌落等现象,就不会造成因电源引起的对用电设备的影响. 开关电源干扰耦合途径:开关电源干扰耦合途径有两种方式:一种是传导耦合方式,另一种是辐射耦合方式. 1.传导耦合:传导耦合是骚扰源与敏感设备之间的主要耦合途径之一.传导耦合必须在骚扰源与敏感设备之间存在有完整的电路连接,电磁骚扰沿着这一连接电路从骚扰源传输电磁骚扰至敏感设备,产生电磁干扰.按其耦合方式可分为电路性耦合、电容性耦合和电感性耦合.在开关电源中,这三种耦合方式同时存在,互相联系.

电脑电源改可调电源成功(亲测)SG6105芯片

For personal use only in study and research; not for commercial use 一.内容来自网上,结合官方资料,结合几位大神改造经验,综合自己经验改造而成。 每个ATX电源的电路均不同,不过也差别不大,一定按照实际的状况,一边拆,一遍测试,对着图纸,做好标记,才能成功。改造中心:SG6105需要欺骗引脚,其中有3.3V 5V 12V -12V(-5V),我个人的方案是不省略欺骗,对每个引脚提供它要求的电压,使用7812用电阻分压欺骗正电压。负电压走辅助变压器。其中需要注意的是正12V接7812输出端时,一定加上100欧电阻,不加的话,会有100左右MA的电流流入芯片,具体为啥不详。 二、SG6105 (HS8108)关键改造点说明: 1. PSON??接1K电阻后,直接接地。该点悬空时电源不工作。 2. 检测电压 3.3V(2脚)、5V(3脚)、12V(7脚): 5V(4.3V~6.1V)直接从辅助+5V取电或者由7812分压得到; 3.3V(2.8V~ 4.1V)从7812分压得到; 12V(10.1~14.5V)从辅助电源19V处(参考图)接三端稳压LM7812接100欧姆电阻到7脚。 3. Uvac(5脚) 交流检测端,要求0.7V以上。在其分压电路前端直接接+5V,或者不动原电路,直接由主回路提供。 4. NVP(6脚)负电压检测端,要求0.5V左右。接二极管+电容滤波后接至辅助变压器5V 输出。 5.11脚+12脚(有些电源是13脚和14脚),短接接2.5V电压,电压由7812分压得到。 三、改可调2.5V~30V 1调整17脚电压分压比例,从而调压。 四. 散热风扇接辅助变压器19V接40-100欧/2W电阻工作。 五:可调输出电容耐压一定要更换,要不会爆炸,输出端接1K/2W电阻到负极,模拟假负载。 六、其它说明: ? ? 1.如果要改为输出电流可调,要增加恒流控制,需加运放。可参考成熟的494开关电源改造方案。 2.增一倍的输出电压,最简单方法是将变压器次级的中点接地断开,并采取全桥整流。当然滤波电容也要更换。 3.相关计算参考原理图。

开关电源中电磁干扰的产生及其抑制

开关电源中电磁干扰的产生及其抑制 摘要:电磁干扰对开关电源的效率和安全性及使用的影响日益成为人们关注的热点。本文分析了开关电源中电磁干扰产生的原因和传播的路径,并提出了抑制干扰的有效措施。 关键词:开关电源、电磁干扰、耦合通道、电磁屏蔽 1 引言 电磁兼容EMC是英文electro magnetic compatibility 的缩写。它包括两层含义,一是设备在工作中产生的电磁辐射必须限制在一定水平内,二是设备本身要有一定的抗干扰能力,它必须具备三个要素:干扰源、耦合通道、敏感体。给电子线路供电的开关电源对干扰的抑制对保证电子系统的正常稳定运行具有重要意义。本文通过分析开关电源中的干扰源和耦合通道,提出了抑制干扰的有效措施。并提出了开关电源中开关变压器的设计和制作方法。 2 开关电源中的干扰源和耦合通道 开关电源首先将工频交流电整流为直流电,然后经过开关管的控制变为高频,最后经过整流滤波电路输出,得到稳定的直流电压,因此,自身含有大量的谐波干扰。同时,由于变压器的漏感和输出二极管的反向恢复电流造成的尖峰,都会产生不同程度的电磁干扰。开关电源中的干扰源主要集中在电压、电流变化大(即dV/dt或dI/dt很大)的元器件上,尤其是开关管、输出二极管和高频变压器等。同时,杂散电容会将电网的噪声传导到电子系统的电源而对电子线路的工作产生干扰。 这里我们来分析一下几种干扰产生的原因及其耦合的路径。 2.1输入整流滤波电路产生的谐波干扰 开关电源输入端普遍采用桥式整流,电容滤波电路。由于整流二极管的非线性和滤波电容的储能作用,使得输入电流i成为一个时间很短、峰值很高的周期性尖峰电流,如图1所示。这种畸变的输入电流,它除了基波外,还含有丰富的高次谐波分量。

自己动手改制低压可调电源

自己动手改制低压可调电源 低压可调电源对普通维修者来说,虽然不常用,但有时是不可或缺的。例如,对怀疑的IC块进行外加电源测试,对工作电压很另类的电子产品进行主板测试等,就需要低压可调电源了。然而正常渠道购进的低压可调电源,价格往往较贵(约300元),这里介绍一种利用低压开关电源(+5V)进行改制的方法。 目前市场上海量销售的LED显示屏专用开关电源(价格便宜,仅60元左右),经过简单改制,即可实现连续调压功能。例如:大家常见的诚联开关电源(CLA-200-5型,5V/40A)结构简单,无副电源,无过多保护控制电路,通电自启动(电路原理见附图,根据实物绘制)。主芯片IC1为常见的KA7500B,其工作原理不再赘述,只简单介绍一下电源过载或短路保护电路。如图所示,Q5(C1815)与R26、R27、R28、D17组合,负责过载或短路取样放大,连至IC1的○4脚。当电源过载或短路时,+5V输出电压大幅降低,Q5 的b极为低电平,c 极呈现高电平,经D17传至IC1的○4脚,当上升的电压超过3V时,关闭IC1⑧、○11脚的脉宽调制电压输出,使T2推动变压器、T1主电源开关变压器停振,+5V输出电压消失,电源处于待机状态(一旦保护,需重启电源才能工作)。而由电阻R29、R30、R31、电位器RW(1K)组成了输出电压控制及微调电路,连至IC1的○1脚。此时进行电压微调,上下不超过0.5V。如按附图所示改动部分电路元件,便可实现输出电压在2.6V~9.5V之间连续可调。首先是将R29(220)、R30(1K)改为跳线,电位器RW(1K)改为5K,R31(1.2K)改为220Ω/0.5W(该处阻值不能为0,以防止电位器RW调0时,输出电压短路)。此外,为安全起见,还应将输出负载电阻R34(51Ω)改为560Ω,LED指示灯串联限流电阻RD(390Ω)改为1K(因工作需要,输出电压有可能长时间维持在9V)。最后,输出滤波电容C24~C25也需全部更换为耐压值25V的电解电容。 下面进行调试验证。接通电源,逐渐增大RW阻值,RW上的分压也随之变大,IC1○1脚的比较电压也随之变化,经IC1内部自动调控脉宽,输出电压会随之下降。当RW调至最大阻值5K时,输出电压会降至稳定的2.6V。同理,当RW调至最小阻值0时,输出电压会升至稳定的9.5V(以上均为带载状态)。在整个调试过程中,IC1○4脚的电压一直保持在0.46V,Q5的b极电压仅在0.68~0.75V之间变化,c极一直保持在0.01V,未出现保护动作。经过长时间试机,最终可以判定,用以上方法改制成的低压可调电源稳定可靠,可以在实际维修中使用。

开关电源的抗干扰解决方法

开关电源的抗干扰解决方法 EMI干扰源对开关电源干扰的解决方案一般来说,来自外界辐射,雷击、或电网的抖动、等对电源开关的相关组成器件如整流二极管,高频变压器,功率开关管等外部环境的干扰是开关电源的EMI干扰源的主要体现。首先:介绍辐射干扰的传输通道 (1)在开关电源中,能构成辐射干扰源的元器件和导线均可以被假设为天线,从而利用电偶极子和磁偶极子理论进行分析;二极管、电容、功率开关管可以假设为电偶极子,电感线圈可以假设为磁偶极子; (2)没有屏蔽体时,电偶极子、磁偶极子,产生的电磁波传输通道为空气(可以假设为自由空间); (3)有屏蔽体时,考虑屏蔽体的缝隙和孔洞,按照泄漏场的数学模型进行分析处理。其次:是传导干扰的传输通道 (1)容性耦合 (2)感性耦合 (3)电阻耦合 a.公共电源内阻产生的电阻传导耦合 b.公共地线阻抗产生的电阻传导耦合 c.公共线路阻抗产生的电阻传导耦合 以下是EMI干扰源相关的抑制方案: 1.高频变压器的屏蔽 为防止高频变压器的漏磁对周围电路产生干扰,可采用屏蔽带来屏蔽高频变压器的漏磁场。屏蔽带一般由铜箔制作,绕在变压器外部一周,并进行接地,屏蔽带相对于漏磁场来说是一个短路环,从而抑制漏磁场更大范围的泄漏。 高频变压器,磁心之间和绕组之间会发生相对位移,从而导致高频变压器在工作中产生噪声(啸叫、振动)。涡街流量计为防止该噪声,需要对变压器采取加固措施: (1)用环氧树脂将磁心(例如EE、EI磁心)的三个接触面进行粘接,抑制相对位移的产生; (2)用“玻璃珠”(Glass beads)胶合剂粘结磁心,效果更好。 分开来讲开关电源EMI抑制有9大措施: (1)合理的PCB设计

将电脑电源改造为可调稳压电源(详细教程,相当实用)

将电脑电源改造为可调稳压电源(详细教程, 相当实用) -CAL-FENGHAI.-(YICAI)-Company One1

将AT电源改造为可调稳压电源 先发个ATX的电路图,以便参考,我是用AT电源改的,电路差不多。 1:先拆除5V等输出端的整流二极管(保留12V的整流二极管),更换12V处的滤波电容,参考上图拆除图中以下元件D(这个是供494电源的,很好找的,负极接12V输出端的,正极连到494的12脚),R25,R26,R20,R21(494第1脚的元件)R19,R24(494第2脚的元件,并且切断与393的连接),简单的方法是直接切断494第1,2脚与线路板的连接。2:切断494第15,16脚与线路板的连接,一般AT电源上这2脚是不用的,我们要用他来控制输出电流3:拆掉LM393的1,2,3脚元件 下面就要改电压和电流取样了,一般大家都在494的2个比较器的一端设一个固定的基准电压,然后取样输出电压(取样电压通过电位器调节比例)和固定的基准电压进行比较,达到输出电压可以调节的目的,这样的话,使的电压的调整下限受到基准电压的限制,而我现在是调节基准电压,输出端的电压取样用固定比列,这样一来,基准电压可以从0V起调,取样电压和基准电压比较后的结果大家应该可以想到, 实际的结果是输出端电压可以到20V的电压表显示0V,呵呵。 利用了1个0-20V和1个0-20A的表作显示,表的接法如下图 取用一个电位器(我用的5K),1端接地,另一端接494的14脚,中心脚接到494的2脚,在原12V输出处接一个15K电阻到494的1脚,另在494的1脚接一个5K电阻到电流表的正端,在494的2脚和3脚接一个1000P左右的电容,这样电压控制部分就改好了,应该很容易吧,上面两个电阻的数值是输出上限20V,下限可以接近0V;

开关电源的抗干扰技术

开关电源的抗干扰技术上网时间:2011-07-01 中心议题: 开关电源的干扰源和抗干扰措施 解决方案: 在电路布局上优化布局 合理接地 采用适当的电路隔离方式 单片机的开关电源工作时,其内部电压和电流波形都以非常短的时间上升和下降,所以开关电源本身就是一个射频干扰产生源。开关电源产生的干扰,按噪声干扰源种类来分,可以分为尖锋干扰和谐波干扰;若按耦合通路来分,可分为传导干扰和辐射干扰,开关电路框图如图1。 1开关电源的主要干扰 1.1 一次整流回路的干扰 开关电源中的主要噪声干扰之一是由二极管断开时的反向恢复现象引起的,一次整流回路中的整流二极管正向导通时有较大的正向电流流过,它受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失前的一段时间,电流会反向流动,从而导致很大的电流变化。即一次整流回路的干扰。 1.2 开关回路的干扰 电源工作时,开关处于高频通断状态,在高频电流环路中,可能会产生较大的空间辐射噪声。 1.3 二次整流回路的干扰 电源工作时,整流二极管处于高频通断状态,由脉冲变压器、整流二极管以及滤波电容构成的高频开关电流环路,可能向空间辐射噪声。 1.4 控制回路的干扰 控制回路中的脉冲控制信号是主要的干扰源。 1.5 分布电容引起的噪声干扰 2抗干扰措施 降低干扰是开关电源稳定工作的前提,其主要方法如下。 2.1 在电路设计上要优化布局 对于开关电路来说,合理的布局可以对电路中产生的辐射噪声加以抑制。

2.1.1 元器件布局时的抗干扰措施 (1)根据印制板的安装方式,将散热元器件如功率开关器件、稳压器、变压器等安装在印制板的上方,以利于散热;热敏元件应尽量远离散热元件。 (2)在高频电路中,尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰;尽量减小由高频脉冲电流所包围的面积。 (3)输入和输出元件应尽量远离。 (4)在双面印制板设计中,适当加入滤波电容,以便减小电源线阻抗,缩小电流环路,使电路工作更加稳定可靠。 (5)尽量减少环路面积。这是减少辐射噪声的重要途径,为此,要求开关电源的元件彼此间紧密排列。 原创文章:"https://www.360docs.net/doc/8714233013.html,/public/art/artinfo/id/80011580" 【请保留版权,谢谢!】文章出自电子元件技术网。、 开关电源的抗干扰技术上网时间:2011-07-01 如图2为环路面积较大的开关电路,图3为环路面积较小的开关电路。 2.1.2 印制板(PCB)布线抗干扰的措施 印制电路板的抗干扰设计不仅与布局有关,而且与布线也有相当大的关系。布线的原则如下:(1)相邻电路之间走线尽量避免平行;若平行走线无法避免,则应在平行信号线之间加一条起屏蔽作用的地线,且尽量加大平行信号线间距,以降低两线之间电磁干扰。 (2)控制回路与输出回路分开,采用单点接地方式。 (3)根据PCB板电流的大小,尽量加粗电源线、接地线,减少环路阻抗;同时使电源线、地线的走向和数据传递的方向一致,这有助于增强抗噪声能力;对于密度很高的PCB板,采用多层板;在双面板设计中,还应该在电源线和地线之间留出一定的空间,以便安装高频特性好的去耦电容。 (4)印制线不要突然拐角,以免发生反馈耦合。 (5)电容引线不能太长,尤其是高频旁路电容不能有引线。 2.2 合理接地 电源系统的接地包括公共参考接地和安全及抗干扰接地。在电路设计中,要尽量减小接地回路中的公共电阻,且应遵循“一点接地”原则。如果形成多点接地,会出现闭合的接地环路,从而在磁力线穿过回路时将产生磁感应噪声。通常利用一个导电平面作为参考地,将接地的各部分就近接到该参考地上。 2.2.1 接地过程应遵循的规则 (1)交流电源地与直流电源地分开。一般情况下交流电源的零线是接地的,且该零线上往往存在很多干扰,如果交流电源地与直流电源地不分开,将对直流电源和直流电路的正常工作产生影响。通常采用“浮地技术”将交流电源地与直流电源地分开,这样可以隔离来自交

DIY ATX电源改调压0-30V电流0-7A线性电源

DIY ATX电源改调压0-30V调流0-7A 首先提出的是,数字电压电流表要单独电源,(一个表一个电源,必须的)否则会共地烧表。关于改造清单!选购的原件基本都是方便采购搜集的,或者都是拆机件就可以了!!!!《有人一直在问关于占空比的问题,我这里解释一下变压器改造问题 1、当5V和12V绕组是独立的,你可以连接两个绕组。这样电压达到35V绝对没有问题。 2、但是大部分电源不是单独绕组,5V是12V 一部分。为简单起见,直接剪断公共地线,用原来12V绕组的两端,做全波整流 3、这样可以将12电源由半桥改全桥整流、就是功耗比较大。这个方案可行……这样不改绕变压器。仅剪断12V接地。全波整流达到自己想要的电压,理论上稳定值40V 5A 没有问题。前提是全波整流桥堆要有散热措施。》 想要稳定必须重绕变压器,用0.2的4股漆包线并绕16匝即可。 具体参数: 电压可调:0~30V 电流: 0-7A 短路电流:6.79A LM339控制过流,防止调流电位器损坏。 过压保护:意外输出32V,关闭电源 温度控制:大于45℃自动启动风扇 精确数显:数字电压、电流表 以下是电路简图,这只是参考原理图,实际改造过程中,需要添加一些电容什么的。参见下面经典的电路 电源通用IC代换表: TL494/KA7500B/BD494/BDL494/S494PA/IR3M02/MB3670/MB3759 /MST894C/TL594/ULN8186/DBL494/ULS8194R/IR9494/UPC494 /UA494/TL494CN

调压电路原理图,可以参照改造 这个图只能调压0-15V 想要调压0-24V 换24K 和12K电阻即可,下面有计算公式。

电脑电源改可调电源成功亲测SG芯片完整版

电脑电源改可调电源成 功亲测S G芯片 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

一.内容来自网上,结合官方资料,结合几位大神改造经验,综合自己经验改造而成。 每个ATX电源的电路均不同,不过也差别不大,一定按照实际的状况,一边拆,一遍测试,对着图纸,做好标记,才能成功。改造中心:SG6105需要欺骗引脚,其中有 5V 12V -12V(-5V),我个人的方案是不省略欺骗,对每个引脚提供它要求的电压,使用7812用电阻分压欺骗正电压。负电压走辅助变压器。其中需要注意的是正12V接7812输出端时,一定加上100欧电阻,不加的话,会有100左右MA的电流流入芯片,具体为啥不详。 二、SG6105 (HS8108)关键改造点说明: 1. PSON?接1K电阻后,直接接地。该点悬空时电源不工作。 2. 检测电压(2脚)、5V(3脚)、12V(7脚): 5V(~)直接从辅助+5V取电或者由7812分压得到; (~)从7812分压得到; 12V(~)从辅助电源19V处(参考图)接三端稳压LM7812接100欧姆电阻到7脚。 3. Uvac(5脚) 交流检测端,要求以上。在其分压电路前端直接接+5V,或者不动原电路,直接由主回路提供。 4. NVP(6脚)负电压检测端,要求左右。接二极管+电容滤波后接至辅助变压器5V输出。 脚+12脚(有些电源是13脚和14脚),短接接电压,电压由7812分压得到。 三、改可调~30V 1调整17脚电压分压比例,从而调压。 四. 散热风扇接辅助变压器19V接40-100欧/2W电阻工作。 五:可调输出电容耐压一定要更换,要不会爆炸,输出端接1K/2W电阻到负极,模拟假负载。 六、其它说明: 1.如果要改为输出电流可调,要增加恒流控制,需加运放。可参考成熟的494开关电源改造方案。2.增一倍的输出电压,最简单方法是将变压器次级的中点接地断开,并采取全桥整流。当然滤波电容也要更换。3.相关计算参考原理图。

电脑ATX电源改0V-30V可调电源,电流

前几天发帖atx电源改0V-30V可调电源,我有朋友说很乱,我整理了一下,这是以前的帖 子 现在开始整理: 我的得到了猪蹄煮不烂朋友的大力支持,在他的帮助下一步一步的进行,原文参考:第一步:打开电源拆除电源的 -5V +5v的部分,不知道怎么拆的就顺着后面往前拆,把欠 压过压的电路全部拆除。 第二部:拆除TL494的1脚上的全部原件,TL494和7005的原理是一样的,然后拆除2脚 的电阻,上面的电容不要拆, 第三步:要在2脚做一个调压电路具体的怎么做我下面给大家分享。调压原理借用的猪蹄煮不烂的“调整1脚和2脚的电阻都能达到调压目的只是1脚不能从0V 起调。”2脚接7500 14脚取样基准电压(5V)这个电压是恒定的。所以1脚能比较出电压是不是升高了,或者 降低了” 第四步:把12V的输出电容换成耐压50V的,不然会吓你一跳。 第五步:用一个24K的电阻接到TL494的一脚,另一角接电源的原12V的输出端作为R1 再找个的电阻接到TL494的1脚另一端接地,(我没有的电阻,我用了个5K的)作为R2。 TL494的2脚接一个的电阻接到电位器的中端,电位器的上端接tl494的13 14 15脚下端接地,我的这个电源,这样接好后,有个问题,电压不能从0v调起,又请教网友猪蹄煮不烂,在他的帮助下,减少电位器中端的电阻的阻值,顺利的把电压从到了。我没有买到常闭温度控制器,所以我的风扇是长吹的,最后做了个表头的单独的供电电源,找了个电子射灯的电源,刚好上面有个12V的交流输出。我就在上面加绕了双线并绕得到2个8V的电压,用全桥和7812 7805得到一路12V两路5v给风扇和表头供电,因为电压表,电流表是不能共地的,如果要想共地要买隔离的电压表和电流表,如果用指针的电压表和电流表就不需要另外做电源。电位器一定要买线绕的,那样就不会感觉调电压变化太快。电位器可以选用5K-40KZ 之间的任意阻值。电源的输出端要接个3W500的放电电阻,可以及时的放掉输出电容剩余的 电。, 最后我买到了温度长开控制器是50度的,风扇可以间歇的工作了,老化试验电流5A多25 分钟风扇才开始工作。 所有电源输出都有两路,一路可以摸索到有散热片的那一排mos管,这一路就是输出,线都比较粗,除了12v留下其他都拆,拆的时候注意只拆与本路连接的原件,不在本路上的原件不动,否则拆错了就还原不回去了。。另外一路是5v12v到494的1脚,全部拆除,剩下的会到339的5脚,也都拆掉,这部分是过压,欠压保护,拆掉就不会被保护了,可以向上调压。将494的1脚与12v之间只装一只24k精密电阻,必须是精密的,因为需要两电阻比值,

高频开关电源电磁干扰

内容摘要 现代电子、通信技术的发展对电源的要求越来越高。高频开关电源以其体积小、重量轻、变换效率高等优点,广泛应用于家电、计算机、通信、控制等设备中。但高频开关电源固有的高频辐射及传导的电磁干扰发射对开关电源效率及使用的影响已成为人们关注的热点。因此,本文主要研究了高频开关电源电磁干扰及其抑制措施。论文首先介绍了开关电源的概念、高频开关电源电磁干扰产生的原因,并综述了高频开关电源的发展趋势,其次具体探讨了抑制高频开关电源电磁干扰的措施。 关键词:高频开关电源;电磁干扰;抑制措施

目录 内容摘要 ........................................................................................................................... I 引言 (1) 1 高频开关电源电磁干扰产生的原因分析 (2) 1.1 开关电源的定义 (2) 1.2 高频开关电源的电磁干扰分析 (2) 1.3 高频开关电源的发展趋势 (3) 2 高频开关电源的电磁干扰的抑制措施 (6) 2.1 抑制开关电源中各类电磁干扰源 (6) 2.2 破坏电磁干扰传输途径 (6) 2.3 其它解决方法 (8) 3 高频开关电源电子干扰滤波的分析与仿真 (9) 3.1 研究方法和实验方案 (9) 3.2 开关电源电磁干扰的仿真 (10) 结论 (12) 参考文献 (13)

引言 开关电源由于具有体积小、重量轻、效率高、稳压范围宽等许多优点,己经广泛应用于计算机及其外围设备、通信、自动控制、家用电器等领域。然而,开关电源自身产生的各种噪声干扰却形成了一个很强的电磁干扰源。这些干扰随着开关频率的提高、输出功率的增大而明显地增强,不仅对与通信电源在同一电网上供电的其它设备及电网产生干扰,同时对由通信电源供电的其它设备产生干扰,使设备不能正常工作;另一方面严重的谐波电压电流在开关电源内部产生电磁干扰,从而造成开关电源内部工作的不稳定,使电源的性能降低。因此,只有提高开关电源的电磁兼容性,才能发挥开关电源的更大优势,使开关电源在那些对电源噪声指标有严格要求的场合下被采用。

将电脑电源改造为可调稳压电源详细教程相当实用

将AT电源改造为可调稳压电源 先发个ATX的电路图,以便参考,我是用AT电源改的,电路差不多。 1:先拆除5V等输出端的整流二极管(保留12V的整流二极管),更换12V处的滤波电容,参考上图拆除图中以下元件D(这个是供494电源的,很好找的,负极接12V输出端的,正极连到494的12脚),R25,R26,R20,R21(494第1脚的元件)R19,R24(494第2脚的元件,并且切断与393的连接),简单的方法是直接切断494第1,2脚与线路板的连接。 2:切断494第15,16脚与线路板的连接,一般AT电源上这2脚是不用的,我们要用他来控制输出电流 3:拆掉LM393的1,2,3脚元件 下面就要改电压和电流取样了,一般大家都在494的2个比较器的一端设一个固定的基准电压,然后取样输出电压(取样电压通过电位器调节比例)和固定的基准电压进行比较,达到输出电压可以调节的目的,这样的话,使的电压的调整下限受到基准电压的限制,而我现在是调节基准电压,输出端的电压取样用固定比列,这样一来,基准电压可以从0V起调,取样电压和基准电压比较后的结果大家应该可以想到, 实际的结果是输出端电压可以到20V的电压表显示0V,呵呵。 利用了1个0-20V和1个0-20A的表作显示,表的接法如下图 取用一个电位器(我用的5K),1端接地,另一端接494的14脚,中心脚接到494的2脚,在原12V输出处接一个15K电阻到494的1脚,另在494的1脚接一个5K电阻到电流表的正端,在494的2脚和3脚接一个1000P左右的电容,这样电压控制部分就改好了,应该很容易吧,上面两个电阻的数值是输出上限20V,下限可以接近0V; 电流取样部分比电压部分稍多点,因为20A的电流表满量程199mV,1A时10mV,0.1A时只有1mV,呵呵,这个电压太小了,如果直接送到494去,那么电流控制精度就很差了,1mV电压估计494不会动作,所以我拆掉了LM393的1、2、3脚元件,用它来构成一个大约40倍的放大器,这样在10A电流时输出4V,0.1A时有40mV,将此电压送到494的16脚,同15脚给定的约0-4V基准电压比较; 辅助电源: AT电源没有辅助电源,用了一个几块钱的电子变压器,就是点12V射灯的DD,绕了3个绕组,整流后经过一个7812,2个7805稳压,(一个12V和两个5V,3组独立)两个5V给表供电,12V给494供电,接到494的12脚,即原来拆掉的D的+端。 对了,把电源板和连接外壳处的铜箔切断(电路板螺丝固定孔处),不要让外壳和电源地相连,可以通过0.1的电容将外壳接地,再在原12V输出端电容处接一个几百欧姆1-2W的电阻(我用了2个1K1W并联),风扇电源也要改接的哦~~~呵呵! 哈哈,现在可以用了!(另外2个5K的电位器如果用多圈的就更好了)

电源干扰

电源噪声是电磁干扰的一种,其传导噪声的频谱大致为10kHz~30MHz,最高可达150MHz。电源噪声,特别是瞬态噪声干扰,其上升速度快、持续时间短、电压振幅度高、随机性强,对微机和数字电路易产生严重干扰。 根据传播方向的不同,电源噪声可分为两大类: ①.一类是从电源进线引入的外界干扰; ②.一类是由电子设备产生并经电源线传导出去的噪声。 从形成特点看,噪声干扰分串模干扰与共模干扰两种。 ①.串模干扰是两条电源线之间(简称线对线)的噪声。 ②.共模干扰则是两条电源线对大地(简称线对地)的噪声。 二.开关电源的干扰 开关电源属于强干扰源,其本身产生的干扰直接危害着电子设备的正常工作。因此,抑制开关电源本身的电磁噪声,同时提高其对电磁干扰的抗扰性,在设计和开发过程中需要特别的关注。 开关电源的干扰一般分为两大类:一是开关电源内部元器件形成的干扰;二是由于外界因素影响而使开关电源产生的干扰。 2.1内部元器件干扰 开关电源产生的EMI主要是由基本整流器产生的高次谐波电流干扰和功率变换电路产生的尖峰电压干扰。 ①.基本整流器的整流过程是产生EMI最常见的原因。这是因为工频交流正 弦波通过整流后不再是单一频率的电流,而变成一直流分量和一系列频率不同的谐波分量,谐波(特别是高次谐波)会沿着输电线路产生传导干扰和辐射干扰,使前端电流发生畸变,一方面使接在其前端电源线上的电流波形发生畸变,另一方面通过电源线产生射频干扰。 ②.功率变换电路是开关稳压电源的核心。产生这种脉冲干扰的主要元件为: a.开关管。开关管及其散热器与外壳和电源内部的引线间存在分布电容,当开关管 流过大的脉冲电流(大体上是矩形波)时,该波形含有许多高频成份;同时,开关电源使用的器件参数如开关功率管的存储时间,输出级的大电流,开关整流二极管的反向恢复时间,会造成回路瞬间短路,产生很大短路电流,另外,开关管的负载是高频变压器或储能电感,在开关管导通的瞬间,变压器初级出现很大的涌流,造成尖峰噪声。 b.高频变压器。开关电源中的变压器,用作隔离和变压,但由于漏感的原 因, 会产生电磁感应噪声;同时,在高频状况下变压器层间的分布电容会将一次侧高次谐波噪声传递给次级,而变压器对外壳的分布电容形成另一条高频通路,使变压器周围产生的电磁场更容易在其他引线上耦合形成噪声。

开关电源的抗干扰设计

开关电源的抗干扰设计 摘要:列举了开关电源EMC设计的几个问题,简要叙述了抑制开关电源EMI的措施。1前言 电力电子技术的迅猛发展一方面带动了电源技术的发展,另一方面也给电源产品提出了越来越高的要求。开关电源具有线性电源无可比拟的优点:体积小、重量轻、效率高等。但是,功率密度的增大和频率的提高所产生的电磁干扰对电源本身及周围电子设备的正常工作都造成威胁。开关变换器本身具有一定的开关噪声,从而会从电源的输入端产生差模与共模干扰信号。电磁干扰的产生是由开关电源本身的特点所决定的,是难以避免的,关键是如何采取有效的措施来减小其干扰程度。 电磁兼容(EMC)是指在有限的空间、时间和频率范围内各种电器设备共存而不引起性能下降。它包括电磁干扰(EMI)和电磁敏感(EMS)两方面的内容。EMI是指电器产品向外发出干扰,EMS是指电器产品抵抗电磁干扰的能力。一台具备良好电磁兼容性能的设备应既不受周围电磁噪声的影响,也不对周围环境造成电磁干扰。 2开关电源的EMC设计 开关电源的EMC设计应考虑以下几个方面: 1)滤波器 2)高频变压器 3)软开关技术4)共模干扰的有源抑制 5)印制线路板布线的EMC设计 3EMC的设计措施 3.1滤波器 滤波是一种抑制传导干扰的方法。例如在电源输入端接上滤波器,可以抑制来自电网的噪声对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。电源滤波器作为抑制电源线传导干扰的重要单元,在设备或系统的电磁兼容设计中具有极其重要的作用。它不仅可抑制传输线上的传导干扰,同时对传输线上的辐射发射也具有显著的抑制效果。在滤波电路中,选用穿心电容、三端电容、铁氧体磁环,能够改善电路的滤波特性。适当的设计或选择合适的滤波器,并正确地安装滤波器是抗干扰技术的重要组成部分,具体措施如下:1)在交流电输入端加装电源滤波器,其电路如图1所示。图中Ld、Cd用于抑制差模噪声,一般取Ld为100~700μH,Cd取1~10μF。Lc、Cc用于抑制共模噪声,可根据实际情况加以调整。 所有电源滤波器都必须接地(厂家特别说明允许不接地的除外),因为滤波器的共模旁路电容必须在接地时才起作用。一般的接地方法是除了将滤波器与金属外壳相接之外,还要用较粗的导线将滤波器外壳

傻瓜式改造ATX可调电源过程

傻瓜式改造ATX可调电源过程 ”的《小白改造ATX可调电源过程》的文章整理 https://www.360docs.net/doc/8714233013.html,/read.php?tid=336224&fpage=0&displayMode=1&toread=0&page=2 改造ATX的第一步就是找到一个电源,当然这个电源必须是好的!山寨的无所谓,建议不要用太好的,因为太好的电源电路复杂而且和普通的电源结构有可能不一样! 第一步:首先大家要先测试一下电源,将ATX电源接电,然后短接绿线和黑线(黑线很多任意一根就可以),这时你会发现电源风扇开始工作了,这就代表ATX电源已经开始工作,各个输出已经有电压了!然后我们用万用表测量一下各个输出的电压!【对于电源黑色线都代表对地,也就是万用表黑线接的位置】,下图是ATX各个引脚的作用电压和颜色!如果确定各个输出都正常我们就可以开始拆开电源看看内部了! 第二步:我们打开电源后会看到电路板,一般的电源还会看到PFC,什么是PFC呢?其实他就像一个变压器一样两根线接在板子上,有很多电源必须接上PFC才可以启动,当然有一些山寨电源PFC是假的,不接也能启动!下面的图是PFC的样子,大家可以看看注意一下,如果你在拔掉PFC接线的时候注意一下接线头的位置,还原回去的时候按照原来位置还原!

接下来我们看一下主板上的芯片,一般主板有俩个芯片,一个是TL494(或者是7500 B,这两个是一样的),另外一个是LM339,如果你发现板子上有这两个芯片哪么恭喜你,你可以继续改造了,如果你没有这两个或者没有其中的一个,哪么抱歉你还是还原你的电源吧!因为我就改造过这种ATX,如果你没有LM339其实也可以改造,至少能改成0-15v的!下面图片是这两个芯片,我的是7500B! 接下来我们要做的就是将板子拿出来,准备拆线(每样颜色的线留出来一根,这样方便找各个电压区域,都拆也行前提你要能自己找到各个电压区域),这里需要注意板子上的高压区,高压区的电压可是300v的或者更高,千万注意安全!另外不要以为断电就能乱摸板子,高压区断电10秒钟内电容还有余电,这时也能电人的,我就被电过!下图是板子拿出来的全貌,一般有俩个超级大个的电容那部分为高压区,中间间隔散热片!记住背面也别乱摸!!!

电源的电磁干扰技术设计要点

电源的电磁干扰技术设计要点 开关电源工作在高频开关状态,内部会产生很高的电流、电压变化率,导致开关电源产生较强的电磁干扰。电磁干扰信号不仅对电网造成污染,还直接影响到其他用电设备甚至电源本身的正常工作,而且作为辐射干扰闯入空间,造成电磁污染,制约着人们的生产和生活。 国内在20世纪80一90年代,为了加强对当前国内电磁污染的治理,制定了一些与CISPR 标准、IEC801等国际标准相对应的标准。自从2003年8月1日中国强制实施3C认证(china compulsory cerTIficaTIon)工作以来,掀起了电磁兼容热,近距离的电磁干扰研究与控制愈来愈引起电子研究人员们的关注,当前已成为当前研究领域的一个新热点。本文将针对开关电源电磁干扰的产生机理系统地论述相关的抑制技术。 l 开关电源电磁干扰的抑制 形成电磁干扰的三要素是干扰源、传播途径和受扰设备。因而,抑制电磁干扰应从这三方面人手。抑制干扰源、消除干扰源和受扰设备之间的耦合和辐射、提高受扰设备的抗扰能力,从而改善开关电源的电磁兼容性能的目的。 1.1 采用滤波器抑制电磁干扰 滤波是抑制电磁干扰的重要方法,它能有效地抑制电网中的电磁干扰进入设备,还可以抑制设备内的电磁干扰进入电网。在开关电源输入和输出电路中安装开关电源滤波器,不但可以解决传导干扰问题,同时也是解决辐射干扰的重要武器。滤波抑制技术分为无源滤波和有源滤波2种方式。 1.1.1 无源滤波技术 无源滤波电路简单,成本低廉,工作性能可靠,是抑制电磁干扰的有效方式。无源滤波器由电感、电容、电阻元件组成,其直接作用是解决传导发射。开关电源中应用的无源滤波器的原理结构图如图1所示。 由于原电源电路中滤波电容容量大,整流电路中会产生脉冲尖峰电流,这个电流由非常多

用ATX改的数显直流可调电源

用ATX改的数显直流可调电源0-25V.0-12A的可调输出此主题相关图片如下:图1.jpg

此主题相关图片如下:图2.jpg 电阻: 10K*4个*** 47K*3个***(因为不好找我用的是贴片式的) 2.2K*1个*** 620欧姆*1个(最还是可调的,通过调节R35可改变输出电压的上限)*** 500欧姆/3瓦(这是“负载电阻”不好找的话.可不要或用原有的电阻) 0.01欧姆/5瓦**** 必须是0.01欧姆的如果不是可以用其他串并联成0.01欧姆如果实在没办法找到0.01 欧姆需要从新计算阻值如果R38变动的话其他电阻也需要变化如R32 R39 R40 可调电阻: 1K *** 最好采用精密多圈可调电阻 10K *** 最好采用精密多圈可调电阻 电容:

电解电容: 50V3300uF*1个 50V1uF 瓷片电容: 103*2 (图中的0.01uF)*** 104*2 (图中的0.1uF)*** 3段半数显电压表和电流表各一只.电流大于5A时需要接分流器.解法见图2 ***星号代表重要 电阻电容可以是拆机的或者是新的没有标称是几瓦的可以用1/16的也可以最好用1/4瓦1/8瓦的R33和C41最好用原有的原件.它们决定了IC的频率 、 、

改装装原理 1、先找到TL494集成电路的第一脚。 2、找几个5K--50K的不同阻值的电阻(视不同的开关电源)备用. 3、从以上备用的电阻中找一个30K左右的电阻,焊到TL494的第一脚和…地?(7脚)之间。 4、将一个电压表调到直流电压档,接到电源输出的“黄”线和“黑”线间,等会儿将用它测输出电压(开关电源改造前这儿的电压应为12V)。 5、将电源插头插上。 再找一根细导线,将电源输出排线(接电脑主板的那个插头)上的“蓝”线和“黑”线短接(使开关电源工作)。 6、观察电压表电压,这时应比改造以前略大(略大于12V),若输出电压升高得不是很明显或还不到13.8V,再逐渐减小刚才加到TL494第一脚和地之间的那个电阻,直到电压表上的电压指示出13.8V为止。当然,如果第一次焊上电阻后,电压超过了13.8V,这时就要逐渐增大这个电阻,使之降到13.8V为止。(我的开关电源这个电阻取了15K时为13.9V,不同的开关电源这个电阻是取得不一样的,要多拿几个电阻从大到小去试。当然也可以用一个电位器来调,但这时要注意电位器不要调得太小了。) 原理:TL494第一脚是开关电源输出电压的取样端,当这个脚对地加上一个电阻后,取样电压就下降了,低于了平衡点。这样,开关源就会输出一个比之前更高的电压,使得TL494第一脚刚才降低的电压重新恢复到平衡点,最后稳定下来,输出比12V更高一点的电压。 注意:1、开关电源内部很多地方都是高压,打开通电操作时一定要特别小心! 2、加上去的这个电阻一定要从大到小去调(一般都在几K以上),这个电阻过小时,开关电源就要过压保护(一般电压超过14.5V左右电源就保护了),这时电源反而无电压输出了。 我用这种方法改了几个电脑电源了,作为V段机和U段机的电源性能是相当好的,对机器没有一点干扰。性价比也是很高的!输出电流在7A--10A,比花过上百元钱拿变压器做个电源划得来。我们这边到电脑城只花20元就可以弄回一个这样的二手电源。 PS:改制时最好把+5V的取样电路切断,否则带负载会有些不稳。 FQA:5v取样由哪几个元件构成,断开哪一个? 顺着1脚找出去,一般会有接三个电阻,其中一个接地,一个接+5、一个接+12,把接+5的电阻拆下,或切断相应的铜铂就行了。 另,电压升高后,风扇超速运转,不仅声音大,而且影响风扇寿命,我把风扇负极接到+3.3V处,这样风扇声音就小多了。 不断开+5V也照样稳定。 因为取样电路是取自开关电源输出端的,一个开关变压器有几个副绕组,开关变压器在频率相同的情况下各

相关文档
最新文档